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Abstract. The chemical composition of ambient organic
aerosols plays a critical role in driving their climate and
health-relevant properties and holds important clues to the
sources and formation mechanisms of secondary aerosol ma-
terial. In most ambient atmospheric environments, this com-
position remains incompletely characterized, with the num-
ber of identifiable species consistently outnumbered by those
that have no mass spectral matches in the literature or the Na-
tional Institute of Standards and Technology/National Insti-
tutes of Health/Environmental Protection Agency (NIST/NI-
H/EPA) mass spectral databases, making them nearly im-
possible to definitively identify. This creates significant
challenges in utilizing the full analytical capabilities of
techniques which separate and generate spectra for com-
plex environmental samples. In this work, we develop the
use of machine learning techniques to quantify and char-
acterize novel, or unidentifiable, organic material. This
work introduces Ch3MS-RF (Chemical Characterization by
Chromatography–Mass Spectrometry Random Forest Mod-
eling), an open-source, R-based software tool, for efficient
machine-learning-enabled characterization of compounds
separated in chromatography–mass spectrometry applica-
tions but not identifiable by comparison to mass spectral
databases. A random forest model is trained and tested on
a known 130 component representative external standard
to predict the response factors of novel environmental or-
ganics based on position in volatility–polarity space and
mass spectrum, enabling the reproducible, efficient, and op-

timized quantification of novel environmental species. Quan-
tification accuracy on a reserved 20 % test set randomly
split from the external standard compound list indicates that
random forest modeling significantly outperforms the com-
monly used methods in both precision and accuracy, with
a median response factor percent error of −2 %, for mod-
eled response factors, compared to> 15 %, for typically used
proxy assignment-based methods. Chemical properties mod-
eling, evaluated on the same reserved 20 % test set and an
extrapolation set of species identified in ambient organic
aerosol samples collected in the Amazon rainforest, also
demonstrate robust performance. Extrapolation set property
prediction mean absolute errors for carbon number, oxygen
to carbon ratio (O : C), average carbon oxidation state (OSc),
and vapor pressure are 1.8, 0.15, 0.25, and 1.0 (log(atm)), re-
spectively. Extrapolation set out-of-sample R2 for all prop-
erties modeled are above 0.75, with the exception of va-
por pressure. While predictive performance for vapor pres-
sure is less robust compared to the other chemical prop-
erties modeled, random-forest-based modeling was signifi-
cantly more accurate than other commonly used methods of
vapor pressure prediction, decreasing the mean vapor pres-
sure prediction error to 0.24 (log(atm)) from 0.55 (log(atm))
(chromatography-based vapor pressure prediction) and 1.2
(log(atm)) (chemical formula-based vapor pressure predic-
tion). The random forest model significantly advances an
untargeted analysis of the full scope of chemical speciation
yielded by two-dimensional gas chromatography (GCxGC-
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MS) techniques and can be applied to gas chromatography
coupled with electron ionization mass spectrometry (GC-
MS) as well. It enables the accurate estimation of key chem-
ical properties commonly utilized in the atmospheric chem-
istry community, which may be used to more efficiently iden-
tify important tracers for further individual analysis and to
characterize compound populations uniquely formed under
specific ambient conditions.

1 Introduction

Organic aerosols play a critical role in global radiative forc-
ing and regional aerosol-attributable public health concerns,
making up a significant (20 %–90 %) fraction of fine partic-
ulate matter around the globe (Jimenez et al., 2009). This
organic material is highly complex in terms of chemical
composition and is constantly changing; Goldstein and Gal-
bally (2007) estimate the number of gas- and aerosol-phase
atmospheric organic constituents to lie in the millions, while
Ditto et al. (2018) report a molecular-level variability of
60 %–80 % between consecutive samples collected at fixed
sites for samples comprised of high thousands of resolvable
species. While there has been significant progress towards
achieving mass closure of atmospheric reactive carbon using
an ensemble of both bulk and speciated measurement tech-
niques over the past 2 decades, speciated and isomer iden-
tified mass closure remains challenging (Heald et al., 2010;
Hunter et al., 2017; Isaacman-Vanwertz et al., 2018). Using a
comprehensive review of the challenges and utility of differ-
ent levels of molecular identification, Nozière et al. (2015)
compare the utility of many types of incomplete identifica-
tion of atmospheric organic compounds, but define that “An
organic compound is fully identified only if its molecular
structure is entirely known, including its isomeric and spatial
(stereo) configuration.” Important chemical information can
be gleaned from formula-based identifications and bulk char-
acterization, but isomer-specific identifications provide criti-
cal atmospheric chemistry-relevant insights. As described in
Isaacman-Vanwertz and Aumont (2021), different isomers of
the same chemical formula vary over orders of magnitude in
volatility and Henry’s constant, and by a factor of 2 in reac-
tivity with the hydroxyl radical, which are all critical proper-
ties for the characterization of aerosol formation and proper-
ties. Isomer-specific identification also plays a crucial role in
elucidation of important chemical reaction mechanisms.

Gas chromatography coupled with electron ionization
mass spectrometry (GC-MS) is a commonly utilized tech-
nique for isomer-specific speciation of atmospheric con-
stituents. Observed ambient species may be matched to au-
thentic standards or mass spectral database entries by both
the retention index (chromatographic elution time relative to
that of a series of alkanes) and mass spectrum. A method-
ologically similar technique, two-dimensional gas chro-

matography (GCxGC-MS), achieves advanced separation by
passing compounds through multiple GC columns config-
ured for different chemical properties, which increases the
scope of isomer-specific identification by separating species
that would co-elute in single-dimension GC-MS applications
(Goldstein et al., 2008; Worton et al., 2011, 2017). However,
a significant challenge of fully utilizing the data from these
techniques is the novelty and diversity of the atmospheric
constituents; most observed organic species have never been
synthesized and are not in any mass spectral library and are
therefore not directly identifiable from GC-MS or GCxGC-
MS techniques. Although the sizes of mass spectral libraries
are rapidly increasing, with ∼ 30 000 new compounds added
to the National Institute of Standards and Technology/Na-
tional Institutes of Health/Environmental Protection Agency
(NIST/NIH/EPA) mass spectral database between the 2011
and 2014 versions (bringing the number of compounds cat-
alogued in NIST14 EI library to ∼ 250 000), the numbers of
identifiable constituents in typical atmospheric samples re-
main low (Vinaixa et al., 2016). As described in Hamilton et
al. (2004), in an urban aerosol sample analyzed by GCxGC-
MS, of > 10 000 unique observed species, fewer than 2 %
were identifiable from authentic standard or mass spectral
matching. Low numbers of matched relative to novel ambient
species persist; Worton et al. (2017) find that fewer than 35 %
of∼ 500 compounds isolated from aerosol samples collected
at a forested site match mass spectral database entries, while
this work (as later described) finds that fewer than 10 % of
∼ 1500 aerosol phase organic species can be matched to pub-
lished spectra. As described in Worton et al. (2017), species
that cannot be identified are often not included in GC-MS-
and GCxGC-MS-based analyses, meaning that the majority
of acquired data are not fully utilized. Note that, in accor-
dance with the definition of complete molecular identifica-
tion previously quoted from Nozière et al. (2015), uniden-
tified compounds are from here on defined as any species
that is not identifiable by comparison (on the basis of the
retention index and mass spectrum) to either authentic stan-
dards or mass spectral database entries of positively identi-
fied species. Pairing gas chromatography coupled with elec-
tron ionization mass spectrometry (GC-EI-MS) systems with
complementary measurements, such as chemical ionization
(described in Bi et al., 2021), or switching to softer election
ionization techniques (specifically through employing 14 eV
vacuum ultraviolet rather than traditional 70 eV EI, intended
to preserve sufficient precursor ion mass for formula identifi-
cation, as described in Worton et al., 2017) can enable more
separated but unidentified compounds to be characterized by
formula identification, even where isomer-specific identifica-
tion remains elusive. That said, these instrumental configura-
tions are rare, and fragmentation under 14 eV is still suffi-
ciently significant to leave the formulae of many species not
identifiable and therefore still uncharacterized (Worton et al.,
2017). Recent efforts to embrace a larger fraction of the full
complexity of chemical information yielded by highly spe-
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ciated organic aerosol measurements (on the scale of low-
to mid-hundreds of compounds) have categorized unidenti-
fied species by likely source groups and chemical families
through time series correlations with known tracer species
(Zhang et al., 2018) or by manual group assignments by in-
dividual researcher judgments based on mass spectral fea-
tures (Liang et al., 2021). These methods are difficult to stan-
dardize and reproduce and become prohibitively inefficient
when pushing towards the full chemical complexity of spe-
ciated observations produced from typical atmospheric sam-
ples, which extend into the low- to mid-thousands of species.

Quantification of unidentified compounds faces similar
challenges. Where possible, compounds in GC and GCxGC-
MS are directly quantified by the calibration curves of
authentic standards, but direct quantifications are limited
by standard expense and availability, even for species that
can be positively identified. Compounds that cannot be di-
rectly quantified, both in GCxGC-MS and in GC-MS, are
most commonly quantified by assigning quantification fac-
tors from compounds resolved closely in chromatographic
space, compounds that are identified as sharing chemical
structures, or some interpolation of multiple nearby proxies
(Hatch et al., 2015; Jen et al., 2019; Liang et al., 2021; Zhang
et al., 2018). The errors associated with these assignments/-
choices are usually estimated from the range of quantifica-
tion factors of close or chemically similar species and are
assumed to be high (up to a factor of 2, depending on the
degree of certainty in assigning chemical class, as described
in Jen et al., 2019 and Liang et al., 2021). To our knowl-
edge, this work presents the first quantitative error analysis
of these techniques based on applying proxy quantification
techniques to compounds with known quantification factors.

