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Abstract. The European Space Agency Aeolus mission
launched a first-of-its-kind spaceborne Doppler wind lidar
in August 2018. To optimize the assimilation of the Aeo-
lus Level-2B (B10) horizontal line-of-sight (HLOS) winds,
significant systematic differences between the observations
and numerical weather prediction (NWP) background winds
should be removed. Total least squares (TLS) regression is
used to estimate speed-dependent systematic differences be-
tween the Aeolus HLOS winds and the National Oceanic
and Atmospheric Administration (NOAA) Finite-Volume
Cubed-Sphere Global Forecast System (FV3GFS) 6 h fore-
cast winds. Unlike ordinary least squares regression, TLS re-
gression optimally accounts for random errors in both predic-
tors and predictands. Large, well-defined, speed-dependent
systematic differences are found in the lower stratosphere
and troposphere in the tropics and Southern Hemisphere.
Correction of these systematic differences improves the fore-
cast impact of Aeolus data assimilated into the NOAA global
NWP system.

1 Introduction

The spaceborne Doppler wind lidar onboard the European
Space Agency (ESA) Aeolus mission measures both Mie
(i.e., clouds and aerosols) and Rayleigh (i.e., molecular)
backscatter to derive wind profiles along the sensor’s hor-
izontal line of sight (HLOS) throughout the troposphere

and lower stratosphere (Straume-Lindner, 2018; Straume et
al., 2020). The Aeolus HLOS Level-2B (L2B) winds have
demonstrated positive impacts on global weather forecasts
(Rennie et al., 2021; Cress, 2020; Garrett et al., 2020, 2022).

To optimize the positive impact of Aeolus HLOS winds on
weather forecasts, large systematic differences between Ae-
olus winds and numerical weather prediction (NWP) model
background winds should be corrected (Daley, 1991). There-
fore, it is important to identify potential systematic differ-
ences between Aeolus winds and their NWP model back-
ground counterparts (Liu et al., 2020, 2021). The system-
atic differences may come from both the NWP model back-
ground and the Aeolus winds. First, current operational
global NWP background winds still have larger errors or
uncertainty in regions where conventional wind observa-
tions are sparse or absent. For example, the 6 h forecast
zonal winds from the ECMWF model (https://www.ecmwf.
int/en/forecasts, last access: 19 December 2019) and the
NOAA Finite-Volume Cubed-Sphere Global Forecast Sys-
tem (FV3GFS) model (Kleist et al., 2021) show large sys-
tematic differences in the upper troposphere and lower strato-
sphere of the tropics, the Southern Hemisphere (SH), and
poleward of 70◦ N, with maxima of the order of 2.0, −0.5,
and 0.5 m s−1, respectively (Fig. 1). Such systematic differ-
ences in regions where conventional data are sparse may be
due in part to differences in the assimilation of satellite ra-
diances at the NWP centers. Second, although corrections to
several substantial sources of systematic differences in the
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Figure 1. Zonal and time mean difference of ECMWF minus
FV3GFS backgrounds (defined as 6 h forecasts) for analysis times
00:00, 06:00, 12:00, and 18:00 UTC) for zonal wind (m s−1). Note
that the sample in Figs. 1–15 is for 1–7 September 2019.

Aeolus HLOS winds (baseline B10) have been implemented,
including corrections to the dark current signal anomalies
of single pixels (so-called hot pixels) on the accumulation
charge-coupled devices (ACCDs), to the linear drift in the
illumination of the Mie and Rayleigh spectrometers, and to
the telescope M1 mirror temperature variations (Reitebuch
et al., 2020; Weiler et al., 2021), uncorrected systematic dif-
ferences due to potential calibration issues might remain in
Aeolus HLOS winds and may contribute to potential system-
atic differences between Aeolus and the NWP background
HLOS winds. The residual systematic differences may lead
to suboptimal assimilation of Aeolus HLOS winds in NWP
systems.

For clarity in the remainder of this article, certain words
and phrases are assigned specific definitions. Thus, through-
out this article, the phrase “Aeolus winds” specifically means
the observations of Aeolus Level-2B (B10) HLOS winds.
Similarly, the phrase “FV3GFS winds” specifically means
the numerical weather prediction (NWP) background HLOS
winds evaluated from the FV3GFS 6 h forecasts at the obser-
vation location and time. (In discussions of winds that are not
HLOS winds, terms like u wind, v wind, or wind vector are
used.) Further, the phrase “Mie winds” specifically means
Aeolus winds derived from Mie backscatter observations,
and the phrase “Rayleigh winds” specifically means Aeo-
lus winds derived from Rayleigh backscatter observations.
Also, throughout this article, the word “innovations” without
further qualification specifically refers to the differences be-
tween these Aeolus and FV3GFS winds, and the word “bias”
(and the phrases “Mie bias” and “Rayleigh bias”) without
further qualification specifically refers to the mean of these

innovations, where the sample mean is over some specified
space–time volume for either the Mie or Rayleigh winds.

