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Abstract. The all-sky camera (ASC) images can reflect the
local cloud cover information, and the cloud cover is one of
the first factors considered for astronomical observatory site
selection. Therefore, the realization of automatic classifica-
tion of the ASC images plays an important role in astronom-
ical observatory site selection. In this paper, three cloud cover
features are proposed for the TMT (Thirty Meter Telescope)
classification criteria, namely cloud weight, cloud area ra-
tio and cloud dispersion. After the features are quantified,
four classifiers are used to recognize the classes of the im-
ages. Four classes of ASC images are identified: “clear”, “in-
ner”, “outer” and “covered”. The proposed method is eval-
uated on a large dataset, which contains 5000 ASC images
taken by an all-sky camera located in Xinjiang (38.19◦ N,
74.53◦ E). In the end, the method achieves an accuracy of
96.58 % and F1_score of 96.24 % by a random forest (RF)
classifier, which greatly improves the efficiency of automatic
processing of the ASC images.

1 Introduction

Clouds are visible aerosols composed of water vapor in the
atmosphere liquefied by cold, and they are important for the
hydrological cycle and energy balance of the Earth (Soder-
gren et al., 2017). The analysis of clouds can provide a lot
of valuable information such as weather prediction (Wester-
huis et al., 2020), climate prediction, astronomical observa-
tory site selection (Cao et al., 2020) and so on. For astronom-
ical observatory site selection, cloud cover is a factor that
must be considered. When the light emitted by a star reaches
the telescope, it will be scattered and absorbed by clouds in
the atmosphere. Therefore, the cloud cover determines the

quality of the observation data and the available time for as-
tronomy. Currently, cloud observations are mainly based on
satellite remote sensing (Zhong et al., 2017; Young et al.,
2018) and ground-based observations (Nouri et al., 2019).
Satellite cloud images can capture large areas of cloud cover
and directly observe the impact of clouds on the Earth’s radi-
ation, which is suitable for atmospheric research. However,
the resolution of the images is low, making it impossible to
study more cloud details. Ground-based cloud images have a
smaller observation range and focus on monitoring the cloud
thickness and distribution in local areas, which has the ad-
vantages of flexible observation sites and rich image infor-
mation. This paper mainly focuses on the classification of
ground-based cloud images.

The all-sky imaging device is an automatic observation in-
strument that can replace humans. The device has a digital
camera that can capture images of half of the celestial sphere
and can obtain details of clouds through retrieval algorithms.
With the emergence of more and more all-sky imaging de-
vices such as whole-sky imagers (WSIs; Sneha et al., 2020),
total-sky imagers (TSIs; Ryu et al., 2019), all-sky imagers
(ASIs; Nouri et al., 2018) and all-sky cameras (ASCs; Fa et
al., 2019), a large number of all-sky images have now been
generated, which provides a basis for the development of au-
tomatic cloud image classification algorithms.

Many researchers pay attention to the feature extrac-
tion technology of different cloud types. Calbo and Sab-
burg (2008) classified eight types of sky images using sta-
tistical features (smoothness, standard deviation, uniformity)
and features obtained after Fourier transform of the images.
Heinle et al. (2010) proposed a classification algorithm based
on spectral features in RGB color space and texture features
extracted by gray-level co-occurrence matrices (GLCMs).
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This method has a high accuracy for the classification of
seven different classes of clouds. Sun et al. (2009) proposed a
method where the local binary pattern (LBP) operator and the
contrast of local cloud image texture are used to classify sky
conditions. Li et al. (2016) expressed each image as a feature
vector, which was generated by calculating the weighted fre-
quency of the microstructures observed in the image. Dev et
al. (2015) investigated an improved text-based classification
method that combines color and texture features to improve
the effect. The average accuracy on the Singapore Whole-
Sky Imaging Categories (SWIMCAT) dataset is 95 %. Gan
et al. (2017) worked on different size regions of the image,
and they used a method based on sparse coding which is
effective in terms of localization and computation. Wan et
al. (2020) demonstrated that cloud classification results were
not good if only texture or color features are used. As a re-
sult, a mixture of texture, color and spectral features were
obtained from color images and then fed into a random for-
est (Svetnik et al., 2003).

