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Abstract. Knowledge of air pollution sources is important
in policymaking and air pollution mitigation. Until recently,
source apportion analyses were limited and only possible
with the use of expensive regulatory-grade instruments. In
the present study we applied a two-step positive matrix fac-
torisation (PMF) receptor analysis at a background site in
Birmingham, UK using data acquired by low-cost sensors
(LCSs). The application of PMF allowed for the identifica-
tion of the sources that affect the local air quality, clearly
separating different sources of particulate matter (PM) pol-
lution. Furthermore, the method allowed for the contribution
of different air pollution sources to the overall air quality at
the site to be estimated, thereby providing pollution source
apportionment. The use of data from regulatory-grade (RG)
instruments further confirmed the reliability of the results,
as well as further clarifying the particulate matter composi-
tion and origin. Compared with the results from a previous
analysis, in which a k-means clustering algorithm was used,
a good consistency between the k means and PMF results
was found in pinpointing and separating the sources of pollu-
tion that affect the site. The potential and limitations of each
method when used with low-cost sensor data are highlighted.
The analysis presented in this study paves the way for more
extensive use of LCSs for atmospheric applications, recep-
tor modelling and source apportionment. Here, we present
the infrastructure for understanding the factors that affect air
quality at a significantly lower cost than previously possible.
This should provide new opportunities for regulatory and in-

dicative monitoring for both scientific and industrial applica-
tions.

1 Introduction

Air pollution is a major problem not only affecting human
health (Pascal et al., 2013; Rivas et al., 2021; Shiraiwa et
al., 2017; Wu et al., 2016; Zeger et al., 2008), but also caus-
ing environmental deterioration and social disparity due to its
effect on climate change (Manisalidis et al., 2020; Mannucci
and Franchini, 2017; Moore, 2009). Air pollution is typi-
cally more problematic in urban environments which have
multiple air pollution sources or locations near pollution hot
spots (Valavanidis et al., 2008, Bousiotis et al., 2021a). The
knowledge of air pollution sources is vital in understanding
the air quality at a given site as well as for policymaking
and action to improve air quality. Such knowledge was pro-
vided, until recently, by the analysis of data from expensive
regulatory-grade (RG) instruments. The use of RG instru-
ments was not extensive due to their high cost and bulky size,
limiting their use almost exclusively to scientific research. As
a result, there is limited knowledge of the sources that affect
air quality. This is in part due to the small number of de-
ployments and hence low spatial resolution of these expen-
sive instruments (Kanaroglou et al., 2005), especially in low-
and middle-income countries. In these areas, the problem of
air quality and its effect on human health is of great impor-
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tance and expected to further increase in the coming years
as a result of their rapid industrial and population growth
(Kan et al., 2009; Petkova et al., 2013). To combat this, in
the past decade, the development of low-cost sensors (LCSs)
measuring either PM or gas-phase pollutant concentrations
has intensified (Lewis et al., 2018; Penza, 2019; Popoola et
al., 2018). These LCSs are still far from being an equal alter-
native to the more expensive RG instruments. Many limita-
tions are associated with their use, with the main shortcoming
being the inconsistency of their measurements, even for sim-
ilar sensors deployed at the same site (Austin et al., 2015;
Sousan et al., 2016), either due to operational and detector
sacrifices that allow them to be inexpensive or to the ef-
fect of meteorological conditions that affect their measure-
ments (Crilley et al., 2020; Hagan and Kroll, 2020; Wang
et al., 2021). Thus, consistent calibration (Kosmopoulos et
al., 2020; De Vito et al., 2020) and data corrections (Crilley
et al., 2018; Liang et al., 2021; Vajs et al., 2021) are required
for these sensors to provide reliable measurements, although
sometimes even this is not enough (Giordano et al., 2021).
Nevertheless, these sensors have the potential to change the
state of air pollution monitoring by allowing for wider use
and better spatio-temporal coverage.

