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Abstract. Low-cost gas and particulate matter sensor pack-
ages offer a compact, lightweight, and easily transportable
solution to address global gaps in air quality (AQ) obser-
vations. However, regions that would benefit most from
widespread deployment of low-cost AQ monitors often lack
the reference-grade equipment required to reliably calibrate
and validate them. In this study, we explore approaches to
calibrating and validating three integrated sensor packages
before a 1-year deployment to rural Malawi using colocation
data collected at a regulatory site in North Carolina, USA.
We compare the performance of five computational model-
ing approaches to calibrate the electrochemical gas sensors:
k-nearest neighbors (kNN) hybrid, random forest (RF) hy-
brid, high-dimensional model representation (HDMR), mul-
tilinear regression (MLR), and quadratic regression (QR).
For the CO, Ox , NO, and NO2 sensors, we found that kNN
hybrid models returned the highest coefficients of determina-
tion and lowest error metrics when validated. Hybrid models
were also the most transferable approach when applied to de-
ployment data collected in Malawi. We compared kNN hy-
brid calibrated CO observations from two regions in Malawi
to remote sensing data and found qualitative agreement in
spatial and annual trends. However, ARISense monthly mean
surface observations were 2 to 4 times higher than the remote
sensing data, partly due to proximity to residential biomass
combustion activity not resolved by satellite imaging. We
also compared the performance of the integrated Alphasense
OPC-N2 optical particle counter to a filter-corrected neph-
elometer using colocation data collected at one of our de-

ployment sites in Malawi. We found the performance of the
OPC-N2 varied widely with environmental conditions, with
the worst performance associated with high relative humidity
(RH >70 %) conditions and influence from emissions from
nearby residential biomass combustion. We did not find ob-
vious evidence of systematic sensor performance decay af-
ter the 1-year deployment to Malawi. Data recovery (30 %–
80 %) varied by sensor and season and was limited by insuf-
ficient power and access to resources at the remote deploy-
ment sites. Future low-cost sensor deployments to rural, low-
income settings would benefit from adaptable power sys-
tems, standardized sensor calibration methodologies, and in-
creased regional regulatory-grade monitoring infrastructure.

1 Introduction

Ambient air pollution is a leading cause of morbidity and
premature mortality in sub-Saharan Africa (SSA) (Murray et
al., 2020). Air pollution in SSA is expected to increase over
time given regional growth in population and energy demand
combined with a biomass-fuel-dominated energy mix (Shik-
wambana and Tsoeleng, 2020; Stevens and Madani, 2016;
Liousse et al., 2014; Amegah and Agyei-Mensah, 2017).
However, regulatory air quality (AQ) monitoring is uncom-
mon in many SSA countries, partially due to the high cost of
reference-grade equipment (Amegah, 2018; Petkova et al.,
2013). Remote sensing is a valuable tool to address these
data gaps (El-Nadry et al., 2019), but satellite observations
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alone have various shortcomings relative to in situ measure-
ments (Martin et al., 2019). Additional validation with reli-
able surface measurements is required, particularly in SSA
(Malings et al., 2020; Hersey et al., 2015). In the mean-
time, low-cost gas and particulate sensor packages provide
an affordable, compact, and easily transportable approach to
supplement air quality networks in regions where reference
grade instrumentation is not accessible. Malawi, located in
southeastern Africa, provides a relevant context to investi-
gate how low-cost sensors (LCSs) can be used to address
the global dearth of AQ observations. The Malawi Bureau
of Standards published ambient air quality limits based on
World Health Organization guidelines in 2005 (Mapoma and
Xie, 2013; Malawi Bureau of Standards, 2005), but there is
no regulatory air quality monitoring program in the coun-
try to date. Previous studies of AQ in Malawi have primarily
focused on indoor air quality or were unable to capture long-
term trends (Fullerton et al., 2009, 2011; Jary et al., 2017;
Mapoma and Xie, 2013). A dependable and affordable LCS
monitoring network in Malawi could provide data to monitor
the evolution of air quality and establish baselines for future
AQ management.

Given the potential applications, LCS deployments are be-
coming common (Giordano et al., 2021). However, as the
cost of LCSs decreases, so too will their selectivity, linearity,
and accuracy. Electrochemical gas sensors are prone to in-
terference and cross-sensitivities. Interference occurs when
sensors respond to changes in temperature (T ) and relative
humidity (RH). Cross-sensitivities occur when sensors re-
spond to the presence of gases other than the target analyte
(Lewis et al., 2016; Mead et al., 2013). Failure to properly
account for these during calibration can result in substantial
measurement error under ambient conditions (Lewis et al.,
2016; Cross et al., 2017; Castell et al., 2017; Mead et al.,
2013). The calibration and application of LCS technologies
to augment existing regulatory monitoring networks has been
widely explored (Cross et al., 2017; Hagan et al., 2018; Ma-
lings et al., 2019a, b; Mead et al., 2013; Zimmerman et al.,
2018; Li et al., 2021), but historically there has been little
standardization in calibration approach or performance eval-
uation (Castell et al., 2017; Duvall et al., 2021a, b; Morawska
et al., 2018; Rai et al., 2017). In response to this, the U.S. En-
vironmental Protection Agency (EPA) recently released two
reports outlining testing protocols, metrics, and target val-
ues to evaluate the performance of ozone and fine particu-
late matter (PM2.5) sensors for non-regulatory supplemental
and informational monitoring applications in the U.S. (Du-
vall et al., 2021a, b). Unfortunately, there is no similar guid-
ance for validating LCSs for deployments in settings with-
out in situ regulatory monitors. The deployment and evalu-
ation of LCS packages in areas without existing AQ mon-
itoring infrastructure is a growing research area (Chatzidi-
akou et al., 2019; Hagan et al., 2019; Subramanian et al.,
2020, 2018). A lack of in situ regulatory monitors requires
colocation, calibration, and validation at another site, poten-

tially under a set of environmental conditions different from
those of the target deployment environment. Advancements
in laboratory chamber calibration may help resolve this is-
sue. In a controlled environment, gas sensors can be ex-
posed to and calibrated for a range of environmental con-
ditions (i.e., gas concentration, RH, T , pressure, etc.), which
may allow LCS cross-sensitivity and interference to be mea-
sured and controlled for before deployment (Williams et al.,
2014b; Spinelle et al., 2016, 2015; Lewis et al., 2016). How-
ever, studies of low-cost particle sensors have observed bet-
ter performance under laboratory versus field conditions (Rai
et al., 2017). For example, previous long-term field assess-
ments of the Alphasense OPC-N2 optical particle counter
have observed large variability with changing seasons, envi-
ronmental conditions, and background pollution levels (Bu-
lot et al., 2019; Rai et al., 2017; Sousan et al., 2016). Low-
cost optical particle sensors can systematically overestimate
mass concentrations under high RH (>70 %) conditions due
to hygroscopic growth of the particles (Crilley et al., 2018;
Di Antonio et al., 2018), with errors ranging from 100 %
to 500 % depending on aerosol hygroscopicity (Hagan and
Kroll, 2020). Further, the complex chemical, physical, and
optical properties of aerosol can complicate the field evalu-
ation of low-cost particle sensors. For the Alphasense OPC-
N2, particle composition may impact the sensor output by as
much as a factor of 30 (Rai et al., 2017; Sousan et al., 2016).
A recent modeling effort by Hagan and Kroll (2020) found
that the optical properties and particle size distribution of the
source aerosol can result in errors of up to 100 % and 90 %,
respectively, in mass measurements made by low-cost op-
tical particle sensors. Measurement errors were highest for
strongly absorbing aerosol dominated by small (<300 nm)
particles. These traits can be characteristic of aerosol emitted
by biomass burning (Reid et al., 2005), a dominant source
of ambient PM throughout SSA (Marais and Wiedinmyer,
2016; Queface et al., 2011; Liousse et al., 2014). Therefore,
stringent quality assurance is necessary to ensure the validity
of LCS particle measurements in this environment.

In this study, we calibrated and evaluated the “ARISense”,
a moderate-cost integrated gas, particle, and meteorological
sensor package (Aerodyne, Inc.) for long-term field deploy-
ment to Malawi. Our overarching goal was to assess the vi-
ability of augmenting and maintaining a small, temporary
network of LCS monitors, until a more formal governmen-
tal regulatory monitoring system can be established. Given
that comparison to regulatory grade equipment in Malawi
was not possible, the objective of this work was to devise
an alternative methodology to evaluate the ARISense tech-
nology (Sect. 2.1) for accuracy, precision, and stability over
the 1-year pilot deployment. In Sect. 2.3 and 2.4, we describe
colocations of the gas sensors (in North Carolina, USA) and
particle sensor (in Mulanje, Malawi) with reference or semi-
reference instruments (described in Sect. 2.2). We use colo-
cation data and quantitative assessment metrics (described
in Sect. 2.5) to compare the performance of five modeling
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approaches to calibrate the gas sensors (Sect. 3.1) and to es-
timate error in the particle sensor data (Sect. 3.2). After de-
ployment to Malawi (described in Sect. 2.6), we qualitatively
assess how the ARISense performed in the field using con-
textual information about nearby emission sources, diurnal
trends, and an intercomparison of calibrated gas model obser-
vations (Sect. 3.3 and 3.4). In Sect. 3.5 and 3.6, we compare
the deployment results to remote sensing and reanalysis data
products and to surface measurements from similar environ-
ments in SSA. Finally, in Sect. 3.7, we qualitatively assess
the long-term stability of the sensor readings and calibra-
tion models in Malawi by comparing ambient data collected
1 year apart at the same location. In concluding (Sect. 4),
we draw on these pilot results to characterize the benefits,
limitations, and robustness of this technology and methodol-
ogy for our application: collecting AQ data in understudied
and low-resource regions. Additionally, we offer guidance on
considerations to improve future remote deployment efforts.
Detailed analysis and discussion of more than 3 years of data
collected in Malawi will be presented in a forthcoming com-
plementary publication.

2 Methods

The ARISense sensor packages were colocated with refer-
ence instruments in North Carolina (NC) before and after de-
ployment to Malawi. One ARISense monitor was colocated
with a semi-reference PM instrument at a deployment site
in Malawi to assess the performance of the integrated OPC-
N2. Instrumentation, colocation, and calibration are covered
in Sect. 2.1–2.4. Performance assessment metrics are given
in Sect. 2.5. Calibrated ARISense monitors were deployed
to Malawi (Sect. 2.6) and compared to remote sensing data
products (Sect. 2.7).