In recent years, convolutional neural networks (CNNs)
have shown very superior effects in the field of image clas-
sification and have been applied to all-sky image classifica-
tion. Shi et al. (2017) used the output of the shallow con-
volutional layer of CNN as cloud features and fed it into
a support vector machine (SVM) (Cristianini and Shawe-
Taylor, 2000). Ye et al. (2017) extracted multiscale feature
maps from pretrained CNN and then employed the Fisher
vector to encode them, finally sending them to a classifier.
Zhao et al. (2019) used the 3D-CNN model to extract the
texture features of the images and then output the classifica-
tion results with a fully connected layer. Zhao et al. (2020)
proposed the improved frame difference method extractor to
detect and extract features from large images into small im-
ages; then these small images were sent to a multi-channel
CNN classifier. Liu et al. (2021) proposed a context graph at-
tention network (CGAT) for the cloud classification, in which
the context graph attention layer learned the context attention
coefficients and acquired the aggregated features of nodes.

The algorithms proposed above, both traditional and deep
learning methods, are based on texture, color and spectral
features of cloud for classification, and they are all for cloud
shape classification of local images or all-sky images. But
for the astronomical observatory site selection, cloud cover
is also an important factor that must be considered besides
cloud shape. At present, few researchers have studied the
classification algorithm based on cloud cover. The existing
cloud cover calculation method only calculates the ratio of
the cloud coverage area to the effective area of the ASC im-
ages and does not provide a detailed description of the cloud
cover (Esteves et al., 2021). Therefore, we propose three
cloud cover features in this paper that introduce cloud thick-
ness and distribution position into the cloud cover calcula-
tion, and we classify the ASC images according to the TMT
classification criteria. The rest of the paper is organized as
follows. Section 2 introduces the dataset and TMT classifi-

Figure 1. Example of ASC image. (a) Original RGB color ASC
image. (b) Resized RGB color ASC image of (a).

cation criteria. Section 3 describes three cloud cover features
and the proposed classification method. Section 4 shows ex-
periment results and analysis of the results. Finally, Sect. 5
concludes our contributions.

2 Dataset and image classes

2.1 Dataset

Images used in this paper were taken by an all-sky camera
located in Xinjiang, China (38.19◦ N, 74.53◦ E), and pro-
vided by the Key Laboratory of Optical Astronomy at the
National Astronomical Observatories of Chinese Academy
of Sciences. The ASC has two parts, a Sigma 4.5 mm fish-
eye lens and a Canon 700D camera providing a 180◦× 180◦

field of view. The frequency of shooting in daytime is 20 min,
increasing to 5 min per shot at night, and the exposure time
will be adjusted between 15 and 30 s depending on the phase
of the moon. The ASC images are stored in color JPEG for-
mat with a resolution of 480× 720 pixels. In order to facil-
itate subsequent processing, the images are cropped to re-
tain only the central valid area, and the cropped image size is
370× 370 pixels. Note that the captured image is originally
rectangular but the mapped all sky is circular, where the cen-
ter is the zenith and the boundary is the horizon. Figure 1a
shows an example of the original ASC image, and Fig. 1b
displays the cropped ASC image.

We screened the ASC images taken from January 2019 to
November 2020 to remove those that were overexposed or
encountered bad weather. The screened images are all clas-
sified by professionals using a similar manual cloud iden-
tification method (see the next section) as described in the
Thirty Meter Telescope (TMT) site testing campaign paper
(Skidmore et al., 2008). In the end, a dataset with 5000 ASC
images was obtained. We did our best to ensure a balanced
number of images of each class in the dataset.