Many applications of LCSs have been found in recent
years at sites that were previously inaccessible by regulatory
instrumentation, either due to them being cost-prohibitive
(Miskell et al., 2018; Omokungbe et al., 2020; Pope et
al., 2018) or due to their physical size limitations (Jovašević-
Stojanović et al., 2015; Nagendra et al., 2019, Whitty et
al., 2022). Additionally, the use of LCSs made higher spa-
tial resolution measurements than RG instruments possi-
ble (Feinberg et al., 2019; Krause et al., 2019; Prakash et
al., 2021), thereby greatly improving the ability to measure
air quality at multiple locations of interest, even down to
the neighbourhood scale (Schneider et al., 2017; Shafran-
Nathan et al., 2019; Shindler, 2021). LCSs have been shown
to help supplement existing regulatory networks (Weissert et
al., 2020). While the applications of LCSs provided the in-
formation of the level of air quality at more sites, vital infor-
mation on air pollution sources and the environmental condi-
tions that enable or inhibit air pollution, as well as their rel-
ative contributions, is yet to be exploited by LCS data. Pope
et al. (2018), using PM ratios, managed to separate and iden-
tify the effect of major sources of pollution in several cities
in East Africa LCS data. Popoola et al. (2018) identified the
sources of pollution near Heathrow Airport, London, using
a network of LCSs. Bousiotis et al. (2021b), using k-means
clustering on PM data from both a LCS and an RG instru-
ment, showed the strengths and limitations of the sensor in
measuring particle number concentrations and used them to
identify the sources of pollution at a background site in Birm-
ingham, UK. While these studies identified many sources and
conditions that affect air quality, they provided no informa-
tion on their temporal variability and the relative contribu-
tions of different sources.

In the present study, a two-step PMF technique proposed
by Beddows and Harrison (2019), an advanced version of
a statistical method for source apportionment successfully
applied in many studies with RG instruments (Beddows
et al., 2015; Harrison et al., 2011; Hopke, 2016; Leoni et
al., 2018; Pokorná et al., 2016), is applied on data collected
from various LCSs. This provides a quantitative separation
of the different sources and their contributions to a back-
ground site located in Birmingham. Furthermore, data from
RG instruments and an aerosol chemical speciation monitor
(ACSM) were used to provide further nuance to the analysis.
This was done not only to compare the results from the two
sets, but to further characterise the sources of larger-sized
particles at the site as well. The results of the present ana-
lysis are also compared with those from a previous study
at the same site made by Bousiotis et al. (2021b) using k-
means clustering, displaying the additional information pro-
vided by the PMF as well as checking the consistency of the
results between the two methods. To the authors’ knowledge,
source apportionment with LCS data has only been attempted
previously by Hagan et al. (2019) using non-negative matrix
factorisation (a derivative version of PMF in which all com-
ponents of the data matrix are weighted equally rather than
with individual errors) on a dataset from New Delhi, India.
This study provided information about combustion and non-
combustion air pollution sources as well as their partial con-
tributions in a three-factor solution. The present work pre-
pares the ground for future use of source apportionment with
LCSs in a variety of scientific and industrial scenarios. This
will make their wider use more feasible, either as stand-alone
air pollution data sources or in combination with RG instru-
ments for increasing spatial coverage.

2 Methods

2.1 Location of the site and instruments

The measurement site is the Birmingham Air Quality Su-
persite (BAQS), located at the grounds of the University of
Birmingham (52.45◦ N, 1.93◦W) (Fig. 1). This is an urban
background site within a large residential area about 3 km
southwest of the city centre of Birmingham. For this site, PM
concentration measurements in the range 0.35 to 40 µm were
collected using an Alphasense OPC-N3 in a 10 s resolution
(averaged in 1 h resolution) for the period between 16 and
30 October 2020. Additionally, data from several LCSs were
also collected. NO, NO2 and ozone measurements were col-
lected using the Box Of Clustered Sensors (BOCS; Smith et
al., 2019) in the same time resolution, as well as black carbon
(BC) concentrations using the MA200 sensor by Magee Sci-
entific. Finally, the data for the lung-deposited surface area
(LDSA) of particles in the range of 10 nm to 10 µm, which
is found to strongly correlate with BC emissions (Lepistö et
al., 2022), were collected using a set of two Naneos Partec-
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tors by Naneos Particle Solutions GmbH. One sensor mea-
sured the surface of all particles in this size range, while
the second is placed after a catalytic stripper (Catalytic In-
struments CS015) which removes the semi-volatile particles
(Haugen et al., 2022).

Apart from the data provided directly from the sensor be-
fore the catalytic stripper, the ratio between the measure-
ments of the two Naneos Partectors was also considered ac-
cording to

LDSAratio =
LDSA after the catalytic stripper

LDSA before the catalytic stripper
. (1)

This was done to resolve whether such a configuration can
provide additional information for the origin of pollution or
the age of the pollutants in the incoming air masses, as in-
creased concentrations of semi-volatile compounds are usu-
ally associated with anthropogenic sources, especially in the
urban environment (Mahbub et al., 2011; Schnelle-Kreis et
al., 2007; Xu and Zhang, 2011). Thus, a high LDSAratio is
expected to be associated with fresher pollution, which usu-
ally has a higher content of volatile compounds (i.e. pollu-
tion sources at a close distance from the site), while lower
ratios are probably associated with either cleaner conditions
or more regional and aged pollution, with higher concentra-
tions of semi-volatile compounds, generally associated with
sources at a greater distance from the measuring site. This
specific metric was also used in our previous study (Bousio-
tis et al., 2021b), and the consistency of the results between
the two will be compared.