Current manual characterization and quantification proxy
assignments are essentially an exercise in pattern recogni-
tion, as researchers use experience in analyzing spectra and
position in chromatographic space to categorize or other-
wise characterize unidentifiable species. Given the scale of
the novel compound characterization challenge (on the or-
der of hundreds to thousands of species for a given sampling
location, using the current methods), transitioning to auto-
mated characterization methods will be necessary to keep up
with data acquisition and will offer co-benefits in increased
reproducibility and reduced susceptibility to researcher bi-
ases. Decision-tree-based machine learning methods includ-
ing gradient boosting and random forests have demonstrated
robust performance in pattern-recognition-based regression
applications including nonlinear features across a wide range
of fields (Bentéjac et al., 2021; Rokach, 2016). Random
forests, a decision-tree-based method which generates pre-
dictions based on a combination of diverse trees gener-
ated by randomized feature selection and resampling on a
training data set (Breiman, 2001), are particularly suited to
this application and intended audience. They have demon-
strated robust performance across a range of applications,
including predictions of chemical properties (Whitmore et

al., 2016) and do not require extensive hyperparameter tun-
ing to achieve high performance (Bentéjac et al., 2021). In
this work, we develop machine learning models, specifically
based on the random forest methodology, that use chromato-
graphic and mass spectral feature inputs to predict a diverse
suite of chemical properties, including quantification factor
in a two-dimensional gas chromatography coupled with mass
spectrometry (TD-GCxGC-MS) system, oxygen to carbon
ratio (O : C), carbon number, average carbon oxidation state
(OSc), and vapor pressure. Coinciding with this paper, we
have released a repository template including a R Markdown
notebook (https://github.com/ebarnesey/Ch3MS-RF, last ac-
cess: 10 May 2022) that enables users with general atmo-
spheric chemistry background, who do not necessarily have
special expertise in machine learning data science applica-
tions, to tailor our analysis for their specific use cases. As
such, robust performance evaluation and ease of applicability
to a range of potential use cases are emphasized over exten-
sive application-specific hyperparameter tuning.

In summary, this work aims to provide the GC-MS and
GCxGC-MS atmospheric chemistry community with tools to
achieve the following objectives:

1. enable accurate chemical characterization of organic
constituents separated in gas chromatographic space but
not necessarily published (in mass spectral databases),
and

2. improve the quantification accuracy for species that can-
not be directly calibrated using authentic standards.

2 Instrumentation and data

2.1 Calibration curves using an external standard
mixture of authentic standards

A custom calibration standard mixture (referred to here-
after as the external standard) was created containing ∼ 130
unique authentic standards selected for the maximal coverage
of the compounds and compound classes typically observed
in atmospheric regions with significant biogenic emissions
and influences from anthropogenic activities and biomass
burning. The selection of these standard species was in-
formed by previous work targeting similar sample types, us-
ing the same instrumentation (Worton et al., 2011; Yee et
al., 2018; Zhang et al., 2018), and covers species including
sugars, polycyclic aromatic hydrocarbons (PAHs), and both
monoterpene and isoprene oxidation products. In addition to
commercially available external standards, six sesquiterpene
oxidation products were custom synthesized by collabora-
tors (as described in Bé et al., 2019), for expanded cover-
age of potentially important chemical tracers. The full list
of standard components can be found in Table A1, and the
standard property distribution in volatility–polarity space is
illustrated in Fig. 2. The standard was prepared from pure

https://doi.org/10.5194/amt-15-3779-2022 Atmos. Meas. Tech., 15, 3779–3803, 2022

https://github.com/ebarnesey/Ch3MS-RF


3782 E. B. Franklin et al.: Ch3MS-RF

components immediately prior to the sample analysis in 1 : 1
methanol : chloroform solution, replicating the methodology
utilized in Zhang et al. (2018). Standards were introduced to
the instrument by injecting onto Tissuquartz filter material
to maximize the consistency between filter samples (organic
aerosol was also collected on Tissuquartz filters) and calibra-
tion runs. At five points throughout the sample analysis, six-
point calibration curves (five loaded points and a zero point)
were performed to determine the quantification factors (in-
ternal standard normalized signal/nanogram (ng) compound)
of each external standard species. The internal standard, de-
scribed in detail in Sect. 2.3, is a solution of ∼ 30 deuter-
ated organics applied identically to all sample and calibra-
tion analysis runs to enable correction for instrument con-
dition and matrix effects. For efficiency, outlier calibration
points (significantly deviating from the slope of other points
in the quantification factor, which are often caused by coelu-
tion with a contaminant) were removed. A minimum of three
calibration points above the zero point were maintained to
ensure robust quantification factors.

2.2 Green Ocean Amazon (GoAmazon) field data

The ambient extrapolation data utilized in this work origi-
nate from the Green Ocean Amazon (GoAmazon) field cam-
paign which was conducted in central Amazonia in 2014.
This campaign and the collection of ambient filters for of-
fline analysis are described in detail in Martin et al. (2016,
2017) and Yee et al. (2018). Briefly, the campaign was con-
ducted at a semi-remote site occasionally downwind of the
city of Manaus and periodically impacted by smoke from
biomass burning. The campaign spanned two intensive op-
erating periods, i.e., one during the Amazonian wet season
(February through March) and one during the dry season
(August through early October). Submicron aerosol sam-
ples were collected on Tissuquartz filters (Pallflex), stored
in pre-baked foil, double contained in sealed mylar bags, and
frozen prior to analysis. The samples were analyzed by two-
dimensional gas chromatography coupled with electron ion-
ization time-of-flight mass spectrometry (TD-GCxGC-EI-
ToF-MS), as described below.

2.3 Instrumentation: TD-GCxGC-EI-ToF-MS

Both external standard species (during calibration runs) and
GoAmazon filter samples were analyzed by thermal des-
orption two-dimensional gas chromatography coupled with
electron ionization time-of-flight mass spectrometry (TD-
GCxGC-EI-ToF-MS, hereafter abbreviated as GCxGC-MS).
This instrumentation is described in detail in Goldstein et
al. (2008) and Worton et al. (2011), and instrument specifics,
including sub-component models, column materials, and
temperature settings, are described in Franklin et al. (2021).
For ambient filter samples, 0.4 cm2 aliquots of filter mate-
rial are directly introduced into the instrument. Standards

are stored in solution and introduced by injection onto pre-
baked quartz filter material. An internal standard (described
in Sect. 2.3) is applied on top of the sample or external stan-
dard filter aliquots immediately prior to analysis. Briefly, the
instrument functions as follows: a thermal desorption oven
heats filter material, causing analytes and standards to evap-
orate into a flow of helium. The desorbed components are
focused on a cooled inlet system (Gerstel CIS), which, at
the end of the thermal desorption cycle, is rapidly heated to
simultaneously release all organic species onto the head of
the first column. Compounds are separated by both volatil-
ity and polarity by two gas chromatography columns in se-
quence, with the transition of compounds from the first to
the second column modulated by a cryogenic focus and
rapid thermal release system. Separated analytes are ion-
ized by 70 eV electron ionization (EI) and detected by a
high-resolution time-of-flight mass spectrometer (HR-ToF-
MS, TOFWERK), with a resolving power of 4000 acquired
at 100 Hz. While the mass spectra produced by this tech-
nique are high resolution, these high-resolution mass spec-
tra are converted to unit mass resolution spectra to increase
the applicability of this technique to unit mass resolution
techniques. The vertical (polar) axis of separation is ex-
tremely short relative to the horizontal (volatility) axis sep-
aration with a vertical stride length of 2.3 s compared to a
retention time of ∼ 1 h for low-volatility organics. As a re-
sult, GCxGC-MS deuterated alkane normalized retention in-
dices (RIs) are directly comparable to retention indices (or,
with a linear conversion to non-deuterated retention indices,
Kovats indices) in single-dimension GC-MS applications.
This instrument’s volatility range spans approximately C13–
C36 n alkane volatility equivalents, covering the atmospher-
ically important transition regime between IVOC (interme-
diate volatility organic carbon) and LVOC (low volatility or-
ganic carbon) species.

During the thermal desorption process, the carrier flow
of helium is enriched with the derivatization agent MSTFA
(n-methyl-n-trimethylsilyl-trifluoroacetamide). This silylat-
ing reagent replaces the active hydrogen of polar OH groups
with a trimethylsilyl group,−Si(CH3)3, a process which sig-
nificantly enhances the recovery of polar organics. This ap-
proach is critical to increase the scope and degree of oxy-
genation of species recovered by thermal desorption–gas
chromatography techniques (Isaacman et al., 2014). How-
ever, it poses some challenges for data interpretation for di-
verse, complex, and novel chemical mixtures because, in the
case of many polar species, the compound that is separated
and detected by the GCxGC-MS instrumentation has been
chemically altered from the species that was collected. This
can create challenges in compound identification, as not all
species have published derivatized spectra, and challenges
for mapping chemical properties onto the GCxGC-MS space,
as the volatility–polarity distributions of derivatized com-
pounds do not directly reflect their underivatized properties.
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Internal standard normalization

Both filter samples and external standard impregnated filters
(for calibration curves) were doped with a custom 23 com-
ponent deuterated internal standard covering the full range of
volatility sensitivity and a broad variety of functional group
types immediately prior to analysis. The internal standard en-
ables normalization for matrix effects, configuration of re-
tention indices relative to the elution times of a deuterated
alkane series, and normalization for instrument condition
drift for improved consistency and quantification accuracy
throughout intensive instrument use. In prior methods, the
selection of an internal standard involved either (1) assigning
each analyte an internal standard nearest in chromatographic
space (by retention times) or (2) manual assignment of ana-
lytes to their most chemically similar internal standards, re-
gardless of proximity in GCxGC space. The analyte signal
would then be normalized (divided) by the signal of the se-
lected internal standard obtained during the same chromato-
graphic run. In a new approach employed in this work, in
order to maximize the reliability and consistency of normal-
ization across a large number of samples and complex sam-
ple media, internal standard signals were each normalized by
their own mean signals (throughout the entire analysis pe-
riod) to yield an indicator of self-normalized instrument sen-
sitivity. The analyte signal was then normalized by the mean
self-normalized responses of the three closest internal stan-
dard species. This approach has multiple benefits. First, the
responses of sample or external standard compounds are not
artificially deflated or inflated due to their proximity to in-
ternal standard compounds that have higher or lower sensi-
tivities based on their functional groups and derivatization.
Second, this approach enables the inclusion and utilization
of incomplete data; in previous approaches, if an internal
standard cannot be recovered in every sample, then it cannot
be used for normalization, as this would create inconsisten-
cies for the species that are otherwise assigned to that com-
pound. Compounds at the very high and very low ends of
the volatility space are chemically important but detectable
at baseline low levels that can drop below the limits of de-
tection during periods of low sensitivity. Having to discard
these species due to a few instances of missing correspond-
ing internal standard data causes losses of valuable informa-
tion. Finally, this approach decreases analysis sensitivity to
any errors and noise in internal standard identification or iso-
lation, as erroneously high or low individual internal stan-
dard responses are moderated by averaging with the other
nearby internal standard species. Volatility-based sensitivity
corrections, which can be achieved by raw internal standard
normalization, were achieved in this work through normal-
ization by an external standard-determined response curve,
as described in Sect. 3.1.3.

