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Abstract. Cloud and aerosol lidars measuring backscatter
and depolarization ratio are the most suitable lidars to detect
cloud phase (liquid, ice, or mixed phase). However, such in-
struments are not widely deployed as part of operational net-
works. In this study, we propose a new algorithm to detect
supercooled liquid water containing clouds (SLCC) based
on ceilometers measuring only co-polarization backscatter.
We utilize observations collected at Davis, Antarctica, where
low-level, mixed-phase clouds, including supercooled liq-
uid water (SLW) droplets and ice crystals, remain poorly
understood due to the paucity of ground-based observa-
tions. A 3-month set of observations were collected during
the austral summer of November 2018 to February 2019,
with a variety of instruments including a depolarization li-
dar and a W-band cloud radar which were used to build a
two-dimensional cloud phase mask distinguishing SLW and
mixed-phase clouds. This cloud phase mask is used as the
reference to develop a new algorithm based on the obser-
vations of a single polarization ceilometer operating in the
vicinity for the same period. Deterministic and data-driven
retrieval approaches were evaluated: an extreme gradient
boosting (XGBoost) framework ingesting backscatter aver-
age characteristics was the most effective method at repro-
ducing the classification obtained with the combined radar–
lidar approach with an accuracy as high as 0.91. This study
provides a new SLCC retrieval approach based on ceilometer
data and highlights the considerable benefits of these instru-
ments to provide intelligence on cloud phase in polar regions
that usually suffer from a paucity of observations. Finally,

the two algorithms were applied to a full year of ceilometer
observations to retrieve cloud phase and frequency of occur-
rences of SLCC: SLCC was present 29± 6 % of the time for
T19 and 24± 5 % of the time for G22-Davis over that annual
cycle.

1 Introduction

Mixed-phase clouds play a critical role in the earth radiation
budget, through their complex interactions with incoming
and outgoing shortwave and longwave radiation. This effect
is particularly important at higher latitudes with variation in
radiation affecting the snow or ice mass balance in the polar
regions (Lawson and Gettelman, 2014). Despite their impor-
tance in the global climate system, the occurrence, amount,
and nature of mixed-phase clouds remain poorly simulated in
global climate models due to the paucity of reliable mixed-
phase cloud observations, especially in remote regions of the
globe such as Antarctica (Bodas-Salcedo et al., 2016; Hyder
et al., 2018). Until recently, global climate models assumed
that low-level clouds over the Antarctic Ice Sheet essentially
contained ice crystals, but Lawson and Gettelman (2014) and
later Ricaud et al. (2020) both showed from their observa-
tions that around 50 % of clouds contained supercooled liq-
uid water (SLW) during the austral summer. Satellite-based
lidar observations of mixed-phase clouds suffer from severe
biases (Hu et al., 2009; Mace et al., 2020, 2021; McErlich et
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al., 2021) but points towards a high-frequency occurrence of
mixed-phase clouds in southern latitudes. Lawson and Get-
telman (2014) and Ricaud et al. (2020) highlighted the sig-
nificant impact the increased proportion of SLW clouds had
on climate model simulations. The parameterization of cloud
microphysical processes and precipitation remains challeng-
ing in Antarctica, given the limited observations; recent work
(Sotiropoulou et al., 2021; Vignon et al., 2021) has focused
on improving the parameterization of SLW, showing how
simulations and observations can be combined to improve
our understanding of underlying processes leading to its for-
mation. Kay et al. (2016) and Frey and Kay (2018) also
highlighted the importance of Southern Ocean mixed-phase
clouds in global coupled climate models, under the predicted
increase of greenhouse gas concentrations (Bjordal et al.,
2020).

Depolarization lidar is the most reliable means of observ-
ing non-spherical shape for randomly oriented cloud parti-
cles (Mishchenko et al., 2000; Hu et al., 2009; Mace et al.,
2020). Typically, a depolarization ratio below 10 % is char-
acteristic of SLW clouds (Ricaud et al., 2020), while higher
values are produced by ice particles. However, the remote-
ness and year-round harsh conditions for operating ground
or aircraft operations have limited the frequency of cloud ob-
servation campaigns in Antarctica. Only over the past decade
have coordinated ground-based cloud and precipitation stud-
ies been conducted in various regions of Antarctica, includ-
ing in Adelie Land (Grazioli et al., 2017; Genthon et al.,
2018), Dronning Maud Land (Gorodetskaya et al., 2015),
Ross Island (Scott and Lubin, 2016; Zhang et al., 2019),
the South Pole (Lawson and Gettelman, 2014), the Antarc-
tic Peninsula and Larsen Ice Shelf (Grosvenor et al., 2012;
Lachlan-Cope et al., 2016) and East Antarctica (Alexander et
al., 2021; Gehring et al., 2022). Complementary to ground-
based observations, satellite-borne remote sensing capabili-
ties, including depolarization lidar and cloud radar, can be
combined to generate cloud phase products in remote re-
gions such as the Arctic and the Antarctic, capitalizing on
polar orbit satellite revolutions, with high-frequency flights
over the poles (Litowski et al., 2019, 2020). Although these
active remote sensing satellites enable generation of cloud
phase products covering large areas, the drawbacks are re-
duced temporal and spatial resolutions as compared with
ground-based remote sensing capabilities such as lidars and
radars, and strong extinction of the lidar backscatter, making
lower layers closer to the ground not observable from space
if highly attenuating layers are present above. Satellite obser-
vations also suffer from the effect of ground clutter for obser-
vations closer to the ground (Bennartz et al., 2019). These re-
cent cloud observation campaigns have all pointed towards a
higher than anticipated occurrence of SLW and mixed phase
clouds (Scott and Lubin, 2016; Ricaud et al., 2020; Zhang
et al., 2019; Alexander et al., 2021; McErlich et al., 2021;
Cossich et al., 2021).

Extensive observation campaigns require the deployment
of dedicated instruments to determine the cloud phase, in-
cluding usually, at least, a depolarization lidar. Hogan and
Illingworth (1999) proposed detection of supercooled liquid
water with ceilometers despite the absence of depolarization
data. Ceilometers are widely used and deployed by national
weather services, typically at airports, to provide informa-
tion on cloud cover and cloud base height. The manufac-
turers of ceilometers directly provide the cloud base height
and cloud cover, using proprietary algorithms. These vari-
ables have been derived from the attenuated backscatter pro-
file measured by the ceilometer. In an operational context,
the attenuated backscatter profile is generally not used, even
though it contains valuable information on the structure of
the atmospheric boundary layer and the thermodynamics of
the cloud phase (Hogan et al., 2003, 2004; Morille et al.,
2007; Münkel et al., 2007; Van Tricht et al., 2014), as well
as the presence of aerosols. Following the initial work from
Hogan and Illingworth (1999), further studies led to the de-
velopment and deployment of new detection algorithms for
liquid cloud base layers and SLW (O’Connor et al., 2004)
as part of the Cloudnet initiative (Illingworth et al., 2007).
Recently, Tuononen et al. (2019) (hereafter referred to as
T19) proposed an improved approach from the Cloudnet re-
trieval (Illingworth et al., 2007), utilizing the shape of the
attenuated backscattered profile instead of relying on finding
the first value of backscatter above a given threshold value
(Illingworth et al., 2007). Hämäläinen et al. (2020) further
applied the T19 approach combined with vertical meteoro-
logical profiles of temperature to build a hydrometeor clas-
sification scheme to detect supercooled liquid water in the
clouds. These recent studies were the starting point and the
motivation for the present paper: to evaluate if the T19 ap-
proach could be successfully applied to ceilometer observa-
tions from Antarctica.