2.2 Image classes

Traditionally, the ASC image classification takes cloud shape
as the basic element, while considering the shape develop-
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ment and internal microstructure of the clouds. However,
the cloud cover in the image is the first important factor
to be considered for astronomical observatory site selection.
Therefore, we classify the ASC images following the method
of Skidmore et al. (2008, TMT classification criteria). The
ASC images are divided into inner and outer circles with
zenith angles of 44.7 and 65◦, respectively, and then the
cloud cover is determined as clear, outer, inner and covered
according to the thickness and distribution of the cloud on
the ASC images. The classification definition is shown in Ta-
ble 1, and typical images of each class are shown in Fig. 2.

3 Classification based on cloud cover features

In this section, we first describe the cloud cover features pro-
posed, and then we introduce the overall process of the ASC
image classification method based on the cloud cover fea-
tures. The framework is illustrated in Fig. 3.

3.1 Cloud cover features

The current TMT classification criteria are essentially only
based on the area ratio and distribution of the cloud regions
in the ASC images with insufficient consideration of cloud
thickness and density of distribution, and no intuitive and
reliable quantitative indicators, so the classification results
are easily affected by subjective human factors. In this paper,
three cloud features are proposed for the above problems,
namely cloud weight, cloud area ratio and cloud dispersion.
Cloud weight indicates the thickness of the cloud, cloud area
ratio represents the ratio of the cloud area to the effective area
of the image and cloud dispersion reflects the distribution of
cloud regions around the center of the ASC images.

3.1.1 Cloud weight

The grayscale value G of any pixel in the ASC image can be
regarded as the weighted superposition value of the grayscale
value of multiple elements such as cloud, sky background
and impurities in an ideal state, as shown in Eq. (1). The ideal
state means that the grayscale value of the pixel is contributed
by only one element and no other elements are involved, and
the pixel can be regarded as the “pure pixel” of the element.

G= α1G1+α2G2+ . . .+αNGN , (1)

whereG1,G2, . . . ,GN denote the grayscale value of the pure
pixel of different elements. α1, α2, . . . , αN are the weights
of the contribution of the pure pixel of each element to the
actual grayscale value of the image pixel.

For an ASC image, the grayscale value of the cloud re-
gion ideally is superimposed by the grayscale value of the
sky background and cloud. Therefore, the grayscale value of
cloud region can be defined by the superimposed model as

G= αGsky+ (1−α)Gcloud, (2)

whereG is the true grayscale value of the cloud region;Gsky
is the grayscale value of the sky background in an ideal state.
Since the shooting time of the image is known, the grayscale
value of the sky background can be obtained by using im-
ages of different dates but the same moment; Gcloud is the
grayscale value of cloud in the ideal state; α is the weight of
the contribution of the sky background to the actual grayscale
value of the pixel in the ideal state. During the shooting pro-
cess of ASC, the sky background will be blocked by clouds.
As the cloud becomes thicker and thicker, the contribution
of the sky background to the grayscale value of cloud re-
gion will gradually decrease, and this phenomenon will be
more obvious in the initial stage when the cloud thickness
increases. When the cloud thickness increases to a certain
degree, the grayscale value of cloud region is almost com-
pletely contributed by the cloud, so the relational expression
between α and Gcloud is approximately a monotonically de-
creasing concave function. After extensive experimental ver-
ification, the relationship between the two is derived in this
paper as

α =
Gsky

Gcloud+Gsky
. (3)

According to Eqs. (2)–(3), Gcloud is calculated as follows:

Gcloud =
G+

√
G2− 4

(
Gsky−G

)
Gsky

2
. (4)

In order to verify the validity of the cloud grayscale value ob-
tained by the superposition model, we process the grayscale
image of the local cloud region according to Eq. (4), and
the result is shown in Fig. 4. Figure 4a shows the original
grayscale image, and Fig. 4b is the grayscale image in the
ideal state obtained. By comparison, it can be found that the
grayscale value of the processed image is significantly lower
in the thin cloud part, which eliminates the influence of the
sky background on the cloud grayscale value, thereby better
reflecting the cloud contour. Therefore, the grayscale image
processed by the superposition model reflects the grayscale
value and the number of cloud pixels more realistically.