2.1 ARISense sensor packages

The ARISense monitoring package (Fig. S1 in the Supple-
ment) integrated the following sensors from Alphasense Ltd.,
UK: carbon monoxide (CO-B4), nitric oxide (NO-B4), ni-
trogen dioxide (NO2-B43F), total oxidants (Ox-B421), and
the OPC-N2 optical particle counter. The ARISense package
reported voltage readings from electrochemical gas sensor
working electrodes (WEs) and auxiliary electrodes (AEs).
Sensor differential voltage (1V) was calculated as WE–AE.
The Alphasense OPC-N2 recorded counts in 16 size bins
spanning particle diameters from 0.38 to 17.5 µm, meaning
the OPC-N2 primarily measures coarse-mode aerosol par-
ticles (>2 µm) and some accumulation-mode (0.1 to 2 µm)
aerosol particles (Badura et al., 2018; Crilley et al., 2018;
Sousan et al., 2016). Although the OPC-N2 has embedded
algorithms to convert count measurements into mass con-
centrations of PM1.0, PM2.5, and PM10 (particulate matter
with aerodynamic diameters less than 1.0, 2.5, and 10 µm,

respectively), the bin count data were manually integrated,
converted to number concentration (cm−3) assuming unity
measurement efficiency across the bin range and then to
mass concentration assuming spherical particles with uni-
form density (1.65 g cm−3). The values reported for PM2.5
are PM2. The location of the adjacent bin separations at 2.0
and 2.99 µm did not allow for direct estimates of PM2.5.
However, this was only one of many contributing sources of
error in approximating true mass concentration with the Al-
phasense OPC-N2. Given the minimum cut-off diameter, we
were unable to measure (nor did we try to estimate) the mass
from particles smaller than 0.38 µm.

We used four ARISense monitors in this study: serial num-
bers ARI013, ARI014, ARI015 (v1.0, 2017), and ARI023
(v2.0, 2018). The monitors were powered by solar panels
charging external batteries and recorded data to an internal
USB device. Details and images are provided in Sect. S1 of
the Supplement. Additional environmental and meteorologi-
cal sensors (i.e., T , RH, pressure, solar intensity, and noise)
and the system design are described in Cross et al. (2017).

2.2 Reference instrumentation

Gas concentration measurements for NOx/NO/NO2 (Tele-
dyne Model T200UP), CO (Thermo Scientific Model 48i-
TLE), and ozone (Ecotech Federal Equivalent Method in-
strument) were obtained from reference instruments operated
by the North Carolina Department of Environmental Quality
(NC-DEQ) and the U.S. EPA.

The semi-reference MicroPEM (RTI International) instru-
ment was used to assess the performance of the OPC-N2 in
Malawi. The MicroPEM, equipped with T and RH sensors,
sampled (0.50 L min−1, 100 % duty cycle) via a PM2.5 inlet
into a nephelometer (0.1 Hz) and 25 mm PTFE filter. In pre-
vious evaluation studies, after gravimetric correction, the Mi-
croPEM real-time nephelometer agreed with fixed-site refer-
ence monitors across a wide range of ambient PM concen-
trations (Du et al., 2019; Williams et al., 2014a). However,
deployments observed baseline (zero) drift and poor perfor-
mance at RH conditions above 94 % (Williams et al., 2014a;
Zhang et al., 2018). To account for baseline drift, the Mi-
croPEM was zeroed before each deployment using a HEPA
filter. Additional details on the MicroPEM sensor, filter anal-
ysis, and quality assurance are provided in Sect. 1 of the Sup-
plement.

2.3 Gas sensor colocation and calibration

Before deployment to Malawi, ARI013, ARI014, and
ARI015 were colocated with EPA and NC-DEQ reference
instruments (Fig. S2) at a near-highway site near Durham,
North Carolina, USA (35.865◦ N, 78.820◦W) between 29
May and 15 June 2017 (boreal summer, i.e., a warm,
mild season). ARI013 and ARI014 were colocated for 17 d.
ARI015 was colocated for only 8 d due to a defect identified
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early in the colocation. All data were recorded at 1 min res-
olution. Colocation site details are provided in Sect. 2 of the
Supplement.

The pre-deployment colocation data were used to train,
assess, and compare the performance of five modeling ap-
proaches to convert the raw voltage data to concentration
units and to account for sensor interference and cross-
sensitivities. Outlying data points in the raw ARISense gas
sensor voltage data due to noise and power cycling were vi-
sually identified and removed. Raw NO sensor data collected
within 8 h of a power cycle were also removed due to the
extended warmup time of the NO-B4 sensor. ARISense data
were time-aligned with the reference data, and both data sets
were averaged to 5 min resolution. A random 70 % of the
colocation data were used for model training, and the remain-
ing 30 % were withheld for testing. Performance assessment
metrics were calculated only for the withheld data.

Individual calibration models were built for each gas sen-
sor (Ox , NO, NO2, CO) in each monitor (ARI013, ARI014,
ARI015) using five modeling approaches: k-nearest neigh-
bors (kNN) hybrid (Hagan et al., 2018), random forest (RF)
hybrid (Malings et al., 2019a), high-dimensional model rep-
resentation (HDMR) (Cross et al., 2017), quadratic regres-
sion (QR) (Malings et al., 2019a), and multi-linear regres-
sion (MLR). The five models were selected for consider-
ation based on their performance in previous studies. The
kNN hybrid model was found to enable accurate measure-
ments even when pollutant levels were higher than encoun-
tered during calibration (Hagan et al., 2018). Given that we
expected levels of some pollutants to be higher in Malawi
than during calibration in NC, we expected kNN hybrid mod-
els to be well suited for our application. Further, the kNN
hybrid approach is expected to be widely applicable to a
range of pollutants, sensors, and environments (Hagan et
al., 2018). In a calibration and validation study conducted
by Malings et al. (2019a), RF hybrid models were recom-
mended for any low-cost monitor using electrochemical sen-
sors similar to their sensor package, the Real-time Afford-
able Multi-Pollutant (RAMP) monitor. Given that the RAMP
and ARISense monitors use the same electrochemical sen-
sors and have similar integrated designs, we expected RF hy-
brid models to perform well for our data set. HDMR models
were found to effectively model interference effects derived
from the variable ambient gas concentration mix and chang-
ing environmental conditions over three seasons for the sen-
sor types used in the ARISense package (Cross et al., 2017).
Finally, MLR and QR are simple, popular calibration ap-
proaches, and they were included in this study for that reason.

The modeling inputs are summarized in Table 1. O3 mod-
els were designed to account for sensor cross-sensitivity to
NO2 (Cross et al., 2017). Note that references to “O3” indi-
cate estimates made from calibrating the Ox sensor data. Ref-
erences to “Ox” indicate raw voltage measurements from the
total oxidant sensor. “Ozone” is used when referring to the
gaseous air pollutant. For our study, the CO HDMR mod-

els were set to allow only first-dimensional interactions, as
second-order interactions were observed to lead to spurious
results for data collected outside the bounds of training data
(see Sect. 3.3 for more information on deployment condi-
tions). For the CO sensors, this effectively made the HDMR
model equivalent to the MLR model. Therefore, the statisti-
cal metrics achieved by both models were identical and are
shown as overlaid points in Fig. 2a.

2.4 OPC-N2 colocation and calibration

ARI023 was colocated with a MicroPEM in an ambi-
ent, combustion-source-influenced environment on a house
rooftop (4 m a.g.l.) in Mikundi village in Mulanje District,
Malawi (16.056◦ S, 35.535◦ E) between 25 July 2018 and
7 August 2018 (austral winter – cool, dry season). We col-
lected 130 h of colocation data over three multi-day collec-
tion periods (i.e., three PTFE filters). A 75 % completeness
requirement was applied before the raw 1 min data were
averaged to 1 and 24 h intervals. Sub-daily averaging in-
tervals were used to assess the OPC-N2 for near real-time
(1 min) and diurnal trend (1 h) monitoring applications. A
bin-wise RH-correction algorithm based on κ–Köhler the-
ory was applied to correct for hygroscopic growth under high
RH conditions, initially assuming particle density (ρ) equal
to 1.65 g cm−3 and aerosol hygroscopicity (κ) of 0.6 (Di An-
tonio et al., 2018). To observe sensitivity of this correction
to the assumed hygroscopicity, the density was held constant
at 1.65 g cm−3 and the κ value was varied (κ = 0.15, 0.6,
and 1). To observe variability due to the assumed source of
the aerosol, the density and hygroscopicity were varied to ap-
proximate ammonium nitrate, dust, wildfire, and background
aerosols. Aerosol property assumptions (κ and density) are
based on Hagan and Kroll (2020) and Petters and Kreiden-
weis (2007).

2.5 Assessment metrics

We adapted performance metrics and target values from re-
cently published U.S. EPA guidelines (Duvall et al., 2021a,
b) to assess ARISense performance (Table S1 in the Sup-
plement). The EPA guidelines suggest using linearity, bias,
precision, and error metrics to assess air sensor performance,
and they offer target values for each. We use the U.S. EPA
target values as quantitative markers to indicate satisfactory
or unsatisfactory sensor performance; however, given the dif-
ferences in our study compared to the U.S. EPA methodol-
ogy, we do not consider these categorizations to be defini-
tive. Further, we emphasize that even if a sensor meets or
surpasses the performance target values for each metric, this
does not constitute endorsement by the U.S. EPA. Their
guidelines were developed for Ox and PM2.5 air sensors, and
we used these to assess the ARISense Ox-B421 and OPC-N2
sensors, respectively. Although there are no formal guide-
lines for CO, NO, and NO2 sensors at the time of writing,
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Table 1. Calibration modeling inputs for each gas sensor (CO, carbon monoxide; NO, nitrogen oxide; NO2, nitrogen dioxide; Ox , oxi-
dants) and model combination, where “all” indicates k-nearest neighbors (kNN) hybrid, random forest (RF) hybrid, high-dimensional model
representation (HDMR), multi-linear regression (MLR), and quadratic regression (QR). 1V is the voltage difference between the work-
ing electrode (WE) voltage and the auxiliary electrode (AE) voltage measured by each electrochemical gas sensor. RH stands for relative
humidity, T stands for temperature, and DP stands for dew point.

