
Atmos. Meas. Tech., 15, 4091–4105, 2022
https://doi.org/10.5194/amt-15-4091-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Air pollution measurement errors: is your data fit for purpose?
Sebastian Diez1, Stuart E. Lacy1, Thomas J. Bannan2, Michael Flynn2, Tom Gardiner3, David Harrison4,
Nicholas Marsden2, Nicholas A. Martin3, Katie Read1,5, and Pete M. Edwards1

1Wolfson Atmospheric Chemistry Laboratories, University of York, York YO10 5DD, UK
2Department of Earth and Environmental Science, Centre for Atmospheric Science, School of Natural Sciences,
The University of Manchester, Manchester M13 9PL, UK
3National Physical Laboratory, Teddington TW11 0LW, UK
4Bureau Veritas UK, London E1 8HG, UK
5National Centre for Atmospheric Science, University of York, York YO10 5DD, UK

Correspondence: Sebastian Diez (sebastian.diez@york.ac.uk) and Pete M. Edwards (pete.edwards@york.ac.uk)

Received: 18 February 2022 – Discussion started: 22 February 2022
Revised: 6 May 2022 – Accepted: 16 June 2022 – Published: 13 July 2022

Abstract. When making measurements of air quality, having
a reliable estimate of the measurement uncertainty is key to
assessing the information content that an instrument is capa-
ble of providing, and thus its usefulness in a particular ap-
plication. This is especially important given the widespread
emergence of low cost sensors (LCS) to measure air qual-
ity. To do this, end users need to clearly identify the data
requirements a priori and design quantifiable success crite-
ria by which to judge the data. All measurements suffer from
errors, with the degree to which these errors impact the accu-
racy of the final data often determined by our ability to iden-
tify and correct for them. The advent of LCS has provided a
challenge in that many error sources show high spatial and
temporal variability, making laboratory derived corrections
difficult. Characterising LCS performance thus currently de-
pends primarily on colocation studies with reference instru-
ments, which are very expensive and do not offer a definitive
solution but rather a glimpse of LCS performance in specific
conditions over a limited period of time. Despite the limi-
tations, colocation studies do provide useful information on
measurement device error structure, but the results are non-
trivial to interpret and often difficult to extrapolate to future
device performance. A problem that obscures much of the
information content of these colocation performance assess-
ments is the exacerbated use of global performance metrics
(R2, RMSE, MAE, etc.). Colocation studies are complex and
time-consuming, and it is easy to fall into the temptation to
only use these metrics when trying to define the most appro-
priate sensor technology to subsequently use. But the use of

these metrics can be limited, and even misleading, restrict-
ing our understanding of the error structure and therefore the
measurements’ information content. In this work, the nature
of common air pollution measurement errors is investigated,
and the implications they have on traditional metrics and
other empirical, potentially more insightful approaches to as-
sess measurement performance. With this insight we demon-
strate the impact these errors can have on measurements, us-
ing a selection of LCS deployed alongside reference mea-
surements as part of the QUANT project, and discuss the im-
plications this has on device end use.

1 Introduction

The measurement of air pollutants is central to our ability
to both devise and assess the effectiveness of policies to im-
prove air quality and reduce human exposure (Molina and
Molina, 2004). The emergence of low-cost sensor (LCS)
based technologies means a growing number of measure-
ment devices are now available for this purpose (Morawska
et al., 2018), ranging from small low-cost devices that can
be carried on an individual’s person all the way through to
large, expensive reference and research-grade instrumenta-
tion. A key question that needs to be asked when choosing a
particular measurement technology is whether the data pro-
vided are fit for purpose (Andrewes et al., 2021; Lewis and
Edwards, 2016). In order to answer this, the user must first
clearly define the question that is to be asked of the data, and
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thus the information required. For example, a measurement
to characterise “rush hour” concentrations, or to determine if
the concentration of a pollutant exceeded an 8 h average le-
gal threshold value at a particular location would demand a
very different set of data requirements than a measurement to
determine if a change in policy had modified the average pol-
lutant concentration trend in a neighbourhood. Would the R2

or RMSE or any other global single-value metric be enough
to decide between the different devices’ options? Consider-
ations such as the origin of the performance data, type of
experiment (laboratory or colocation) (Jiao et al., 2016), the
test location (Feenstra et al., 2019) and period (i.e. duration
and/or season), the LCS and reference measurement method
(Giordano et al., 2021), measurement time resolution and
ability to capture spatial variability (Feinberg et al., 2019)
would be important factors to consider for such examples.
The measurement uncertainty is also of critical considera-
tion, as this ultimately determines the information content of
the data, and hence how it can be used (Tian et al., 2016).