Based on the previous derivation, we proposed “cloud
weight” to indicate the thickness of the clouds. Since there
are large differences in color and brightness between clouds
and sky in ASC images, this section defines the cloud weight
by exploring the relationship between pixel grayscale value,
cloud reflectivity, light intensity and cloud thickness.

In grayscale images, the magnitude of the grayscale value
is related to the reflectivity of the object and the intensity
of the incident light. The grayscale value can represent the
brightness of the pixel, which is determined by the reflec-
tivity and the intensity of the incident light. Therefore, the
grayscale value of a cloud pixel Gcloud is calculated as

Gcloud = r l, (5)
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Table 1. The ASC image classes and corresponding description.

Class Description

Clear No thick cloud within the inner circle (Fig. 2a).
Outer No thick cloud within the inner circle, has cloud within the outer circle (Fig. 2b).
Inner No more than 50 % cloud within both the inner and outer circles (Fig. 2c).
Covered Coverage of cloud within inner and outer circles is over 50 % (Fig. 2d).

Figure 2. ASC image samples from dataset. (a) Clear, (b) outer, (c) inner and (d) covered.

Figure 3. System framework.

where Gcloud indicates the grayscale value of the pixel in the
ideal state, r represents the reflectivity of the cloud to the
light and l is the intensity of the incident light. Generally
speaking, the reflectivity of the cloud to the light r is pro-
portional to the cloud thickness w. The thicker the cloud, the
higher the reflectivity. According to the theory of radiative
transfer, the expression between the two is approximately

r = λ
(
1− e−ω

)
, (6)

where λ is the correlation coefficient. The incident light in-
tensity l is determined by the incident light, and the incident
light sources are the same for the cloud and sky background.
Compared with cloud, the sky background is simpler and
does not have an overly complex function change in mapping
the light source onto the grayscale image, so the magnitude
of the sky background grayscale value Gsky is proportional
to the intensity of the light source. Then Gsky is

Gsky = µl, (7)

where µ is the positive correlation coefficient. According to
Eqs. (5)–(7), w is calculated as follows.

w =−ln
(

1−
µGcloud

λGsky

)
(8)

Since Gcloud and Gsky have a fixed range of grayscale, and
µ/λ is a constant which does not affect the classification re-
sult, the value of µ/λ is taken as 0.1 in this paper after ex-
tensive experimental verification. Then the value of w repre-
sents the relative size of the cloud weight, which can approx-
imately reflect the thickness of the cloud. In order to facilitate
subsequent calculations and comparisons, we normalized w
as follows.

wn =
w−min(w)

max(w)−min(w)
, (9)

where wn is the normalized value of cloud weight, and
min(w) and max(w) represent the minimum and maximum
values of cloud weight in the cloud region of the image, re-
spectively.

This section defines the cloud weight based on the
grayscale value to reflect the thickness of the cloud. The
physical meaning of cloud weight is the difference between
the brightness of the cloud and sky background, which can
approximate the thickness of the cloud region. The feature of
cloud weight makes the evaluation of cloud thickness com-
pletely based on grayscale images, which promotes the auto-
matic processing of ASC images.