The aims of this study were to (i) utilize high-resolution
observations of cloud phase combining a set of ground-based
instruments including a depolarization lidar and a cloud
radar, to better understand cloud processes and microphysics;
(ii) evaluate the T19 supercooled liquid water retrieval for
a ceilometer dataset collected at Davis, Antarctica; (iii) de-
velop, train, and test a new enhanced algorithm to retrieve
supercooled liquid water, using only the attenuated backscat-
tered signal measured by a ceilometer and ERA5 interpolated
temperature fields; and (iv) apply the cloud phase retrievals
to 1 year of ceilometer observations to produce a climatology
of SLCC for Davis.
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2 Methods

2.1 Data

2.1.1 The PLATO data

As part of the Australian Antarctic Division’s Precipitation
over Land and The Southern Ocean (PLATO) field campaign,
which operated during the Year of Polar Prediction (YOPP;
Bromwich et al., 2020), a suite of ground-based remote
sensing instruments were deployed at Davis (68.5762◦ S,
77.9696◦ E), one of the three permanent Australian Antarc-
tic bases on the continent (Gehring et al., 2022), during
the Southern Hemisphere summer from November 2018 till
March 2019. These instruments included a W-band radar
(Delanoë et al., 2016), a 355 nm depolarization lidar oper-
ating for 3 months and a ceilometer operating during a full
year from November 2018 to October 2019. This set of in-
strumentation provides a unique opportunity to understand
the physics of clouds over that region, improve existing or de-
velop new cloud phase retrieval algorithms, and test a variety
of models. All these instruments are non-scanning devices
and therefore are only able to perform acquisitions along a
single path.

During the early 2010s, the World Meteorological Orga-
nization Weather and Research Program initiated a 10-year
collaborative research project (2013–2022), the Polar Pre-
diction Project (PPP), aimed at improving the prediction of
weather for polar regions, at short (hourly) to longer (sea-
sonal) timescales (Jung et al., 2016). The pinnacle of the PPP
are intense observational, modelling, and other related activi-
ties conducted under the umbrella of the YOPP. Three special
observing periods (SOPs) occurred between mid-2017 and
mid-2019, and included deployment of dedicated instrumen-
tation on the ground, together with higher-frequency routine
observations (Bromwich et al., 2020).

The cloud radar, namely the Bistatic Radar System for At-
mospheric Studies (BASTA), was initially developed within
a research laboratory and further became a semi-operational
instrument (Delanoë et al., 2016). The radar has a sensitivity
of around – 50 dBZ at 1 km, a vertical resolution of 25 m, and
a sampling frequency of 12 s. The BASTA was deployed on a
dedicated concrete slab and oriented to point vertically with
an accuracy better than 0.1◦, as shown in Fig. 1b.

The Leosphere R-MAN510 cloud and aerosol depolariza-
tion lidar (Royer et al., 2014) consists of elastic transmission
and reception (parallel and perpendicular) at 355 nm and in-
elastic (Raman) reception at 387 nm. The “raw” data from
the RMAN lidar are of variable temporal resolution generally
ranging from about 30 to 90 s, and 15 m vertical resolution.
The lidar was operated with a 4◦ off zenith angle to avoid am-
biguity between SLW clouds and oriented ice plates (Hogan
and Illingworth, 2003). We did not consider the Raman chan-
nel further in this analysis due to persistent daylight during its
Davis deployment rendering the weak Raman return signal

Figure 1. (a) Location of Davis in East Antarctica. The basemap
was extracted from the Antarctic Digital Database from the Sci-
entific Committee on Antarctic Research (SCAR) from the British
Antarctic Survey. Rocky outcrops are shown in brown and elevation
as contour lines every 500 m. (b) Photograph of the Vaisala CL51
ceilometer (foreground) installed on the meteorological platform to-
gether with other instruments not used in this study (credit: Andrew
Klekociuk, Australian Antarctic Division). (c) Photograph of the W-
band radar (BASTA) and the Raman depolarization lidar mounted
on a dedicated concrete slab (credit: Simon Alexander, Australian
Antarctic Division).

unusable (Alexander and Protat, 2019). Raw lidar data were
processed to provide vertically resolved profiles of cloud
phase, which broadly followed the algorithms developed by
Alexander and Protat (2018) and Noh et al. (2019). The raw
355 nm lidar backscatter profiles were first processed to re-
move background noise and correct for beam overlap. We
calibrated the lidar following the method of O’Connor et
al. (2004), who demonstrated that the lidar ratio is constant
within optically thick liquid non-precipitating stratocumulus
clouds. We scaled the raw signal until the observed lidar ratio
matched the theoretical lidar ratio within these clouds. Then,
the calibration values obtained during stratocumulus for the
limited number of optically thick clouds present above Davis
were used to calibrate the 3 months of data collected during
the summer.

Following calibration, we used a speckle removal tech-
nique to flag spurious noise which is ubiquitous at high al-
titudes in both the parallel and perpendicular channels. We
followed the method of Alexander et al. (2021) who used a
first pass of the algorithm to extract bright clouds (with large
vertical gradient in backscatter) in the co-polarized channel,
and then assigned cloud phase based upon the layer-averaged
backscatter and depolarization (Hu et al., 2009). We isolated
additional hydrometeors and aerosols based on pixels which
had depolarization ratios exceeding molecular backscatter
and variances within empirically determined thresholds. A
region-of-interest analysis to extract conjoined regions re-
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moved any spurious pixels initially flagged as hydrometeors
or aerosols. The result of these steps was a much greater de-
tection of ice virga than only using the parallel backscatter
because thin ice virga has large depolarization ratios, mak-
ing them readily detectable in the perpendicular channel. Ice
is defined to be virga rather than cloud when it exists beneath
an SLW layer. It also allowed attribution of liquid precipi-
tation reaching the surface, because this second stage of the
algorithm did not require vertical gradients of backscatter to
determine the presence of hydrometeors.

2.1.2 Vaisala CL51 ceilometer observations

In operational settings, ceilometers usually report cloud base
heights and oktas (percentage of cloud cover over a given
area) without providing information on cloud phase. How-
ever, these instruments record the full backscattered profile
from which the cloud base and okta have been derived. In this
study, raw data were collected with the University of Canter-
bury Vaisala CL51, e.g. the full backscattered profile with a
range of 15 km, a vertical resolution of 10 m, and a time res-
olution of 15 s. These observations covered the PLATO pe-
riod (November 2018 to February 2019) for which the depo-
larization lidar and the W-band radar operated and extended
till October 2019. The data were pre-processed using a dedi-
cated software developed by Kuma et al. (2021a), namely the
Automatic Lidar and Ceilometer Framework (ALCF). This
software allows the processing of raw data from a variety of
lidars and serves as a platform for comparing observations
and models. Here, we used the version 1.1 of the software
for processing the raw data generated by the Vaisala CL51 to
(1) produce daily netCDF files from the hourly Vaisala file
format and (2) remove noise by applying a noise removal al-
gorithm and sub-sampling the data to 5 min and 50 bins. The
noise removal is done by estimating the distribution of noise
at the highest available range and subtracting the mean of
the distribution (scaled by the square of the range) from all
bins in the column. In the cloud masking, the standard de-
viation of noise is considered when determining if a bin is
cloudy. By default, 5 standard deviations are subtracted from
the value before the cloud mask threshold is applied. This
is done to prevent false positives with sufficient probability;
sub-sampling is mostly done to improve the signal-to-noise
ratio. The cloud masking usually benefits from sub-sampling
to 5 min intervals and 50 m vertical resolution, because it de-
creases the number of misclassified bins.

After noise removal, then sub-sampling, ALCF performs
a calibration of the attenuated backscatter using the approach
of Hopkin et al. (2019). In addition to the absolute calibra-
tion, the instrument built-in software applies overlap calibra-
tion internally. The final pre-processed products were daily
netCDF files including the total attenuated volume backscat-
tering coefficient (β, m−1 sr−1) at a resolution of 5 min and
bin vertical resolution of 50 m.