For better characterisation of the larger particles, the Aero-
dyne ACSM was used, providing information about its com-
position in the size range between 40 nm and 1 µm for NO−3 ,
SO2−

4 and organic content. For the comparison of the results,
data from RG instruments were also used, namely a Palas
FIDAS (for PM), a Teledyne T500U (for NOx), a Thermo
49i (for O3) and an AE33 aethalometer from Magee Scien-
tific (for BC). Comparison of the regulatory instruments and
the LCS allows consistency of the results between instrument
types to be checked. A detailed description of the operation
and more information about the sensors and instruments used
in this study can be found in Bousiotis et al. (2021b).

2.2 Positive matrix factorisation and data analysis

The PMF is a multivariate data analysis, developed by
Paatero and Tapper (1993, 1994), which is the most com-
monly used method for source apportionment and has been
applied numerous times in the field of aerosol science.
The method is a weighted least-squares technique that de-
scribes relationships among species measurements (Reff et
al., 2007). It assumes that X is a matrix of observed data,
typically either particle number size distributions (PNSDs) or
chemical composition data, and u is the known matrix of the
experimental uncertainty of X. Both X and u are of dimen-
sions n×m (where n is the number of measurements, and

m is the number of species measured). The method solves
the bilinear matrix problem X=GF+E, where F is the
unknown right-hand factor matrix (sources) of dimensions
p×m, G is the unknown left-hand factor matrix (contribu-
tions) of dimensions n×p and E is the matrix of residuals.
The problem is solved in the weighted least-squares sense:
G and F are determined so that the Euclidean norm of E di-
vided (element by element) by u is minimised. Furthermore,
the solution is constrained so that all the elements of G and F
are required to be non-negative (Paatero and Tapper, 1994).
Higher F values account for better association of the given
variable with the factor it is assigned to, while higher G val-
ues account for greater contribution of the factor at the given
time period.

In the present analysis, a combination of both PNSD and
particle composition data was used. Such a combination may
cause several shortcomings in the application of the PMF as
different types of data are used, due to the significant differ-
ence between the nature of each variable. While this could
be overcome by increasing the total weights of the primary
group of measurements (the one considered better in driving
the model), this could be problematic in the treatment and
importance of the auxiliary dataset in the model (Beddows
and Harrison, 2019). To overcome these shortcomings, the
two-step PMF method, proposed by Beddows and Harrison
(2019), was used. In the first step of the method, a part of the
dataset is PMF-analysed (i.e. composition), and a solution is
provided. The time series G values (and errors) of the solu-
tion from the first step are then used as input variables to the
second step, where they are combined with the dataset of ad-
ditional measurements (i.e. PNSD data), applying a second
PMF analysis (a flow diagram of the method used as pre-
sented by Beddows and Harrison, 2019, is found in Fig. S1
in the Supplement). In the present study, the opposite path
was considered, with the first step using the PNSD provided
by the OPC sensor and the inclusion of particle composi-
tion data in the second step. This was explicitly done for two
reasons: (1) to test the capabilities of the LCS in source ap-
portionment and (2) to connect specific PNSD profiles with
specific pollution sources. Furthermore, in the second step
of the analysis detailed in Beddows and Harrison (2019), the
explained variance of the factors from the first step was max-
imised. This directly connects the additional variables in the
second step with the PNSD profiles found in the first step,
excluding the possible factors formed with the data from the
additional LCS data. In the present study, this step in this
method was omitted, as the aim is to present the results of
the receptor model as they occur in real life using a combina-
tion of LCSs measuring both particle number concentrations
and composition.

As PMF is a descriptive model, there is no objective crite-
rion in the choice of the optimal number of factors (Paatero
et al., 2002). In all cases, several solutions were tested, and
the solution chosen was the one that provided factors with
unique properties. Solutions with additional factors provided
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Figure 1. Map of the measuring station. Imagery @2022 Bluesky, Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, The
GeoInformation Group, map data © 2022.

no extra information on additional sources; rather the addi-
tional factors separated factors that had already been found
into smaller groups with no significant covariation.

For the study site, particle number concentration data were
available from the OPC for particles of diameter < 40 µm,
but only data up to 10 µm were used. This was due to the
lack of sufficient non-zero counts in the larger-sized bins
above that size threshold, which disfavours PMF analysis
from being completed. Additionally, separate LCS data for
NO and NO2 were available from the BOCS. The NO data
showed sensible variation (which is the more important fac-
tor in the PMF analysis); however, a great number of the NO
data points had low negative values due to their very low con-
centrations, which is impossible data for the PMF algorithm.
Rather than removing the negative numbers or artificially cal-
ibrating the data upwards, we use NOx (NO + NO2) as the
variable of interest.