3 Data preparation and featurization

The analytical pipeline for data preparation through the per-
formance evaluation of this random forest modeling work
is illustrated in Fig. 1. The processes and decision-making
around featurization, feature selection, and target selection
for both chemical properties modeling and quantification
modeling, as well as the curation of the training, test, and
extrapolation data sets, is described below.

3.1 Featurization, feature selection, and target selection

As the aim of this work is to develop methods that can
be applied to novel species not included in mass spectral
databases, features utilized in this analysis rely solely upon
the information readily available for unidentifiable species.
Given the size and complexity of the intended use data suites,
features must also be automatically generatable from the in-
strument data output and not rely upon any visual or manual
categorization by researchers. In order to make these mod-
els more broadly useful to the atmospheric community, less
common features produced by the GCxGC-MS instrumen-
tal setup (e.g., second-dimension retention time and high-
resolution spectra) are not utilized for chemical properties
modeling in order to increase the method’s applicability
to single dimension GC-MS systems and instruments with
lower-resolution mass spectra.

3.1.1 Mass spectral featurization

The only chemical information directly produced by
GCxGC-MS for unidentified organic species are their loca-
tions in GCxGC volatility–polarity space and mass spectra.
These sources of information are therefore exclusively uti-
lized in creating and selecting the features for chemical prop-
erties modeling. The retention index of each compound was
directly utilized as a feature, but the mass spectra require in-
terpretation in order to be used.

The unit mass resolution spectra utilized in this analysis
include each charged fragment represented by its measured
mass to charge ratio (m/z) and a relative signal score out of
1000 (normalized by the most abundant fragment’s peak sig-
nal). EI is a high-energy or hard ionization technique which
typically leaves only a small fraction of molecular ions in-
tact and creates positively charged ion fragments that are al-
most all singly charged, with any multiply charged ions at
extremely low abundance. This means that the molecular for-
mulae cannot generally be directly determined from the mass
spectrum, even when the spectra are high resolution, and
measured ions can be assumed to have a single charge. That
said, the m/z of charged fragment ions yield useful informa-
tion into chemical characteristics and functional groupings
that can provide critical chemical information; for example,
a peak at m/z= 73 corresponds to a fragment of Si(CH3)+3 ,
a derivatization fragment which indicates that the ionized
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Figure 1. Analytical pipeline for chemical properties modeling using a random forest model. ES indicates the external standard; CV indicates
the cross-validation.

compound contained an OH group which was derivatized
(see Sect. 2.3). The mass differences between charged peaks
also represent important pieces of information, as they can
indicate losses of uncharged molecular fragments that simi-
larly point to the structure and characteristics of the original
compound. It is important to note that not all neutral mass
differences between charged peaks can be interpreted as di-
rect neutral losses, as not all high m/z charged fragments di-
rectly fragment onto lower m/z charged fragments in a man-
ner that can be directly interpreted from neutrally charged
fragment losses. However, frequently occurring neutral dif-
ferences may still hold value in reflecting a common coordi-
nation of neutral loss processes.

The greatest chemical information lies in features that ex-
ist in an intermediate range of occurrence frequency in the
data set. A feature which appears in all the training species
does not provide any useful information in predicting proper-
ties of the test species. Neither does a feature which is totally
unique to a single species, as it does not provide any infor-
mation on patterns which can be used to adjust prediction of
properties for other species. This logic can be applied to mass
spectral featurization; while it would be possible to convert
every m/z to a feature and so input the entire raw mass spec-
trum of each compound as a series of features for the random
forest model, this approach would be inefficient, open to er-
ror introduced by noise, and miss the important information
provided by neutral mass differences between charged frag-
ments.

Multiple approaches for mass spectral featurization were
tested to optimize the number of features and representation
of features. Given the final choice in model structure (random
forest; as described in Sect. 4), the inclusion of co-varying
features or more features than necessary did not introduce
significant sources of error. Target-specific feature restriction
based on importance is discussed in Sect. 4. The final mass
spectral featurization method selected for this analysis, a
simplified adaptation of methodology described in Eghbaldar
et al. (1998), was as follows: the top five charged fragments
(mass spectral peaks) from each training set mass spectrum
are selected. The mass differences between these five peaks
(a maximum of 10 numbers, if all fragments occur at differ-

ently spaced m/z) were then compiled into a list of neutral
losses. The charged fragment lists and the neutral loss lists of
all training set external standard compounds were next com-
bined in a frequency list, with each charged fragment or neu-
tral loss quantified by frequency (how many compounds in
the external standard test set exhibited that charged fragment
or neutral loss among their top five peaks). The top 40 most
common charged fragments and top 20 most common neutral
losses were converted into features. The identities of these
40 most common fragments and 20 most common neutral
mass differences (along with possible identities and notes)
can be found in Tables A2 and A3, respectively. The mass
spectra of all training, test, and extrapolation set compounds
were then simplified using the previously described method
(top five peaks extracted and mass differences between those
peaks calculated). Each m/z feature was assigned the nor-
malized signal of that peak in the mass spectrum if the feature
m/z was one of the top five peaks; otherwise, it was set to
zero. Each neutral loss feature was assigned true or false for
each compound, depending on whether the neutral loss ap-
peared in the mass differences between the five most signif-
icant peaks. An example mass spectral featurization for the
example compound hexadecane can be found in Table A4,
and the mass spectral featurization process is included in the
open-source R script accompanying this publication.

3.1.2 Target selection for chemical properties modeling

The goal of chemical properties modeling is to enable the
inclusion of unidentified species in aerosol organic analysis
that has previously been restricted to species for which the
identity or at least chemical formula is known. One way in
which complex organic mixtures are visualized and analyzed
is through orientation of observed species in chemical prop-
erties spaces that have been developed and broadly utilized
in the field of aerosol science. Of these space, two include
the volatility basis set (VBS; Donahue et al., 2006) and the
visualization by average carbon oxidation state and carbon
number developed in Kroll et al. (2011), hereafter referred
to as OSc-nc space. Compounds can be plotted in VBS space
by their O : C or OSc (average carbon oxidation state; Kroll et
al., 2011) against some measure of volatility, either log(vapor
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pressure) or log(C0), where C0 is the pure component sub-
cooled liquid vapor pressure in the atmosphere. In OSc-nc
space, compounds are plotted by their average carbon oxida-
tion state (OSc) against carbon number. The ability to map
novel or unidentifiable compounds in these spaces would
provide critical information about the properties of the indi-
vidual species, enable identification of groups of chemically
distinct novel compounds deserving particular consideration,
and more completely visualize the distribution of chemical
characteristics for complex mixtures and potential routes of
chemical transformation (e.g., oligomerization, functional-
ization, and fragmentation) beyond the identifiable compo-
nents. With these goals in mind, the properties selected to be
the targets of these modeling efforts were number of carbons
(nc), O : C, OSc, and vapor pressure.

Carbon number, O : C, and OSc (based on the equation in
Kroll et al., 2011) can all be directly calculated from a chem-
ical formula, which was known for each standard and ambi-
ent extrapolation compound (see Sect. 3.2). Vapor pressure
is not directly calculable from a chemical formula, and not
all identified compounds in the external standard and extrap-
olation data sets have reliable experimental vapor pressure
measurements available, so structurally based vapor pres-
sure predictions are utilized instead. Isaacman-Vanwertz and
Aumont (2021) find that, of all the structure-based vapor
pressure prediction methods available, the average of pre-
dictions generated by the EVAPORATION (Compernolle et
al., 2011), Nannoolal (Nannoolal et al., 2008), and Simpol
(Pankow and Asher, 2008) models yields the most accurate
vapor pressure prediction. These methods were therefore uti-
lized to predict the vapor pressures of all standard and extrap-
olation set compounds, and the average structurally predicted
vapor pressures were utilized as the true vapor pressures for
model training and evaluation. In total, 7 of the external stan-
dard test set species and 15 of the extrapolation set species
were incompatible with the prediction capabilities of one or
more of the three structural vapor pressure prediction meth-
ods (most frequently due to functional group types for which
the models are not parameterized) and were therefore not uti-
lized in the performance analysis. There were two additional
potential targets, namely double bond equivalent and H : C
ratio, that were tested but failed to produce sufficiently ro-
bust property predictions.

The final components of the chemical properties random
forest models are as follows:

– Targets – carbon number, OSc, O : C, and vapor pressure
(structurally modeled).

– Features – retention index, 40 feature representation of
mass spectral charged fragments, and 20 feature repre-
sentation of neutral mass differences between charged
fragments.