Speed-dependent biases identified and estimated using or-
dinary least squares (OLS) are subject to contamination from
random errors in Aeolus and/or FV3GFS winds (Frost and
Thompson, 2000), since OLS assumes no errors in the pre-
dictor or independent variable, which in this case would be
either the Aeolus or FV3GFS winds or a combination of the
two. In contrast, total least squares (TLS) regression accounts
for errors in both dependent and independent variables and
generates a statistically optimal analysis of the biases (Dem-
ing, 1943; Ripley and Thompson, 1987; Markovsky and Van
Huffel, 2007). For the case of Aeolus and FV3GFS winds,
the use of linear TLS regression (Ripley and Thompson,
1987) finds an optimal estimate of the true (assumed linear)
relationship between Aeolus and FV3GFS winds.

In this study, the TLS regression approach is used to es-
timate biases that depend linearly on wind speed. The sub-
optimality of OLS bias estimates is demonstrated by com-
parison to the TLS bias estimates, which are treated as the
“truth” in this study. A bias correction based on the TLS bias
analysis is proposed to optimize Aeolus wind assimilation by
the FV3GFS model and thus improve the impact of Aeolus
winds on FV3GFS forecasts. Section 2 describes the Aeo-
lus and FV3GFS winds, the TLS bias analysis method, and
the estimation of the ratio of error variances of Aeolus to
FV3GFS winds, for which the ratio is used in the TLS re-
gression. Section 3 describes the variations in the TLS bias
estimates with height, latitude, and wind speed. Section 4
demonstrates the substantial differences between the TLS
and OLS bias estimates. Section 5 proposes a TLS bias cor-
rection for Aeolus data assimilation. The forecast impact of
the TLS bias correction is presented in Sect. 6. Section 7
presents a summary of the findings and conclusions.

2 Data and methodology

2.1 Aeolus L2B and FV3GFS background wind data

The Aeolus L2B cloudy-sky Mie winds and clear-sky
Rayleigh winds are examined for the period 1–7 September
2019. This 1-week period provides a sufficient sample to es-
timate the biases. The Aeolus winds were obtained from the
Aeolus dataset (baseline B10) reprocessed by ESA (Rennie
et al., 2021, Weiler et al., 2021). The reprocessing includes
the M1 bias correction, which removes most of the glob-
ally and vertically averaged biases of both Mie and Rayleigh
winds (Weiler et al., 2021). The Aeolus winds are reported at
a standard set of vertical layers (de Kloe, 2020). This study
examines Mie and Rayleigh winds within height ranges of
0–22 km that include nearly all Aeolus winds. The height is
defined relative to the EGM96 geoid for the L2B winds (Tan
et al., 2008).
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Figure 2. Vertical and daily variations in global horizontal biases (m s−1) for Mie winds (a, b) and Rayleigh winds (c, d) in ascending (a, c)
and descending (b, d) orbits.

The Aeolus and FV3GFS winds are obtained from a data
assimilation experiment (hereafter the BASE experiment),
where the Aeolus winds are monitored, and the Aeolus wind
observation operator (Hi) is applied to the FV3GFS back-
ground (xb) to obtain the value of FV3GFS wind (yb

i =

Hi(x
b)) corresponding to each Aeolus wind (yo

i ). This exper-
iment employs the FV3GFS data assimilation system, called
Global Statistical Interpolation (GSI; Kleist et al., 2009),
configured for the 4DEnVar algorithm, with 64 vertical levels
and horizontal resolutions of C384 (∼ 25 km) for the deter-
ministic analysis and forecast and C192 (∼ 50 km) for the 80
ensemble members (Wang and Lei, 2014).

Similar Aeolus data quality control procedures, as recom-
mended by ESA and ECMWF (Rennie et al., 2021), were
implemented to reject the following observations: the HLOS
L2B confidence flag “invalid”, Rayleigh winds at layers be-
low 850 hPa, L2B uncertainties greater than 12 m s−1, ac-
cumulation lengths less than 60 km, and atmospheric pres-
sure within 20 hPa of topographic surface pressure, and Mie
winds with L2B uncertainties greater than 5 m s−1 and accu-
mulation lengths less than 5 km. Further, a standard outlier
check rejects any Aeolus wind for which |yo

i − y
b
i | is greater

than 4 times the estimated errors for Aeolus winds prescribed
by the data assimilation system.

When examining Aeolus wind statistics, we stratify the
Aeolus data by orbital phase, either ascending when the
spacecraft is moving northward or descending when the
spacecraft is moving southward. The vertical and daily vari-
ations in Mie and Rayleigh biases for global horizontal sam-
ples are consistent throughout the period (Fig. 2). For ascend-
ing orbits, the Mie biases are positive above 6 km and neg-
ative below 6 km and are as large as +1.8 and −0.5 m s−1,
respectively. The Mie biases are smaller and positive at
most levels in descending orbits. In descending orbits, the

Figure 3. Latitudinal and height distributions of Mie biases (a, c)
and Rayleigh biases (b, d) (color scale; m s−1) in ascending (a, b)
and descending (c, d) orbits.