All measurements have an associated uncertainty, and
even in highly controlled laboratory assessments, the true
value is not known, with any measurement error defined rel-
ative to our best estimate of the range of possible true values.
However, quantifying and representing error and uncertainty
is a challenge for a wide range of analytical fields, and often
what these concepts represent is not the same to all practi-
tioners. This results in a spectrum of definitions that take into
account the way truth, error and uncertainty are conceived
(Grégis, 2019; Kirkham et al., 2018; Mari et al., 2021). For
atmospheric measurements, assessing uncertainty is complex
and non-trivial. First, given the “true” value can never be
known, an agreed reference is needed. Second, the constantly
changing atmospheric composition means that repeat mea-
surements cannot be made and the traditional methods for
determining the random uncertainty are not applicable. Fi-
nally, a major challenge arises from the multiple sources of
error both internal and external to the sensor that can affect
a measurement. Signal responses from a non-target chemical
or physical parameter, or electromagnetic interference, are
examples of an almost limitless number of potential sources
of measurement error. In this work, we will follow the def-
initions given by the International Vocabulary of Metrol-
ogy (JCGM, 2012) for measurement error (“measured quan-
tity value minus a reference quantity value”) and for mea-
surement uncertainty (“non-negative parameter characteris-
ing the dispersion of the quantity values being attributed to
a measurand, based on the information used”). Also, when
the term “uncertainty” is used here, it is referring to “diagno-
sis uncertainty”, in contrast to “prognosis uncertainty” (see
Sayer et al., 2020 for more details).

The covariance of many of the physical and chemical pa-
rameters of the atmosphere makes accurately identifying par-
ticular sources of measurement interference or error very dif-
ficult in the real world. Unfortunately, specific laboratory ex-
periments for the characterisation of errors is complex and

very expensive, resulting in many sources of error being es-
sentially unknown for many measurement devices. The use
of imperfect error correction algorithms that are not avail-
able to the end user (e.g. in many LCS devices) makes error
identification and quantification even more complex. For this
reason, colocation experiments in relevant environments are
often the best option to assess the applicability of a given
measurement method for its intended purpose.

The mentioned difficulties in defining and quantifying un-
certainty across the full range of end-use applications of a
measurement device means that often the quoted measure-
ment uncertainty is not applicable, or in some cases not pro-
vided or provided in an ambiguous manner. This makes as-
sessing the applicability of a measurement device to a partic-
ular task difficult for users. In this work, we investigate the
nature of common air pollution measurement errors and the
implications they have on traditional goodness-of-fit metrics
and other, potentially more insightful approaches to assess
measurement uncertainty. We then use this insight to demon-
strate the impact these errors can have on measurements, us-
ing a selection of LCS deployed alongside reference mea-
surements as part of the UK Clean Air Programme funded
QUANT (Quantification of Utility of Atmospheric Network
Technologies) project, a 2-year colocation study of 26 com-
mercial LCS devices (56 gases measurements and 56 PM
(particulate matter) measurements) at multiple urban, back-
ground and roadside locations in the UK. After analysing
some of the real-life uncertainty characteristics, we discuss
the implications these have on data use.

2 Error characterisation

When characterising measurement error, in the absence of
evidence to the contrary a linear additive model is often as-
sumed. Once the analytical form of the model is defined, its
parameters aim to capture the error characteristics, and in the
case of linear models (Eq. 1), these errors are typically sepa-
rated into three types (Tian et al., 2016): (i) proportional bias
or scale error (b1), (ii) constant bias or displacement error
(b0) and (iii) random error (ε) (Tian et al., 2016). Any mea-
surement (yi , e.g from the LCS) can therefore be thought of
as a combination of the reference value (xi) and the three
error types, such that

yi = b1xi + b0+ ε . (1)

As the simplest approximation, this linear relationship for the
error characteristics is often used to correct for observed de-
viations between measurements and the agreed reference. It
is worth to note, however, that this equation assumes time-
independent error contributions and that the three error com-
ponents are not correlated, which is often not the case on both
counts (e.g. responses to non-target compounds). The param-
eter values determined for Eq. (1) are also generally only
applicable for individual instruments, potentially in specific
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environments, unless the transferability of these parameters
between devices has been explicitly demonstrated.