2.1.3 ECMWF ERA5

The latest-generation reanalysis product ERA5 from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) was used in this study (Hersbach et al., 2020).
The ERA5 hourly data on pressure levels were extracted via
the Copernicus portal (https://cds.climate.copernicus.eu, last
access: 17 June 2022) as monthly netCDF files containing the
geopotential, potential vorticity (pv, K m2 kg−1 s−1), relative
humidity (r , %), air temperature (t , K), the specific cloud
ice water content (ciwc, kg kg−1), the specific cloud liquid
water content (clwc, kg kg−1), the specific rain water con-
tent (crwc, kg kg−1), the specific snow water content (cswc,
kg kg−1), the horizontal components of the wind speed (u
and v, m s−1), and the vertical velocity (w, Pa s−1). During
the YOPP, enhanced observations were conducted including
four radio soundings per day at Davis, instead of two during
normal periods. The YOPP covered approximately the pe-
riod with a concomitant operation of the W-band radar and
depolarization lidar.

The nearest ERA5 grid point (located at 68.5◦ S, 78.0◦ E)
to the location of the ceilometer, W-band radar, and depo-
larization lidar was used as the centre of nine neighbouring
grid points forming a square. All the extracted variable fields
were averaged to reduce potential spatial variability effects
and reduce noise. A sensitivity to this averaging approach
was also performed using only the central grid point, and the
averaging effect on the temperature and humidity fields was
considered negligible. The vertical pressure level fields were
linearly interpolated to the 50 m vertical resolution grid of
the ceilometer, and the hourly variables were linearly inter-
polated to 5 min to match the ceilometer time resolution.

2.2 Cloud phase masks

2.2.1 Radar–lidar merged cloud phase mask

This cloud phase product is obtained by merging information
obtained from the W-band radar and the depolarization lidar.
The principle is the same as the approach from Delanoë and
Hogan (2010) with satellite-based sensors, which combined
observations from CloudSat and the Cloud Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) mis-
sion lidar, taking advantage of the different sensitivities of
the radar and the lidar. The underlying principle for SLW
versus mixed-phase classification of a grid point is that the
W-band radar is not sensitive enough to detect very small, su-
percooled liquid water droplets. As a result, when a value of
reflectivity is measured for the grid point labelled as SLW by
the lidar, it implies that there must be ice particles in the vol-
ume generating a backscattered radar signal mixed with SLW
droplets as detected by the lidar. In this paper, the pipeline to
produce the cloud phase mask was based on the procedure
described in Noh et al. (2019) with some modifications.
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In the first stage, the lidar and radar are re-gridded to the
same temporal and vertical resolution to create a new merged
grid at 15 m vertical resolution and 1 min temporal resolu-
tion. The original 2 min resolution RMAN lidar classifica-
tion was re-sampled to 1 min simply by duplicating the near-
est 2 min time steps. ERA5 reanalysis data (hourly on pres-
sure levels) were extracted for the closest grid point to Davis
and linearly interpolated in time and space onto the merged
radar–lidar grid. The second stage is to incorporate the cloud
phase product from the R-MAN lidar, as described in de-
tail in Sect. 2.1.1 above. In the third stage, the original lidar-
only cloud phase labelling is refined utilizing the cloud radar
reflectivity field. If there is no measurement of reflectivity
above the noise level for the grid point, we assume that there
is no ice. In that case, points labelled “SLW” in the lidar-
only cloud phase classification remain labelled as “SLW”.
Conversely, the presence of an observed radar reflectivity im-
plies that there is ice in the volume as well, which triggers
a new classification of the grid point as “mixed phase”. Fi-
nally, the last stage consists in utilizing the radar reflectivity
to identify signals at sub-freezing temperatures, while the li-
dar backscatter is fully attenuated by lower clouds and does
not provide any information on the cloud phase. This case
triggers the grid point to be labelled “unknown” as there is
no possibility to distinguish ice particles-only from a mixed
phase, although there is certainty that these grid points do
not contain only SLW (Noh et al., 2019). “Unknown” could
therefore be interpreted as “ice or mixed phase” if needed.

It is necessary to determine the uncertainty in the Ra-
man lidar liquid phase product before quantifying the per-
formance of the ceilometer liquid cloud algorithm. To this
end, we performed a Monte Carlo simulation using a ran-
dom population of N = 1000 samples from a normally dis-
tributed population (Alexander et al., 2021). For each inte-
grated cloud attenuated backscatter βint and integrated de-
polarization ratio δint point, we have associated uncertainties
1βint and1δint, which we set to be twice the standard devia-
tion of the normal distribution. We then determined the cloud
phase for each of these 1000 realizations. These simulations
indicated that we misclassified only around 1.3 % of the SLW
as ice with the Raman lidar during the 3 months of observa-
tions, showing the robustness of our radar–lidar cloud phase
product.

2.2.2 Ceilometer cloud phase mask based on T19

The first cloud phase mask presented herein is based on
ceilometer observations, following the work from T19, aug-
mented with ECMWF ERA5 interpolated temperature fields
to differentiate SLW from other liquid water. Liquid wa-
ter droplets generate very high values of the ceilometer
backscatter signal and subsequent strong attenuation in the
vertical profile above the altitude of liquid water. T19 pro-
posed a modification from the Cloudnet approach (Illing-
worth et al., 2007), utilizing the shape of the attenuated

backscatter profile, instead of using a single threshold value.
The input to the technique is the pre-processed ceilometer
dataset, e.g. the 50 m gate resolution, 5 min calibrated atten-
uated backscatter processed with ALCF as explained previ-
ously.

The exact approach proposed by T19 was implemented
herein: the maximum of a localised peak value in the ver-
tical profile of the backscatter is found, instead of the first
value above a given threshold as in Cloudnet. However,
the maximum of the peak value needs to exceed the same
threshold value as in Cloudnet, namely the pivot β value
of β = 2× 10−5 m−1 sr−1, together with a maximum peak
width at half height set at 150 m. The combination of these
two criteria allows the identification of a rapidly attenuat-
ing signal, which is typical of liquid water layers. In the
case of T19, this method of identification enabled capture of
the base of precipitating clouds, but the authors also noted
its potential application for in-cloud icing detection. The
authors also showed the possibility of identifying multiple
peaks within the same profile with this method. However,
they did not specify how to allocate a classification to the
bins at the height of the peak and the surrounding bins (be-
low and above the peak). We decided that based on the above,
only the altitude bin corresponding to the location of the
peak (if found) was labelled as liquid water. Further to this,
a re-classification was done to distinguish supercooled liq-
uid water from other liquid water based on the interpolated
re-analyses temperature fields: if the temperature T was be-
tween 0◦ and above −38◦, the grid points were classified as
supercooled liquid water; otherwise, they were classified as
liquid water.

In addition to liquid water, precipitation and ice clouds
were identified following the same approach as T19, by
selecting grid points with values of backscatter above
β = 3× 10−6 m−1 sr−1 with a thickness of at least 350 m,
e.g. seven consecutive grid points satisfying this criteria,
therefore showing no attenuation within at least 350 m. The
base of these clouds was accordingly the lowest grid point
of the points within the profile satisfying these criteria. As
noted by T19, liquid layers can be identified within precipi-
tation and ice clouds as defined utilizing our algorithm.