Rayleigh biases are as positive as +1.2 m s−1 above 10 km
and as negative as −1.2 m s−1 below 8 km. The positive bi-
ases in ascending orbits are smaller. The results indicate that
the biases vary substantially with height and orbit phase for
both Mie and Rayleigh winds. The Mie and Rayleigh bi-
ases also vary considerably with latitude (Fig. 3). Mie biases
are as positive as +1.5 m s−1 in the upper troposphere, and
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Figure 4. Density plots of global collocated (a) Mie and FV3GFS winds in the layer at ∼ 3.5 km altitude and (b) Rayleigh and FV3GFS
winds in the layer at ∼ 15 km altitude in descending orbits. The TLS analysis lines (blue), the OLS regression lines of FV3GFS winds on
Aeolus winds (red), and the OLS regression lines of Aeolus winds on FV3GFS winds (transformed and plotted as a function of Aeolus winds
in brown) are shown, with the corresponding regression coefficients displayed above each panel.

Figure 5. Density plots of global (a) Mie–FV3GFS winds in the layer at ∼ 3.5 km altitude and (b) Rayleigh–FV3GFS winds in the layer at
∼ 15 km altitude in descending orbits. The average innovation (brown dots), the OLS regression lines of the innovations on Aeolus winds
(brown), and TLS analysis lines (blue) are shown.

Rayleigh biases are as positive as +2.0 m s−1 in the tropi-
cal upper troposphere. Both Mie and Rayleigh biases are as
negative as −1.0 m s−1 in the lowest layers.

The statistical relationship between Aeolus and FV3GFS
winds is illustrated by the density plots in Fig. 4. There is a
strong correlation of 0.93 between Mie and FV3GFS winds
and of 0.96 between Rayleigh and FV3GFS winds. The av-
erage and OLS regression of the innovations as a function
of Aeolus wind suggest considerable speed-dependent biases

with both linear and nonlinear components (Fig. 5). In this
study, we focus on the estimation and correction of the linear
part of the biases using the TLS linear regression.

2.2 TLS linear regression

In this section, we review the TLS linear regression method
(Ripley and Thompson, 1987) in the context of estimating
potential speed-dependent biases. The TLS estimate for each

Atmos. Meas. Tech., 15, 3925–3940, 2022 https://doi.org/10.5194/amt-15-3925-2022



H. Liu et al.: Aeolus HLOS winds and NOAA’s Global Forecast System 3929

Figure 6. Vertical variation in the square root of the ratio of ran-
dom error variance in Mie (solid black) and Rayleigh (dashed
blue) winds versus FV3GFS winds. Results are based on global
innovations from the BASE experiment using the Hollingsworth–
Lonnberg method. The symbols are plotted at the average height of
the observations in each layer.

collocated pair of Aeolus and FV3GFS winds (yo
i , yb

i ) is de-
fined by the following:

yo
i = ŷ

o
i + ε

o
i and yb

i = ŷ
b
i + ε

b
i (i = 1,N), (1)

where ŷo
i and ŷb

i are the TLS estimates of the true Aeolus and
FV3GFS winds, εo

i and εb
i are random errors, and N is the

number of Aeolus/FV3GFS wind collocations in the sample.
The sample might be defined by a vertical layer or a latitude
band. In OLS regression, since it is assumed that there are no
errors in the predictor, the predictor can be used directly to
estimate the predictand. The situation is a little more compli-
cated in TLS regression, where (ŷb

i , ŷo
i ), the most probable

true state, is the point on the regression line that is closest in
a statistical sense to the point (yb

i , yo
i ).

Here it is assumed that εo
i and εb

i are independent
and that the random error variance ratio δ =

(
σ o/σ b)2

=

E
[
εo
i ε

o
i

]
/E
[
εb
i ε

b
i

]
is known. The error variance ratio δ is a

crucial parameter in determining the TLS bias analysis and
is estimated as described in the next section. Furthermore,
the true relationship between the Aeolus and FV3GFS winds
is assumed to be described by a linear function (as seen in
Fig. 5) as follows:

ŷo
i = c0+ c1ŷ

b
i (i = 1,N), (2)

where c0 is an offset or constant coefficient, and c1 is a speed-
dependent coefficient.