A table listing the entire set of input features for chemical
properties modeling of the example compound hexadecane

can be found in Table A4, and the instrument-produced mass
spectrum for this species can be found in Fig. A1.

3.1.3 Featurization and target selection for
quantification modeling

The compound quantification factor is significantly and reli-
ably related to retention index across all compound classes
tracked, but this relationship is not linear and changes much
more rapidly in some retention index windows than others.
This phenomenon, caused by incomplete cold inlet trapping
of species in the most volatile sensitivity region and incom-
plete thermal desorption of species in the least volatile sen-
sitivity region, is illustrated in Fig. A2 and is consistent with
findings presented in Zhang et al. (2018). A variety of re-
tention index corrections were tested, including the follow-
ing: (a) factorizing the retention indices of each compound
(rounded to the nearest 100) and including the results as a
feature in model training and testing and (b) normalizing
(dividing) each compound by the raw signal of its nearest
deuterated alkane internal standard, with the method utilized
in Zhang et al. (2018). Both methods, however, performed
poorly in the 1600–1900 RI range, where response increases
extremely rapidly with RI (Fig. A2). The most reliable nor-
malization method, and the method selected for this analysis,
was normalizing (dividing) all compound quantification fac-
tors by the average response curve for alkanes, defined by
the combination of two best-fit exponential curves, which in-
tersect at RI≈ 1950, as illustrated in Fig. A2, and training
on/predicting this normalized response factor rather than the
raw quantification factor. The r2 of the exponential fit of in-
dividual calibration period quantification factors around the
response curve in the volatile region is 0.77, while the r2

of the curve describing the less volatile region is 0.65. Note
that these fits take into account each quantification factor of
each calibration window and are therefore influenced by the
variations in the measured quantification factors of the same
compounds measured at different points throughout analysis.
RI-normalized response factors were translated back to pre-
dicted quantification factors for performance evaluation, as
other methods of quantification do not utilize this normaliza-
tion method.

Unlike the case of chemical properties modeling, quantifi-
cation modeling performance was significantly improved by
inclusion of second-dimension retention time information,
and it was therefore included as a feature in the response
factor prediction. As a result, this approach in its current
form is only usable by GCxGC-MS applications but could
be adapted to single-dimension chromatography–mass spec-
trometry.

In this analysis, continuous measurement periods (con-
secutively collected samples) were analyzed in sequences
bounded by calibration curve runs. To preserve the quantifi-
cation continuity in these consecutive measurements and to
avoid step changes in calculated concentration that might oc-
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cur due to switching between quantification factors, the two
quantification factors bookending an analysis period are av-
eraged to assign the quantification factors for samples run
in that interval. To replicate this approach, the compound
quantification factors were sequentially averaged to yield
five quantification periods (the final calibration curve experi-
enced an instrument failure, and the last calibration period is
therefore based solely on the final curve).

The mass spectral featurization is described in mass spec-
tral featurization above.

The final components of the quantification model are as
follows:

– Target – normalized response factor (RI curve normal-
ized and calibration period averaged).

– Features – retention index, second-dimension retention
time, calibration period, 40 feature representation of
mass spectral charged fragments, and 20 feature repre-
sentation of neutral mass differences between charged
fragments.

3.2 Training, test, and extrapolation set curation

To generate a training and test set from the external stan-
dard data, each external standard was assigned to a chemical
group (alkane, sugar, PAH, etc.), and the list of external stan-
dard compounds was randomly split 80 : 20 (80 % of com-
pounds in the training set and 20 % in the test set) maintain-
ing the ratios of different chemical groups. In total, 200 pos-
sible splits were generated, and the split which demonstrated
the greatest similarity in median retention index and median
second-dimension retention time between the test and train-
ing sets was selected to avoid potential extrapolation prob-
lems that might occur with a highly skewed distribution of
test and training compounds across the GCxGC space. This
process is documented in the Supplement.

The extrapolation set was curated from the compounds
isolated from the GoAmazon samples by comparing the
spectra and retention indices of compounds to the external
standard and matches in the NIST14 mass spectral database.
Of the ∼ 1500 unique compounds identified across 11 tem-
plate samples, 63 were determined to match external stan-
dard compounds, and an additional 71 compounds were iden-
tifiable from the NIST library due to a high (> 800, Worton
et al., 2017) mass spectral match factor and retention index
agreement with database entries. Based on number of silicon
atoms in the assigned formulae from the NIST identification,
each chemical formula was converted to its underivatized
form. Only the 71 compounds that were identifiable from the
NIST library but not from external standards were included
in the extrapolation set to ensure that performance metrics
for the extrapolation set would not be skewed by the inclu-
sion of species that may have been in the training data and
to ensure that the test set and extrapolation set performance
evaluations would be entirely independent. The methodology

described in this work cannot effectively extrapolate beyond
the feature space of the training data set, and the identifi-
able organic compounds in the Amazonian aerosol samples
are defined as an extrapolation set, not because they test the
abilities of the model to extrapolate beyond the feature space
boundaries of the external standard training data but because
they represent the true range of individual isomer-specific
identities observed in ambient samples. These compounds
test the model’s ability to extrapolate property prediction be-
yond the compound groups included in the external standard
and indicate whether the sample is sufficiently similar to the
training data to make this approach appropriate for the target
sample medium, as extremely high prediction inaccuracies
indicate compound classes too dissimilar from the training
data to be appropriately modeled using Ch3MS-RF (Chem-
ical Characterization by Chromatography–Mass Spectrome-
try Random Forest Modeling). As illustrated in Fig. 2, the
distribution of training, test, and extrapolation set species
utilized in this work effectively span the distribution of un-
known compounds in GCxGC volatility–polarity space.

4 Model selection, training, and tuning

The number and complexity of input features and lack of
clear linear relationships between target properties and input
features in this analysis is well suited to a decision-tree-based
analytical approach (Bentéjac et al., 2021; Rokach, 2016).
Random forest and gradient boosting methods were both
preliminarily tested for response factor prediction. Random
forests demonstrated slightly better performance and were
selected for this and additional methodological reasons, as
follows. Random forests are more robust to overfitting than
gradient boosting, which is a particular concern in this case,
given the small number of training compounds (∼ 100) com-
pared to the large numbers of novel environmental organics
that are the intended subjects of unverifiable modeling. Addi-
tionally, random forests perform well when using the default
settings and do not require extensive tuning to achieve opti-
mal performance (Bentéjac et al., 2021). As the aim of this
work is to produce models that the atmospheric science com-
munity, including non-experts in machine learning, can eas-
ily implement for novel compound analysis, this robustness
and simplicity is a significant advantage.

The training and tuning processes for chemical properties
prediction are visualized in Fig. 1. For each target property,
the model was trained on the external standard training set
data, the curation of which is described above. As previously
referenced, random forests do not require extensive tuning,
and for ease of use reasons, most parameters were main-
tained at their default values. Tuning primarily focused on
feature restriction. Feature restriction to enforce tree diver-
sity (mtry) was optimized by five-fold cross-validation, with
the mtry value that minimized mean absolute error (MAE)
selected. Although random forest modeling is comparatively
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Figure 2. Distribution of training, test, extrapolation, and unidentified sample compounds in two-dimensional chromatographic chemical
properties space.

Table 1. Tuning parameters and important features for chemical properties prediction models. m/z indicates charged fragment features, and
n indicates neutral mass difference features. Note: tree diversity feature restriction parameter is mtry.

Property model Optimized Number of Important features
mtry important features

O : C 4 19 Retention index, m/z 41, m/z 43, m/z 45, m/z 57, m/z 69,
m/z 73,m/z 74,m/z 75,m/z 103,m/z 113,m/z 147,m/z 189,
m/z 204, m/z 217, n 2, n 15, n 28, n 30

Carbon number 6 9 Retention index, m/z 41, m/z 45, m/z 55, m/z 57, m/z 73,
m/z 99, n 14

Average carbon
oxidation state

4 17 Retention index, m/z 41, m/z 43, m/z 45, m/z 55, m/z 57,
m/z 69, m/z 73, m/z 75, m/z 91, m/z 93, m/z 117, m/z 119,
m/z 147, n 1, n 2, n 30

Log(vapor pressure) 9 9 Retention index, m/z 55, m/z 73, m/z 75, m/z 129, m/z 145,
m/z 147, n 3, n 30

not influenced by the inclusion of features that do not con-
tribute significant predictive capabilities, the inclusion of un-
necessary features can contribute to overfitting of the train-
ing data, which decreases the prediction performance for the
test and extrapolation data sets. To address this problem,
the feature importance (a measure of increase in node pu-
rity when this feature is used in a split) of each input feature
was extracted from the original predictive model. The im-
portance metrics were normalized by the total importance of
all features to generate a percent importance score for each
feature. Importance distributions were highly skewed, with
a relatively low number of features contributing the major-
ity of decrease in node purity. Features that contributed less
than 1 % to the total importance score were removed, and
the model was retrained on only the important features. Ex-
trapolation set performance improvements from removal of
low importance features was low, with an improvement in
OSR2 (out-of-sample R2, defined in detail in Sect. 5.1) of

the order of 0–0.03. This indicates that this step is not crucial
for chemical properties or quantification factor prediction.
The cross-validation-optimized mtry number, number of im-
portant features, and identity of important features for the
chemical properties models (one optimized model per prop-
erty predicted) are summarized in Table 1. For quantification
modeling, mtry is optimized at 44 features, and 46 features
meet an importance criterion of > 1 %.