Figure 1 shows examples of how pure constant bias
(Fig. 1a), pure proportional bias (Fig. 1b), and pure random
noise (Fig. 1c) would look like in time series, regression,
Bland–Altman (B–A) (Altman and Bland, 1983) and relative
expanded uncertainty (REU; as defined by the GDE, 2010)
plots. In each of these ideal cases, the error plots enable the
practitioner to view the error characteristics in slightly differ-
ent ways, allowing the impacts of the observed measurement
uncertainty to be placed into the context of the data require-
ments. In this work, we will refer to them as “error types”
(in contrast to “error sources”), which is the way they are
distilled by the linear error model.

2.1 Performance indices, error structure and
uncertainty

A major challenge faced by end users of measurement de-
vices characterised using colocation studies is the non-trivial
question of how the comparisons themselves are performed
and how the data are communicated. Often single-value per-
formance metrics, such as the coefficient of determination
(R2) or root mean squared error (RMSE), are calculated be-
tween the assessed method (e.g. LCS) and an agreed refer-
ence, and the user is expected to infer an expected device
performance or uncertainty for a measurement in their ap-
plication (Duvall et al., 2016; Malings et al., 2019). When
evaluating multiple sensors during a colocation experiment,
single metrics can be a useful way to globally compare in-
struments/sensors. However, these metrics do little to com-
municate the nature of the measurement errors and the im-
pacts these errors will have in any end use application, in part
because they reduce the error down to a single value (Tian et
al., 2016). Furthermore, if a specific concentration range is of
paramount interest to the end user, these metrics are not ca-
pable of characterising the weight of noise and/or the bias ef-
fect. The R2 shows globally the dataset linearity and gives an
idea of the measurement noise. However, it is unable to dis-
tinguish whether a specific range of concentrations is more or
less linear (or more or less noisy) than another. Similarly, the
RMSE is also a very useful metric and perhaps more com-
plete than R2, as it considers both noise and bias (although
they need to be explicitly decomposed from RMSE). Never-
theless, the RMSE is an average measure (of noise and bias)
over the entire dataset under analysis. Using combinations of
simple metrics increases the information communicated but
does not necessarily make it easy to assess how the errors will
likely impact a particular measurement application. Visualis-
ing the absolute and relative measurement errors across the
concentration range (unachievable by global metrics) enables
end users to view the errors and any features (non-linearities,
step changes, etc.) that would impact the measurement but
that global metrics (and in some cases time series and/or re-
gression plots) are incapable of showing.

Unfortunately, the widespread use of a small number of
metrics as the sole method to assess measurement uncer-
tainty, without a thorough consideration of the nature of the
measurement errors, means measurement devices are often
chosen that are unable to provide data that are fit for pur-
pose. In addition, unconscious about potential flaws, users
(e.g. researchers) could communicate findings or guide de-
cision making based on results that may not justify the con-
clusions drawn from the data. Figure 2 shows three simu-
lated measurements compared with the true values. Despite
the measurements having identical R2 and RMSE values, the
time series and regression plots show that the error charac-
teristics are significantly different and would impact how the
data from such a device could viably be used.

There are multiple performance metrics that can be used
for the assessment of measurement errors and uncertainty.
Tian et al. (2016) present an excellent summary of some of
the major pitfalls of performance metrics and promote an er-
ror modelling approach as a more reliable method of uncer-
tainty quantification. These modelling approaches, however,
rely on the assumption of statistical stationarity, whereby the
statistical properties of the error are constant in the tempo-
ral and spatial domains. The presence of unknown or poorly
characterised sources of error, for example, due to interfer-
ences from other atmospheric constituents or drifts in sensor
behaviour, makes this assumption difficult to satisfy, espe-
cially when the dependencies of these errors show high spa-
tial and temporal variability. Thus, if field colocation studies
are the primary method for performance assessment, as is
the case for LCS, only through a detailed assessment of the
measurement errors across a wide range of conditions and
timescales can the uncertainty of the measurement be realis-
tically estimated.