Gas sensor Data inputs to model Models applied

CO CO 1V, RH, T , and DP All
NO NO 1V, RH, T , DP, and NO WEa All except QR
NO2 NO21V, RH, T , and DP All except QR
Ox Ox1V, DP, and NO2 1Vb All except QR

a kNN hybrid only.
b RF hybrid only.

for coherency we opt to assess those sensors using a similar
approach.

The coefficient of determination (R2), an indicator of the
correlation between estimated and true concentrations, was
used to assess linearity. The root-mean-square error (RMSE)
was used to assess error in the estimated measurements com-
pared to the true values. The coefficient of variation (CV)
was used to assess precision. Finally, to assess bias, a linear
regression model (y =mx+ b) was fit using the ARISense
measurements as the dependent variable (y) and the refer-
ence measurements as the input variable (x), and the result-
ing slope (m) and intercept (b) were calculated. Quantitative
descriptions for each metric are given in Sect. 3 of the Sup-
plement.

In addition, prediction intervals between the OPC-N2
and MicroPEM data were calculated to provide a statisti-
cal confidence interval to interpret OPC-N2 sensor measure-
ments collected after the evaluation period (Bean, 2021).
We calculated 68 % (1-sigma) prediction intervals for the
ARISense using colocation data from ARI023 (Table 2) col-
lected at the Village 2 site (Fig. 1d). The 1 h averaged ob-
servations were used to fit a linear model, which required
a Box–Cox transformation (Box and Cox, 1964) to obtain
normally distributed residuals (Fig. S3). Details are given in
Sect. 3 of the Supplement.

2.6 Deployment to Malawi

ARI013, ARI014, and ARI015 were deployed to their re-
spective monitoring locations in Malawi from July 2017 to
July 2018 (shown as blue markers in Fig. 1). The three loca-
tions were selected to provide measures of regional variation
and replicates in two paired village sites. ARI013 (Village 2
site) and ARI014 (Village 1 site) were deployed<5 km apart
(Fig. S5) in two rural villages in Mulanje, Malawi, adjacent
to private residences. ARI015 (University site) was deployed
>375 km northwest of the village sites at a rural university
campus ∼ 30 km from the capital city (Fig. S6). Additional
satellite images are given in Sect. 4 of the Supplement.

Almost all rural households in Malawi (99.7 %) use solid
fuels (e.g., firewood, charcoal) for cooking (National Statis-
tics Office, 2017). Emissions from widespread biomass
cookstove use are known to impact local ambient air quality
(Aung et al., 2016; Zhou et al., 2011; Amegah and Agyei-
Mensah, 2017). Homes regularly using biomass cookstoves
within 50 m of the monitoring sites were visually identified at
the onset of the study (shown with red crosses in Fig. 1c–d).

A timeline of the ARISense colocations and deployments
is given in Table 2. After the 1-year ambient deployment was
completed, the ARISense were used for high-concentration
emissions monitoring experiments in rural Malawi in July
and August 2018. The details of those experiments (i.e.,
number of experiments, duration, approximate CO concen-
trations) are discussed in Sect. 5 of the Supplement. We ex-
plore the impact of these experiments on sensor operation,
but we do not discuss the data itself in this paper.

At the conclusion of the emissions monitoring experi-
ments, ARI013 and ARI014 were returned to NC and were
colocated with reference instruments at the near-highway
Durham, NC, site used in the pre-deployment colocation (de-
scribed in Sect. 2.3). ARI015 was relocated to a new moni-
toring site in Malawi.

2.7 Remote sensing and reanalysis data

Two publicly available NASA data products were obtained
from the Goddard Earth Sciences Data and Information
Services Center (GES-DISC) Interactive Online Visualiza-
tion and Analysis Infrastructure (GIOVANNI): (1) area-
averaged, monthly multispectral CO surface mixing ra-
tio (daytime / descending) from MOPITT and (2) monthly
averaged CO surface concentration (ENSEMBLE) from
MERRA-2, henceforth referred to as “MOPITT” and
“MERRA-2”, respectively. MOPITT is a calibrated satellite
observation and MERRA-2 is a global reanalysis data prod-
uct. MERRA-2 is the output of an atmospheric chemistry
model that has assimilated other data, including satellite data,
in making its estimations. Monthly averaged MOPITT and
MERRA-2 observations were compared to ARISense CO
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Table 2. Project timeline of colocations, deployment, and emissions monitoring experiments. The description under each period indicates
the activity conducted during that timeframe. The location of the activity is given in parentheses.

ARISense May–June 2017 July 2017–July 2018 July–August 2018 August 2018–March 2019

ARI013 Colocation (NC) Deployment (Village 2) Emissions monitoring (Village 2)∗ Colocation (NC)
ARI014 Colocation (NC) Deployment (Village 1) Emissions monitoring (Village 2)∗ Colocation (NC)
ARI015 Colocation (NC) Deployment (University) Emissions monitoring (Village 2)∗ n/a
ARI023 n/a n/a OPC-N2 colocation (Village 2) n/a

∗ Data from emissions monitoring experiments not discussed in this paper.
Note that n/a stands for not applicable.

Figure 1. (a) Satellite map of Malawi in southeastern Africa, (b) three ARISense monitoring sites in Malawi, (c) satellite map of Village
1, and (d) satellite map of Village 2. Blue markers indicate ARISense monitoring sites. Red crosses indicate the location of known biomass
cookstoves within 50 m of the monitoring site. The image source is Google Earth Pro Version 7.3.4.8248. University, Village 1, and Village
2, Malawi, South-eastern Africa. Borders and labels layer. Accessed: June 5, 2020. © Google Earth 2021.
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surface data collected at the Village and University locations.
Given the physical proximity of Village 1 and Village 2, and
the similarity in monthly mean CO concentration at each site
(Fig. S7), the average of the data sets (Village Mean) was
used. Additional details are given in Sect. 6 of the Supple-
ment.

3 Results and discussion

3.1 Gas sensor performance during colocation

Raw gas sensor voltages (5 min averaged data) from all three
ARISense monitors (ARI013, ARI014, ARI015), excluding
the Ox sensor in ARI015, were highly correlated (R2>0.8)
during the pre-deployment colocation, suggesting changes
in sensor response were due to environmental changes, not
sensor-to-sensor variability (Fig. S9). The sensors in ARI013
and ARI014 were most closely correlated (R2>0.9). The raw
ARI015 Ox sensor data showed weaker temperature depen-
dence and the lowest correlation (R2<0.6) with Ox sensors
in ARI013 and ARI014 (Fig. S9).

Figure 2 shows two performance metrics representing each
sensor–model combination for the three ARISense. Data
points toward the lower-left corner of each Fig. 2 panel indi-
cate better performance. Results from all ARISense-sensor–
model combinations for all five performance metrics are
given in Tables S4–S6. We found that performance varied by
ARISense monitor, but none of the ARISense consistently
performed better than the others. Overall performance var-
ied by gas sensor type and modeling approach. The cali-
brated NO2 sensors in all three ARISense were the least cor-
related with reference measurements compared to the other
gas sensors. Only the ARI015 NO2 sensor, calibrated by the
RF hybrid model, surpassed the target value for the linear-
ity metric (R2>0.8). Further, no NO2 sensor–model com-
bination met the bias target values for slope and intercept.
For all three ARISense, the calibrated NO2 sensors under-
estimated the true concentration compared to the reference
(0.26<m<0.71). However, all NO2 sensor–model combina-
tions met the error target (RMSE <5 ppb) and approached
the precision metric target.

At the other end of the performance spectrum, the cali-
brated Ox sensors performed the best compared to the other
gas sensors during pre-colocation. Nearly all Ox sensor–
model combinations attained similar linearity and error met-
rics (0.85<R2<0.99 and 2< RMSE <5 ppb, well within the
target values). Only the ARI015 Ox sensor calibrated by the
RF hybrid model failed to meet the RMSE target value, yet
it returned the highest R2 value compared to the other mod-
els. Additionally, all Ox sensor–model combinations met the
slope and intercept target values for bias. For the kNN hy-
brid model, the calibrated O3 observations had a slope ap-
proximating 1 (m>0.98) and an intercept of 0, suggesting

minimal bias. Only the precision values (37 %<CV<54 %)
were outside the EPA guideline target range (CV<30 %).

Most NO sensor–model combinations met the target value
for the bias, error, and linearity metrics, but precision was
low for all combinations assessed, with most CV values
>100 %. This suggests that the variation in the NO data
set was in the raw sensor or reference measurements, rather
than the modeling approaches. The MLR model was asso-
ciated with the worst performance for all three NO sensors
compared to the other models. However, for ARI015, all
NO sensor–model combinations surpassed the target for ev-
ery metric except precision. Again, the ARI015 gas sensor–
RF hybrid model combination was the outlier compared to
ARI013 and ARI014 sensor–model combinations (Table S6).
We hypothesize that the shorter colocation period of ARI015
(8 d compared to 17 d of colocation for ARI013 and ARI014)
led some of the sensor–model combinations to be overfit or
poorly constrained.

Most CO sensor–model combinations met or approached
the target values for bias, linearity, and precision. The U.S.
EPA recommended Ox target values for these three indica-
tors (Table S1) can be used to compare against the CO sensor
values to approximate performance, but we surmise that the
error target value (RMSE≤ 5 ppb) cannot. The U.S. EPA Na-
tional Ambient Air Quality Standards suggest CO concentra-
tions are 1–2 orders of magnitude larger than ambient ozone
or NOx concentrations. By extension, we posit that a reason-
able error target value for the CO sensor is 50 ppb. Except for
the CO–kNN hybrid model combination, most CO sensor–
model combinations did not meet our adapted error target
value. However, considering the magnitude differences, the
CO sensor–model combinations performed similarly to the
NO, NO2, and Ox sensors in terms of error. The CO RMSE
values (40–70 ppb) were correspondingly 1 order of magni-
tude larger than NO, NO2, and O3 RMSE values (2–7 ppb).