5 Model performance evaluation

5.1 Chemical properties modeling performance

There are three performance metrics utilized to evaluate tar-
get predictions for the four chemical properties models. The
first, out-of-sample r2 (OSR2), provides a measure of how
significantly a model improves upon a baseline assumption
that all target property values are equal to the mean of those
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values in the training data. It approaches a maximum of one
for perfect predictions. The second metric, mean absolute er-
ror (MAE), provides the mean absolute prediction residual
in the units of the target property. This metric is particularly
important, as it provides a benchmark for prediction accuracy
which can be translated into visualization and utilized to de-
termine which applications are appropriate given prediction
errors. The final performance metric, root mean square error
(RMSE), is also a scale-dependent error metric and provides
the quadratic mean of prediction residuals. The equations for
these metrics are provided below:

OSR2
= 1−

n∑
i=1
(Ti −Pi)

2

n∑
i=1

(
Ti −RT

)2 (1)

MAE=
∑n
i=1 |Pi − Ti |

n
(2)

RMSE=

√∑n
i=1(Pi − Ti)

2

n
. (3)

In this notation, for each test or extrapolation set compound
i summed across a population of n compounds, Ti indicates
the true value of the property being tested, Pi indicates the
predicted value of that property, and RT indicates the mean
of the selected property in the training data set.

The prediction performance for the tuned and trained
chemical properties model are evaluated independently on
both the external standard test set (Fig. 3; Table 2) and the
ambient sample extrapolation set (Fig. 4; Table 3). Both
of these performance evaluations are important for differ-
ent reasons. The external standard contains many series of
highly chemically similar species (for example, alkane and
carboxylic acid series), meaning that the test set is likely to
be more chemically similar to the training set than a real dis-
tribution of ambient organic species would be. Performance
evaluation on the extrapolation set therefore provides a more
realistic assessment of likely prediction accuracies on the
large number of novel ambient organic compounds that are
the intended focus of this modeling effort. That said, pre-
diction performance on the external standard test set also
yields important information. The external standard is de-
signed to cover the entire space of anticipated chemical fea-
tures for the environmental samples and is therefore more
diverse relative to the number of compounds included com-
pared to the extrapolation set (which is primarily CHO-type
compounds). Performance evaluation on the external stan-
dard test set therefore yields more information about model
performance across a broad suite of compound classes.

Figure 3. External standard test set of true and predicted chemical
properties from random forest modeling.

Figure 4. Ambient extrapolation set of true and predicted chemical
properties from random forest modeling.

5.1.1 Test set performance evaluation

By all evaluation metrics applied (summarized in Table 2),
performance for carbon number, O : C, carbon oxidation
state, and log(vapor pressure) predictions on the external
standard test set are robust. The O : C and carbon number
predictions are particularly strong, with OSR2 of 0.89 and
0.88, respectively, and mean absolute errors of 0.072 element
ratio units and 1.8 carbon number units. For context, given
the range in true values from O : C= 0–1 and carbon num-
ber= 4–31, both mean absolute errors are approximately 7 %
of the range of measured values. For OSc and vapor pressure,
the mean absolute errors normalized by the measurement
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Table 2. Performance metrics for random-forest-based modeling of chemical properties of the external standard test set. Range of true
properties units in units of the property O : C, in unitless atom number : atom number, carbon number in atom number, average carbon
oxidation state in mean charge, and log(vapor pressure) in log(atm).

Property Out-of- Mean absolute Root mean Range of true
sample R2 error square error properties

O : C 0.89 0.072 0.094 0–1
Carbon number 0.88 1.8 2.4 4–31
Average carbon oxidation state 0.79 0.24 0.33 (−2.1)–0
Log(vapor pressure) 0.82 0.72 0.93 (−12)–(−4.2)

Table 3. Performance metrics for random-forest-based modeling of chemical properties of the ambient aerosol sample extrapolation set.
Range of true properties units in units of the property O : C, in unitless atom number : atom number, carbon number in atom number, average
carbon oxidation state in mean charge, and log(vapor pressure) in log(atm).

Property Out-of- Mean absolute Root mean Range of true
sample R2 error square error properties

O : C∗ 0.78 0.11 0.17 0–1.5
Carbon number 0.93 1.8 2.2 3–32
Average carbon oxidation state∗ 0.80 0.25 0.37 (−2.1)–(1.5)
Log(vapor pressure)∗ 0.68 1.1 1.4 (−13)–(−5.7)

∗ Restricted to the retention index > 1500.

range are both approximately 12 %. As illustrated Fig. 3, this
means that the distribution of predicted properties usefully
and reliably reflects the distribution of true properties and in-
dicates that the random-forest-based model provides useful
information that allows a wide range of compound classes
to be reliably characterized based on the mass spectrum and
retention index.

5.1.2 Extrapolation set performance evaluation

As discussed above, while the external standard test set pro-
vides useful information on model performance across a
wide range of compound types, its performance is potentially
inflated by a high degree of chemical similarity between the
training and test set compounds. Performance evaluation on
the ambient sample extrapolation set is therefore likely a
more accurate indicator of prediction performance on novel
or uncataloged species. Of the four properties modeled, the
performances for carbon number prediction and carbon ox-
idation state remain consistent or improve slightly (carbon
number OSR2 increases to 0.93), while O : C and log(vapor
pressure) prediction performances decrease, both in terms of
OSR2 and MAE (Table 3).

The weakest extrapolation set performance by far is vapor
pressure prediction, which drops to OSR2 of 0.68. The corre-
lation between predicted and true properties is also the weak-
est (as illustrated in Fig. 4), with particularly large prediction
residuals for the highest volatility species. For example, the
extrapolation set compound with the highest vapor pressure
prediction error is 1,2-Benzenedicarboxylic acid, which has

a retention index of < 1400, making it more volatile than
the most volatile internal standard compound. While this
compound does not lie outside of the volatility and polar-
ity boundaries of the external standards in GCxGC space,
is significantly more volatile than any diacid compound in
the standard mixture, and the influence of double derivatiza-
tion on its true ambient volatility relative to the chromato-
graphic elution time of its derivatized form may not have
been appropriately captured. Unlike the other properties tar-
geted in this analysis, vapor pressure is not directly calcu-
lable based on chemical formula and poses challenges for
many techniques; as discussed in Isaacman-Vanwertz and
Aumont (2021), molecular structure plays an important role
in volatility, which significantly limits the accuracy with
which techniques that identify formula but not structure (typ-
ically chemical ionization techniques) can predict the true
volatility of their measured components. A more complete
comparison between the random forest model’s performance
in vapor pressure prediction compared to other techniques
used throughout the field is therefore required to provide con-
text for vapor pressure prediction errors in the ambient sam-
ple extrapolation set (further discussed below in Sect. 5.1.3).

For both O : C and OSc (which are highly related proper-
ties), extrapolation set prediction performance suffers at the
high end of the oxygenation scale, although the performance
reduction is far more pronounced for O : C prediction. This is
due to the lack of highly oxygenated species in the external
standard; random forest models do not extrapolate beyond
the range of properties in the training data and therefore can-
not predict O : C ratios of higher than 1.5 when that is above
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the maximum in the training data. The extraneously highly
oxidized species for which O : C and OSc prediction accu-
racy suffers lie almost exclusively in the most volatile region
instrument sensitivity, where vapor pressure prediction inac-
curacies have been previously described. As a result, extrap-
olation set property prediction for O : C, OSc, and log(vapor
pressure) were restricted to compounds above a retention in-
dex of 1500. As illustrated in Figs. A3 and 2, the signifi-
cant majority of ambient analytes were above the 1500 re-
tention index threshold, justifying the decision to restrict the
prediction of these properties to the retention index window
in which their performance is better optimized. In applying
these techniques to the larger suite of novel species, main-
taining these retention window restrictions is critical to avoid
the introduction of significant sources of error.

Given the strong and consistent performance of carbon
number and OSc predictions across the majority of the reten-
tion index space and between both test and extrapolation sets,
the most robust visualization of chemical properties based
on random forest predictions is likely to be in OSc-nc space
(Kroll et al., 2011). Predicting the carbon numbers and OSc
of the known ambient compounds and superimposing the
true and predicted property distributions in the OSc-nc space
highlights the strengths and weaknesses of chemical proper-
ties modeling. To better represent the prediction capabilities
of the full chemical space and the scope of information that
would be provided for properties prediction on a complex
sample including hundreds of individual species, all identifi-
able ambient compounds (including those that overlap with
the external standard) were included in property prediction
and visualization. As illustrated in Fig. 5, the real and pre-
dicted chemical properties spaces for the ambient data set
indicate both strengths and weaknesses for this application
of chemical properties modeling. As noted earlier, random
forest modeling does not extrapolate and has a tendency to
underpredict property extremes. This is apparent in both the
high OSc region and the high carbon number regions of the
OSc-nc space, where high carbon oxidation states and high
carbon numbers were each independently underpredicted.
These errors could be moderated by adding more oxygenated
species and higher carbon number species to the external
standard, which would provide the model with more infor-
mation to predict properties in these regions. In a context
of an extended continuity of analysis of similar sample me-
dia, this suggests an iterative approach in which the addition
of new standards to a calibration mixture can be prioritized
through analyzing the chemical features of poorly predicted
compounds in the sample media and adding new standards
that replicate those features. Despite the prediction errors
visualized in Fig. 5, the overall shape of the true chemical
properties space was extremely well represented by the pre-
dictions. While conclusions based on the presence or absence
of extremes in predicted properties would not be appropriate,
analyses based on the relative distributions of populations of
interest provide valuable insight comparable to other param-

Figure 5. True versus predicted chemical properties distribution of
ambient sample organic species within a carbon number vs. carbon
oxidation state space.

eterizations of compound properties from incomplete knowl-
edge.