Finally, to avoid the increased uncertainties from the use of
unavailable data (as missing data are treated with increased
uncertainties), a time window for which all data were avail-
able was chosen. Thus, data availability is 100 %, and no spe-
cial treatment was considered for missing data.

Finally, for the present study the PMF analysis was per-
formed using the second iteration of the PMF software de-
veloped by Paatero (2004a, b). Data were analysed using
the Openair package for R (Carslaw and Ropkins, 2012),
and back trajectory data were extracted by NOAA Air
Resources Laboratory and calculated using the HYSPLIT
model (Draxler and Hess, 1998).

3 Results

3.1 General conditions at the BAQS site and overall
performance of the low-cost sensors

The measuring period (16 to 30 October 2020) was chosen
as it is a period which presented rather typical meteorologi-
cal conditions in the area and had no missing data from any
of the instruments used and because they were the last days
before the second lockdown due to COVID-19 was applied
(31 October 2020). General meteorological conditions were
rather typical for the period in Birmingham, UK. As a result,
the conditions and activities in the surrounding area found
in this period are considered almost consistent with the nor-
mal conditions at the site in the autumn season. Mean tem-
perature was 10.0± 2.5 ◦C, and mean relative humidity was
87.9±7.5 % (standard deviations are calculated using hourly
data) during the measurement period. The average wind pro-
file (Fig. S2) was also typical for the UK, with mainly south-
western winds of relatively low speed (2.1± 1.1 m s−1).

Most of the LCSs correlated well when compared to their
more expensive RG counterparts, using the Pearson correla-
tion coefficient as the measure of correlation. The OPC-N3
presented a strong correlation for PM1 (r = 0.88), though its
performance weakened with greater-sized PM (r = 0.49 for
PM2.5 and r = 0.46 for PM10). The decreasing correlation
from PM1 to PM2.5 to PM10 is likely due to greater wall
losses in the tubing for the bigger particles. Strong corre-
lations were also found from the BOCS as well, with both
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O3 and NOx concentrations presenting high r values when
compared with their respective RG instrument measurements
(0.95 and 0.82 respectively). Finally, the BC-measuring LCS
presented lower agreement with the measurements from the
RG instrument, with a Pearson correlation value of 0.40. It
is noted that in the present study the absolute performance of
the LCS is not of great importance, and thus it is not analysed
in depth. For the PMF model to present meaningful results,
the representation of the relative values and variability of the
variables is crucial instead, and this is thoroughly tested in
the present study.

3.2 First step PMF analysis (PNSD analysis)

Following the discussed methodology, a four-factor solution
was chosen for this analysis. The PNSD profiles of the factors
found are presented in Fig. S3. Due to the limited variation
of the PNSD profiles when presenting all the size bins avail-
able, making some of them appear identical (i.e. Factors 2
and 3, due to the increasing particle number concentration as
the size decreases), the smallest particle diameter size bin at
400 nm (particle diameter range between 350 and 460 nm)
was removed to better present the variation on the larger
sizes. Thus, the particle profiles without the smallest avail-
able size are presented in Fig. 2. The profiles in the range be-
tween 500 nm and 10 µm for the four factors, associated with
unique formations extracted from the method, are as follows:

– Factor 1, that presents no significant peaks in the mea-
sured range of the OPC but does show a steady increas-
ing trend with particle diameters below 1 µm;

– Factor 2, with a distinct particle diameter peak at about
2 µm;

– Factor 3, with a distinct particle diameter peak at about
2 µm and an increasing trend below 750 nm;

– Factor 4, accounting for particle diameter peaking at
about 750 nm and 1.5 µm.

3.3 Second-step PMF with LCS data (LC analysis)

The four-factor solution was also chosen in the second-step
analysis, for which the results of the first step are com-
bined with the additional particle- and gas-phase composi-
tion datasets from LCSs. The addition of more factors instead
of adding information or providing clearer associations with
the factors from the first step separated the existing factors
and their association with the particle composition data into
mixed factor groups with less significant contributions of the
variables. The association of the variables with each factor is
presented in Fig. 3, while the temporal variation of the con-
tributions G of all the factors from this analysis is presented
in Fig. 4, along with the wind profile for some periods when
each factor was dominant.

Figure 2. Particle profiles of the factors from the PMF analysis
(above 500 nm). The lines indicate the average particle count per
second for each particle size bin.