For the suite of gas sensors in the ARISense monitors, we
found the kNN hybrid model to be the best among the model-
ing approaches used in the pre-deployment colocation testing
(Fig. 2). In almost all cases, the kNN hybrid model returned
higher R2 values, slope values closer to 1, and lower RMSE
values than any other model. The RF hybrid model attained
similar and occasionally higher R2 values than the kNN hy-
brid, but it had higher (and therefore worse) RMSE values
by comparison. Further, the kNN hybrid model showed the
least inter-monitor variation in performance. In Fig. 2b–d, the
kNN hybrid points are closely clustered together, suggesting
that this model was able to attain similar performance for
each of the three ARISense. Conversely, the other models,
in particular the RF hybrid and MLR, showed a wide range
in performance across the three ARISense. Even if another
model was able to attain performance metrics higher than the
kNN hybrid (e.g., HDMR and MLR CO models in Fig. 2a),
it was only for one of the three ARISense monitors and never
all three. Additionally, the MLR failed to meet target values
for some ARISense–gas sensor combinations (Fig. 2a–b).
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Figure 2. Performance comparison of gas sensors (a) CO, (b) NO, (c) NO2, and (d) O3 as calibrated by the five types of modeling approaches
adopted for this study (kNN hybrid, RF hybrid, HDMR, MLR, QR). The model type is indicated by color and marker shape. An individual
data point represents the paired metrics (RMSE and R2) for one ARISense monitor. Since there are three ARISense (ARI013, ARI014,
ARI015) monitors, there are three markers for each gas sensor–model combination. RMSE is root-mean-square error. R2 is the coefficient
of determination (negative infinity ≤ R2

≤ 1). The lower-left corner region of each panel indicates the highest performance based on these
metrics.

Taken together, these findings suggest the kNN hybrid model
is the best choice among these five modeling approaches for
our application, given that we sought an approach uniformly
applicable to all the gas sensors and all three ARISense.

3.2 OPC-N2 performance during colocation

Pre-deployment colocation PM2.5 measurements in North
Carolina (where no reference monitor or data were avail-
able) from ARI013, ARI014, and ARI015 suggest the Al-
phasense OPC-N2 sensors in each monitor responded sim-
ilarly (R2>0.9) when in the same environment (Fig. S10).
ARI013 PM2.5 mass concentration measurements were
higher than measurements made by ARI014 and ARI015
(slope >1), despite all ARISense being in the same location.
ARI015 underestimated the mass at low concentrations com-
pared to ARI013 and ARI014 (nonlinear clustering at con-
centrations<5 µg m−3 in Fig. S10a and c). The OPC-N2 sen-

sors in ARI014 and ARI015 showed the highest similarity
(slope = 1± 0.05, R2

= 0.96).
Figure 3 shows scatterplots of the ARI023 OPC-N2 and

MicroPEM 1 min, 1 h, and 24 h averaged data collected dur-
ing colocation at the Village 2 site in Malawi (individual
1 min scatterplots for each of the three tests are shown in Fig.
S11). RH correction partially mitigated the impact of overes-
timation due to hygroscopic growth but did not remove the
artifact entirely (Fig. S12). RH correction improved the pre-
cision and error metrics, bringing RMSE within the target
value (≤ 7 µg m−3) for the 24 h averaged data (Table S7). In-
creasing the averaging interval had a similar effect, but this
alone was insufficient to bring RMSE within the target range.
Linearity was well below the target value (R2>0.7) for all
averaging intervals, and RH correction did little to improve
performance for this metric. For this data set, changes in bias
and linearity appeared driven by averaging interval. For ex-
ample, the OPC-N2 RH-corrected 1 min data met the target
for slope and intercept, but the 1 and 24 h averaged data met
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neither of these targets. Particularly for the 24 h averaged
data, the small sample was leveraged by a few points, which
drove metric values (Fig. 3c); however, close 1 : 1 agreement
between the instruments was observed for 4 of the 7 colo-
cation days. These results highlight the value of longer and
more representative colocations. At least two 30 d coloca-
tions would be needed, during the hot and dry (September
to October) and warm and wet (November to April) seasons,
to characterize this specific site.

Even after RH correction, the OPC-N2 overestimated
mass concentrations compared to the nephelometer when RH
was ≥ 70 %. Conversely, the OPC-N2 often underestimated
mass when RH was ≤ 30 %. These effects were most notice-
able at higher time resolutions (Fig. 3a–b). The effects of RH
were tempered by a longer averaging interval; however, for a
particularly humid day at this site, the 24 h mass concentra-
tion was overestimated by a factor of 3 (Fig. 3c). Notably, the
moderate RH outliers in the 24 h average scatterplot suggest
that other factors in addition to RH were contributing to error
in the OPC-N2 observations.

To explore other contributors to variable OPC-N2 per-
formance, Fig. 4 shows performance for RH-corrected data
stratified by environmental conditions (wind direction, am-
bient concentration, and RH). Wind direction and concentra-
tion (Fig. 4a–b) were selected to explore the possible effect
of nearby cookstove emissions, while Fig. 4c highlights the
remaining effect of RH even after correction. We hypothe-
sized that ambient concentration and wind direction might
impact OPC-N2 performance given that the site was peri-
odically exposed to cookstove emissions from the Village 2
site household kitchen (within 15 m to NW) and from adja-
cent residences (within 50 m to the SSW in Fig. 1d). Fig-
ure 4 shows that wind direction was associated with per-
formance variation, although to a lesser degree than RH.
Slightly increased performance was observed for northerly
winds. Nearby cookstove use potentially explained the de-
creased performance associated with southerly winds. Four
of the five morning cooking periods observed in the time se-
ries data were associated with wind blowing from the SE–S–
SW (Fig. S14). Figure 4b shows that ambient concentration
had a modest impact on OPC-N2 performance metrics. Lin-
earity was expected to increase with concentration, particu-
larly given that the high-concentration bin (20–105 µg m−3)
spanned a larger interval than the other bins. Precision within
each concentration bin was low. The CV values were well be-
yond the recommended target value (CV<30 %). The OPC-
N2 frequently underestimated the ambient mass concentra-
tion compared to the MicroPEM, particularly during higher
concentration periods dominated by near-field biomass burn-
ing (i.e., slope = 0.4 for measurements between 20 and
105 µg m−3). During periods of cookstove influence, the size
distribution, hygroscopicity, and optical properties of the
measured aerosol were likely altered. Assumptions about
the source aerosol (density and hygroscopicity) used in the
RH correction were found to affect inferred OPC-N2 per-

formance compared to the MicroPEM (though not in a pre-
dictable fashion). For example, higher linearity and lower
RMSE were observed when the particle composition was as-
sumed to be highly hygroscopic (κ = 1), yet the least bias
was observed at the lowest hygroscopicity assessed (κ =
0.15). Further, when the aerosol was assumed to be char-
acteristic of wildfire (rather than ammonium nitrate, dust,
or background in origin), the bias between the OPC-N2 and
MicroPEM disappeared (slope = 1.02), yet the error metric
was among the highest in the four aerosol categories and was
above the target value (Table S10). These findings suggest
more research is warranted to explore how changing aerosol
characteristics (both assumed and actual) impact optical par-
ticle sensor performance. Summary statistics for each per-
formance assessment metric are given in Tables S8–S10 in
Sect. 8 of the Supplement.

In this deployment site, the OPC-N2 performed the best
compared to the MicroPEM during dry conditions (20 % to
40 % RH) and when measuring background aerosol rather
than source emissions (Fig. S14, presumed based on time se-
ries data). However, this latter result might be partially due to
the coincident effects of high RH in this environment (Fig. 7).
Figure 4c shows OPC-N2 behavior was affected by changes
in ambient RH. In general, performance decreased with in-
creasing RH, and this effect remained even after RH correc-
tion. For RH of 20 % to 40 %, RH-corrected OPC-N2 per-
formance approached or exceeded the target values for the
linearity, error, and precision metrics (Table S8). After RH
increased past 70 %, the R2 value approached zero and the
RMSE increased beyond the target value. Unfortunately, the
inset histogram of Fig. 4c shows that an RH range of 60 % to
80 % was typical for this site during colocation.

We found that the OPC-N2 at this specific site under-
estimated mass concentration compared to the MicroPEM,
based on less than unity slope values. The performance was
variable at low ambient concentrations and largely depen-
dent on RH (Fig. S13). However, outside of very humid
(RH>70 %) conditions, the RH-corrected OPC-N2 could es-
timate the PM2.5 mass concentration within about 10 µg m−3

of the MicroPEM value for real-time, hourly, and daily mon-
itoring purposes (based on RMSE in Table S7). The findings
from this section highlight the importance of quality assur-
ance for low-cost optical particle sensor mass concentration
measurements, especially those made in environments with
highly variable meteorology and nearby ultrafine aerosol
sources. For this site, contextual information on meteorol-
ogy and emissions sources and their diurnal patterns helped
interpret and evaluate the measurements.

3.3 Gas sensor performance during deployment

Given that RH, T , dew point (DP), and differential voltage
were inputs to the calibration models, the ranges of these
values during colocation in NC should mimic the ranges ex-
pected during deployment in Malawi. Otherwise, the model
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Figure 3. Scatterplots of RH-corrected PM2.5 mass concentration measurements from the OPC-N2 versus filter mass-corrected PM2.5
measurements from the MicroPEM at 1 min (a), 1 h (b), and 24 h (c) averaging intervals. Data points are colored according to RH (%)
conditions. N represents the number of data points. Linear fit lines and regression coefficients (m,b) are given in red as Y =mx+ b.
Additional metric values are inset: R2 is the coefficient of determination, RMSE is root-mean-square error (units of µg m−3) assuming the
MicroPEM is the reference instrument, and CV is coefficient of variation. The dashed black line is a 1 : 1 line.

Figure 4. Performance comparison of the RH-corrected Alphasense OPC-N2 compared to the MicroPEM under different environmental
conditions: (a) wind direction, (b) ambient concentration, and (c) relative humidity during colocation at the Village 2 site in Mulanje,
Malawi. An individual data point represents the paired metrics (RMSE and R2) for the OPC-N2 for a specific range of each condition.
The histograms (inset) show the normalized frequency distributions for the ranges of each condition recorded during the colocation period.
The colored markers in each panel correspond to the colored histogram bins. The metrics were calculated from 1 h averaged RH-corrected
OPC-N2 PM2.5 concentrations compared to the MicroPEM filter mass-corrected nephelometer. RMSE is root-mean-square error, assuming
the MicroPEM concentrations as the true values. R2 is the coefficient of determination. The lower-left corner of each panel indicates the
highest performance based on these metrics.

is required to extrapolate beyond its training bounds, which
could lead to non-physical results (e.g., negative concentra-
tion values). Further, the performance assessment statistics
derived from the colocation cannot be expected to hold for
conditions far beyond those experienced during the perfor-
mance characterization. Overall, the colocation and deploy-
ment settings exhibited a similar range of environmental con-
ditions (Figs. S15–S16), but T and RH ranges in NC (15 to
40 ◦C and 20 % to 80 %) were less extreme than in Malawi
(10 to 45 ◦C and 10 % to 95 %). In Malawi, the ARISense ex-
perienced more time at lower temperatures (T<25 ◦C), lower
gaseous concentrations (other than CO), and lower ambient
pressure (5 to 15 kPa lower depending on the location). Al-

though the ARISense were deployed at a higher elevation in
Malawi than during the colocation in North Carolina (625 m
versus 120 m a.s.l.), all models were built using the differ-
ential voltages (WE-AE) of each electrochemical gas sen-
sor. Therefore, the pressure-related shifts in the WE and AE
baseline were not expected to pose an issue for the calibrated
Malawi data. The variation in pressure was within the op-
erating range given on the sensor specification sheets (80 to
120 kPa) and was stated not to have long-term impacts by the
manufacturer (Alphasense FAQs, 2021). Further, others have
shown no statistically significant change in electrochemical
sensor sensitivity due to changes in pressure (Popoola et al.,
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2016). Even so, we did not have the laboratory chamber data
to investigate this potential issue.