5.1.3 Vapor pressure modeling: comparison to prior
methods

Chromatography using a non-polar column is intended to
separate compounds by volatility and has been used to di-
rectly predict novel compound vapor pressures in previ-
ous studies (Isaacman-VanWertz et al., 2016). It is there-
fore important in this context to evaluate both how sig-
nificantly random forest modeling improves upon the sim-
ple linear modeling of volatility based on retention index
and how this method compares to other parameterizations
of vapor pressure. As illustrated in Fig. 6 and Table 4, the
log(vapor pressure) prediction residuals for random forest
model predictions indicate that random-forest-generated pre-
dictions are both more accurate and more precise than pre-
dictions by the linearized retention index method or from
the Li et al. (2016) chemical-formula-based parameteriza-
tion, as they demonstrate a tighter distribution that is more
centered around zero. The mean absolute error for random
forest vapor pressure prediction is significantly lower than
errors from both predictions based on retention index (t test
p value= 0.01) and predictions based on chemical formula
(t test p value= 3.1× 10−5).

5.2 Quantification modeling performance

The approach for evaluating the performance for quantifica-
tion modeling requires slight alterations compared to prop-
erty prediction. Although the random forest model predicts
the residuals of quantification factors around the retention in-
dex response normalization curve (Fig. A2) rather than doing
so directly, these residuals are converted back to quantifica-
tion factors for both the true and predicted properties for per-
formance evaluation. This serves two purposes; first, other
quantification methods do not use this retention-index-based
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Table 4. Error distribution metrics random forest model, retention index linear model, and formula-based predictions of vapor pressure. All
reported errors in units of log(vapor pressure(atm)).

Vapor pressure prediction Mean Median Mean absolute Median absolute
method error error error error

Random forest model 0.24 0.21 1.1 0.76
Retention index linear model 0.55 0.52 1.5 1.1
Formula-based parameterization 1.2 1.3 2.0 1.3

Figure 6. Vapor pressure prediction residuals (log(vapor pressure);
vapor pressure in the atmosphere) for vapor pressure predictions of
the ambient extrapolation set based on formula-based parameteri-
zation (Li et al., 2016), linearized retention index-based modeling,
and random forest modeling.

normalization, so conversion to absolute prediction errors is
necessary to compare methods, and second, a direct quan-
tification error assessment provides more useful and applica-
ble information about how significantly quantification errors
could influence conclusions based on model-quantified data.

The test set compounds were quantified using two alter-
native quantification methods, i.e., manual or closest proxy
quantification (described in Liang et al., 2021, which utilizes
a combination of both), to benchmark random forest model
performance. Manual proxy quantification entails manually
assigning a compound to a chemically similar external stan-
dard based on researcher judgment on what chemical class
the unidentified compound would likely belong to, based on
some combination of location in GCxGC space and mass
spectrum. This is the current preferred method for the quan-
tification of compounds that are not in the external stan-
dard and, in theory, should provide the most reliable re-
sults in cases where an extremely chemically similar stan-
dard is available, but it is highly inefficient and relies upon
researcher judgment calls, which are difficult to standardize.
Closest proxy quantification assigns each compound to its
nearest external standard in GCxGC space or to an average
of the nearest standards within a set radius limitation. In this
work, the average of the quantification factors of the three

nearest standard species was used, as this demonstrated im-
proved performance compared to single closest proxy quan-
tification. This method is efficient, but it introduces poten-
tially significant error by assigning species with different
chemical characteristics (and therefore different quantifica-
tion factors) to the same response factor if they are suffi-
ciently close in GCxGC space. Each test set compound was
assigned to a proxy quantification factor from the training set
based on each of these two methods, and each proxy com-
pound’s quantification factor at each time point was substi-
tuted as a prediction of the test set compound’s quantification
factor at that calibration window.

The standard performance metrics for quantification fac-
tor prediction using the random forest model, manual proxy
quantification, and closest proxy quantification are compared
in Table 5. The random forest model significantly outper-
forms both other methods; it has a relatively high OSR2 of
0.65 compared to negative OSR2 values for the two proxy
methods (indicating that at least on average, assuming all
test compounds have the same quantification factor, the av-
erage of all training set compounds would have performed
better than proxy quantification). MAE and RMSE also in-
dicate improved performance when using the random forest
model over other methods. While these metrics provide use-
ful information on model performance, they do not reveal
why the performance (particularly of the proxy methods) is
so poor and do not provide useful information to evaluate
likely propagation of quantification errors. Unlike for the
chemical properties modeling, for quantification modeling
the percent error is a much more important metric than abso-
lute error because it translates directly to how significant to-
tal the quantification error across a large suite of compounds
is likely to be and provides insights into underlying biases
in different methods. Figure 7 illustrates the quantification
factor percent error distributions of the three methods and
demonstrates the improved performance of random-forest-
modeled quantification predictions on three criteria. First, as
illustrated by Fig. 7a, random forest modeling produces far
fewer and less extreme outlier prediction errors that are or-
ders of magnitude different from the true values. These result
when a compound that the instrument is extremely insensi-
tive to (which would have a true extremely low quantification
factor) is assigned a moderate or high quantification factor.
In practice, the influence of these types of quantification in-
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Table 5. Performance metrics for quantification factor prediction for three methods of unidentified compound quantification, i.e., random
forest modeling, manually assigned proxy quantified, and closest proxy quantified.

Quantification method Out-of- Mean absolute Root mean
sample R2 error square error

Random forest model 0.65 0.00085 0.0021
Manually assigned proxy quantified −4.1 0.0036 0.0080
Closest proxy quantified −1.8 0.0026 0.0059

Figure 7. Quantification performance comparison between the random forest model (orange) and two previously utilized quantification
methods, specifically the closest proxy quantification and manually assigned proxy quantification. The midline of the boxes indicates the
sample median, while the top and bottom indicate the 25th and 75th percentiles. Linear whiskers extend to the least extreme values within
1.5× of the inner quartile range of the sample. Disconnected dots indicate the sample outliers that fall beyond the whisker parameters.

accuracies is very limited, as the few ambient species that
the instrument is this significantly insensitive to would oc-
cur above detection limits, but they could introduce errors
nonetheless. Here it is important to keep in mind that each
point represents a single quantification from a single calibra-
tion period; some outliers therefore indicate compounds that
exhibited extremes in quantification factors during a single
calibration period. This was most common among standard
compounds at the edges of the instrument’s sensitivity win-
dow, as these species are more significantly impacted by al-
terations in instrument performance. Second, as illustrated
by Fig. 7b, the error distribution for the random forest model
is significantly more centered around zero compared to ei-
ther proxy model. The median random forest model quan-
tification error is −2 %, compared to 17 % for closest proxy
quantification and 19 % for manual proxy quantification. In
practice, this indicates that over a large number of quanti-
fied species, random forest modeling is unlikely to intro-
duce biased quantifications that might skew results, while the
two proxy methods would likely inflate the apparent mass of
novel compounds. Third, also illustrated by Fig. 7b (though
less directly), random forest modeling produces prediction
errors more tightly distributed around the median, meaning
that the absolute percent error distribution for random forest
modeling also outperforms the two proxy methods. Median
absolute percent error for random forest model predictions

is 37 %, compared to 57 % for the closest proxy method and
41 % for the manually assigned proxy method. The average
percent error improvements from random forest modeling
compared to both proxy methods are statistically significant
(t test p values both < 0.0004), but the median absolute per-
cent error distributions of the random forest and manually
assigned proxy quantifications are not significantly different
based on a Mood’s median test. The random forest and clos-
est proxy method absolute percent error distribution differ-
ences are statistically significant, with a Mood’s test p value
of 0.001. While critical for contextualizing the potential im-
pact of quantification errors on mass attribution of complex
mixtures, a percent-error-based analysis of prediction accu-
racy is necessarily asymmetrical, as a predicted quantifica-
tion factor can produce a minimum of −100 % error (the
case if the predicted value were to be zero) but far more
than +100 % error if the quantification factor is significantly
overpredicted. A symmetrical error analysis of log(predicted
quantification factor/true quantification factor), illustrated in
Fig. A4, is required to probe the frequency and dynamics
of underprediction in greater depth. Figure A4 demonstrates
that the random forest model is more prone to underpredic-
tion outliers but continues to outperform the other methods
in achieving a narrow error distribution centered at zero.

A final benefit of a random-forest-modeling-based quan-
tification not captured in the performance metrics is the abil-
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ity to utilize incomplete data. With proxy quantification, any
standard compound that cannot be calibrated for at any point
over the course of an analysis cannot be used, as the species
that are calibrated by that compound would not be quantifi-
able during the window with missing calibration data. The
random-forest-based quantification method relies upon the
entire external standard suite to inform corrections for in-
strument performance over time and can therefore produce
robust quantification factor predictions, even when individ-
ual standard calibration curves are missing for a particular
calibration window. This allows for significantly greater flex-
ibility in analysis, as compounds can be added to the external
standard if they are observed in initial samples and still be
usable to inform quantifications for periods before they were
present.

In summary, random forest quantification factor model-
ing significantly outperforms both closest proxy and manual
proxy quantification methods. It is significantly more effi-
cient than manual proxy modeling, exhibits fewer outliers of
multi-orders of magnitude overestimations, produces an er-
ror distribution that is more centered around zero (preventing
significant biases in total mass over large numbers of quan-
tified and summed species), and exhibits improvements in
absolute percent error of predictions.

5.3 Considerations for adaptation across instruments
and methods

The approach presented in this work prioritizes continuity
between training, test, and sample data by exclusively train-
ing the model on data produced by a single instrument using
a standardized methodology. This approach was selected to
ensure that the patterns identified by Ch3MS-RF in the train-
ing data were as directly relevant as possible to the unidentifi-
able sample compounds of interest. However, in some cases,
accumulation of a representative external standard spanning
the entire feature domain of the unidentifiable compounds of
interest may not be practical or possible. Electron ionization
(70 eV) mass spectrometry is an extremely well character-
ized and consistent technique, but chromatographic retention
times and indices can vary. In order for data produced by
multiple instruments and techniques to be integrated within
Ch3MS-RF, it is therefore important to establish the toler-
ance of prediction performance to drifts in the retention in-
dex.