Fog is a phenomenon that probably occurs relatively fre-
quently in the Southern Ocean and some regions of Antarc-
tica (Lazzara, 2008), although few studies are available in the
literature to accurately quantify its occurrence (Kuma et al.,
2020). The same method as T19 was again used here, de-
tecting fog layers by identifying values of backscatter above
β = 10−5 m−1 sr−1 for the lowest grid point (corresponding
to 0–50 m above the surface) and a β value 250 m above the
instrument of β < 3× 10−7 m−1 sr−1 (to restrict the identifi-
cation to fog and exclude low-level thicker clouds).
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2.3 Enhanced data-driven ceilometer cloud phase
mask (G22-Davis)

Based on detailed observations of the cloud phase mask from
T19 for days with substantial amounts of clouds, a large
amount of speckle in the retrieved SLW phase was observed,
corresponding to time steps for which the radar–lidar cloud
mask did not observe any SLW. This led us to investigate if
an alternative algorithm could perform better for these con-
ditions. Importantly, the concomitant high-resolution and ro-
bust observations of cloud phase using the combination of
radar and lidar provided us with a reference that could be
used to develop and validate our new algorithm.

This new algorithm relies on an initial signal analysis of
each attenuated backscattered profile, as in T19, but also
makes use of the statistical properties of the full dataset. It is
based on a data-driven model including a learning and testing
phase using the reference radar–lidar cloud mask.

The first step is to build a dataset and design, train, and
test a supervised model. This first step is summarized in
Fig. 2. First, we detected all peaks in the dataset that had
at least a width of 50 m (thus only one range bin since this is
the lowest resolution of our post-processed ceilometer data)
and a peak value of β = 2× 10−5 m−1 sr−1 (similar threshold
value to that in Tuononen et al., 2019). Several peaks can be
detected for the same profile. For each peak, seven features
were attributed to characterize peak properties: the value of
the backscatter at peak location, the peak width, the value of
the backscatter at peak width, the peak prominence (e.g. the
difference between the peak value and the surrounding base-
line), the peak altitude above ground level, the total number
of detected peaks for a given profile and, if several peaks, the
order of the peak within that total number, with the lowest
peak in altitude taking the number “0”. The height at which
the peak width is measured is relative to its prominence, fol-
lowing Eq. (1):

Hpeak width =Hheight−Prom×RH, (1)

with Hpeak width the height of the peak at which the width is
measured (m−1 sr−1), Hpeak the absolute height of the peak,
Prom as the prominence (m−1 sr−1), and RH the relative
height, which was set at 0.5. In addition to this, the peak tem-
perature was also extracted using interpolated ERA5 fields.
This eight-feature dataset of peak properties (Table 1) was
then labelled for each row with a Boolean attribute based
on the detection of either supercooled liquid water or mixed
phase by the radar–lidar mask for that time step (True: detec-
tion of SLW/mixed phase; False: no detection of SLW/mixed
phase).

We also accounted for the problem caused by signal ex-
tinction in multi-layer SLCC situations: peak properties of a
single peak corresponding to SLCC with no extinction other
than molecular in the lower levels cannot be directly com-
pared in terms of backscatter values to peak properties of a
presumed SLCC peak at higher altitude for which the signal

Figure 2. The pre-processing stage in our new algorithm, e.g.
G22_Davis: data preparation, model development, training, and
testing.

would have undergone substantial extinction by clouds or the
presence of SLW of mixed phase below. The properties of a
peak that would have undergone attenuation will therefore
see lower values of the value of the attenuated backscatter at
peak location. To account for this attenuation effect, we com-
pared the value of the backscatter at peak location for single
peaks and for peaks that would have experienced extinction
(peaks with a peak order> 0). We call the first group of peaks
that do not see lower-level attenuation “primary peaks” and
the group of peaks that are higher in altitude above primary
peaks “secondary peaks”. For primary peaks, data for which
SLCC were identified were selected based on the Boolean
condition defined using the radar–lidar cloud mask. For sec-
ondary peaks, an empirically based set of conditions must
be defined to extract only potential SLCC peaks from the
secondary peaks. These conditions were based on the ob-
served statistical distribution of peak properties and were em-
pirically set as follows: the width of the peak must be < 4
bins (corresponding to 200 m), the peak width height must
be > 40× 10−6 m−1 sr−1, and the peak prominence must be
> 60× 10−6 m−1 sr−1. The secondary peaks group also in-
cluded the cases of third and fourth peaks in elevation above
the primary peaks when found. Third and fourth peaks were
only found in 26 cases (third peak) and 5 cases (fourth peak),
representing 0.6 % and 0.1 % of the cases from all identified
peaks. This very small sample size did not allow use of the
approach proposed for second peaks, and therefore second,
third, and fourth peaks were all included in the same “sec-
ondary peak” group. The distributions of the two sets of data
(primary and secondary peaks) and their kernel density esti-
mates (KDEs) are shown in Fig. 3.

For primary peaks, one would expect the distribution of
values of the peak to vary based on the concentration of
liquid water. One would expect the same effect for sec-

Atmos. Meas. Tech., 15, 3663–3681, 2022 https://doi.org/10.5194/amt-15-3663-2022



A. Guyot et al.: Detection of supercooled liquid water containing clouds with ceilometers 3669

Table 1. Features of peak properties, including full name, abbreviations, and units.

Feature Abbreviation Units

Value of the backscatter at peak location peak_value m−1 sr−1

Total number of peaks for a given time step peak_total_number unitless
Peak prominence peak_prom m−1 sr−1

Peak width peak_width unitless (to convert to metres, multiply by 50 m)
Peak width height peak_width_height m−1 sr−1

Peak elevation above ground level peak_alt m
Peak number (in ascending order starting from ground level) peak_number unitless
Peak temperature peak_t degrees K

Figure 3. Distributions and kernel density estimates of values of
attenuated backscatter for identified peaks. Primary peaks are la-
belled in blue (3727 data points), while profiles including secondary
peaks (peak numbers equal to 2, 3, or 4) are shown in orange (570
data points, including 539 data points with a peak number of 2, 26
data points with a peak number of 3, and 5 data points with a peak
number of 4). Vertical dashed red lines indicate the median values
of primary and secondary peak distributions. Adjusted secondary
peaks (secondary peak attenuated backscatter values plus offset) are
shown in green.

ondary peaks, but the values at peak would be smaller due
to varying degrees of extinction of the backscatter signal at
lower levels. The absolute difference between the median
value of the primary peaks distribution (Q2prime) and the
secondary peaks distribution (Q2second) can be calculated as∣∣Q2prime−Q2second

∣∣ and is equal to 4.20× 10−5 m−1 sr−1.
Our hypothesis was that for such a large amount of data in
both cases (primary and secondary peaks), this difference,
or offset, was the value of the average extinction due to the
presence of various phases in the cloud on the lower alti-
tude that affects the potential SLCC peaks. Adding this off-
set to the value of the backscatter at peak location for all data
points of the secondary peaks’ distribution would therefore
“adjust” their peak values. This is shown as well in Fig. 3;

with the added offset, the adjusted distribution of secondary
peaks cover roughly the same area of the primary peak dis-
tribution. While not perfect, this adjustment enabled us to
modify our eight-feature dataset to allow a fairer comparison
across data points for the peak value, a critical feature for
further analysis. Additionally, to this adjustment of the peak
value for some of the peaks, the secondary peaks for which
the time steps were labelled “true” which did not meet the ar-
bitrary criteria also had their labelling changed from “True”
to “False”. Following the above, a new “adjusted” peak prop-
erties dataset can be used for further analysis.