3.3.1 Bivariate histograms

Figure 5 shows bivariate distributions of T , RH, and gas sen-
sor differential voltage data collected in NC and Malawi. In
addition to capturing interactions between variables, Fig. 5
shows that the individual sensors in each ARISense re-
sponded differently even when in the same environment dur-
ing the NC colocation. Compared to ARI013 and ARI014,
the Ox sensor in ARI015 showed weaker temperature depen-
dence (Fig. 5c). Since ARI015 had a shorter colocation pe-
riod, it could be hypothesized that if ARI015 were present in
the colocation environment for the same amount of time as
ARI013 and ARI014, its response would look more like the
ranges measured by the other sensors. However, this cannot
fully explain the variation between individual sensors. For
example, there is considerable variation between the ARI013
and ARI014 NO2 differential voltage ranges (grey regions in
Fig. 5g–h), despite having identical colocation periods. Fur-
ther, the raw CO sensor data for all three monitors showed
much less inter-sensor variation (grey regions in Fig. 5d–f),
even despite the shorter colocation period of ARI015. This
inter-sensor variation, which appears largest for the NO2 sen-
sors, may partially explain the lower performance of this gas
sensor group during calibration model performance testing
compared to the other gas sensor types (Fig. 2).

There were notable regimes in Malawi that required the
calibration models to extrapolate beyond NC training condi-
tions. NO differential voltage responses in NC and Malawi
did not completely overlap (Fig. 5g–i), especially in the low-
concentration regime (i.e., V near 0 mV) which was more fre-
quent in Malawi. The colocation site in NC was 10 m from an
8-lane freeway (Saha et al., 2018), therefore NOx concentra-
tions were higher than in rural Malawi where vehicles and in-
dustry are rare. However, for ARI014 in Village 1, there was
a higher NO2 response in the deployment environment com-
pared to the colocation environment. This could be partially
explained by sensor interference by RH and T , which was
more extreme (i.e., beyond the training ranges) in Malawi
(Fig. S17). Figure 5e shows that the maximum ARI014 CO
differential voltage in Malawi (350 mV) was 3 times higher
than the maximum voltage registered in NC (100 mV). This
high CO regime is denoted by a cross in Fig. 5e. This dif-
ference was consistent with observations of nearby sources
(Fig. 1c–d). ARI014 was deployed in more densely popu-
lated Village 1, adjacent to more biomass cookstove activity
than ARI013 or ARI015 (Fig. 1c). In general, we expected
higher CO in Malawi than in NC, where biomass burning is
less common and emissions from other sources (e.g., vehi-
cles) are controlled by strict federal regulation.

The Ox differential voltage ranges were the most dissim-
ilar between the colocation and deployment environments.
The most frequent regimes, the heaviest-shaded regions in

Fig. 5a–c, did not fully overlap for any of the ARISense.
In NC, the relationship between the Ox sensor voltage and
ambient temperature was positive and monotonic. Higher
temperatures generally facilitate ozone production; therefore,
this relationship fit our expectation for an urban site in a sin-
gle season. However, the positive relationship between Ox
sensor voltage and temperature did not always hold in the de-
ployment sites. In Fig. 5a–c, a high-temperature–low-ozone
regime in Malawi (regions denoted by a “+” marker) that
was not present in the NC data can be seen. Further, for all
three Malawi sites, the minimum Ox sensor voltages were
lower (−10<Vmin<0) than minima in the NC colocation.

3.3.2 Diurnal trends

Since the deployment sites did not have reference data for
quantitative comparison, we calculated and compared the an-
nual mean diurnal trends of each pollutant at each site, as pre-
dicted by the five models, to qualitatively assess the transfer-
ability of the calibration models to Malawi. Our definition of
a transferable model required that it produce (a) non-negative
concentration values and (b) diurnal trends consistent with
our first-hand observations of nearby emission sources and
their timing, previous observations of diurnal trends in re-
gions with widespread biomass cookstove use (Dionisio et
al., 2010; McFarlane et al., 2021; Subramanian et al., 2020),
and knowledge of atmospheric chemistry. Non-physical pre-
dictions from a given model may indicate that differences
between the colocation and deployment environments were
too large to extrapolate, and therefore any deployment re-
sults calibrated by that model are likely not reliable. Alterna-
tively, coherency among the concentration values and trends
estimated by the models may suggest that the deployment re-
sults are robust against variation in the modeling approaches.
This analysis can contribute to our confidence in the esti-
mated concentration values and trends but cannot address or
estimate the quantitative error. Diurnal trends in Fig. 6 sug-
gest the kNN hybrid model was the most transferable for
interpreting deployment data for all gas sensors. However,
both the kNN and RF hybrid models predicted similar trends
and values for most sensors. The MLR and HDMR models
also predicted similar trends but sometimes predicted nega-
tive values.

Calibrated CO data showed the highest coherency across
model predictions and were rarely non-physical (Fig. 6). All
models predicted similar diurnal trends specific to each site.
Knowledge of the nearby emission sources and activity pat-
terns lend support to the calibrated CO data. For example,
the village monitors were adjacent to widespread household
biomass cookstove activity, coincident with the concentra-
tion peaks seen in the diurnal data. This diurnal cooking pat-
tern was observed in both CO and OPC-N2 data (Figs. 6
and 7, respectively) at both village sites and was mea-
sured in complementary emissions monitoring work. Fur-
ther, ARI014 was in a more densely populated village than
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Figure 5. Bivariate distributions of gas sensor calibration model data inputs (RH; T ; and Ox , CO, NO, and NO2 differential voltage) for each
ARISense monitor using kernel density estimation. Density is reflected in the color scheme, where darker colors indicate more data points in
that region. Training data collected during colocation in North Carolina are shown in grey, and data collected during deployment to Malawi
are shown in color. ARI013 was deployed to the Village 2 site, ARI014 to the Village 1 site, and ARI015 to the University site. Regions where
the deployment distributions overlap with the NC colocation distributions indicate the regimes for which the calibration models were trained.
Regions where the deployment location distributions extend beyond the NC colocation distributions indicate regimes where the calibration
models must extrapolate to estimate pollutant concentrations. These regions are indicated by overlaid markers “x” and “+” and are discussed
in the text.

ARI013, contributing to higher CO peaks (Fig. 1c). The QR
model overestimated CO peaks compared to other models
for the Village 1 data, likely because the model training set
did not include high concentration data (Fig. 5e) and the
quadratic term was not well constrained. Despite the cali-
brated CO measurements in Malawi being higher than the
concentrations experienced in NC, particularly for ARI014
in Village 1, we expect that the calibrated CO measurements
from Malawi are credible (excluding the QR model). We pro-
vide the following reasons for justification: (a) the manu-
facturers report that the sensor response is expected to be
linear up to 500 ppm (Alphasense, Ltd., 2019), (b) RH/T
interference induced on the CO-B4 sensor, approximately
0.2 mV ppb−1 (Lewis et al., 2016), has less relative influence
on overall sensor readings in the higher voltage (i.e., concen-
tration) regime, (c) all modeling approaches (other than QR)
predicted highly similar diurnal trends and concentration val-

ues, and (d) there were known CO emission sources, with di-
urnal usage patterns matching the observed trends, near the
monitoring sites. This suggests, for this specific sensor un-
der these conditions, that these modeling approaches (other
than QR) could reliably extrapolate beyond the training data
limits to provide reasonable measurements in the deployment
environment.

The calibrated NOx data showed less coherency than
the CO data. NO2 trends were similar across the sites,
and concentrations were rarely negative, but calibrated NO
trends varied across models and the lower-performing mod-
els (HDMR and MLR) often predicted negative values. The
better models identified in the NC colocation, kNN and RF
hybrid, suggested that mean ambient NOx levels in Malawi
were low (<15 ppb). We have lower confidence in the cali-
brated NOx measurements in Malawi for the following rea-
sons: (a) the calibrated observations (5 to 20 ppb) being on
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Figure 6. Diurnal trends of calibrated gas measurements (rows) at each site (columns) in the three deployment environments. RF hybrid
stands for random forest hybrid, kNN hybrid stands for k-nearest neighbors hybrid, HDMR stands for high dimensional model representation,
MLR stands for multilinear regression, and QR stands for quadratic regression QR model built for and applied to CO data only. The thick
line indicates hourly mean, and the shaded region indicates interquartile range. Midnight is the zero hour. The hours are in local time.

the same order of the noise level reported on the sensor spec-
ification sheets (15 ppb) and (b) the lack of coherency ob-
served between model predictions. Low ambient NOx lev-
els and a lack of representative data in the NC colocation
data likely contributed to the non-physical concentrations
predicted by some models in Malawi.