The four new factors are as follows:

LC1 (local and city centre pollution on calm condi-
tions). The LC1 is strongly associated with the first
factor from the initial PMF on the PNSD. For the pe-
riod when the contribution of this factor is higher (18
and 19 October; see Fig. 4), rather slow winds prevail
from many sectors (in this case mainly from the south-
west). This factor has higher contributions during calm
conditions and during periods with northeastern winds,
though with lower contribution (Fig. 5). It is highlighted
that northeast of the specific site is the city centre of
Birmingham, which is one of the main sources of pol-
lution, as found from a previous study (Bousiotis et
al., 2021b). Looking at the diurnal variation (Fig. S4) of
this factor, we see increased contributions during early
morning and evening hours, likely associating it with
the morning and evening rush hours. The increased con-
tributions during night-time should not be overlooked
and are probably the result of the lower boundary layer
height (BLH) during this time of the day. Additional
data analysis shows an increased association of this fac-
tor with PM1 (Fig. 3), though this association is reduced
for particles of larger sizes, further confirming the lack
of additional peaks on greater sizes. This along with
the increased association with the LDSA indicates the
presence of a large number of particles below the detec-
tion limit of the instrument. This factor is also associ-
ated with almost all the pollutants used, such as NOx ,
CO and BC, though not as strongly as factor LC3 that
is discussed below, probably associated with pollution
sources in a closer range to the measuring station, as
well as to a smaller extent with pollution from the city
centre. Its connection with air masses from the north-
east is also confirmed from the back trajectory analysis
(Fig. 6), in which the highest contributions of this factor
were found for air masses from the northeast.
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Figure 3. Contribution of the factors from the LC analysis. Grey
bars indicate the values of F, while red bars indicate the explained
variations for each variable.

LC2 (marine). This factor is strongly associated with the
fourth PNSD factor from the initial analysis (Fig. 3).
It presents relatively high association with PM, which
increases as the size increases. No other significant as-
sociation is found rather than relatively weak ones with
ozone, CO and the LDSAratio. It does not have a clear di-
urnal variation (Fig. S4), though it has slightly increased
contributions during night-time. Higher contributions
for this factor are found with south and southeastern
winds of high speed (Figs. 4 and 5). This can be seen
in Fig. 4, where the highest contributions of this factor
are associated with strong southern winds. The marine
nature of this factor is clearly highlighted through the
back trajectory analysis for this factor (Fig. 6) in which
higher contributions are mostly found with air masses
originating from the north Atlantic Ocean, while some
contributions are from southern Spain and Africa, which
may be associated with Saharan dust and pollution from
these areas.

LC3 (midday city centre and southwestern pollution).
This factor does not have any significant association
with any of the factors from the PMF analysis of the
PNSD (Fig. 3). It presents greater contributions during
the midday (Fig. S4), and it is associated with north-
eastern and southwestern winds (Fig. 5). It has high
contributions with all the pollutants included in the ana-
lysis and the LDSAratio, which points to fresher pollu-
tion (pollution sources closer to the measuring station).
Such sources of pollution in most cases are associated
with particles of sizes smaller than that measured by the
OPC, hence the lack of association with any of the fac-
tors found from the PNSD analysis. The back trajec-
tory analysis provides no clear origin for the air masses
of this factor (Fig. 6), which may indicate a relatively
smaller pollution lifetime, which is associated with in-
coming air masses from all directions.

LC4 (urban background). This factor has a rather strong
association with the second factor from the PNSD ana-
lysis and a weaker one with the third one (Fig. 3). It
does not have a clear diurnal variation (Fig. S4), and it
is mainly associated with northeastern winds (Fig. 5).
It presents weak associations with all the variables in-
putted in the PMF analysis, making it hard to distin-
guish either a source or conditions for which this factor
is enhanced. The back trajectory analysis though shows
that this factor is associated with air masses from conti-
nental Europe as well as Scandinavia (Fig. 6), which for
the UK, usually contain aged and hence typically larger
secondary PM pollutants.

3.4 Second-step PMF with RG data (RG analysis)

While the primary aim of the present study is to highlight the
capabilities of LCSs in source apportionment, the measure-
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Figure 4. Temporal variation of the contributions of the factors from the LC analysis. The wind roses refer to the wind conditions for the
corresponding periods when specific factors presented higher G contributions.

ments provided by these devices are mainly focused on gas-
phase pollutants which are in most cases associated solely
with ultrafine particles. The OPC measurements used for
this site have a particle diameter range between 400 nm and
10 µm. Thus, apart from using data from RG instruments
measuring gas-phase pollutants, it was considered sensible to
add data from an ACSM, which measures compounds associ-
ated with larger particles, such as nitrate, sulfate and organic
compounds (used in this analysis).