To test sensitivity to the retention index or retention time
shifts across instruments and methods, the vapor pressure,
carbon number, OSc, and O : C of the external standard test
set compounds were predicted using retention index inputs
that were shifted from their observed retention indices. A
broad range of shifts from −200 (indicating the equivalent
of a two-carbon number shift; for example, if in the test sam-
ple heptadecane were to elute at the time that pentadecane
eluted in the training standard run) to +200 were tested (in-
cluding −200, −150, −100, −50, −25, +25, +50, +100,

+150, and +200). A new mean absolute error was calcu-
lated for each set of predictions based on the shifted reten-
tion indices and compared to the unshifted mean absolute
error to calculate the percent increase in mean absolute error
as a function of test set retention index shift. These results
are visualized in Fig. 8. The two measures of oxidation, OSc,
and O : C were relatively insensitive to retention index shifts,
as their mean absolute errors increased by less than 10 % at
a retention index shift of ±200 and by < 5 % within reten-
tion index shifts of±100. Carbon number and vapor pressure
predictions were more sensitive to retention index shifts, as
would be expected given that retention times are more di-
rectly physically related to these two properties. At retention
index shifts of +200, the mean absolute error of the carbon
number prediction increased by 44 %, while a shift of −200
produced vapor pressure predictions that increased by 39 %,
both of which significantly decrease the utility of the pro-
duced predictions. However, within retention index shifts of
±100, increases in vapor pressure and carbon number predic-
tion errors are modest, with all calculated MAE percent error
increases < 10 %, with the exception of a 12 % increase in
error for vapor pressure predictions at a retention index shift
of−100. Vapor pressure prediction in fact appears to slightly
improve at shifts of +< 25–50, but these improvements are
extremely modest (< 3 %), are attributable to the generally
higher uncertainties in vapor pressure prediction, and are
not significantly different from predictions produced at a re-
tention index shift of 0. Reported n alkane normalized Ko-
vats indices of compounds within standardized column types
(semi-standard non-polar, standard non-polar, etc.) typically
vary by < 50, meaning that, where methodologies allow test
compound Kovats or retention indices to be calculated, pre-
dictions utilizing training data from instruments and analysis
protocols not used on the test samples are likely to be ro-
bust, particularly for O : C and OSc. For methodologies that
do not use internal standards and that cannot otherwise eas-
ily yield Kovats indices, protocols using similar columns and
temperature ramps would likely produce retention times that
could be substituted for retention indices in the Ch3MS-RF
methodology. This approach would be usable across multiple
instrumentation, provided it could be established that the re-
tention times of any given compound produced by the train-
ing and test instrument drift by less than one carbon number
equivalent.

In summary, training and/or test data from multiple instru-
ments and protocols can be combined to meet user needs,
provided the following criteria are met: (1) the same ioniza-
tion energy (typically 70 eV) is used, (2) the retention index
or retention time drifts between instruments or protocols can
be normalized to less than the difference of the elution time
between two sequential linear alkanes (retention index drift
of< 100), (3) similar phase columns are used (semi-standard
nonpolar, standard nonpolar, etc.), (4) samples and training
data are consistently either derivatized or underivatized and,
if derivatized, use a consistent derivatization agent. It is also
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Figure 8. Percent increases in the mean absolute error in chemical
property prediction as a function of the shift in a test set retention
index relative to the training set retention index. Retention indices
are normalized to a linear alkane series, making an increment of 100
indicate the retention time differences between two linear alkanes
separated by one carbon number.

important to keep in mind that the training data must span
the anticipated feature space of the use data set and that,
in cases of doubt, this can be tested by adding extrapola-
tion set compounds identified from the sample medium. For
chemical properties modeling, this approach can be adapted
from the GCxGC approach presented for any instrument us-
ing chromatography–electron ionization–mass spectrometry
that has the capacity to yield at least unit-resolution mass
spectra and for which spectra can be sufficiently deconvo-
luted to yield clean analyte spectra. The model structure and
provided sample code are highly flexible and could be uti-
lized to predict any property of interest that might reasonably
be expected to be reflected in the combination of compound
mass spectra and chromatographic retention time, although a
performance evaluation is always important for ensuring that
the patterns are sufficiently strong to enable accurate prop-
erty prediction using Ch3MS-RF.

6 Conclusions

This work presents a new machine-learning-based method
for quantifying and predicting chemical properties of novel
organic compounds observed in the atmosphere. Based on
a relatively small combined training and test set of ∼ 130
known compounds, we are able to predict the carbon num-
bers, vapor pressures, carbon oxidation states, and O : C ra-
tios of ambient organic compounds with sufficient accuracy
to usefully represent compound distributions in chemical
property spaces that are important in atmospheric science.
That these predictions are generated solely from retention in-
dices and unit mass resolution mass spectra marks a signifi-
cant step forward in the ability to characterize the novel or-
ganic components of Earth’s atmosphere based on measure-
ments generated from a wide range of commonly available
atmospheric instrumentation. In GCxGC-MS applications,
these methods contribute significant improvements in both

accuracy and analytical efficiency for novel compound quan-
tification that enable users to perform untargeted analysis of
the rich complexity of data generated by advances in instru-
mentation. While the untargeted analysis data science tech-
niques described in this work have been developed for and
tested on atmospheric applications, they are not structurally
limited in scope and could be applied to a wide range of
chromatographic–mass spectral data sets to enable the char-
acterization of complex organic mixtures. The open-source
R script published in the Supplement is intended to provide a
framework for groups throughout the atmospheric chemistry
community to efficiently apply and adapt these methods to
broadly enhance our ability to take advantage of the increas-
ingly complex information provided by ever-accelerating ad-
vances in environmental chemistry instrumentation.

Appendix A

Figure A1. Mass spectrum of hexadecane, as measured by GCxGC-
MS and featurized in Table A2.
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Figure A2. Quantification factor normalization curve, based on the average response factors of alkanes.

Figure A3. Normalized prediction residuals of the carbon oxida-
tion state and vapor pressure vs. retention index for the ambient
data compound property predictions set, overlaid with a compound
number distribution over the retention index for ambient data set.
The yellow highlighted region indicates compounds below a reten-
tion index of 1500.

Figure A4. Quantification factor prediction errors expressed in
log(predicted quantification factor/true quantification factor) for test
set quantification factors predicted by the random forest model (or-
ange), closest proxy, and manual proxy methods.
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Table A1. External standard names, formulae (underivatized), retention indexes, split (training set versus test set), and manually assigned
quantification proxies.

Name Chemical Retention Split Manual proxy
formula indexa

12-OH C18 acid C18H36O3 2470 Train
16-OH C16 acid C16H32O3 2429 Train
2-ketoglutaric acid C5H6O5 1629 Train
3-5-dimethoxyphenol C8H10O3 1525 Train
4,4-dimethoxy-benzophenone C15H14O3 2293 Train
4-hydroxybenzoic acid C7H6O3 1651 Test 2-ketoglutaric acid
4-nitrocatechol C6H5NO4 1769 Train
4-terpineol C10H18O 1206 Train
9H-florenone C13H8O 1778 Train
α-amyrin C30H50O 3479 Train
Abietic acid C20H30O2 2468 Train
Anthraquinone C14H8O2 2017 Test Xanthone
Benzophenone C13H10O 1664 Train
β-caryophyllene aldehyde C15H24O2 1715 Train
β-caryophyllinic acid C14H22O4 2060 Train
β-caryophyllonic acid C15H24O3 1931 Train
β-nocaryophyllinic acid C13H20O5 2127 Train
β-nocaryophyllone aldehyde C14H22O3 1757 Train
β-nocaryophyllonic acid C14H22O4 1985 Train
β-sitosterol C29H50O 3406 Train
Bisabolol C15H26O 1770 Train
Borneol C10H18O 1254 Test Nonanol
C10 carboxylic acid C10H20O2 1479 Test Dimethyl glutaric acid
C10 diacid (sebacic acid) C10H18O4 1922 Train
C12 diacid C12H22O4 2120 Test β-caryophyllinic acid
C13 acid C13H26O2 1776 Test Vanillic acid
C14 alkane C14H30 1422 Train
C14 diacid C14H26O4 2317 Train
C16 alkane C16H34 1626 Train
C16 acid C16H32O2 2078 Train
C17 alkane C17H36 1730 Test C17 alkane
C17 acid C17H34O2 2177 Test Linoleic acid
C18 alkane C18H38 1830 Train
C18 acid C18H36O2 2280 Train
C19 alkane C19H40 1934 Test C20 alkane
C20 alkane C20H42 2034 Train
C21 alkane C21H44 2137 Train
C22 alkane C22H46 2238 Train
C22 acid C22H44O2 2684 Train
C23 alkane C23H48 2341 Test C24 alkane
C24 alkane C24H50 2443 Train
C24 acid C24H48O2 2886 Train
C25 alkane C25H52 2545 Train
C26 alkane C26H54 2649 Train
C26 acid C26H52O2 3088 Train
C27 alkane C27H56 2750 Train
C28 alkane C28H58 2852 Train
C28 acid C28H56O2 3291 Train
C29 alkane C29H60 2955 Train
C30 alkane C30H62 3058 Train
C31 alkane C31H64 3159 Test C30 alkane
C32 alkane C32H66 3259 Train
C33 alkane C33H68 3363 Train
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Table A1. Continued.