The calibrated Ox sensors performed the best during
colocation testing compared to the other gas sensors, but

in Malawi the calibration models frequently returned non-
physical values and showed inconsistent annual diurnal
trends between the models and across the sites. For ARI014
and ARI015, most O3 trends were consistent in shape and
magnitude and were aligned with the expected diurnal trend
(i.e., peaking at midday). Peaks in the mean concentra-
tion were between 10 and 30 ppb, plateauing from 10:00 to
15:00 LT. The RF hybrid model at the ARI015 University site
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estimated the O3 peak to occur earlier in the day compared
to the other models and sites. This may be the result of a spu-
rious relationship between Ox voltage and DP in the colo-
cation data set on which the RF Hybrid model was trained,
which held at the Village sites but not at the University site.
At the Village 2 site (ARI013), there was a change in raw dif-
ferential voltage response after December 2017 that caused
all Ox models to fail for the second half of the deployment.
All models either consistently predicted negative values, val-
ues <1 ppb, or failed to reproduce the expected diurnal trend
(i.e., peaking around 09:00 LT rather than 12:00 LT). Only
Ox data collected before December 2017 resulted in reason-
able calibrated values and trends (Fig. S18). Notably, Ox data
collected after December 2017 corresponded with the high-
temperature–low-ozone regime (Fig. S19) shown in Fig. 5a–
c. Despite the Ox differential voltage data spanning a similar
range in both NC and Malawi, there was little overlap in the
ozone dimension at comparable concentration, RH, and T
conditions. Since ozone is a secondary pollutant driven by
complex atmospheric processes and multiple precursors, the
ambient conditions that increase or decrease ozone formation
in one region may not hold in another environment. Although
the calibrated Ox sensors performed better than the other gas
sensors in NC, the models were tuned for a set of conditions
that did not hold in Malawi. This suggests that for these Ox
sensors and these modeling approaches, a lack of environ-
mentally similar colocation data compromised our ability to
reliably interpret calibrated O3 measurements in this specific
deployment environment.

3.4 OPC-N2 performance during deployment

To evaluate the long-term performance of the OPC-N2 dur-
ing deployment in Malawi, we examined the representative-
ness of the colocation conditions for the full year of condi-
tions experienced during deployment. Figures S20–S21 show
normalized histograms of the T , RH, and PM2.5 mass con-
centration observed during the colocation and the full-year
deployment in Malawi, suggesting the two data sets spanned
a similar range of environmental conditions. However, the
colocation occurred during the cool, dry season, and RH min-
ima and maxima (regimes associated with deficient perfor-
mance during colocation; see Sect. 3.2) were more extreme
during the 1-year deployment in Malawi.

Figure 7 shows the annual diurnal trend of the mean PM2.5
mass concentration, with 1-sigma prediction intervals, us-
ing 1 h averaged, RH-corrected data from each deployment
location. Peak PM2.5 concentrations were observed around
06:00 LT at all sites, when morning biomass cookstove ac-
tivity coincided with high RH (and more atmospherically
stable) conditions. Figure 6 shows that the diurnal trends
of ambient CO (another pollutant emitted by biomass burn-
ing) were similar to the PM2.5 diurnal trends at each site.
Again, the largest peaks were observed at the more densely
populated ARI014 Village 1 site. The prediction intervals

Figure 7. Diurnal trends of the integrated mean PM2.5 mass con-
centration measured by the OPC-N2 in each ARISense at each de-
ployment site (left axis) and the annual relative humidity at the Vil-
lage 2 site (right axis). Error bars represent the calculated 1σ (68 %)
prediction interval of the hourly mean value. The red text annota-
tion indicates the upper limit of the Village 1 prediction interval
at 06:00 LT (beyond the range of shown y axis). For RH data, the
thick line indicates hourly mean, and the shaded region indicates
interquartile range.

were widest between 05:00 and 07:00 LT, indicating over-
all low confidence in OPC-N2 measurements during this pe-
riod. Afternoon and overnight means, coinciding with drier
conditions, were similar across all three sites, and prediction
intervals were narrowest during afternoons. Data from the
more remote locations (ARI013 and ARI015) suggest back-
ground concentrations of PM2.5 in rural Malawi were low (5
to 15 µg m−3), but the OPC-N2 could not reliably quantify
peak concentrations that were high and variable, depending
on the timing and presence of nearby sources and changes
in ambient meteorology (especially RH). Despite this, qual-
itative data from the OPC-N2 sensors was sufficient to iden-
tify nearby source activity and indicate periods when ambient
concentrations were likely high enough to be harmful to hu-
man health (and at least partially driven by cooking activities
associated with higher exposure concentrations).

3.5 Comparison of ARISense CO to remote sensing
and reanalysis data

Given the absence of additional in situ surface data, we rely
on satellites and models to estimate surface air quality for
comparison of our results. To contribute to the literature on
surface-to-satellite comparisons over Africa, we compared
calibrated ARISense CO observations to a satellite obser-
vation (MOPITT) and a model estimate (MERRA-2) in our
study region. We confirmed that all three data sets reported
similar annual qualitative trends, although they disagreed in
magnitude. This analysis was limited to CO, given that the
calibrated CO observations were the most dependable of the
ARISense gas data and that NASA remote sensing data prod-
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ucts were more readily available for CO compared to O3 or
NOx .

Figure 8 shows the mean monthly CO from the Univer-
sity (ARI015) and Village Mean (average of ARI013 and
ARI014) sites compared to that from two area-averaged re-
mote sensing products: CO surface mixing ratio from MO-
PITT and CO surface concentration from MERRA-2. All
three data sets were compared from July 2017 to July 2018,
focusing on differences between the peak agricultural burn-
ing (September to October) and non-burning (December to
July) seasons. November and August were excluded from ei-
ther description (peak burning or non-burning) for the fol-
lowing reasons: (a) a review of fire studies in the region con-
sistently reported September and October as the dominant
months of the burning season (Nieman et al., 2021), (b) Au-
gust and November mark the beginning and end of the fire
season, respectively, and therefore cannot be considered non-
burning months, (c) the exclusion of August and November
better captures strong seasonal differences, providing a mea-
surable benchmark to compare the satellite and surface data,
and (d) ARISense data for the Village sites was unavailable
for November 2017 (see Sect. 3.7 for more on the difficulties
of deployment). The MERRA-2 data set was complete for
the full year of interest, but MOPITT was missing data for
the Village Mean region in February and March 2018. The
NASA data sets were more similar to one another at the Vil-
lage Mean site compared to the University site. At both sites,
MOPITT reported higher CO concentrations than MERRA-
2, especially in the peak burning season.

All three data sets (MOPITT, MERRA-2, and ARISense)
indicated that annual mean CO concentrations were slightly
higher overall at the University site than at the Village
site, although this was less pronounced in MERRA-2. Simi-
larly, all three data sets showed increased ambient concentra-
tions during the peak burning season compared to the non-
burning season at both sites. For ARISense, MOPITT, and
MERRA-2 observations, respectively, peak season means
were larger than non-burning season means by 160, 130,
60 ppb (Village Mean) and 190, 115, 50 ppb (University).
Although the ARISense indicated larger absolute differences
between seasons, the relative increase at both sites was only
about 50 % of the non-burning season mean, while MOPITT
and MERRA-2 reported increases of 125 % and 75 %, re-
spectively. This could be explained by ARISense proximity
to small-scale combustion activity not resolved by satellite
imaging. Satellite-based observations approximate ambient
background concentrations, which increased during the peak
season due to regional agricultural burning. Meanwhile, the
ARISense were exposed to ambient background concentra-
tions as well as nearby biomass cookstove emissions, which
presumably remained consistent throughout the year, show-
ing a lower relative seasonal increase during the peak burn-
ing season. Quantitative disagreement between surface and
remote CO observations was highest during the burning sea-
son, especially at the University site (Fig. 8). Remote sensing

data suggested higher CO concentrations at the University
compared to the Village Mean during non-burning periods,
but during the peak burning season this difference shrank and
similar concentrations were observed across both sites. Con-
versely, differences between ARISense observations grew by
about 6 % during the peak season. MERRA-2 and MOPITT
concentrations were highest in September, consistent with
ARISense data at the University site but not the Village Mean
site, which peaked in October. However, 90 % of the October
CO data were missing for the Village site.

Monthly mean CO ARISense values were 2 to 4 times
higher than those reported by MOPITT and MERRA-2.
We found differences of 175 % to 200 % between the an-
nual mean CO concentration from ARISense and MOPITT,
depending on the site, and even larger differences (up to
360 %) with MERRA-2. Differences between MOPITT and
MERRA-2 were smaller (30 % to 35 %). There are few com-
parable studies available to explain these differences, which
are greater than previously reported in the literature avail-
able for SSA. One study in South Africa reported relative
differences of ± 40 % between ground-based CO measure-
ments and Aura satellite observations at Cape Point station
(Toihir et al., 2015). Many studies found good agreement
(within 10 %–20 % bias) between ground measurements and
MOPITT observations, but this was for total column CO, and
the observations were not limited to comparisons over Africa
(Buchholz et al., 2017; Emmons et al., 2009, 2004; Yurganov
et al., 2008, 2010). However, these studies found negative
satellite bias when intense biomass plumes affected observa-
tions, when CO levels were low in the Southern Hemisphere,
or when atmospheric CO levels changed rapidly (Buchholz et
al., 2017; Emmons et al., 2004; Yurganov et al., 2008, 2010).
Each of these conditions could be expected to occur in the
southern African troposphere, potentially explaining differ-
ences observed between the ARISense and remote sensing
observations in this study.

This comparison of low-cost sensor surface data, satellite
observations, and model estimates in Malawi suggests each
of these resources can give consistent information on quali-
tative, long-term trends in a region lacking ground-based ref-
erence monitoring. However, because of inherent differences
in spatial and temporal resolution, each observation will dis-
agree in magnitude. Satellite retrievals and real-time surface
measurements do not result in directly comparable quanti-
ties. Satellite data are collected as a once-daily flyover obser-
vation, averaged over a ∼ 12 000 km2 area (corresponding to
1◦ spatial resolution). In contrast, the ARISense data were
1 min resolution, fixed-site, long-term point measurements
at the surface. Further, the ARISense data were collected
near visually identified biomass emission sources and were
not representative of background conditions. Meanwhile, the
satellite observations provide an estimate of regional back-
ground conditions. Despite these differences, the MOPITT,
MERRA-2, and ARISense data sets agreed on the long-term
seasonal trends present in this region and even corroborated
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Figure 8. Monthly carbon monoxide (CO) concentration (ppb) reported by the surface ARISense (Tukey boxplots) and remote sensing data
products (lines and markers indicating mean monthly value) at the (a) Village Mean and (b) University sites. The tops and bottoms of the
boxes indicate 75th and 25th percentiles, whiskers show the 9th and 91st percentiles, the middle line indicates the median, and stars indicate
mean. The ARISense surface data were at least 80 % complete for each month, except where noted with a percentage text label. Data for
July 2017 and July 2018 were averaged. Village Mean represents the average of ARI014 (Village 1) and ARI013 (Village 2) data. The annual
mean from each data source is given on the right axis. MOPITT (multispectral CO surface mixing ratio daytime / descending) is a satellite
measurement, and MERRA-2 (CO surface concentration ENSEMBLE) is a global reanalysis product.

site-to-site differences (e.g., higher mean CO at University
compared to Village Mean site). These findings suggest the
ARISense captured synoptic-scale variation in CO, but com-
parison to remote sensing data does not allow for a quantita-
tive assessment of data collected at higher temporal resolu-
tions.