2.2 Dealing with errors: established techniques vs.
low-cost sensors

Different approaches are available to the user to minimise the
impact of errors, generally by making corrections to the sen-
sor data. For example, in the case of many atmospheric gas
analysers, if the error is dominated by a proportional bias, a
multi-point calibration can be performed using standard ad-
ditions of the target gas. Displacement errors can be quan-
tified, and then corrected for, by sampling a gas stream that
contains zero target gas. Random errors can be reduced by
applying a smoothing filter (e.g. moving average filter, time
averaging the data), at the cost of losing some information
(Brown et al., 2008). These approaches work well for simple
error sources that, ideally, do not change significantly over
timescales from days to months. Unfortunately, more com-
plex error sources can manifest in such a way that they con-
tribute across all three error types, and also vary temporally
and spatially. For example, an interference from another gas-
phase compound could, in part, manifest as a displacement
error, based on the instrument response to its background
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Figure 1. Time series (first column), regression (second column), Bland–Altman (third column) and REU (fourth column; Data Quality
Objective (DQO) for NO2 = 25 %) plots for arbitrary examples of pure constant bias (slope= 1, intercept= 1, SDε = 0; a), pure proportional
bias (slope= 1.4, intercept= 0, SDε = 0; b) and pure random noise (slope= 1, intercept= 0, SDε = 4; c) simulated errors.

Figure 2. Time series (a) and regression (b) plots for three hypothetical instruments and a reference (1 year of data). The most used metrics
for evaluating the performance of LCS (R2 and RMSE) are identical for the systems shown, even when the errors have very different
characteristics (time resolution 1 h).
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value, and in part as a proportional bias if its concentration
correlates with the target compounds, with any short-term de-
viations from perfect correlation contributing to the random
error component. In this case, time averaging combined with
periodic calibrations and zeros would not necessarily min-
imise the error, and the user would need to employ different
tactics. One option would be to independently measure the
interferent concentration, albeit with associated uncertainty,
and then use this to derive a correction. This is feasible if a
simple and cost-effective method exists for quantifying the
interferent and its influence on the result is understood, but
can make it very difficult to separate out error sources, and
can become increasingly complex if this measurement also
suffers from other interferences.

For many measurement devices, in particular for LCS
based instruments, a major challenge is that the sources and
nature of all the errors are unknown or difficult to quan-
tify across all possible end-use applications, meaning esti-
mates of measurement uncertainty are difficult. In the case of
most established research and reference-grade measurement
techniques, comprehensive laboratory and field experiments
have been used to explore the nature of the measurement
errors (Gerboles et al., 2003; Zucco et al., 2003). Calibra-
tions have then been developed, where traceable standards
are sampled and measurement bias, both constant and pro-
portional, can be corrected for. Interferences from variables
such as temperature, humidity or other gases, have also been
identified and then either a solution engineered to minimise
their effect or robust data corrections derived. Unfortunately,
these approaches have been shown not to perform well in
the assessment of LCS measurement errors, due to the pres-
ence of multiple, potentially unknown, sensor interferences
from other atmospheric constituents (Thompson and Ellison,
2005). These significant sensitivities to constituents such as
water vapour and other gases mean laboratory-based calibra-
tions of LCS become exceedingly complex and expensive
as they attempt to simulate the true atmospheric complex-
ity, often resulting in observed errors being very different to
real-world sampling (Rai et al., 2017; Williams, 2020). This
has resulted in colocation calibration becoming the accepted
method for characterising LCS measurement uncertainties
(De Vito et al., 2020; Masson et al., 2015; Mead et al., 2013;
Popoola et al., 2016; Sun et al., 2017), where sensor devices
are run alongside traditional reference measurement systems
for a period of time, and statistical corrections are derived
to minimise the error between the two. As the true value of
a pollutant concentration cannot be known, this colocation
approach assumes all the error is in the low-cost measure-
ment. Although this assumption may often be approximately
valid (i.e. reference error variance�LCS error variance), no
measurement is absent of uncertainty and this can be trans-
ferred from one measurement to another, obscuring attempts
to identify its sources and characteristics. A further consider-
ation when the fast time–response aspect of LCS data is im-
portant is that reference measurement uncertainties are gen-

erally characterised at significantly lower reported measure-
ment frequencies (typically 1 h). This means that a high time-
resolution (e.g. 1 min) reference uncertainty must be charac-
terised in order to accurately estimate the LCS uncertainty
(requiring specific experiments and additional costs). If a
lower time-resolution reference dataset is used as a proxy,
then the natural variability timescales of the target compound
should be known and any impact of this on the reported un-
certainty caveated.