3.1.2 Cloud area ratio

At present, the common cloud area ratio calculation meth-
ods include ISCCP (Evan et al., 2007), CLAVR-1 (Wang et
al., 2013) and CLAVR-X (Kim et al., 2016). ISCCP divides
pixels into non-cloud and cloud pixels and assigns weights
of 0 and 1, respectively, to calculate the ratio of the weighted
sum of the two to the total number of pixels as the final result.
CLAVR-1 divides the pixels into non-cloud, mixed cloud and
cloud and then assigns weights of 0, 0.5 and 1, respectively,
to calculate the ratio of cloud area. CLAVR-X classifies the
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Figure 4. Comparison of cloud image. (a) Original grayscale image
and (b) processed grayscale image.

image pixels into non-cloud, thin cloud, medium cloud and
thick cloud according to the cloud thickness, and the weights
are adjusted according to the cloud thickness. All the above
calculation models divide the pixels into limited categories
and assign weights respectively. Although cloud thickness
and cloud coverage area are considered two cloud cover fea-
tures, the division of cloud thickness is slightly rough. In
the previous section, we completed the preliminary explo-
ration of cloud weight and obtained a more accurate and sci-
entific numerical representation of cloud thickness, so that
the weight of cloud pixels can be optimized more accurately.

This work refines the weight for each pixel of the ASC
images and redefines the calculation model of cloud area ra-
tio. We use the cloud weight derived in the previous section
to represent the weight of cloud pixels and define the ratio
of the weighted sum of all pixels to the effective area of the
image as the cloud area ratio (CAR), whose equation is

CAR=

∑
Ncloud

i=1
wi

n

Nall
, (10)

whereNcloud is the total number of cloud pixels in the image,
wi

n denotes the cloud weight of the ith cloud pixel and Nall
represents the total number of pixels in the effective area of
the ASC image.

3.1.3 Cloud dispersion

Cloud dispersion (CD) is proposed mainly to indicate the in-
fluence degree of the distance between cloud and the cen-
ter of the ASC image on astronomical observation results.
The closer to the center, the greater the influence. Cloud dis-
persion is a quantitative representation of this effect. Gener-
ally speaking, cloud dispersion has three determinants: cloud
area, cloud thickness and the distance between cloud and the
center of the image. Therefore, we divide the image into N
regions, namely xi(i = 1,2, . . .,N). The area of xi is denoted
as si, the average cloud thickness is denoted as wi and the
absolute distance between the center of the region and the
center of the ASC image is di. In order to facilitate the cal-
culation, we convert the absolute distance to the relative dis-
tance d∗i = di/R, where R represents the radius of the ef-

Figure 5. Curve fitting between d∗i and f (d∗i ). d
∗
i is the relative dis-

tance between the center of cloud and the center of ASC image, and
f (d∗i ) is the influence degree function with d∗i as the independent
variable.

fective area of the image. Then cloud dispersion of an ASC
image can be represented using Eq. (11):

CD=
∑N

i=1
siwif

(
d∗i
)
, (11)

where f (d∗i ) is an influence degree function with d∗i as the
independent variable. The smaller the d∗i , the greater the in-
fluence on the observation results and the greater the value of
f (d∗i ). From the above, it can be seen that f (d∗i ) is a function
that decreases monotonously with d∗i , and the influence on
the observation results is greatest when the cloud is located
at the image center. Since the classification of the ASC im-
ages in this paper is based on the TMT classification criteria,
it is necessary to consider the influence of the inner and outer
circles when setting the parameters. After many experiments
and comparison studies with the results of manual observa-
tion, we set the value of influence degree at the center of the
ASC image to 1, the inner circle to 0.7 and the outer circle
to 0. After linear fitting by the MATLAB curve fitting tool-
box, f (d∗i ) is shown in the Fig. 5. The expression is Eq. (12),
where the sine term is to correct the fitted quadratic function
to satisfy the decreasing condition.

f
(
d∗i
)
=−24.33sin

(
d∗i −π

)
+ 1.228

(
d∗i − 10

)2
− 121.8 (12)

In actual calculations, this paper takes each pixel as the
calculation unit, which can make the measurement of cloud
dispersion accurate to the pixel level. Then the region xi rep-
resents the individual image pixel whose area si is 1, and the
cloud thickness wi can be expressed by the cloud weight in
Sect. 3.1.1. According to Eqs. (11)–(12), the cloud dispersion
calculation model based on pixels can be obtained as