The TLS regression finds an optimal estimate of the ŷb
i ,

c0, and c1 by minimizing the cost function J , as follows:

J =
∑N

i=1

((
εo
i /σ

o)2
+

(
εb
i /σ

b
)2
)

=
1

(σ o)2

∑N

i=1

((
yo
i − c0− c1ŷ

b
i

)2

+δ
(
yb
i − ŷ

b
i

)2
)
. (3)

To determine the ŷb
i , the derivative of J with respect to ŷb

i is
set to zero, resulting in the following:

ŷb
i =

(
c1
(
yo
i − c0

)
+ δyb

i

)
/
(
c2

1 + δ
)
(i = 1,N). (4)

Equation (4) thereby reduces the problem to a minimization
in terms of c0 and c1. A similar equation holds even if the
error variances vary with i, but then there is no closed form
solution for c0 and c1 as there is in the current case, which
is known as the Deming problem (Ripley and Thompson,
1987). When the coefficients c0 and c1 are obtained, the TLS
estimate for the new or within-sample observation is given
by Eq. (4). Finally, the estimate of the bias for the kth ob-
servation, either for a new or within-sample observation, is
given by the following:

d̂k = ŷ
o
k − ŷ

b
k = c0+ (c1− 1)ŷb

k . (5)

Given the form of Eq. (5), we will refer to c0 and (c1− 1)
as the offset and speed-dependent bias coefficients, respec-
tively, hereafter.

2.3 Estimation of the random error variance ratio

In this study, errors of Aeolus winds are estimated by
the Hollingsworth–Lonnberg method (Hollingsworth and
Lonnberg, 1986; Garrett et al., 2022), which include Aeolus
instrument errors and forward modeling error and represen-
tativeness errors of the FV3GFS background at the specific
25 km horizontal resolution. The random error variance ra-
tio δ = (σ o/σ b)2 in the TLS bias analysis is estimated from
the innovations from the BASE experiment for 1–7 Septem-
ber 2019. It is assumed that there are no correlations between
the random errors of the Aeolus and FV3GFS winds and no
horizontal correlations between the random errors of Aeo-
lus winds separated by more than 90 km. These assumptions
are justified a posteriori by the reasonable error estimate of
FV3GFS background winds (Garrett et al., 2022).

Global error estimates are calculated for all Mie and
Rayleigh winds in each layer as follows. First, the spatial
covariance of the innovations is calculated. Since these are
innovations from the BASE experiment where Aeolus data
are not assimilated, it is reasonable to assume that the Aeo-
lus and FV3GFS wind errors are uncorrelated. Then the spa-
tial covariance of the innovations, (σ o−b)2, at zero separation
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Figure 7. Vertical variations in TLS bias coefficients for Mie (a–c), and Rayleigh (d–f) winds. Each point plotted represents a separate TLS
analysis for all observations in each layer for all latitudes and for either ascending (black solid) or descending (blue dashed) orbits. The
symbols are plotted at the average height of the observations in each layer.

Figure 8. Vertical distributions of average TLS estimated biases (color scale; m s−1) for Mie (a, c) and Rayleigh (b, d) winds as a function
of observed Aeolus winds (m s−1) in ascending (a, b) and descending (c, d) orbits for all latitudes. The TLS estimated biases are obtained
from the TLS fits displayed in Fig. 7.
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Figure 9. TLS estimated biases (m s−1) before (brown lines) and after (blue lines) TLS bias correction for Mie (a) and Rayleigh (b) winds
as a function of the observed Aeolus winds (m s−1), vertically averaged for all latitudes of Aeolus winds. The solid and dashed lines are for
ascending and descending orbits, respectively. The black lines report the number of Aeolus winds in each 2 m s−1 bin.

distance, is equal to the following:

(σ o−b)2 = (σ o)2+ (σ b)2, (6)

where σ o and σ b are the random error standard deviations of
Aeolus and FV3GFS winds, respectively.

By assumption, at separation distances greater than 90 km,
the innovation covariances are estimates of the FV3GFS
wind error covariance alone and can be extrapolated back
to zero separation to obtain an estimate of the error variance
of the FV3GFS winds, (σ b)2, and then, using Eq. (6), the er-
ror variance of the Aeolus winds, (σ o)2, may be determined.
Note that this can only be done using innovation covariances
at separation distances large enough to have negligible co-
variances between the Aeolus winds. Since the calculated in-
novation covariances are globally averaged over all HLOS
winds, it is not surprising that the corresponding biases are
small. The small residual biases in the innovations may in-
troduce small (< 0.1) spurious spatial correlations. This spu-
rious correlation, taken as the value calculated for the last bin
(at 990 km), is removed from the correlation curves at all sep-
aration distances. The estimated random error variance ratio
δ is assigned to the layer center height, defined as the global
average heights of the Mie and Rayleigh wind in each verti-
cal range bin. Figure 6 shows that the vertical profiles of the
square root of δ vary in the range of 1.2–1.6 for Mie winds
versus FV3GFS winds and 2–3 for Rayleigh winds versus
FV3GFS winds, respectively.

In the future, we plan to explore the benefit of the scene-
dependent L2B estimated errors on the TLS bias estimates
and Aeolus wind assimilation.