Name Chemical Retention Split Manual proxy
formula indexa

C35 alkane C35H72 3564 Train
C7 acid C7H14O2 < 1400 Train
C8 acid C8H16O2 1293 Train
C9 acid C9H18O2 1381 Train
C9 diacid (azelaic acid) C9H16O4 1822 Train
Cholesterol C27H46O 3209 Train
Chrysene C18H12 2531 Train
Cis-vaccenic acid C18H34O2 2259 Train
Citronellol C10H20O 1338 Train
Cycloisolongifolene C15H24 1355 Test Pyrocatechol
Diethyltoluamide C12H17NO 1600 Train
Deoxycholic acid C24H40O4 3347 Train
Dibenz(ah)anthracene C22H14 3280 Train
Dimethyl glutaric acid C7H12O4 1456 Train
Dodecyl benzene C18H30 1920 Train
Eicosanol C20H42O 2390 Train
Ergosterol C28H44O 3296 Train
Erythritol C4H10O4 1528 Train
FAME16 (methyl palmitate) C17H34O2 1957 Train
FAME18 (methyl stearate) C19H38O2 2161 Train
Farnesol C15H26O 1832 Test Bisabolol
Galactosan C6H10O5 1684 Train
γ -dodecalactone C12H22O2 1709 Train
Glyceric acid C3H6O4 1352 Train
Hexadecanamide C16H33NO 2212 Train
Hexadecanol C16H34O 1989 Train
Homosalate C16H22O3 2054 Test β-caryophyllinic acid
Hydroquinone C6H6O2 1420 Train
Ionone C13H20O 1449 Train
Isoeugenol C10H12O2 1591 Train
Isopimaric acid C20H30O2 2385 Test C14 Diacid
Ketopinic acid C10H14O3 1530 Test Pinonic acid
Levoglucosan C6H10O5 1726 Train
Linoleic acid C18H32O2 2245 Train
Lupeol C30H50O 3483 Train
Maltol C6H6O3 1316 Train
Mannosan C6H10O5 1706 Test Galactosan
3-methylbutane-1,2,3-tricarboxylic acid C8H12O6 1776 Train
Me-OH-glutaric acid C6H10O5 1623 Test 2-ketoglutaric acid
Monopalmitin C19H38O4 2628 Test Monostearin
Monostearin C21H42O4 2788 Train
Nonanol C9H20O 1318 Train
Octadecanal C18H36O 2056 Train
Octadecanol C18H38O 2191 Train
Octadecanone C18H36O 2031 Train
Oleic acid C18H34O2 2251 Train
Palmitoleic acid C16H30O2 2056 Train
p-Anisic acid (4-methoxybenzoic acid) C8H8O3 1544 Train
Pentadecanone C15H30O 1726 Test Pinic acid, isomer 1
Perylene C20H12 2967 Train
Phthalic acid C8H6O4 1714 Train
Phthalimide C8H5NO2 1593 Train
Pinic acid, isomer 1 C9H14O4 1692 Train
Pinic acid, isomer 2 C9H14O4 1697 Train
Pinonic acid C10H16O3 1550 Test Hexadecanamide
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Table A1. Continued.

Name Chemical Retention Split Manual proxy
formula indexa

Pyrene C10H16 2171 Train
Pyrocatechol C6H6O2 1339 Train
Quinoline C9H7N 1278 Train
Resorcinol C6H6O2 1399 Test Hydroquinone
Retene C18H18 2267 Train
Sesquiterpene 1b C15H24 1404 Train
Sesquiterpene 2b C15H24 1442 Test Sesquiterpene 3
Sesquiterpene 3b C15H24 1449 Train
Sesquiterpene 4b C15H24 1451 Train
Sesquiterpene 5b C15H24 1471 Train
Sesquiterpene 6b C15H24 1493 Train
Sesquiterpene 7b C15H24 1537 Train
Sesquiterpene 8b C15H24 1569 Train
Sesquiterpene 9b C15H24 1610 Train
Sinapinaldehyde C11H12O4 2032 Train
Squalene C30H50 2868 Train
Stigmasterol C29H48O 3344 Test Ergosterol
Syringaldehyde C9H10O4 1726 Test 9H-florenone
Syringic acid C9H10O5 1924 Test C10 diacid (sebacic acid)
Syringol C8H10O3 1418 Train
Threitol C4H10O4 1521 Test Erythritol
Triacetin C9H14O6 1362 Train
Tridecanal C13H26O 1537 Train
Vanillic acid C8H8O4 1789 Train
Vanillin C8H8O3 1558 Train
Verbenone (–) C10H14O 1237 Train
Xanthone C13H8O2 1906 Train

a Normalized by deuterated alkane standard series. b Isomer identity is undetermined; only the quantification
factor and properties related to chemical formula are included in modeling.
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Table A2. The 40 most common charged fragments featurized for
mass spectral featurization, with possible formulae and implications
of published peaks.

Fragment Possible Notes
m/z formulae

41 C3H+5

43 C3H+7 , C2H3O+ Propyl group, ketone indicator

45 CHO+2 Carboxyl indicator, underivatized

55

56

57 C4H+9 , C3H5O+ Signature alkane fragment, ketone/ester

67

69

71 C4H7O+ Ketone/ester

73 Si(CH3)+3 Indicates derivatization and therefore
the presence of an OH group

74

75

77 C6H+5 Phenyl

79

81

83

85

91

92

93 C6H5O+ Oxygenated aromatics

95

99

103

105

107

109

111

113

117

119

121

129

131

132

135

145

147

189

204 Si2C8H20O+2 Indicative of sugars

217 Si2C9H21O+2 Indicative of sugars

Table A3. The 20 most common neutral mass differences between
charged peaks, selected for mass spectral featurization, with possi-
ble formulae and implications of commonly reported neutral losses.

Neutral loss/mass Probable formulae/ Notes
difference (amu) interpretation

1 Loss of H

2

3

4

6

8

10

11

12

13

14

15 CH3 Methyl

16 O Alcohol-derivatization
agent loss

18

20

26

27

28 CO Carbonyl

30

42
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Table A4. Full chemical properties modeling features for Hexadecane.

Feature Feature class Feature input

Retention index (d alkane normalized) Chromatography 1627
m/z 41 Mass spectrum common fragment 238
m/z 43 Mass spectrum common fragment 512
m/z 45 Mass spectrum common fragment 0
m/z 55 Mass spectrum common fragment 144
m/z 56 Mass spectrum common fragment 116
m/z 57 Mass spectrum common fragment 999
m/z 67 Mass spectrum common fragment 0
m/z 69 Mass spectrum common fragment 0
m/z 71 Mass spectrum common fragment 757
m/z 73 Mass spectrum common fragment 0
m/z 74 Mass spectrum common fragment 0
m/z 75 Mass spectrum common fragment 0
m/z 77 Mass spectrum common fragment 0
m/z 79 Mass spectrum common fragment 0
m/z 81 Mass spectrum common fragment 0
m/z 83 Mass spectrum common fragment 0
m/z 85 Mass spectrum common fragment 519
m/z 91 Mass spectrum common fragment 0
m/z 92 Mass spectrum common fragment 0
m/z 93 Mass spectrum common fragment 0
m/z 95 Mass spectrum common fragment 0
m/z 99 Mass spectrum common fragment 0
m/z 103 Mass spectrum common fragment 0
m/z 105 Mass spectrum common fragment 0
m/z 107 Mass spectrum common fragment 0
m/z 109 Mass spectrum common fragment 0
m/z 111 Mass spectrum common fragment 0
m/z 113 Mass spectrum common fragment 89
m/z 117 Mass spectrum common fragment 0
m/z 119 Mass spectrum common fragment 0
m/z 121 Mass spectrum common fragment 0
m/z 129 Mass spectrum common fragment 0
m/z 131 Mass spectrum common fragment 0
m/z 132 Mass spectrum common fragment 0
m/z 135 Mass spectrum common fragment 0
m/z 145 Mass spectrum common fragment 0
m/z 189 Mass spectrum common fragment 0
m/z 204 Mass spectrum common fragment 0
m/z 217 Mass spectrum common fragment 0
Loss of 1 Mass spectrum neutral loss/mass diff. False
Loss of 2 Mass spectrum neutral loss/mass diff. True
Loss of 3 Mass spectrum neutral loss/mass diff. False
Loss of 4 Mass spectrum neutral loss/mass diff. False
Loss of 6 Mass spectrum neutral loss/mass diff. False
Loss of 8 Mass spectrum neutral loss/mass diff. False
Loss of 10 Mass spectrum neutral loss/mass diff. False
Loss of 11 Mass spectrum neutral loss/mass diff. False
Loss of 12 Mass spectrum neutral loss/mass diff. False
Loss of 13 Mass spectrum neutral loss/mass diff. False
Loss of 14 Mass spectrum neutral loss/mass diff. True
Loss of 15 Mass spectrum neutral loss/mass diff. False
Loss of 16 Mass spectrum neutral loss/mass diff. True
Loss of 18 Mass spectrum neutral loss/mass diff. False
Loss of 20 Mass spectrum neutral loss/mass diff. False
Loss of 26 Mass spectrum neutral loss/mass diff. False
Loss of 27 Mass spectrum neutral loss/mass diff. False
Loss of 28 Mass spectrum neutral loss/mass diff. True
Loss of 30 Mass spectrum neutral loss/mass diff. True
Loss of 42 Mass spectrum neutral loss/mass diff. False
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Code availability. Sample code designed for adaptation and use by
other users is available in the GitHub repository associated with
this paper (https://github.com/ebarnesey/Ch3MS-RF, last access:
10 May 2022; https://doi.org/10.5281/zenodo.6320122, Franklin,
2022). The knitted R markdown, including primary analysis, is in-
cluded in the Supplement.

Data availability. Composition and metadata related to the ex-
ternal standard are available in the GitHub repository asso-
ciated with this paper (https://github.com/ebarnesey/Ch3MS-RF;
https://doi.org/10.5281/zenodo.6320122, Franklin, 2022). Mass
spectra and unique identifiers of species from the ambient sam-
ples collected during the GoAmazon field campaign are available
through the Goldstein Library of Biogenic and Environmental Spec-
tra (UCB-GLOBES). These data will be publicly available in future,
but in the interim, all raw data can be provided by the corresponding
authors upon request (barnes_emily@berkeley.edu).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-3779-2022-supplement.
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