CD=
∑Ncloud

i=1
wi

n
[
−24.33sin

(
d∗i −π

)
+1.228

(
d∗i − 10

)2
− 121.8

]
. (13)
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3.2 Classification of ASC images

3.2.1 Pre-processing

Since the extraction of cloud cover features is based on the
grayscale images of the cloud region, it is necessary to extract
the cloud region in the ASC images first. Sunlight has a high
grayscale value and is very easily mistaken for cloud when
performing cloud detection in the ASC images. Therefore, it
is very important to remove the influence of sunlight. We use
the difference method to filter the sunlight in this paper. For a
given ASC image, the shooting time and the latitude and lon-
gitude of the shooting location are known, so we can use the
image with different dates but the same moment as the clear-
sky background image with the same sun elevation angle as
the original image. The grayscale images of two images are
first obtained, and the difference operation is performed to
acquire the image after removing the sun. Then the cloud
detection results are obtained using the binarization method.
Finally, the cloud region is extracted by applying the image
multiplication method.

Figure 6 shows an example to illustrate the various steps
of extracting cloud region. Figure 6a is the acquired original
ASC image, and Fig. 6b is the clear-sky background image
with the same sun elevation angle. Figure 6c and d are the
grayscale images of Fig. 6a and b, respectively, which have
very similar brightness distributions. Figure 6e is the result
of Fig. 6c minus Fig. 6d, and it can be seen that the influence
of the sun has been completely eliminated. The cloud region
shown in Fig. 6f can then be obtained by binarization, and the
final extracted cloud region (Fig. 6g) can be obtained by mul-
tiplying Fig. 6f with Fig. 6c. Generally speaking, the cloud
detection accuracy of traditional methods around the sun and
near-horizon regions is relatively low, but the method used
in this paper achieves better results. For thin cloud regions,
this method can also accurately identify them. In addition,
it is possible to exclude bright noises due to light refraction
because they are in the same position and have similar bright-
ness in Fig. 6c and d.

3.2.2 Extraction of cloud cover features

In this paper, we proposed three cloud cover features: cloud
weight, cloud area ratio and cloud dispersion, which basi-
cally contain the information of cloud coverage area, thick-
ness and distribution location. We represent the computa-
tional models of three features separately, which should theo-
retically match the TMT classification criteria. In order to im-
prove the accuracy of ASC image classification, we extracted
five features of each image separately, including cloud area
ratio (CAR), cloud dispersion (CD), inner circle cloud weight
(wi), outer circle cloud weight (wo) and global cloud weight
(wg). Among them, wi represents the average cloud weight
within the inner circle, wo denotes the average cloud weight
between the inner and the outer circle, and wg indicates the

Table 2. Examples of cloud cover features for each type of ASC
image.

average cloud weight within the outer circle. In addition, the
effective range of both CAR and CD is within the outer cir-
cle. The steps of the feature extraction algorithm are shown
in Algorithm 1.

Table 2 shows examples of the value of cloud cover fea-
tures for each type of ASC image, and the values are nor-
malized for the convenience of comparison. As can be seen
from the table, the size of the cloud weight is determined by
the thickness of the cloud in the specified area, so there is no
obvious difference between the cloud weight of each type im-
age. However, it has a great influence on CAR and CD, and
the size of cloud weight in the inner and outer circles affects
the classification of ASC images based on TMT classification
criteria, so the wi,wo andwg are used as features for classifi-
cation in this paper. The CAR and CD are derived on the ba-
sis of cloud weight, and the two have an overall positive cor-
relation. In addition, there are obvious differences between
the values of different categories. Figure 7 shows the distri-
bution of CAR and CD for the four ASC images. As Fig. 7
illustrates, the distribution of feature values of each type of
ASC image is concentrated in a certain range. The CAR and
CD of clear and covered have a more obvious division in val-
ues, while the overlap phenomenon exists in inner and outer.
The distribution ranges of CAR and CD are relatively sim-
ilar for each class of ASC image, but the overlapping part
of CD for inner and outer is reduced compared with CAR,
which indicates that considering the information of cloud lo-
cation distribution can distinguish the image classes more ef-
fectively. Therefore, the CAR and CD can be used as features
to classify the ASC images.
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Figure 6. Cloud extraction result. (a) Original ASC image, (b) real clear background image with the same solar elevation angle as (a),
(c) grayscale image of (a), (d) grayscale image of (b), (e) difference of (c) and (d), (f) cloud detection result, and (g) cloud extraction result.