3 The TLS bias estimates

In this section, variations in the TLS bias estimates with or-
bital phase and height are examined to motivate the use of a
TLS bias correction scheme proposed in Sect. 5.

3.1 Variation in TLS bias estimates with height

The variation in the TLS solution with height and orbital
phase is described here. The TLS samples include winds at
all latitudes in each layer. The vertical distribution of the TLS
constant and speed-dependent bias analysis coefficients in
Eq. (5) is shown in Fig. 7. The speed-dependent bias coef-
ficient (c1− 1) varies substantially with height and orbital
phase. For Mie winds, this coefficient is quite large at most
heights, ranging from 3 % to 6 %, with maxima at 3 and 12–
16 km. For Rayleigh winds, this coefficient is smaller and
ranges from 1 % to 3 % in ascending orbits and 1 %–5 % in
descending orbits, with maxima around 3.5 and 16 km.

The offset bias coefficient c0 for both Mie and Rayleigh
winds also shows large variations with height and orbit, with
its value as large as ±1.0 m s−1. In general, the offset bias
coefficient is positive in upper layers and negative in lay-
ers close to the Earth’s surface, consistent with the patterns
seen in the global horizontal average of the innovations in
Fig. 2. The vertical distribution of the average TLS bias es-
timate as a function of Aeolus wind is shown in Fig. 8. The
biases vary substantially with height. Since the TLS biases
are in part dependent on speed, at most heights the biases in-
crease substantially as the magnitude of Aeolus wind speed
increases. The biases at the extreme Aeolus wind speeds
are as large as +2.5 and −1.0 m s−1 for Mie winds and
+1.5 and −1.0 m s−1 for Rayleigh winds. There are clear
speed-dependent biases in the vertical average of these bi-
ases as well (Fig. 9). The results suggest that the innovations
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Figure 10. Latitudinal variation in TLS bias coefficients for Mie (a–c) and Rayleigh (d–f) winds. Each point plotted represents a separate
TLS analysis for all observations in all vertical layers in a 10◦ latitude band for either ascending (black solid) or descending (blue dashed)
orbits. The latitude bands are centered every 10◦ from 90◦ S to 90◦ N. The symbols are plotted at the center in each latitude band. The vertical
layers are 0–16 km for Mie winds and 3–22 km for Rayleigh winds.

Figure 11. Latitudinal distributions of average TLS estimated biases (color scale; m s−1) for Mie (a, c) and Rayleigh (b, d) winds as a
function of Aeolus wind in ascending (a, b) and descending (c, d) orbits, obtained from the TLS fits displayed in Fig. 10.

Atmos. Meas. Tech., 15, 3925–3940, 2022 https://doi.org/10.5194/amt-15-3925-2022



H. Liu et al.: Aeolus HLOS winds and NOAA’s Global Forecast System 3933

Figure 12. Vertical distributions of average bias estimates (color scale; m s−1) for Mie (a, c, e) and Rayleigh (b, d, f) winds as a func-
tion of Aeolus winds using one of three methods for descending orbits for all latitudes. The methods are OLS using FV3GFS winds as a
predictor (a, b), TLS (c, d; same as the bottom panels of Fig. 8), and OLS using the average of Aeolus and FV3GFS as a predictor (e, f).

have both vertically varying and vertically averaged speed-
dependent biases.

3.2 Variation in biases with latitude

The variation in the TLS solution with latitude and orbital
phase is described here. For this purpose, the samples in-
clude all heights in each 10◦ latitude band, and the vertical
average of the error ratio δ is used. In general, the bias co-
efficients obtained are large and vary considerably with lat-
itude and orbital phase, with maxima found in the tropics
(Fig. 10). For example, the speed-dependent bias coefficient
(c1−1) for Mie winds in the tropics can be quite large, rang-
ing up to a maximum of 11 %. This coefficient is smaller for
Rayleigh winds, ranging from −1 % to 5 %, with maxima
found in the tropics. The offset bias coefficient c0 for Mie
winds also varies considerably with latitude and orbit, rang-
ing from −1.0 to +1.6 m s−1. The offset bias coefficient c0
is smaller for Rayleigh winds.

The latitudinal distribution of the average TLS bias as a
function of Aeolus wind speed is shown in Fig. 11. For both
Mie and Rayleigh winds, the average TLS biases increase
considerably at most latitudes as the magnitude of Aeolus
wind speed increases, particularly in the tropics and SH, with
extreme values of about ±1.5 m s−1.