The next step of our algorithm development was to design,
train, and test a data-driven model that could predict the label
of each of the peaks. A relatively novel tree-based ensemble
method was proposed by Chen and Guestrin (2016), i.e. ex-
treme gradient boosting or XGBoost, which is an improved
version of gradient boosting with the advantages of reduc-
ing overfitting and computational costs. The excellent perfor-
mances of this method for a wide range of applications, con-
sistently outperforming other methods such as support vec-
tor machines or random forest, led us to select this approach
here. The principle of this algorithm relies on a “boosting”
strategy, where predictions of “weak” learners (here, “learn-
ers” are decision trees) are combined to produce a “strong”
learner by utilizing additive training strategies. The compu-
tational cost is reduced by allowing parallel computations
during the training phase (Chen et al., 2015). Here, we only
cover the fundamental principles of the additive learning, and
the reader should refer to Chen and Guestrin (2016) for more
details. The first learner was initially fitted to all input data;
a second model was then fitted to the residuals to reduce the
disadvantage of the “weak” learner. This process of fitting
was repeated several times until the model satisfied a pre-
defined criterion. The prediction of the model for a given set
of hyperparameters was obtained by combining the predic-
tions of each learner. The function that describes the predic-
tion at each step t can be written as Eq. (2):

f
(t)
i =

∑t

k=1
fk(xi)= f

(t−1)
i + ft (xi), (2)

where ft (xi) is the learner at step t , f (t−1)
i and f (t)i are the

predictions at steps t − 1 and t , and xi is the input variable.
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The extreme gradient boosting model uses Eq. (3) to eval-
uate model performance:

Obj(t) =
∑n

k=1
l (yi,yi)+

∑t

k=1
�(fi), (3)

where l is the loss function, n is the number of observations,
and � is the regularization term defined as Eq. (4):

�(f )= γ T +
1
2
λ‖ω‖2, (4)

where λ is the regularization parameter, γ is the minimum
loss needed to partition the leaf node, and ω is the vector of
the scores in the model leaves.

Features were passed to the model for training using a
3 stratified k-folds cross validation. Stratified k-fold is a vari-
ation of k-fold (Ojala and Garriga, 2010) where each train-
ing/testing set (fold) contains approximately the same per-
centage of each target class as the complete set. The cross-
validation k-fold approach allows us to train and test the
model three times. In this approach, testing folds never share
the same data with other folds. With the 3 k-fold cross valida-
tion, two thirds of the data are allocated to training, while the
remaining one third of the data is used for testing. Given the
low number of features and small size of the dataset, com-
putational cost was not a limitation; therefore, no principal
component analysis was applied to the data prior to model
training and testing, and an extended grid search over a wide
range of hyperparameters was implemented utilizing both ac-
curacy and balanced accuracies as the scoring methods. The
hyperparameters’ maximum depth, minimum child weight,
and learning rate (eta) were explored with respective chosen
values of [0.3, 0.2, 0.1, 0.05, 0.01, 0.005] for the learning
rate, [9,12] for the maximum depth, and [5,8] for the mini-
mum child weight. Other parameters were set at default val-
ues. Data preparation, including splitting the data into train-
ing and testing for cross validation, was implemented us-
ing the Python library scikit-learn (Pedregosa et al., 2011)
and the XGBoost model was developed using its Python li-
brary XGBoost (Chen et al., 2015). All simulations were per-
formed using a 1.3 GHz dual core Intel Core M and 8 GB of
RAM.

Finally, once our model had been trained and tested on the
data, the third step was to apply the algorithm, including the
trained model, to each profile. This approach is summarized
in Fig. 4.

The algorithm treated each vertical profile of attenuated
backscatter sequentially: in the first step, peaks were detected
and their associated properties computed. If no peaks were
detected, the time step corresponding to that backscatter pro-
file was labelled as “not SLCC”. If several peaks were de-
tected, a sequential pipeline as seen in Fig. 4 was imple-
mented to correct potential SLCC peaks for extinction us-
ing the statistical properties obtained in the pre-processing
stage. For that given time step, one or more peaks could be
identified together with their properties. These peak features

were passed to the previously trained XGBoost model for
labelling as either “SLCC” or “not SLCC”. If a given peak
was labelled as “SLCC”, the corresponding bin at peak alti-
tude was labelled “SLCC”, as well as the surrounding bins,
with the SLCC lower and upper boundaries defined as twice
the peak width (at mid-height) value. With this algorithm,
several layers of SLCC can be identified within a single pro-
file, and SLCC layers can be identified within or outside a
cloud. To facilitate the discussion in the next sections of this
study, hereafter we refer to our algorithm as G22-Davis. The
extension “-Davis” illustrates that our G22 model had been
trained with data collected at Davis, and we can imagine that
the same model could be applied to data collected elsewhere.

2.4 Strategies for intercomparison of cloud masks

As mentioned previously, the resolution of the merged radar–
lidar mask was 1 min and 15 m, while the resolution of the
ceilometer cloud mask was coarser (5 min, 50 m). For both
masks, linearly interpolated hourly ERA5 variables were
used. In order to compare both masks various strategies re-
garding resolutions can be considered.

For the mask intercomparison, the coarser resolution of
the ceilometer mask was used, and the radar–lidar mask was
sub-sampled to 5 min timestamps. Since spatial variabilities
could occur at the finer vertical resolution of the W-band,
depolarization lidar, and ceilometer, grid to grid compari-
son of the masks was not considered suitable and relevant
given the objectives of this study. Instead, a comparison time
step to time step was performed, integrating the informa-
tion available over each vertical column. Then, two differ-
ent strategies were used to sub-sample the merged radar–
lidar mask: (i) The matching timestamps of both masks were
found, and if SLW or mixed-phase was identified in one bin
of the merged radar–lidar mask, that time step was labelled as
positive; otherwise, it was labelled as negative. Similarly, if
SLCC was identified in one of the bins of the vertical column
for the ceilometer mask, that timestamp was labelled as posi-
tive. (ii) A condition on the spatiotemporal structure of SLW
and mixed-phase bins was considered over 5 min periods, i.e.
for the timestamp to be labelled as positive, a given number
of consecutive bins labelled SLW or mixed phase needed to
be found at the same height. Threshold values for consecu-
tive bins were set at 3, 4, and 5, and this criterion was applied
as a 5 min moving window on the merged radar–lidar cloud
mask to produce three sub-sets of data corresponding to this
second strategy. Labelling of SLCC for the ceilometer cloud
mask was performed similarly to the first strategy.

2.5 Metrics to evaluate mask intercomparison and
model performances

Mask intercomparison, physical model evaluation, and data-
driven training and testing involve evaluating performance
of predictions by comparing two one-dimensional Boolean
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Figure 4. The second phase of G22-Davis: SLW detection as part of the cloud phase mask algorithm.

vectors (positive (true) for the presence of SLCC, negative
(false) for the absence of SLCC). A few basic definitions are
provided below, before the evaluation strategy, which is pre-
sented directly afterward.

A true positive (TP) is defined as a test result indicating
a correct prediction (i.e. correctly predicting the occurrence
of SLCC) and a true negative (TN) is defined as a test result
correctly predicting the absence of SLCC, while a false pos-
itive (FP) is defined as a test result wrongly predicting the
presence of SLCC and a false negative (FN) is a test result
wrongly indicating the absence of SLCC.

The precision is the ratio of the number of true positives
over the number of true positives and false positives, i.e. the
ability of the classification not to label as positive a negative
sample, and is defined as Eq. (5):

precision= TP/(TP+FP). (5)

The recall is the ratio of true positives over the number of
true positives and false negatives, e.g. the ability of the clas-
sification to find all the positive samples and is defined as
Eq. (6):

recall= TP/(TP+FN). (6)

The f1 score (hereafter also described as “accuracy”) is de-
fined as the arithmetic average of the precision and the recall,
with its best value at 1 and its worst score at 0, with equal
contribution of recall and precision (Eq. 7):

f1 = 2× (precision× recall)/(precision+ recall). (7)

Note that in the current case of binary classification, positive
and negative labelling can be inverted so that f1 scores can be

calculated both for positive and negative cases. The accuracy
is then calculated as the harmonic mean of the positive and
negative f1 scores. The balanced accuracy, on the other hand,
is defined as the arithmetic mean of the positive and nega-
tive recall. We decided to use several metrics for the evalua-
tion of the classification predictions: first, a confusion matrix
was calculated from which the precision, the recall, and the
f1 scores were derived. The ratios of positive to negative in
the dataset were closely monitored for each of the evalua-
tions, and both the accuracy (the harmonic mean of the f1
scores for positive and negative) and the balanced accuracy
(the arithmetic mean of the recall) were calculated. When the
dataset was imbalanced, focus was put on the balanced accu-
racy to closely monitor the performance of the prediction of
positive cases.