3.2.3 Selection of classifier and training sample

The above features are integrated into a feature set to feed
into the classifier for training. To test the effectiveness of our
proposed cloud cover features for classification, we selected
four classifiers: decision tree (DT), support vector machine
(SVM), K nearest neighbor (KNN) and random forest (RF).
There are a total of 5000 different types of ASC images in the
dataset, and we selected 4000 images for training the classi-
fier and 1000 images for testing the effectiveness.

4 Results and discussion

In this section we evaluate the effectiveness of cloud cover
features for the classification of ASC images. Then we ana-
lyze and discuss the classification results.

4.1 Experiment results

The dataset is trained and tested using the method in the
previous section. To evaluate the classification performance
more comprehensively, we use accuracy, precision and recall
as evaluation metrics. The accuracy can be calculated based

on positive and negative classes as

accuracy=
TP+TN

TP+TN+FP+FN
, (14)

where TP (true positive) is the number of correctly classified
instances for a specific class, TN (true negative) is the num-
ber of correctly classified instances for the remaining types,
FP (false positive) is the number of misclassified instances
for the remaining types and FN (false negative) is the num-
ber of misclassified instances for a specific class. And the
precision and recall can be expressed as

precision=
TP

TP+FP
, (15)

recall=
TP

TP+FN
. (16)

In addition, we use F1_score in the evaluation, which can be
expressed as

F1_score=
2× precision× recall

precision+ recall
. (17)

The final test results of the four classifiers are shown in Ta-
ble 3. It can be seen that the average accuracy of each clas-
sifier is more than 95 %, indicating that the cloud weight,
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Figure 7. Distribution of feature value for each type of ASC image. (a) Distribution of CAR and (b) distribution of CD.

Figure 8. Some misclassified ASC images. (a) Outer to inner, (b) outer to clear, (c) inner to covered and (d) inner to outer.

cloud area ratio and cloud dispersion proposed are effective
cloud cover features that can classify ASC images based on
the TMT classification criteria, which greatly promotes the
automatic processing of the images. The precision and recall
of clear and covered are greater than 95 %, while outer and
inner are both less than 95 %, indicating that outer and in-
ner are easy to be misclassified. Among the four classifiers,
the best performer is RF, which has an average accuracy of
96.58 % and F1_score of 96.24 %.

4.2 Comparison experiments

In order to verify the effectiveness of the method, we com-
pare with other methods, including traditional methods and
CNN-based methods. Among them, Ojala et al. (2002) gen-
erate cloud features based on the difference of grayscale
value between the center pixel and the domain pixel of the
local region of the cloud image. Lazebnik et al. (2006) di-
vide the image into many sub-regions, then calculate the his-
togram of local features of each one, and finally stitch to
get the spatial feature information of the image. Heinle et
al. (2010) extract the color and texture features of the image
and use KNN for classification after combination. In addi-
tion, we also selected CNN-based methods, such as Cloud-
Net (Zhang et al., 2018), DeepCloud (Ye et al., 2017), TGCN

(Liu et al., 2020), Resnet50 and EfficientNet, which are rela-
tively new methods.

The classification accuracy of the method in this paper and
other methods is presented in Table 4. It can be seen from the
table that the CNN-based method performs better than the
traditional method, because CNN can continuously extract
various features of the image through convolutional opera-
tions to distinguish different kinds of images. And the clas-
sification performance of this paper method is superior to all
other methods, which indicates that extracting specific cloud
cover features for the classification criteria of cloud images
can enhance the discrimination of different classes of cloud
images.