3.3 Discussion

The results indicate that the speed-dependent bias coefficient
(c1− 1) is quite large, reaching ∼ 10 % and 5 % for Mie and
Rayleigh winds, respectively, particularly in the lower strato-
sphere and lower troposphere of the tropics. This suggests
that there exist large speed-dependent biases in the FV3GFS
and/or Aeolus winds. Given that there exist large uncertain-
ties in the FV3GFS (and ECMWF) background winds in the
tropics (see Fig. 1), it is likely that the FV3GFS background
may be a significant source of the biases, and this will re-
quire further investigation. In any case, these large speed-
dependent biases should be corrected to optimize Aeolus
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Figure 13. Vertical distributions of average TLS estimated biases (color scale; m s−1) for Mie (a, c) and Rayleigh (b, d) winds as a function
of Aeolus winds (m s−1) in the latitudinal bands centered at the Equator (a, b) and at 80 S (c, d) for the descending orbits.

Figure 14. As in Fig. 8 but for the mean innovation after the TLS bias correction is applied. For each 6 h cycle during 1–7 September 2019,
the TLS bias correction is calculated from the 28 preceding 6 h cycles.

Atmos. Meas. Tech., 15, 3925–3940, 2022 https://doi.org/10.5194/amt-15-3925-2022
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Figure 15. As in Fig. 3 but after the TLS bias correction is applied.

wind assimilation and the impact of Aeolus winds on NWP
forecasts. The large variations in the TLS bias estimates with
latitude and height guide the design of the proposed TLS bias
correction in Sect. 5.

4 Comparison to OLS regressions

Parallel OLS regressions using three different predictors of
the biases are compared with the TLS bias estimate results
presented in Sect. 3. The OLS predictors are the FV3GFS
winds, the Aeolus winds, and their average. The first two of
these OLS regressions are equivalent to OLS regressing Ae-
olus winds on FV3GFS winds and OLS regressing FV3GFS
winds on Aeolus winds. The regression lines of these two
cases are added to Fig. 4. The TLS speed-dependent coeffi-
cient (c1−1) (in Eq. 5) is 6 % and 4 % for Mie and Rayleigh
winds, respectively. However, the OLS regression of Aeolus
winds on FV3GFS winds produces considerably smaller bias
estimates, with (c1−1) estimated as 1 % and 2 % for Mie and
Rayleigh winds, respectively. On the other hand, the OLS
regression of the FV3GFS winds on Aeolus winds exhibits
much larger bias estimates relative to the TLS bias analy-
sis, with (c1− 1) estimated as 18 % and 15 % for Mie and
Rayleigh winds, respectively.

The vertical distributions of the average biases as a func-
tion of Aeolus winds are shown in Fig. 12 for the descend-
ing orbits for the following three methods: (1) OLS regres-
sion using FV3GFS winds as a predictor (top row), (2) TLS
regression (middle row, which repeats the bottom two pan-

els of Fig. 8), and (3) OLS regression using the average of
FV3GFS and Aeolus as a predictor (bottom row). The av-
erage bias estimates in the top panels are about 0.5 m s−1

smaller in magnitude in most layers compared to the mid-
dle panels. The average biases in the bottom panels are about
0.5–1.0 m s−1 in magnitude larger than the middle panels in
most layers, particularly for Rayleigh winds. The bias esti-
mates of OLS regression using Aeolus winds only as a pre-
dictor (not shown) are even larger than what is shown in the
bottom panels. The large differences in the bias estimates us-
ing the TLS and OLS regression are due to the fact that both
Aeolus and FV3GFS winds have large errors. If the predic-
tor (either Aeolus or FV3GFS winds) has very small errors,
then the OLS regressions would be close to perfect, and the
OLS and TLS regressions would give very similar results. In
such situation, the random error ratio would be either infinity
small (� 1) or infinity large (� 1). However, the Aeolus and
FV3GFS winds have considerable errors, and the actual ran-
dom error ratio is about 2–3 for the Rayleigh winds versus
FV3GFS winds and about 1.2–1.5 for the Mie winds versus
FV3GFS winds (Fig. 6). This leads to the large differences
in the OLS and TLS bias estimates. Specifically, the OLS
bias estimates using Aeolus winds as a predictor have larger
differences from the TLS estimates than the OLS estimates
using FV3GFS winds as a predictor.

5 A TLS bias correction

In this section, a TLS bias correction is proposed to opti-
mize Aeolus wind data assimilation. Because the findings in
Sect. 3 show substantial variation in the bias coefficients with
latitude, vertical layer, and orbital phase, the TLS bias co-
efficients are calculated from the winds in 19 discrete bins
of latitude (centered every 10◦ between 90◦ S to 90◦ N) for
each vertical range/layer and for ascending and descending
orbits separately. The error ratio δ shown in Fig. 6 is used
in all latitude bands for each layer. For each assimilation cy-
cle, the bias coefficients are computed by TLS regression for
the innovations in the week before the cycle (i.e., for the
previous 28 cycles). The period of 1 week provides a large
enough sample for the regression. As shown by Ripley and
Thompson (1987), the TLS solution only involves solving
a quadratic equation with coefficients given by sample sums.
Therefore, an efficient approach is to calculate and save these
sums for every cycle and accumulate them over the 28 cycles.
For each of the innovations in the assimilation cycle, val-
ues of the TLS regression coefficients c0 and c1 are linearly
interpolated to the latitude of the Aeolus observation. Sub-
sequently, the TLS estimated bias, calculated using Eq. (5),
is subtracted from the innovation. Note that the bias correc-
tion is determined by the TLS analysis solution for ŷb