3 Results

3.1 Ceilometer backscatter profile analysis: the
6 January 2019 case study

To illustrate the disparity between the various cloud phase re-
trievals, observations from the 6 January 2019 were selected
as an example, as these included both low and higher clouds,
with SLW present both within thick clouds or isolated from
thick clouds. In Fig. 5, one can see the calibrated attenuated
backscatter from the ceilometer (Fig. 5a), the reference cloud
phase mask combining radar and lidar (Fig. 5b), the depolar-
ization ratio from the RMAN lidar (Fig. 5c), and the cloud
phase attribution from two retrievals following T19 (Fig. 5d)
and G22-Davis (Fig. 5e). The G22-Davis model was trained
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on a different set of the data, which excluded 6 January 2019.
During the first part of the day, until around 11:30 UTC, the
radar–lidar cloud phase mask shows little occurrence of SLW
or mixed phase, except at the very beginning of the day (the
first 10 min) and around 02:00 UTC. In the second part of the
day, clear horizontal bands of SLCC can be observed, includ-
ing times with clouds or precipitation below the SLCC bands.
The ceilometer backscatter (Fig. 5a) showed distinct signal
patterns for the first and second parts of the day, but visually
it remains difficult to clearly distinguish strong backscatter
during the first part of the day, which could indicate the pres-
ence of SLCC.

Figure 6 shows five selected vertical profiles of attenu-
ated backscatter (Fig. 5a) for that day, chosen to illustrate
the diversity in attenuated backscattering signal profiles. It
also shows the theoretical molecular backscatter at the wave-
length of the ceilometer, the identified peaks, as well as
their average properties. For the profiles A, D, and E, SLW
or mixed phase were identified in the reference radar–lidar
mask. These three backscatter profiles presented common
characteristics, such as a narrow peak (low value of the peak
width at mid-height), relatively high values of the atten-
uated backscatter (above 10−4 m−1 sr−1), and high promi-
nences (high values of the difference between peak value
and the surrounding baseline). Conversely, peaks B and C
present much wider peaks (higher values of peak width at
mid-height), and smaller values of the prominence, and were
classified as ice.

In Fig. 7, the average peak properties for which peaks had
been identified for 6 January 2019 are presented as joint dis-
tributions using kernel density estimation plots with peak β
value as the y axis. We chose to use peak value as the y axis
as this is the most discriminant peak characteristic, and by
analysing scatter plots, we can visually observe clustering
patterns. In Fig. 7, a single β profile can generate multi-
ple data points if several peaks were observed for that pro-
file. The points A, D, and E were well clustered within the
same region in Fig. 7a and b, corresponding to high values
of β at peak, and low values of the peak width and peak
width height. Peaks A and E also appeared in the same re-
gion in Fig. 7c. Generally, SLW was observed when a sin-
gle peak was observed for the β profile. This was not al-
ways the case, as sometimes SLCC can be observed when
several peaks are present. For instance, on 6 January, the
isolines showed that several instances of SLCC were ob-
served when two peaks were present, but this dropped dra-
matically for three or four peaks. For that specific day, the
scatter plot with peak altitude (Fig. 7d) shows that SLCC is
more frequent at higher altitudes with three clusters around
1000, 2000, and 3500 m a.g.l., corresponding to the spatial
organization of SLCC (Fig. 5b), while non-SLCC peaks are
far more frequent at lower altitudes (cluster located between
0 and 1000 m a.g.l.). These non-SLCC peaks are associated
with low-level clouds as no fog was identified over that 3-
month period.

The data shown in Figs. 5–7 demonstrate that peak aver-
age characteristics exhibit very specific features that could
be used to detect the occurrence of SLCC. The original ap-
proach from T19 was already skilful in identifying SLCC.
For the second half of the day on 6 January 2019, there was
a very good match between the cloud mask based on T19
(Fig. 5c) and the reference cloud mask (Fig. 5b). Conversely,
for the first half of the day, the T19 approach identified mul-
tiple SLCC regions within the cloud producing a speckle pat-
tern of SLCC. This was not observed by the radar–lidar ob-
servations and algorithm, and was thus probably wrongly la-
belled by the T19 approach. Our new approach based on the
use of average peak characteristics and a dedicated trained
algorithm (G22-Davis) showed a great improvement in the
retrievals: the second half of the day remained like the re-
trieval of T19, although labelling thicker bands of SLW
utilizing the peak width property. These thicker horizontal
bands of SLCC were more in line with the radar–lidar ref-
erence, which showed occurrence of SLW or mixed phase
of about the same thickness. For the first half of the day,
G22-Davis outperforms the T19 approach by removing the
spurious speckle patterns while keeping the correct detection
of SLW at the very beginning of the day, also observed in
the radar–lidar cloud mask (profile A in Fig. 6a). The SLW
around 02:00 UTC found in the radar–lidar cloud phase mask
was also retained by our new technique. An occurrence of
SLCC at around 05:00 UTC was present in our retrieval but
not in the reference radar–lidar cloud mask. This may be due
to an error in our retrieval, an error in the phase assignment
in the lidar product, or different observations made by the li-
dar, radar, and ceilometer at that time step. Nonetheless, G22-
Davis performed very well: computed accuracies for that day
(6 January 2019) using the radar–lidar mask as the reference
were equal to 0.84 for our new data-driven retrieval, com-
pared with an accuracy score of 0.65 with the T19 approach.
In the next section, we evaluate the performances of T19, a
data-driven threshold approach, and G22-Davis for our full
dataset covering almost 3 months of data during the South-
ern Hemisphere summer.

3.2 Evaluation of retrievals for the PLATO period

In Fig. 8, similarly to what was presented in Fig. 7, the aver-
age peak properties for which peaks had been identified are
presented as joint distribution plots with peak β value as the
y axis, but this time for the full dataset. The two-dimensional
distributions are like those of Fig. 7, showing that the results
of the case of 6 January can be extrapolated to the full dataset.
The value of β at peak versus peak prominence is not pre-
sented as these are directly correlated. The value of β at peak
is correlated to the peak width height, with some differences.
The value of β at peak is clearly the best feature to sepa-
rate the SLCC-labelled data points (True) to the non-SLCC
data points (False). The other features, e.g. peak width, num-
ber of peaks, and peak altitude, are weaker discriminants, but
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Figure 5. For the selected day of 6 January 2019: (a) calibrated attenuated total volume backscatter and wind barbs (wind data extracted
from ERA5); (b) depolarization ratio; (c) cloud phase mask following the algorithm adapted from Alexander and Protat (2018); (d) cloud
mask based on T19; and (e) our new cloud mask based on G22-Davis. Particular vertical profiles have been selected (A, D, and E in red
correspond to identified SLCC, while B and C in fuchsia correspond to non-SLCC occurrences).

they reveal that non-SLCC data points (False) are much more
widespread than SLCC data points (True), showing that ex-
treme values of the features are usually associated with the
non-occurrence of SLCC. Typically, many peaks (> 2 bins
or 100 m), or very wide peak widths (> 3 bins or 150 m) for
each profile are associated with non-SLCC. The presence of
a dense concentration of non-SLCC data points at lower al-
titudes (< 1000 m) shows that SLCC is usually not observed
at these low altitudes above ground level.