Another challenge with this approach is that, unlike tar-
geted laboratory studies, real-world colocation studies at a
single location, and for a limited time period, are not able
to expose the measurement devices to the full range of po-
tential sampling conditions. As many error sources are vari-
able, both spatially and temporally, using data generated un-
der a limited set of conditions to predict the uncertainty on
future measurements is risky. Deploying a statistical model
makes the tacit assumption that all factors affecting the tar-
get variable are captured by the model (and the dataset used
to build the model). This is very often an unrealistic demand,
and in the complex multi-faceted system that is atmospheric
chemistry, this is extremely unlikely to be tenable, resulting
in a clear potential for overfitting to the training dataset. Ul-
timately, however, these colocation comparisons with instru-
ments with a well-quantified uncertainty need to be able to
communicate a usable estimate of the information content of
the data to end users, so that devices can be chosen that are
fit for a particular measurement purpose.

3 Methods

In this work, we explore measurement errors, and their im-
pacts, using the most common single-value metrics: the co-
efficient of determination (R2), the root mean squared error
(RMSE) and the mean absolute error (MAE) (see the equa-
tion definitions in Cordero et al., 2018). To visualise the er-
ror distribution across a dataset we have also employed two
additional widely used approaches: the Bland–Altman plots
(B–A) and relative expanded uncertainty (REU).

The performance metrics provide a single value irrespec-
tive of the size of the dataset, and might appear convenient
for users when comparing across devices or datasets, but can
encourage over-reliance on the metric, often at the expense of
looking at the data in more detail or bringing an awareness
of the likely physical processes driving the error sources. On
the other hand, the use of visualisations such as B–A and
REU is complementary to the aforementioned metrics, with
the added value that the user is now more aware of how the
data look in an absolute and/or relative error space, allowing
them to distinguish some characteristics of interest. These
visualisations are indeed more laborious and the interpreta-
tion can be challenging for non-experts, but they provide ad-
ditional insights into the nature of the errors not attainable
by one or more combined performance metrics: while B–A
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plots show the noise (dispersion of the data) and the bias ef-
fect (tendency of the data) in an absolute scale, the REU can
be explicitly decomposed in the noise and bias components
(see Yatkin et al., 2022).

In order to understand how the different tools used here
show different characteristics of the error structure, some er-
rors commonly found in LCS are examined through simu-
lation studies. Subsequently, two real-world case studies are
presented: (i) LCS duplicates for NO2 and PM2.5 belonging
to the QUANT project located in two sites – the Manchester
Natural Environment Research Council (NERC) Supersite,
and the York Fishergate Automatic Urban and Rural Network
(AURN) roadside site – and (ii) a set of duplicate reference
instruments (only at Manchester Supersite). Table S1 in the
Supplement shows the research grade instrumentation used
for this study.

Visualisation tools

An ideal performance metric should be able to deliver not
only a performance index but also an idea of the uncertainty
distribution (Chai and Draxler, 2014). This is difficult to de-
liver through a simple numerical value, and easy-to-interpret
visualisations of the data are often much more useful for con-
veying multiple aspects of data performance. Figure 2 shows
the two most common data visualisation tools, the time se-
ries plot and the regression plot. In the time series plot the
instrument under analysis and the agreed reference are plot-
ted together as a function of time. This allows a user to vi-
sually assess tendencies of over or under prediction, differ-
ences in the baseline or other issues, but can be readily over-
interpreted and does not allow for easy quantification of the
observed errors. In the regression plot the data from the in-
strument under analysis are plotted against the agreed refer-
ence data. This allows for the correlation between the two
methods to be more readily interpreted, in particular any de-
viations from linearity, but gives little detail on the nature of
the errors themselves.