3.6 Comparison to other ambient measurements in
SSA

The annual median (July 2017 to July 2018) surface concen-
trations in Malawi estimated by the ARISense sensors were
9 to 11 ppb for NOx , 4 to 15 ppb for O3, and 240 to 330 ppb
for CO, depending on the site. Surface concentrations and
diurnal trends of ARISense CO and PM in Malawi were
comparable to studies in Kenya, Rwanda, Ethiopia, Uganda,
and South Africa (Delmas et al., 1999; DeWitt et al., 2019;
Laakso et al., 2008; McFarlane et al., 2021; Nthusi, 2017;
Scheel et al., 1998; Subramanian et al., 2020; Toihir et al.,
2015). However, comparison of O3 concentrations suggested
the calibrated ARISense observations underestimated actual
concentrations. ARISense NOx observations were similar to
two other studies (Delmas et al., 1999; Laakso et al., 2008),
but overall there was little comparable data available to as-
sess NOx concentrations in Africa.

ARISense CO observations were similar to regional CO
concentrations in central Africa (measured by aircraft), found
to be in the range of 250–400 ppb (Delmas et al., 1999). A
long-term ambient study at the Rwanda Climate Observatory
found a mean CO concentration of 215 ppb from May 2015
to January 2017 (DeWitt et al., 2019), only slightly lower
than our findings in Malawi. Another LCS study in Kigali,
Rwanda, observed a range in ambient CO concentrations,
from 225 to 500 ppb at their rural and urban sites (Subra-
manian et al., 2020), spanning the concentration range we
observed at our rural and semi-urban sites in Malawi.

Both studies in Rwanda found mean ambient O3 concen-
trations of 30 to 40 ppb (DeWitt et al., 2019; Subramanian
et al., 2020). For a “relatively clean background site located
in dry savannah in South Africa the annual median (July
2006 to July 2007) trace gas concentrations were equal to
1.4 ppb for NOx , 36 ppb for O3 and 105 ppb for CO” (Laakso
et al., 2008). Background levels of NOx and CO at this site
were lower than the ARISense annual means, yet background
O3 was in line with the Rwandan studies. This suggests re-
gional ozone concentrations in central and southern Africa
are presently about 30–40 ppb. The annual mean ARISense
O3 values were up to a factor of 10 lower; however, we identi-
fied quality-assurance issues in the calibrated O3 values, par-
ticularly for the second half of the deployment data. There-
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fore, the ARISense data are likely to be an underestimate of
the true ambient values.

The relatively clean background site in South Africa
(Laakso et al., 2008) had NOx concentrations up to a factor of
10 lower (1.4 ppb) than ARISense measurements in Malawi,
but aerial measurements made during intense savanna fire ac-
tivity in central Africa found NOy present in the range of
4–10 ppb (Delmas et al., 1999). Together, these studies sug-
gest that the ARISense NOx concentrations (9–11 ppb) may
be reasonable for our non-background, biomass-emission-
influenced sites in Malawi.

Conversely, the annual median PM1, PM2.5, and PM10
concentrations (9.0, 10.5 and 18.8 µg m−3, respectively) at
the background site in South Africa (Laakso et al., 2008)
were comparable to ARISense observations in Malawi. The
annual median ARISense RH-corrected PM1, PM2.5 and
PM10 concentrations were between 4 and 7, 6 and 10,
and 13 and 20 µg m−3, respectively, across all three sites.
It is possible that actual concentrations of fine PM were
higher at the sites in Malawi, considering that concentra-
tions of gaseous emission tracer species (i.e., CO, NOx)
were higher compared to regional background levels found
by other studies. However, given the high minimum cut-
off diameter of the OPC-N2, this particle sensor would
have been unable to detect ultrafine particles emitted from
biomass burning. Average ambient PM2.5 concentrations
(measured with an Alphasense OPC-N2) were found to be
between 11 and 24 µg m−3 at various sites in Kenya, with
higher pollution episode concentrations ranging from 35 to
51 µg m−3 (Nthusi, 2017). Median ARISense PM2.5 concen-
trations were also comparable to US embassy measurements
in Ethiopia and Uganda (DeWitt et al., 2019). Taken to-
gether, these comparisons suggest PM levels in rural Malawi
are comparable to regional measurements made across SSA,
but localized impacts from biomass cookstoves can result in
higher concentrations of fine PM, which are difficult to accu-
rately quantify with the OPC-N2. In all, although these com-
parisons are not a substitute for quantitative evaluation of the
ARISense in Malawi, they provide a benchmark for compar-
ison and suggest that the CO, NOx , and PM ARISense ob-
servations are reasonable for this region. At the same time,
they cement our conclusion that ARISense O3 observations
are likely erroneous for this environment.

3.7 Performance of ARISense sensor packages over
time

Total data recovery for the 1-year deployment varied by site,
season, and sensor, with rates ranging from 30 % to 80 %
(Fig. S22). Average recovery for the 1-year deployment was
around 60 %, with the highest recovery at the University site
(80 %) and lowest at the Village 1 site (40 %). Data across
all sites had the highest completeness (>70 %) in the cool
and dry (June–July–August) and the cool and wet season
(March–April–May). Data losses were mostly explained by

power outages, software failures, and sensor equilibration
times required after a power outage (Fig. S23). Power out-
ages were common in the warm and wet season (December–
January–February) due to insufficient solar intensity result-
ing from extended periods of heavy cloud cover. At the
ARI014 site, insufficient power led to an unanticipated di-
urnal cycle wherein the monitor would shut off in the early
morning hours and require a few hours of solar power be-
fore turning on again. This daily cycle, coupled with the 8 h
long NO sensor re-equilibration time, led to almost 0 % NO
data recovery in the second half of the deployment for Vil-
lage 1. In all, nearly 50 % of data losses at the ARI014 site
were due to insufficient power or failure to write data to
file. Corrupt USB storage devices, which we were slow to
replace due to ongoing civil unrest (The Guardian, 2017),
resulted in significant data losses in the hot and dry season
(September–October–November) at the two Village sites. In-
dividual sensor failure was rare, but 2 months of ARI014 Ox
data were lost to electrochemical sensor drift and one OPC-
N2 (ARI013) failed in the last 3 months of deployment due to
an insect nest clogging the OPC-N2 inlet. In all, we recorded
6992 h of data at the University site (ARI015), 5860 h at Vil-
lage 2 (ARI013), and 4720 h at Village 1 (ARI014). Future
deployments should include insect screens over all sensor in-
lets and improved battery storage and power systems that run
at a longer duty cycle in the case of insufficient solar (e.g.,
power on only once battery is fully charged) to minimize the
impact of sensor equilibration times on data recovery.

Since the monitors were deployed to their sites for
>1 year, there was observation overlap in seasonally simi-
lar data collected 1 year apart. To gain insight into sensor
stability, we compared the data collected in the first month
(July 2017) to the final month (July 2018) of the deploy-
ment, given that ambient environmental conditions were sim-
ilar in July of both years (additional details in Sect. 11 of
the Supplement). It is not possible to know if the range of
gas concentrations were significantly different between July
2017 and July 2018. We explored this analysis on the as-
sumption that inter-annual variability in ambient concentra-
tions was minimal. Bivariate distributions of the raw dif-
ferential voltage readings from July 2017 and July 2018
showed that the most frequent observations (i.e., heaviest-
shaded regions) were approximately the same in both years
(Fig. S25). Observable differences in the voltage measure-
ments could be partially explained by known environmen-
tal differences. For example, the Ox sensor voltages in July
2018 were lower on average than in 2017, but this was con-
sistent with lower temperatures and higher RH in 2018 com-
pared to 2017. However, there was potential evidence of
slightly reduced or altered responses in individual sensors,
particularly the NO sensors in ARI013 and ARI015 and the
CO sensors in ARI013 and ARI014. For these sensors, the
2018 distributions had less spread than the 2017 distribu-
tions, suggesting either less variation in ambient concentra-
tions in 2018 or decreased sensitivity in the sensors. Diur-
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nal plots from both years showed that the raw mean voltages
and trends were consistent (Fig. S26). However, again the
most noticeable differences were in the individual CO and
NO sensors identified from the bivariate distributions. For
example, the CO peaks measured at mealtimes by ARI013
and ARI014 were about 50 mV lower in 2018 than 2017.
These differences could be explained by lower concentra-
tions in 2018 than 2017, changes in the raw sensor response
over the 1-year period, or both. Without reference equipment,
we were unable to investigate sensor drift and decay more
rigorously. This qualitative analysis suggests individual sen-
sor responses were altered during the 1-year deployment, but
there was no unambiguous evidence for systematic deteriora-
tion within or across the electrochemical sensor groups used
in the ARISense.

In general, the calibrated observations followed the trends
identified from the raw sensor voltage readings. Calibrated
CO data trends were consistent for both years, with the mod-
els responding as expected to the lower voltage readings in
2018 compared to 2017. For ARI013 and ARI014, the cal-
ibrated CO peaks at mealtimes were accordingly lower by
about 100 ppb in 2018 (Fig. S27). However, although the raw
Ox sensor trends in 2018 and 2017 were consistent for all
the ARISense (Fig. S26), the kNN hybrid model calibrated
O3 data were highly irregular between the 2 years (Fig. S27).
For example, the calibrated O3 data for July 2017 showed the
expected diurnal pattern (concentration increasing with solar
intensity) with plateaus between 15 and 40 ppb depending on
the site. However, in July 2018, although the raw Ox diurnal
data looked similar to 2017, the calibrated data for ARI013
and ARI015 showed midday values between 0 and 5 ppb, and
the diurnal trend for ARI013 showed a flat line (i.e., not cor-
related with solar activity). This finding, that raw Ox sensor
voltages were similar year to year while the calibrated O3
values were not, provides further evidence that the lack of
comparable T , RH, and ozone colocation data contributed to
the non-physical O3 trends observed during the second half
of the deployment at the ARI013 and ARI015 sites.