As discussed previously, various sub-sampling strategies
were considered to compare the ceilometer mask and the ref-
erence radar–lidar cloud mask. The comparison between the
T19 algorithm and the reference dataset using the various

sub-sampling strategies showed minimal variability with ac-
curacies varying between 0.84 and 0.85 for threshold consec-
utive values of 3, 4, and 5, and instantaneous comparisons.
For the full dataset, the accuracy score was 0.84 (or 0.85 de-
pending on the sub-sampling strategy used for the compari-
son), while for the dataset with peaks only, the accuracy was
0.72.

Based on the clustering as observed in Fig. 8 for the full
dataset, we decided to implement a second classification us-
ing empirical thresholds for each of the peak features. This
has the advantage of not having to train and test a model
and circumnavigates the need for a high-resolution reference
dataset (although the arbitrary thresholds are based here on
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Figure 6. For 6 January 2019: selected vertical profiles of backscatter (A, B, C, D, E). Time steps are indicated as “ts” and can be converted
to time by multiplying by 5 min. Peaks are identified with a red dot, peak widths with a vertical orange line, and peak prominences with
a horizontal green line. The baselines (lowest points on the green lines) were calculated as the lowest contour lines around the peak. To
identify the peak characteristics, we used the signal processing tools of the Python library SciPy. The theoretical molecular backscattering
was computed following Eq. (2) as found in Kuma et al. (2021a) and is shown in each panel as a solid grey line.

Figure 7. Joint distribution using kernel density estimation plots showing the distribution of peak average properties for 6 January 2019:
(a) attenuated backscatter versus peak width; (b) attenuated backscatter versus peak width height; (c) attenuated backscatter versus the
number of peaks within the profile; (d) attenuated backscatter versus peak altitude above ground level. Isolines are shown with a spacing
of 0.1 and the label “True” corresponds to SLW or mixed phase observed by the reference radar–lidar mask, while “False” indicates no
detection by the reference mask. Selected vertical profiles from Figs. 5 and 6 are also shown with red dots (A, D, and E: SLW occurrences,
e.g. “True”) and fuchsia dots (B and C: non-SLW occurrences, e.g. “False”).

the cluster plots where the labelling has been done using the
reference dataset). The arbitrary thresholds that we used to
label a time step as “SLW” were for peak features such as
value of β at peak > 5× 10−5 m−1 sr−1, peak width < 4,
peak width height > 40× 10−6 m−1 sr−1, peak prominence
value > 60× 10−6 m−1 sr−1 and the total number of peaks

< 3. We evaluated the arbitrary threshold approach on both
the full dataset and the dataset with only identified peaks.
For the full dataset, the accuracy score was 0.89, while for
the dataset including peaks only, the accuracy was 0.76.

Our G22-Davis model was trained and tested using a 3-
fold stratified cross-validation approach as described previ-
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Figure 8. Joint distribution using kernel density estimation plots showing the distribution of peak average properties for the full period of the
1000 PLATO observations (November 2018 to February 2019: equivalent to a total of 11 327 data points): (a) attenuated backscatter versus
peak width; (b) attenuated backscatter versus peak width height; (c) attenuated backscatter versus the number of peaks within the profile;
(d) attenuated backscatter versus peak altitude above ground level. Isolines are shown with a spacing of 0.1 and the label “True” corresponds
to SLW or mixed phase observed by the reference radar–lidar mask, while “False” indicates no detection by the reference mask.

ously. The model was trained and tested for both the full
dataset and the dataset containing only time steps for which
peaks had been identified. For the full dataset, the best test-
ing accuracy score was 0.91 (with a learning rate of 0.005, a
maximum depth of 12, and a child weight of 8) for an average
training accuracy score of 0.95. This is an improvement of
0.07 as compared with the accuracy of T19, which was equal
to 0.84. For the dataset for which peaks were identified, the
total dataset was made of 11 327 data points. The best testing
accuracy score was 0.81 (with a learning rate of 0.01, a max-
imum depth of 12, and a child weight of 8), for training accu-
racy scores (or f1) of 0.94. This is a substantial improvement
of almost 0.1 as compared with the accuracy of T19, which
was equal to 0.72.

3.3 Evaluating the importance of predictors for
G22-Davis

While our designed, trained, and tested extreme gradient
boosting model performs remarkably well, we want to un-
derstand which of the average profile characteristics are the
most important for skilful model predictions. Lundberg et
al. (2020) recently proposed an explanation method for tree-
based models, building on work based on classic game the-
oretical Shapley values (Lundberg and Lee, 2017). We im-
plemented this explanation method, also known as “Tree-

Explainer” (Lundberg et al., 2020), in its original Python
version. With TreeExplainer, we were able to provide local
explanations for each prediction by calculating their Shap-
ley (SHAP) values. The input features were the same as de-
scribed for the implementation of G22-Davis, e.g. the aver-
age adjusted peak properties. Figure 9 shows the distribution
of SHAP values for these eight input features, together with
their normalized value represented as a colour bar.

As expected, the value of β at the peak location was the
most important feature to produce accurate predictions: high
values of β were important to detect the presence of SLCC,
while low values of β were skilful in predicting the absence
of SLCC. The total peak number was the second feature of
importance, with low values of the total peak number con-
tributing to better predictions of the presence of SLCC. In
fact, very well-defined horizontal bands of SLCC showed
these typical characteristics with a single narrow peak of high
values. Peak prominence had a similar SHAP value distribu-
tion pattern to that of peak value, with less-defined clusters.
This result is consistent with the joint distribution plot of
peak value versus peak prominence (not shown). Low values
of peak width were important in the prediction of the pres-
ence of SLCC, showing the importance of the peak shape
(narrow) in indicating the presence of SLCC. Low values of
the peak width height tend to also help predict the presence
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Figure 9. Distribution of Shapley (SHAP) values calculated by
TreeExplainer applied to G22-Davis. Features (for meaning of ab-
breviations refer to Table 1) are ranked from the most important (top
of the list, i.e. peak_value) to the least important (bottom of the list,
i.e. peak_number). The normalized feature values are shown with a
blue to pink gradient as indicated by the right-hand side colour bar.

of SLCC. Conversely, peak altitude and peak temperature are
associated with average SHAP values close to 0, indicating
that these two features were not important in the production
of accurate predictions. Given the low importance of air tem-
perature for the accurate prediction of SLCC, we could con-
sider not using that feature as an input to G22-Davis and
removing our dependency on ERA5 or other NWP inputs.
However, at Davis, we might likely be in the specific case
where air temperatures are often too negative to produce liq-
uid water droplets (other than supercooled) as seen in the T19
cloud phase classification. For other climates with higher air
temperatures, the air temperature feature might be more rele-
vant. While we saw a tendency of SLCC to be located within
a preferred range of altitudes (between approximately 1000
and 4000 m a.s.l.), this range was too wide to make altitude of
the peak a useful criterion to help identify SLCC. Low values
of peak altitude, however, seemed to help identify conditions
with the absence of SLCC (as indicated by the negative and
blue SHAP values for peak altitude).