In contrast to the regression plot – where the measured val-
ues from the two measurements (e.g. LCS vs. Ref) are plot-
ted against each other – the Bland–Altman plot essentially
displays the difference between measurements (abscissa) as
a function of the average measurement (ordinate), enabling
more information on the nature of the error to be commu-
nicated. This direct visualisation of the absolute error ac-
knowledges that the true value is unknown and that both
measurements have errors. The B–A plot enables the easy
identification of any systematic bias between the measure-
ments or possible outliers, and is the reason B–A plots are
extensively used in analytical chemistry and biomedicine to
evaluate agreement between measurement methods (Doğan,
2018). The mean difference between the measurements, rep-
resented by the blue line in the figures, is the estimated bias
between the two observations. The spread of error values
around this average line indicates if the error shows purely

random fluctuations around this mean or if it has structure
across the observed concentration range.

In the case where all the error is assumed to be in one
of the measurements, e.g. comparing a LCS to a reference
grade measurement, there is an argument that the B–A ab-
scissa could be the agreed reference value instead of the av-
erage of two measurements. However, in this work we use the
average of the two values as per the traditional B–A analy-
sis. To illustrate the B–A interpretation, from the error model
(Eq. 1) we can derive the following equation:

yi − xi = xi (b1− 1)+ b0+ ε . (2)

From Eq. (2) it can be seen that if b1 6= 1 or if the error term
(ε) variance is non-constant (e.g. heteroscedasticity) the dif-
ference will not be normally distributed. The B–A plot (with
xi as the reference instrument results) allows a quick visual
assessment of the error distribution without the need to cal-
culate the model parameters. In case the differences are nor-
mally distributed, the “agreement interval” (usually defined
as ±2σ around the mean) will hold 95 % of the data points.
Even though the estimated limits of agreement will be biased
if the differences are not normally distributed, it can still be
a valuable indicator of agreement between the two measure-
ments.

If the ultimate goal of studying measurement errors is to
diagnose the measurement uncertainty in a particular target
measurement range, then visualising the uncertainty in pol-
lutant concentration space can be very informative. The REU
provides a relative measure of the uncertainty interval about
the measurement within which the true value can be confi-
dently asserted to lie. The abscissa in an REU plot repre-
sents the agreed reference pollutant concentration, whose er-
ror is taken into account, something not considered by the
other metrics or visualisations discussed. The REU is regu-
larly used to assess measurement compliance with the Data
Quality Objective (DQO) of the European Air Quality Direc-
tive 2008/50/EC and is mandatory for the demonstration of
equivalence of methods other than the EU reference methods.
For LCS the REU is widely used as a performance indicator
(Bagkis et al., 2021; Bigi et al., 2018; Castell et al., 2017;
Cordero et al., 2018; Spinelle et al., 2015). However, the
evaluation of this metric is perceived as arduous and cumber-
some, and it is not included in the majority of sensor studies
(Karagulian et al., 2019). There is now a new published Euro-
pean technical specification (TS) for evaluating the LCS per-
formance for gaseous pollutants (CEN/TS 17660-1:2021). It
categorises the devices into three classes according to the
DQO (class 1 for “indicative measurements”, class 2 for
“objective estimations” and class 3 for non-regulatory pur-
poses, e.g. research, education, citizen science). In the fol-
lowing sections, we use these established methods for assess-
ing measurement uncertainty, alongside simple time series
and regression plots, to explore different error sources and
their implications for air pollution measurements.
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4 Case studies

4.1 Simulated instruments

In order to investigate the impact of different origins of mea-
surement error on measurement performance, a set of simu-
lated datasets have been created. These data are derived using
real-world reference data as the true values, with the subse-
quent addition of errors of different origins to generate the
simulated measurement data. Error origins were chosen for
which examples have been described in the LCS literature.
Performance metrics along with visualisation methods are
then used to assess measurement performance.

As the complexity of the error increases, the impact of the
assumption of statistical stationarity can become more dif-
ficult to satisfy, with the magnitude of the errors becoming
less uniform across the observed concentration, and hence
spatial or time domains. Figure 3 shows examples of mod-
elled sources of errors on NO2 measurements: temperature
interference (Fig. 3a; correction model taken from Popoola
et al., 2016), a non-target gas (ozone) interference (Fig. 3b;
correction model taken from Peters et al., 2022) and thermal
electrical noise (white noise; Fig. 3c).