Before their return to NC, ARI013 and ARI014 were
used for high-concentration emissions monitoring experi-
ments after the 1-year ambient monitoring campaign was
completed (Table 2). The reference monitor data from the
post-deployment colocation in NC (August 2018 to May
2019) were intended to enable investigation of changes in
ARI013 and ARI014 raw sensor response and model per-
formance. However, the resulting data instead demonstrated
that the sensors had been severely degraded during the high-
concentration exposures. In the post-colocation data, the raw
differential voltage gas sensor responses in ARI013 and
ARI014 were well correlated with each other (R2

= 0.7 to
0.9) (excluding the ARI013 Ox sensor which was clearly de-
graded; see Fig. S28) but less correlated than during the pre-
colocation comparison (R2

= 0.9 to 0.99). To facilitate com-
parison with the pre-colocation performance metrics shown
in Fig. 2 and Tables S4–S6, the performance metrics for

the post-deployment colocation are given in Tables S11 and
S12. Despite showing inter-sensor consistency, the raw dif-
ferential sensor voltages (other than CO) made by ARI013
and ARI014 were poorly correlated with reference measure-
ments (Figs. S29–S30). Inspection of the time series showed
that the ARISense NO sensors tracked some spikes in the
time-aligned NO reference data, but the NO2 and Ox sen-
sors did not track reference data trends (Figs. S31–S32). The
time series of the differential voltage and temperature data
suggest the gas sensors in ARI013 and ARI014 were re-
sponding similarly to changes in T and RH, but they were
no longer sensitive to changes in the target gas (Fig. S31).
This may explain why the sensors in ARI013 and ARI014
were still well correlated with each other and not correlated
with reference measurements. The calibrated CO data were
the only data still roughly correlated with CO reference mea-
surements, although the calibrated CO data showed aber-
rant features (Figs. S33–S34). These ambient sensors (ex-
cept for the CO sensor) were likely affected by high con-
centrations of PM and volatile gases (e.g., hydrocarbons,
formaldehyde) co-emitted during the biomass burning exper-
iments. Exceedingly high concentrations of emissions can
chemically degrade or contaminate the sensors; for exam-
ple, the catalyst or electrolyte can be affected or depleted by
repeated interactions with high concentrations of non-target
species emissions. Further, if there were high concentrations
of fine semivolatile PM permeating the inlet and flow line, it
could condense and block or attenuate the sample flow rate.
The Ox , NO, NO2 sensors were permanently altered by the
biomass burning emission experiments in Malawi, leading to
poor performance during post-deployment colocations with
reference instruments in NC. Given these dramatic changes
in sensor responses, the models were unable to generate rea-
sonable concentration values from sensor signals, and conse-
quently we were unable to use the post-deployment coloca-
tion data set to quantitatively assess long-term model perfor-
mance. The partial exception to this was for the kNN hybrid
calibrated CO data, which were correlated with the reference
data (R2

= 0.5), suggesting that the CO sensors might retain
some function after additional colocation and recalibration.

4 Conclusions

Our experience showed that LCS networks are a viable
method to collect novel surface AQ data in regions without
reference equipment, but this approach requires strict data
quality procedures to ensure the conclusions drawn from the
resulting data are valid. Performance assessment in NC sug-
gested the calibrated ARISense sensor packages (excluding
the NO2 sensor) would be suitable for supplemental air mon-
itoring based on U.S. EPA metrics and target values. How-
ever, performance during the pre-deployment NC assessment
did not reflect performance in Malawi. For this deployment
site, we found that detailed information about nearby sources
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and their diurnal emission patterns, ambient meteorological
data, and a familiarity with air pollutant behavior were help-
ful when qualitatively assessing LCS performance in a re-
gion where quantitative assessment was not an option. A lack
of coherency in diurnal trends between calibration model
predictions and frequent non-physical concentration values
(Fig. 6) showed that LCS measurements made in deployment
environments different from the colocation environment can
be unreliable and may lead to biased information about the
deployment environment. For example, although the Ox sen-
sors showed the highest performance of all sensor types dur-
ing colocation testing, and the measured RH, temperature,
and Ox voltage ranges were similar in the colocation and
deployment environments, the calibrated O3 data in Malawi
were unreliable. The colocation data were collected in an ur-
ban area near a highway, and the deployment data were col-
lected in a rural area heavily impacted by biomass burning
emissions. The resulting difference in ozone precursor emis-
sions could have contributed to the deficient performance of
the calibration models in the deployment environment. We
expect our experience in Malawi may generalize to other re-
gions, suggesting that additional research is needed to ad-
dress the issue of LCS calibration for secondary pollutants.

We found that the kNN hybrid modeling approach per-
formed the best for NC and when applied to data collected
in Malawi. However, the general lack of standardization in
LCS calibration and assessment approaches complicated and
extended the calibration process for our study. Although
there have been advancements in calibration methods, the
difficulty of identifying and applying a singular best cali-
bration model remains a common issue among LCS users
(Topalović et al., 2019; Lewis and Edwards, 2016; Giordano
et al., 2021). From an end user perspective, the burden of
calibration easily becomes overwhelming. There is presently
no clear guidance on which model would be appropriate for
which sensor under which circumstances. This limits the po-
tential user base of LCS technologies, complicates our ability
to generalize findings across different studies, and may even
lead to inferior quality measurements. Given the wide range
in potential LCS technologies and deployment conditions, it
is not possible to fully generalize the viability and sensitiv-
ity of the ARISense to another LCS package deployed in a
different area. Nonetheless, we surmise that LCSs are most
useful when they are carefully selected and calibrated for a
single purpose and location, for which the environmental and
pollutant conditions are at least partially characterized.

This pilot deployment also provided lessons regarding the
design and deployment of low-cost AQ monitoring systems
for off-grid applications. The ARISense packages survived
the 1-year deployment to Malawi and enabled collection of a
large, novel data set; however, they suffered individual sensor
failures and frequent power losses. Given that 20 % to 50 %
of the deployment data were lost due to insufficient power
and corrupt data storage systems, for future solar-powered
deployment efforts we suggest that the power system be de-

signed to allow for primary and secondary data recovery
goals (i.e., a back-up plan to prioritize the most desirable
data in the event of insufficient power). Further, we were
frequently restricted in troubleshooting and repair opera-
tions by spotty cellular connection, limited human resources,
and our inability to remotely locate and procure appropri-
ate equipment. A repair kit with basic equipment (e.g., pre-
programmed USB devices, alternate SIM cards, hand tools
with attachments specific to each LCS) stored in a nearby,
secure location would have allowed for quicker troubleshoot-
ing and repair. We suggest that in addition to solar power
limitations, other potential confounding factors like extreme
weather and limited technical capacity and assistance avail-
ability be considered before deployment to remote locations.
We found that the more closely located the monitor was to a
trained local assistant, the lower the overall data losses were.

The responses of the gas sensors were not remarkably dif-
ferent after 1 year of deployment (Figs. S26–S27), assuming
actual concentrations did not vary significantly from 2017 to
2018. However, except for CO, repeated exposure to high-
concentration biomass emissions completely degraded the
sensors. Key manufacturer specifications indicated that the
CO sensor was the most robust. The CO sensor exposure
limit was 40 times higher than that of the Ox , NO, and NO2
sensors. Further, the maximum temperature and RH range
for the CO sensor was 50 ◦C and 90 %, respectively, and
only 40 ◦C and 85 % for the Ox , NO, and NO2 sensors. Dur-
ing deployment, the maximum ranges were occasionally ex-
ceeded for every sensor except CO. Operation beyond speci-
fied conditions, combined with ∼ 100 h of exposure to high-
concentration gases during the post-deployment emissions
monitoring experiments, damaged the three less robust sen-
sors (NO, NO2, Ox) and made them unsuitable for future use.
We caution end users to carefully select an appropriate sensor
package given pilot information about the emission sources
in their target site.

A growing body of literature highlights the potential value
of LCS technologies for sub-Saharan Africa and other low-
resource settings (Subramanian and Garland, 2021; Wer-
necke and Wright, 2021; Rahal, 2020; Sewor et al., 2021;
Awokola et al., 2020). We found that our LCS surface ob-
servations were consistent with the only other available data
sources in this region (remote sensing data and model prod-
ucts) and data from similar studies across SSA. This suggests
LCSs have a key role to play in providing reliable informa-
tion on general air quality conditions and trends in regions
without a historical record. Advancements in machine learn-
ing techniques show how LCSs can be used for source iden-
tification and attribution in regions where little quantitative
information currently exists on dominant emission sources
(Hagan et al., 2019; Thorson et al., 2019). While LCSs in
SSA show promise, many of the issues experienced in this
study stemmed from a lack of in situ reference monitors. Ad-
ditional reference-grade monitors throughout the region may
help circumvent issues related to calibration modeling and
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quality assurance. A regional shared facility would enable
periodic regionally representative colocations without requir-
ing every country to establish its own regulatory network.
Recent research has improved our ability to synthesize data
from networks of LCS through computational calibration so-
lutions that minimize the need to transport and colocate each
individual monitor separately and increase the spatiotempo-
ral resolution beyond that of reference networks (Buehler et
al., 2021; Malings et al., 2019a; Kelly et al., 2021; Considine
et al., 2021; Sahu et al., 2021). Concurrently, policy-focused
researchers are helping to bridge the gap between govern-
ments and AQ scientists by creating comprehensive frame-
works that provide systematic procedures to establish regula-
tory AQ monitoring networks in regions without them (Gulia
et al., 2020; Pinder et al., 2019). In the meantime, we found
support from local universities, which helped maintain the pi-
lot deployment of this LCS network. We expect that any AQ
program in SSA will benefit from building long-term, local
capacity and knowledge transfer systems for training on-site
staff and for receiving their feedback and guidance.

Code availability. The basic random forest hybrid and quadratic
regression model code is available as a Supplement to Malings
et al. (2019a) (https://doi.org/10.5281/zenodo.1482011, Malings
et al., 2018). The k-nearest neighbors hybrid, high-dimensional
model representation, and multi-linear regression model code are
proprietary products of QuantAQ, Inc.; contact David H. Hagan
(david.hagan@quant-aq.com) with inquiries.

Data availability. The data set used in this analy-
sis is available as an open-access Dryad repository
(https://doi.org/10.5061/dryad.cz8w9gj4n, Bittner et al., 2022).
The repository hosts pre-processed ARISense and reference data
sets from the pre-deployment and post-deployment colocations,
pre-processed RH-corrected OPC-N2 and MicroPEM data sets
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