Some of the factors in this analysis are rather similar with
those formed from the analysis using the LCS dataset. Thus,
the RG1 factor in this analysis is mainly associated with the
first factor from the PNSD analysis in the first step (Fig. 7),
similar to that found also in LC1 (Fig. 3). The wind con-
ditions are also similar for which these factors from the
two analyses present their highest contribution (Fig. 8), as
well as their temporal variation (Fig. S5) and diurnal varia-
tion (Fig. S6). The additional information granted using the

ACSM data is the strong association of this factor with ni-
trate, and a stronger association with NOx and BC is also
found, compared to the LC analysis. This further associates
this factor with nearby sources of pollution which prevail
with low wind speeds and may associate the conditions of
this factor with the low BLH height found during that time,
though high contributions were also found for early morning
and evening hours, as in the LC analysis for the similar fac-
tor. Finally, the back trajectory analysis (Fig. 9) shows higher
contributions associated with air masses from the northeast,
further confirming its similarity with the first factor from the
LC analysis and its urban origins.

The RG2 is unique and has no association with the factors
from the PMF on PNSD data and is strongly associated only
with sulfate (Fig. 7). It does not have a clear diurnal variation
(Fig. S6) and seems to have higher contributions with south-
western winds of rather high speed and to a lesser extent with
northeasterly winds (Fig. 8). The back trajectory analysis
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Figure 5. Polar plot of the average G contributions of the factors
from the LC analysis.

(Fig. 9), while presenting few relatively high contributions
from continental Europe, mainly associates this factor with
incoming air masses from all sea origins surrounding the UK.
This is expected as the ocean is a source of sulfate-containing
compounds (for the particles at the size range measured by
the OPC), either sea-salt sulfate or marine biogenic sulfate
(Lin et al., 2012; Raes et al., 2000).

The RG3 is similar to the LC2 and is mainly associated
with the fourth factor from the PNSD analysis and to a lesser
extent with the third (Fig. 7). This factor has slightly in-
creased contributions during night-time (Fig. S6) and south
and southwestern winds (Fig. 8). It presents increased asso-
ciations with increasing PM size, though in this case it is
also strongly associated with O3. Unfortunately, no Cl or
Na data were available to further determine the marine na-
ture of this factor. The back trajectory analysis though once
again presents higher contributions with marine air masses
(Fig. 9), though some hot spots are also found from conti-
nental Europe, which probably explain to an extent the small
associations found with NOx and organic compounds from
the ACSM.

Finally, the RG4 is mainly associated with the second fac-
tor and to a lesser extent with the third from the PNSD ana-
lysis (Fig. 7). It presents higher contributions with northeast-
ern winds (Fig. 8), has an unclear diurnal variation (Fig. S6)
and presents higher contributions with air masses from con-
tinental Europe (Fig. 9), like the LC4 from the second-step
analysis. While in that analysis it was difficult to characterise
the sources for that factor, the strong association with organic
compounds found here with the addition of the ACSM data
helps in its clearer characterisation.

Figure 6. Average G contribution of the factors from the LC ana-
lysis for incoming air masses. Higher contributions indicate better
association of the given factor with the corresponding air mass ori-
gin.
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Figure 7. Variable association for the factors from the RG analysis.
Grey bars indicate the values of F, while red bars indicate the ex-
plained variations for each variable.

Figure 8. Polar plot of the average G contributions of the factors
from the RG analysis.

4 Discussion

4.1 Comparison of the results from the second-step
analysis

It should be noted that regardless of any possible similarities
between the two (second-step) analyses, a direct comparison
of the results should be conducted with great care. As dif-
ferent variables are considered, even minor differences may
result in different trends, contribution of variables and the
sources described. Regardless, the results of the two anal-
yses have great similarities, especially for specific factors
that are associated with the same particle size distribution
profiles (from the PNSD analysis), contribution of chemical
compounds and diurnal variation. Three factors were found
to have great similarities and were associated with similar
particle profiles. Specifically, these are the factors describing
the sources of particles which are either in close proximity
to the measuring station or occur with almost calm condi-
tions (Factor 1 on both analyses), the marine factor (Factor 2
on LC analysis and Factor 3 on RG analysis) and the con-
tinental factor (Factor 4 on both analyses). Looking at their
temporal contributions (Figs. 4 and S5), the first factors on
both analyses appear to consistently peak in periods when
the second set of factors (LC2 and RG3) presents lower G
contributions (and vice versa), which is expected due to the
nature of their sources. The factors on both sets though have
almost identical temporal variation of their G contributions,
regardless of the dataset. For the fourth factors on both anal-
yses, though presenting similar associations with their vari-
ables, differences are found in their temporal variations with
the addition of the ACSM data. This shows that while these
factors appear to be almost identical, small differences can
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Figure 9. Average G contribution of the factors from the RG ana-
lysis for incoming air masses. Higher contributions indicate better
association of the given factor with the corresponding air mass ori-
gin.

still be found in their temporal variation and variable associ-
ations, when different datasets are considered. Nevertheless,
the addition of the ACSM data shows a very high contribu-
tion of NO−3 in the first RG factor, SO2−

4 in the second factor
and the organic component in the fourth factor.