4.3 Performance discussion

To further analyze the misclassification, we obtained the con-
fusion matrix of random forest classifier as shown in Table 5.
It can be seen from the table that the classification accuracy
of covered and clear is higher, while for outer and inner it
is lower. The non-zero values of the non-diagonal elements
in the table represent the probability of misclassification be-
tween classes. By looking at the misclassified images, it can
be learned that some outer images are misclassified as clear
or inner. Because some outer images have clouds in the in-
ner circle, but the thickness is extremely small, they will be
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Table 3. Comparison of results of four classifiers.

Classifier
Recall Precision

Accuracy F1_score
Clear Outer Inner Covered Clear Outer Inner Covered

SVM 96.16 93.16 95.07 99.04 97.27 93.17 95.04 98.78 95.87 96.27
KNN 98.52 93.05 94.24 97.89 96.34 94.21 93.18 98.67 95.36 95.92
DT 97.54 92.67 94.68 98.26 96.95 93.15 94.06 98.57 96.04 96.28
RF 98.38 93.84 95.27 98.84 99.04 94.26 95.13 98.43 96.58 96.24

Table 4. Comparison of results of different methods.

Method Accuracy

Ojala’s method 76.63
Lazebnik’s method 80.23
Heinle’s method 87.68
CloudNet 90.70
DeepCloud 91.62
TGCN 93.03
Resnet50 92.88
EfficientNet 94.57
Ours 96.58

Table 5. Confusion matrix of classification result using random for-
est.

Ground Classified

Truth Clear Outer Inner Covered

Clear 98.38 1.21 0.41 0
Outer 3.70 93.84 2.46 0
Inner 0 2.95 95.27 1.78
Covered 0 0 1.16 98.84

misclassified as inner. Or there are only scattered thin clouds
in the outer circle, so they are misclassified as clear. Inner
images are also misclassified as outer or covered. Some in-
ner images have clouds in the inner circle, but an incorrect
classification is caused by the thickness, or some inner im-
ages have a thin cloud thickness although the distribution of
clouds is wide, so it is easy to make a misjudgment. Fig-
ure 8 displays some misclassified ASC images. The reason
for misclassification is that the thickness of some cloud re-
gions is incorrectly identified. Although the cloud cover fea-
tures we proposed have taken into account the thickness of
the cloud, there is still room for further improvement.

5 Conclusions

This paper proposes three cloud cover features according to
the TMT classification criteria, namely cloud weight, cloud
area ratio and cloud dispersion, and completes the classifica-
tion of ASC images based on these features. In this method,

the cloud weight indicates the thickness of the clouds, the
cloud area ratio represents the distribution range of the cloud
and the cloud dispersion reflects the cloud influence degree
on astronomical observation results. We quantify these fea-
tures and then use a classifier to identify classes of ASC
images. A large dataset is composed of ASC images taken
by the all-sky camera located in Xinjiang, China (38.19◦ N,
74.53◦ E), and evaluated to verify the effectiveness of the
method. The experiment results show that the highest clas-
sification accuracy is 96.58 % and F1_score is 96.24 % by
using the cloud cover feature. Based on this method, astro-
nomical observatory site selection experts can greatly reduce
the time to classify the ASC images, which will also greatly
improve the efficiency of image processing. With compre-
hensive statistical data, they can choose the best site.

However, this method still has some shortcomings that
need to be improved. The classification accuracy of inner and
outer images needs to be increased, and better classification
algorithms can be studied for these two types. The sunlight
in ASC images affects the brightness of clouds, and how to
better eliminate the influence of the sunlight is also a prob-
lem that needs further research. In addition, this paper does
not study the classification of images in bad weather such as
rain and fog, and we will study new classification algorithms
with such images in the future.
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