k that,
in turn, is determined from the observation and background
wind, yo

k and yb
k , following Eq. (4).
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Figure 16. The summary assessment metric (SAM) overall forecast scores for AEOM and AEOT versus BASE experiments in the North
American (NA) region for day 1–7 forecasts validated at 00:00 UTC 22–28 November 2019. The scores are shown for (a) forecast parameters
of temperature (Temp), geopotential height (HGT), vector wind (Wind), relative humidity (RH), (b) lead times, and (c) the overall perfor-
mance of AEOM and AEOT. The forecasts are verified to their self-analyses. Values above 0.0 demonstrate an increase in the mean of the
normalized distribution and improvement of the forecast versus the BASE, while the shaded region represents the 95 % significance level.
The gray areas indicate the 95 % confidence level under the null hypothesis that there is no difference between experiments for this metric. In
addition, the estimated uncertainty at the 95 % level is indicated by small error bars at the ends of the color bars. In total, two normalizations
are used, i.e., the ECDF (colors) and rescaled min/max normalization (black outline). Details can be found in Hoffman et al. (2018). A value
of 0.02, for example, indicates the average normalized statistic over all statistics is better (greater) by 0.02 than BASE. Under the null hy-
pothesis that there are no differences, all SAMs would be one-half, so a 0.02 improvement can be considered a 4 % improvement (0.02/0.5)
in normalized scores.

Figure 17. The 200–1000 hPa vertically integrated water vapor transport (IVT; kg m s−1; contour) and wind vectors (m s−1; arrows) in the
day 7 forecasts, validated at 00:00 UTC on 27 (a, c, e) and on 28 (b, d, f) November 2019 for (a, b) BASE, (c, d) AEOM, (e, f) AEOT,
and (g, h) ECMWF analyses.
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The proposed scheme is applied to the Aeolus and
FV3GFS winds of the BASE experiment. As expected, the
corresponding TLS bias estimates show considerable speed-
dependent biases. For example, in the bins centered at the
Equator and 80◦ S, where the speed-dependent biases are ex-
pected to be largest based on Fig. 9, the TLS bias estimates
vary considerably with speed and are in some cases larger in
magnitude than 1.5 m s−1 at higher Aeolus wind magnitudes
(Fig. 13).

The vertical distribution of the global average of the re-
maining biases (i.e., after TLS bias correction) as a function
of Aeolus wind is shown in Fig. 14, which is in the same
format and for the same sample of observations as Fig. 8. A
comparison of these two figures reveals that most of the bi-
ases are removed by the proposed TLS bias correction. The
latitudinal variations in the biases are also corrected (Fig. 15).
In addition, the biases in the vertical average are also mostly
removed, as shown in Fig. 9.

6 Impact of the TLS bias correction on forecast skill

Several observing system experiments (OSEs) using the
NOAA global data assimilation system are performed us-
ing the Aeolus winds with and without the TLS bias correc-
tion. For the period of 2 August–16 September 2019, Gar-
rett et al. (2022) demonstrate the positive impact of Aeolus
winds on the NOAA global forecast. The largest impact is
seen in the tropical upper troposphere and lower stratosphere
where the day 1–3 wind vector forecast root mean square
error (RMSE) is reduced by up to 4 %. Specifically, the as-
similation of Aeolus impacts the steering currents ambient
to tropical cyclones, resulting in up to a 20 % reduction in
track forecast error in the eastern Pacific and Atlantic basins.
The application of TLS bias correction increases the positive
impact of Aeolus data assimilation on the forecasts.

OSE results for a 2019 record-breaking winter storm case
over the USA are reported here. On 26 November 2019, one
major storm approached the West Coast of the USA from the
eastern Pacific and produced a record-breaking low pressure
of 973 hPa and wind gust of 171 km h−1 near the Oregon/-
California border. Over the next few days, the low merged
with the subtropical jet as it tracked eastward across the USA.
The combination of cold air, moisture, and high winds pro-
duced snow blizzard conditions across the USA.