The remaining factor from both analyses though is com-
pletely different between the two analyses and points towards
the differences on the variables used for each. In the LC ana-
lysis, the factor formed consists of sources that are associ-
ated with fresher pollution sources. Thus, a factor with strong
associations with all the pollutants available was formed; it
was not associated with any of the PNSD formations from
the first-step analysis and presented a unique diurnal varia-
tion peaking midday. This should be expected as the parti-
cle size measured by the OPC is much larger compared to
the size of the particles these chemical compounds are usu-
ally associated with. The occurrence of this factor was prob-
ably included partially to the first and fourth factor of the RG
analysis, as these present relatively higher associations with
NOx and BC and more enhanced contributions during mid-
day hours compared to their LC analysis counterparts.

Finally, using the RG instrument data, the additional fac-
tor is associated with sulfate alone. This is a result that
was consistent, regardless of the number of factors used, ei-
ther greater or smaller. Sulfate-containing compounds have a
lower volatility compared to the other chemical compounds
used in the analysis and are relatively more stable with a
rather small seasonal variation (Utsunomiya and Wakamatsu,
1996), thus having a longer lifespan and distance of travel.
As a result, sulfate was found not to be associated with any
other chemical compound and always formed a factor of its
own (regardless of the number of factors chosen).

4.2 Comparison with the results from a previous study

Although different methodologies were used with the pre-
vious analysis for the BAQS site (Bousiotis et al., 2021b),
as well as for different time periods, many similarities were
found for the sources of particles at the site. The main source
of smaller particles at the site in the previous analysis is
found to be the city centre in the northeast, for which rela-
tively high concentrations of NOx were found. Similar is the
case in the present analysis, as for the sources found to be
associated with northeasterly winds, an association was also
found with NOx and the LDSAratio. Additionally, a source
of sulfate found with southerly winds was also confirmed in
the present study, with the association of high sulfate con-
centrations with a factor which presents higher contributions
with winds from the southern sector. While in the previous
analysis the sources responsible for this source could not be
pinpointed, in the present analysis, using a back trajectory
analysis, the sulfate factor was associated with marine parti-
cle sources from all directions. Furthermore, a factor in the
present analysis, which identifies hot spots south of the mea-
suring station with strong presence of PM of all sizes, was
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also found with the k-means analysis in the previous study,
though in that case it was more associated with the pollution
sources from that side rather than the long-range transport
found here.

These similarities are very encouraging, as even though
the analyses were made for different periods and using dif-
ferent methods, there is consistency between the results. This
means that regardless of the different seasons studied (pre-
vious analysis was performed during winter to early spring),
the sources of particles (and pollution) are relatively uniform,
without significant changes.

Additionally, the k-means method identified sets of con-
ditions that either promote or suppress the pollution at the
sites (as this can be illustrated with the variable particle con-
centrations between the clusters found from the analysis),
rather than separate sources of pollution that affect the site.
While this provides a more realistic picture of the conditions,
it makes it harder to distinguish the specific sources and their
effect in its air quality. On the other hand, the PMF not only
provides clearer separation of the sources, but the temporal
contribution of each source as well, which shows the real ex-
tent of the effect of each source of particles or pollutants, thus
achieving source apportionment rather than just the identifi-
cation of pollution sources that the k means offers. The k-
means approach identifies the effect of the sources of parti-
cles, but it also separates cleaner periods as separate clusters.
These two effects gives a more complete overall picture of
the air quality at a site. PMF could also provide this informa-
tion, but it would be more difficult to obtain looking at the
different sources and the conditions that keep them as low
contributions (this would also require a much greater num-
ber of factors).

Furthermore, due to the complexity of the clusters from
the k means, pinpointing the sources that the particles are
associated with is difficult. This is due to the clusters, being
a set of different sources and conditions rather than clearly
separated sources, not being clearly associated with distinct
wind directions, speeds or hot spots. Contrary to that, the
factors formed by the PMF present clearer association with
specific sectors, thus making it easier to define the sources
associated with them, as in the results they are presented as
hot spots within the polar plots.