The above simulations show examples of how individ-
ual sources of error can impact measurement performance.
Figure S1 in the Supplement shows some more examples,
this time for different drift effects (baseline drift, tempera-
ture interference drift and instrument sensitivity drift). This
set of error origins is not exhaustive, with countless others
potentially impacting the measurement, such as those com-
ing from (i) hardware (sensor-production variability, sam-
pling, thermal effects due to materials expansion, drift due
to ageing, RTC lag, analog-to-digital conversion, electro-
magnetic interference, etc.), (ii) software (signal sampling
frequency, signal-to-concentration conversion, concept drift,
etc.), (iii) sensor technology/measurement method (selectiv-
ity, sensitivity, environmental interferences, etc.) and (iv) lo-
cal effects (spatiotemporal variation of concentrations, turbu-
lence, sampling issues, etc.).

Each error source impacts the uncertainty of the measure-
ment, which in turn impacts its ability to provide useful in-
formation for a particular task. For example, the form of
the temperature interference shown in Fig. 3a results in the
largest errors being seen at the lower NO2 values. This is
because NO2 concentrations are generally lowest during the
day, due to photolytic loss when temperatures are highest.
Thus, this device would be better suited to an end user in-
tending to assess daily peak NO2 concentration compared
with the daytime hourly exposure values, providing the en-
vironment the device was deployed in showed a similar rela-
tionship between temperature and true NO2 as that used here.
The O3 interference shown in Fig. 3b is similar, due again
to a general anti-correlation observed between ambient O3
and NO2 concentrations. This type of interference can often
be interpreted incorrectly as a proportional bias and a slope

correction applied to the data. However, this type of correc-
tion will ultimately fail as O3 concentrations are dependent
on a range of factors, such as hydrocarbon concentrations
and solar radiation, and as these change the O3 concentra-
tion relative to the NO2 concentration will change. To further
complicate matters, multiple error sources can act simultane-
ously, meaning that the majority of measurements will con-
tain multiple sources of error. Figure 4 shows a simple linear
combination of the modelled errors shown in Fig. 3, and the
impact this has on the performance metrics.

As the simulations show, the nature of the errors deter-
mines the observed effect on the measurement performance.
In an ideal situation, like those shown in Figs. 3 and 4, the
error sources would be well characterised, allowing the er-
ror to be modelled and approaches such as calibrations (for
bias) and smoothing (for random errors) employed to min-
imise the total uncertainty. Unfortunately, in scenarios where
sources of error and their characteristics are not known, mod-
elling the error becomes more difficult and a more empirical
approach to assessing the measurement performance and un-
certainty may be required. The growing use of LCS repre-
sents a particular challenge in this regard. The susceptibility
of LCS to multiple, often unknown or poorly characterised
error sources means that in order to determine if a particular
LCS is able to provide data with the required level of un-
certainty for a given task, a relevant uncertainty assessment
is required. The following section explores the uncertainty
characteristics of several LCS, with unknown error sources,
deployed alongside reference instrumentation in UK urban
environments as part of the QUANT study.

4.2 Real-world instruments

The difficulty in generating representative laboratory error
characterisation data means that for many measurement de-
vices the error sources are essentially unknown. This, com-
bined with the use of imperfect algorithms that are not avail-
able to the end user (i.e. “black-box” models) to minimise
errors, means that colocation data are often the best option
available to end users in order to assess the applicability of a
measurement method for their desired purpose. This is par-
ticularly the case for LCS air pollution measurement devices.
In this section, we show colocation data collected as part of
the UK Clean Air programme funded QUANT project and
use the tools described above to investigate the impact of the
observed errors on end use.

Figure 5 shows two colocated measurements from two dif-
ferent LCS devices: one measuring NO2 (Fig. 5a) and the
other O3 (Fig. 5b). Both measurements are compared with
colocated reference measurements at an urban background
site in the city of Manchester. Unlike the modelled instru-
ments in Sect. 4.1, the combination of error sources is un-
known in this case, and we can thus only assess the LCS
measurement performance through comparison with the ref-
erence measurements using global metrics and visual tools.
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Figure 3. Time series (first column), regression (second column, including R2, RMSE and MAE), Bland–Altman (third column) and REU
(fourth column; DQO for NO2 = 25 %) plots for temperature (a), ozone (b) and thermal electrical noise (c) modelled interferences on NO2
measurements (time resolution 1 h).

Figure 4. Time series (a), regression (b, including R2, RMSE and MAE), Bland–Altman (c) and REU (d, DQO for NO2 = 25 %) plots for
a linear combination of temperature, ozone and thermal electrical noise modelled interferences (time res 1 h).