3.4 Climatology of SLCC and other clouds over 1 year

Here, we apply the T19 and G22-Davis techniques to charac-
terize the frequency of occurrence of SLCC using a full year
of ceilometer data (November 2018 to October 2019). This
full year of SLCC retrieval (T19 and G22-Davis) provides a
unique opportunity to document and analyse seasonal varia-
tions in the occurrence of SLCC and clouds without SLCC,
as well as the presence of fog. In Fig. 10, SLCC retrieved
by T19 had larger frequencies of occurrence for most of the
year except for the months of September and October 2019,
whereas SLCC retrieved from G22-Davis were slightly more
frequent. As discussed previously, the speckle patterns seen
in T19 and absent in G22-Davis is mostly responsible for
that difference between the two retrievals. Clouds other than
SLCC have very similar frequencies of occurrence for T19

and G22-Davis since the detection technique for these other
clouds is the same in both methods, and the differences are
only due to the few data points that were classified as SLCC
in one method and not in the other. Overall, the frequency
of SLCC over the full dataset is 0.29± 0.06 for T19 and
0.24± 0.05 for G22-Davis, while the frequency of clouds
other than SLCC is 0.29± 0.10 for T19 and 0.27± 0.10 for
G22-Davis. The frequency of fog is 0.006 for the full dataset.
Hämäläinen et al. (2020) reported frequencies of occurrence
of SLCC between 12 % and 30 % depending on the location
of their observations across Finland (covering the further-
most southern and northern parts of the country) and height
above ground, during the Northern Hemisphere winter pe-
riod. Ricaud et al. (2020) measured frequencies of occur-
rence of SLW of up to 50 % in December and January at
Dome C, Antarctica, but their criteria for defining occurrence
of SLW during a day was if the SLW clouds were present at
least 1 h during the day. They also reported much lower fre-
quencies of occurrence during March and April down to 10 %
or less. Cossich et al. (2021) showed from their observations
that mixed-phase clouds were rare or non-existent in Austral
winter on the Antarctic plateau at Concordia, and up to 11 %
during the Austral summer months.

4 Discussion and conclusions

In this study, we have demonstrated that the presence of su-
percooled liquid water can be detected using the measured
attenuated backscatter signal from a ceilometer, even in the
absence of information on the signal depolarization. We uti-
lized coincident observations from a W-band radar and a de-
polarization lidar to build a reference cloud phase mask that
was used as a benchmark to compare with our ceilometer-
retrieved supercooled liquid water detections. Utilizing the
ceilometer data and an existing approach proposed by T19,
we obtained an overall accuracy of 0.84 and an accuracy for
days with detection of strong backscatter signals of 0.72. We
then developed an enhanced method, e.g. G22-Davis, utiliz-
ing the benchmark dataset of cloud phase observations to de-
velop, train, and test an extreme gradient boosting model.

Utilizing G22-Davis, we increased the overall accuracy
of correctly identifying SLCC layers to 0.91 and the ac-
curacy for days with a detection of strong backscatter sig-
nals to 0.81. G22-Davis greatly improved detection accuracy
for the cases where multiple peaks in the backscatter were
observed and were erroneously classified as SLCC by the
method from T19. The most important input features were
the value of the backscattered signal at the peak, followed by
the total number of peaks within that profile. In the current
approach, we considered each profile (or time step) indepen-
dently from one another (although we did consider all points
together in the statistical analysis and in the model devel-
opment). Alternative or complementary to G22-Davis, data-
driven approaches, such as recurrent neural networks (long
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Figure 10. Cloud phase occurrences (SLCC or clouds other than SLCC) as retrieved using T19 or G22-Davis. Fog occurrences are also
shown.

short-term memory or gated recurrent unit), could consider
the spatiotemporal patterns of peak properties to predict the
occurrence and location of SLW at the following time step.
Finally, in the absence of radar–lidar mask to train and test a
model like in G22-Davis, there remains the possibility of us-
ing the classification approach based on thresholds derived
from peak characteristics’ joint distributions. This method
should be assessed for different periods at Davis, and for lo-
cations other than Davis, to test if these threshold values are
widely applicable. The frequencies of occurrence of SLCC
reported here of 0.24± 0.05 is within the range of observa-
tions collected in Finland and at Dome C, although the defi-
nitions used to report frequencies differ depending on the au-
thors. We showed that at least 15 % of SLCC were observed
in the Austral winter, while Cossich et al. (2021) reported
rare or non-existent mixed-phase clouds on the Antarctic
plateau in winter. This is probably due to moister and rel-
atively warmer environments on the coastal fringes of the
Antarctica continent compared with the environment of the
drier and colder plateau.

Ceilometers are relatively low-cost, ground-based active
atmospheric remote sensing tools as compared with weather
radars or depolarization lidars. They are commonly deployed
at aerodromes but also at other operational or research at-
mospheric monitoring facilities. Here, we showed that the
attenuated backscatter signal can be utilized to detect super-
cooled liquid water, thus broadening the observational capa-
bilities of such instruments, for regions where observations
are scarce, like Antarctica. The present work is the first of
its kind utilizing a benchmark radar–lidar cloud phase mask
to train a dedicated model to detect supercooled liquid wa-
ter from the ceilometer backscatter only. It will be important
to test the application of the same approach elsewhere, es-
pecially for current monitoring sites or for historical data in-
cluding the same set of instruments presented here, that is,
weather radar, depolarization lidar, and ceilometers. Our ap-

proach was developed for a polar environment, and it would
be important to see how the developed technique transfers
to regions at mid or low latitudes. One important aspect of
our approach is that each locally trained model will provide
a given cloud phase retrieval, and various training sets will
give various cloud phase retrievals. We labelled our model
G22-Davis, and following that logic, we can imagine, for ex-
ample, G22-Casey as another model trained on data collected
at Casey station. It will be important in future work to eval-
uate the difference between model retrievals based on var-
ious training sets for the same applied dataset. Given these
constraints, our other approach proposed in this study, using
empirically defined thresholds on peak characteristics, could
provide a benchmark cloud phase model to which to refer, to
evaluate each of the G22 trained models.

Ground-based observations of supercooled liquid water
are complementary to spaceborne observations. Satellite de-
tection of supercooled liquid water suffers from the atten-
uation of the signal in the lower layers, and from a lower
spatial and temporal resolution. The combination of satellite
and ground observations has the potential to improve cloud
phase products. Knowledge of the cloud phase, including su-
percooled liquid water at high-resolution, can help develop
and validate icing algorithms, with the objective of predict-
ing aircraft airframe icing potential (Morcrette et al., 2019)
or predicting the potential icing of wind turbines for wind
production (Hämäläinen et al., 2020). Detection capabilities
developed in this paper will enable important studies to ex-
amine the seasonal variability of the occurrence of SLCC and
to develop aircraft icing potential nowcasting capabilities.

Code and data availability. The ALCF is open-source and avail-
able at https://alcf-lidar.github.io (last access: 2 May 2022) as
well as permanent archive of code and technical documenta-
tion on Zenodo at https://doi.org/10.5281/zenodo.4411633 (Kuma
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et al., 2021b, a). A tool for converting Vaisala CL31 and
CL51 data files to netCDF cl2nc is open-source and available
at https://doi.org/10.5281/zenodo.4409716 (Kuma, 2020). The ob-
servational data (ALCF-processed netCDF ceilometer files and
the radar–lidar mask netCDF files) are available on Zenodo at
https://doi.org/10.5281/zenodo.5832199 (Guyot et al., 2022) and
will also be available at the Australian Antarctic Division data
centre by the end of 2022. The ERA5 data are available through
the Copernicus data portal at https://cds.climate.copernicus.eu (last
access: 2 May 2022; https://doi.org/10.24381/cds.adbb2d47, Hers-
bach et al., 2018). Hersbach et al. (2018) was downloaded from the
Copernicus Climate Change Service (C3S) Climate Data Store. The
results contain modified Copernicus Climate Change Service infor-
mation 2020. Neither the European Commission nor ECMWF is
responsible for any use that may be made of the Copernicus infor-
mation or data it contains.

The new G22-Davis ceilometer algorithm described herein as
well as the original T1 algorithms are in the process of being in-
cluded in ALCF and will therefore be open source and publicly
available by the end of 2022. The Python implementation of Tree-
Explainer is available at https://github.com/slundberg/shap (last ac-
cess: 10 December 2021; Lundberg et al., 2020).
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