As in Garrett et al. (2022), the OSEs include the base-
line experiment (BASE) without the assimilation of Aeolus
winds, the experiment AEOM that is identical to BASE ex-
cept that Aeolus winds are assimilated, and the experiment
AEOT hat is identical to AEOM, except that it also includes
the TLS bias correction. A difference summary assessment
metric (SAM; Hoffman et al., 2018) is computed for day 1–7
forecasts in the North American (NA) region of the exper-
iments validated at 00:00 UTC on 22–28 November 2019.
The SAM illustrates the overall forecast skill by normalizing

Figure 18. The 24 h accumulated precipitation (mm) for 156 to
180 h, averaged for the forecasts validated from 12:00 UTC 26 to 28
November 2019 for (a) BASE, (b) AEOM, (c) AEOT, and (d) the
National Centers for Environmental Prediction (NCEP) precipita-
tion rain gauge data analysis.

the AC and RMSE values for each parameter (temperature,
geopotential height, wind, and relative humidity) and each
lead time. Figure 16 shows that the TLS bias correction im-
proves the impact of Aeolus winds on the forecasts of wind,
temperature, and geopotential height for day 3–7 and espe-
cially for day 5–7 lead times. The overall improvement of
Aeolus winds for AEOM and AEOT is about 4 % and 10 %,
respectively (above the 95 % significance level, Fig. 16c), il-
lustrating the usefulness of the TLS bias correction.

The vertically integrated water vapor transport (IVT) is
a useful metric in forecasting precipitation associated with
winter storms (e.g., Lavers et al., 2017). The IVTs of the day
7 forecast for the experiments validated for 00:00 UTC on
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Figure 19. The forecast skill scores for 24 h accumulated precipitation for 156 to 180 h forecasts validated from 12:00 UTC on 26–28
November 2019. The equitable threat (a) and bias score (b) are measures of the forecast skill for location and amount of precipitation,
respectively. The differences relative to the BASE and the statistical significances are shown in panels (c) and (d), respectively. The equitable
threat and bias scores closer to 1.0 indicate improved precipitation forecast skill.

27 and 28 November are shown in Fig. 17. Aeolus winds
have a strong impact on the locations and intensities of the
IVT maxima near the USA West Coast and in the Midwest.
In general, the IVTs are closer to the ECMWF analyses in
AEOT than in AEOM. As a result, Aeolus winds show strong
impact on the locations and corresponding amounts of pre-
cipitation, as seen in Fig. 18 and quantified by the equitable
threat and BIAS skill scores (https://www.wpc.ncep.noaa.
gov/rgnscr/verify.html, last access: 15 January 2022, Wang,
2014), respectively (Fig. 19). Specifically, the precipitation
amounts near the West Coast and the Midwest are much less
in AEOT than in BASE and AEOM. The precipitation in the
Midwest also shifts eastward in AEOT, compared to BASE
and AEOM (Fig. 18). The precipitation forecast skills (ver-
ified against NCEP precipitation rain gauge data analyses)
over the contiguous United States (CONUS) region, that is,
the equitable threat (location) and BIAS (amount) scores are
shown in Fig. 19. The precipitation amount is overpredicted
(BIAS score> 1.0) in both BASE and AEOM but is closer
to the analysis (BIAS score closer to 1.0) in AEOT. The
equitable threat is larger (with marginal significance level;
Fig. 19c) in AEOT than in BASE and AEOM, indicating that
the location of precipitation in the forecast is improved in

AEOT. These results suggest the potential benefit of the TLS
bias correction to precipitation forecasts.

7 Summary and conclusions

In this study, a TLS linear regression is used to optimally
estimate speed-dependent linear biases in the Aeolus inno-
vations. The Aeolus and FV3GFS winds for 1–7 September
2019 are analyzed. Clear speed-dependent linear biases for
both Mie and Rayleigh winds are found, particularly in the
lower troposphere and stratosphere of the tropics and South-
ern Hemisphere. The largest biases are about 10 % and 5 % of
FV3GFS wind speed and are as large as±2.5 and±1.5 m s−1

at high Aeolus wind magnitudes for Mie and Rayleigh winds,
respectively.

It is found that the TLS linear bias estimates are consid-
erably larger than the OLS regression of Aeolus innovations
on FV3GFS winds. However, they are much smaller than the
OLS regression on both Aeolus winds only and on the aver-
age of Aeolus and FV3GFS winds. This is more evident for
the Rayleigh winds.

The proposed TLS bias correction removes much of the
biases in the innovations before Aeolus wind assimilation.
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In a companion paper, Garrett et al. (2022) demonstrate
that the application of this TLS bias correction considerably
enhances the positive impact of Aeolus winds on NOAA
FV3GFS global and tropical cyclone forecasts for the pe-
riod of 2 August to 15 September 2019. In this study, it is
also demonstrated that the application of the TLS bias cor-
rection improves the impact of Aeolus winds on the fore-
cast of a record-breaking 2019 winter storm, including the
associated precipitation over the USA. It is expected that the
application of the TLS bias correction can improve and en-
hance Aeolus data impacts on the analysis and forecast skill
of other NWP systems. It should be noted that the proposed
TLS approach presented here might be applied to other types
of observations that have errors typically characterized as a
percentage of the observed value, including quantities related
to the concentrations or mass fractions of chemical species or
hydrometeors or quantities like radio occultation refractivity
and bending angle.
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NOAA GSI data assimilation system is publicly available from
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