The analysis of atmospheric data using either k means or
PMF is proven to provide adequate and trustworthy informa-
tion for the sources of particles and by extension of pollution
at a site, even with the sole use of LCSs, as shown in this
paper and the preceding Bousiotis et al. (2021b) paper. The
combined use of both approaches provides a clearer picture
of the different sources and their effect, as the PMF is able to
better separate and provide the effect of the sources of pol-
lution that affect the air quality at a site, and the k means
provides a more realistic representation of the conditions at a
site, by showing the combined effect of these sources. The
relative consistency of the results found between the two
analyses, even being in different time periods, is very en-

couraging and shows that the very important information of
pollution receptor modelling is viable with LCSs, providing
a much needed alternative for countries or scenarios where
the use of regulatory-grade instruments is not feasible. The
significantly lower price point of LCSs means that in addi-
tion to hyperlocal measurement of air pollution, it should
now be possible to deliver hyperlocal source apportionment
of air pollution, though as highlighted within this study, there
are some limitations for specific sources associated with pol-
lutants with certain properties. Further exploration of these
limitations and design of methodologies to overcome them
can enhance their capability and open new research and in-
dustrial abilities to pinpoint air pollution sources and subse-
quently manage them.

Finally, the LDSAratio, a variable that was introduced in
the previous analysis, was included in the present one as well.
As in the previous analysis, this ratio was found to be more
associated with fresher pollution from combustion sources
near to the measuring station, for which it has reliably per-
formed in both analyses.

5 Conclusions

To solve air quality problems and to deliver the associated
policymaking effectively, it is vital to have a methodology to
measure the sources of air pollution, and their relative impor-
tance. Historically, this has been achieved using expensive
RG instruments. The cost implications of these studies make
assessment at dense spatial resolutions limited. In this study,
data from a low-cost OPC and other LCSs, measuring gas-
phase pollutants, black carbon and the lung-deposited surface
area of particles in BAQS were analysed using the two-step
PMF analysis. Four factors were formed from this analysis
and were associated with their respective sources and to a
great extent with unique PNSD profiles. The following fac-
tors were found: a factor associated with either combustion
sources in close proximity of the measurement site or calm
conditions, a marine factor, a factor associated with midday
activities from the city centre and a more constant factor
from the northeast. The same analysis was also performed
using data from RG instruments and the same PNSD fac-
tors. This was done to evaluate the results from the low-cost
sensor analysis as well as to further characterise and clarify
the sources associated with the factors formed. Significant
agreement was found between the results of the two analy-
ses, highlighting that the LCSs are capable of carrying out
such analyses. The additional ACSM data from the second
analysis further helped in the characterisation of the compo-
sition of the particles of each factor, clarifying the sources
associated with nitrate, sulfate and organic compounds at the
site, as well as strongly associating some with unique PNSD
profiles. While in their present state, the LCSs do not pos-
sess the full capability of the RG instruments for provid-
ing high-accuracy measurements, considering the limitations
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they were found to be adequate in providing with the trends
of the particles and pollutants measured which are important
for source apportionment studies. This is done at a fraction
of the equipment cost; see Bousiotis et al. (2021b) for cost
estimates.

Furthermore, comparing the results from the PMF to those
from the k-means analysis showed the different strengths and
weaknesses of each approach. The PMF is better in pinpoint-
ing the effect of separate sources of pollution, but it is dif-
ficult to give a clear representation of the actual conditions
when each factor affects the site. The k means is not as ef-
ficient in clearly separating the different sources, but it does
provide a more realistic picture of the air quality at a site in
relation to the ambient conditions. The combined use of both
methods though provided a clearer picture for the conditions
at the site.

The methodologies developed and used in this study will
help to reliably facilitate source apportionment studies in the
future, with either the sole use of LCSs or their combination
with RG instruments. As for a given site, specific PNSD for-
mations are associated with specific conditions and sources
(Harrison et al., 2011), by creating a repository of unique
PNSDs at a site and associating them with their respective
sources; in the future the source apportionment may be done
to an extent using only PNSD profiles and meteorological
data alone. This will do much in simplifying the source ap-
portionment process, allowing for its wider application and
helping in dealing with environmental challenges, though it
can be challenging in sites with particle emissions smaller
than what the OPC can measure (e.g. vehicle exhaust emis-
sions). For this though, further testing in more diverse envi-
ronments and scenarios is needed, which, along with the an-
ticipated development of the LCS, will provide a denser and
reliable measuring network, even for countries with lower
incomes, and help reach cleaner and healthier environmental
conditions.
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