Single-value metrics indicate an acceptable performance
for both measurements: high linearity (both R2 are higher
than 0.8) and relatively low errors (RMSE∼ 5 ppb). How-
ever, the plots present the data in a variety of ways that en-
able the user to identify patterns in the measurement errors
that would be less obvious if only global metrics were used.
For example, the NO2 sensor (LCS1 in Fig. 5a) has a non-
linear response that is almost imperceptible from the regres-
sion plot but stands out in the B–A plot. Furthermore (despite
the high R2 and relatively low RMSE), the REU plot shows
high relative errors that do not meet the class 2 DQO for
the measured concentration range. Regarding the O3 sensor
(LCS2 in Fig. 5b), the B–A plot shows two high density mea-
surement clusters, one with positive absolute errors (over-
measuring) and a larger one with negative errors (under-
measuring). These errors are the result of a step change in the

correction algorithm applied by the manufacturer and could
easily have been missed if only summary metrics and a re-
gression plot were used, especially if the density of the data
points was not coloured.

It is worth noting that these plots do not directly identify
the source of the proportional bias, with sensor response to
the target compound or another covarying compound possi-
ble, but provide information on how much it impacts the data.

Figure 6 shows three out-of-the-box PM2.5 measurements
made by two devices (LCS3 and LCS4) from the same brand
in spring (LCS3: Fig. 6a; LCS4: Fig. 6c) and in autumn
(Fig. 6b, only LCS3). The colocation shown corresponds
to two different sites: an urban background site (LCS3 in
Fig. 6a, c) and a roadside site (LCS4 in Fig. 6c).

As the regression and the B–A plots show, all LCS mea-
surements in Fig. 6 have a proportional bias compared with
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Figure 5. Time series (first column), regression (second column), Bland–Altman (third column) and REU (fourth column; NO2 Class 1
DQO= 25 % and Class 2 DQO= 75 % ; O3 Class 1 DQO= 30 % and Class 2 DQO= 75 %) plots for NO2 (a) and O3 (b) measurements by
two LCS systems of different brands in the same location and time span (Manchester Supersite, July 2021 to February 2022; time resolution
1 h). All but the time series plots have been coloured by data density. (Darker colours denote lower density and lighter colours denote higher
density.)

the reference, with the LCS over-predicting the reference val-
ues. The device at the urban background site (LCS3) shows
a dissimilar performance in spring and autumn, indicating
that the errors this device suffers are influenced differently
by local conditions in the two seasons. (All the duplicates
at the urban background show the same pattern.) While for
LCS3 during spring the errors have a more linear behaviour,
in autumn a non-linear pattern is clearly observed in the re-
gression and B–A plots. Despite the utility that single met-
rics can have in certain circumstances, the non-linear pattern
goes completely unnoticed by them: while for the two differ-
ent seasons the RMSE and MAE are almost constant, the R2

indicates a higher linearity for autumn.
A number of duplicates were deployed at both sites show-

ing a very similar performance in terms of the single metric
values but also in regard to the more visual tools (not shown
here). This internal consistency is highly desirable, espe-
cially when LCSs are to be deployed in networks, as although
mean absolute measurement error may be high, differences
between identical devices are likely to be interpretable.

Having prior knowledge of the nature of the measurement
errors allows informed experimental design prior to data col-
lection. This is key if an end user is to maximise the power
of a dataset, and the information it provides, to answer a spe-
cific question. For example, if an end user wanted to iden-
tify pollution hotspots within a relatively small geographical
area, then using a dense network of sensor devices that pos-
sess errors with both sufficiently large magnitude and vari-
ance to make quantitative comparisons with limit values dif-
ficult (possibly due to an interference from a physical param-
eter like relative humidity), but show internal consistency,

could be a viable option, providing the hotspot signal is large
enough relative to any random error magnitude.

The LCS data from the roadside location (LCS4) show sig-
nificantly lower precision than those at the urban background
site, as seen in the B–A plot. This could be caused by differ-
ences in particle properties and size distributions between the
two sites (Gramsch et al., 2021), and by the high frequency
variation of transport emissions close to the roadside site and
turbulence effects (Baldauf et al., 2009; Makar et al., 2021).
Duplicate measurements show that all sensors of this type re-
sponded similarly in this roadside environment (not shown
here), supporting the high internal consistency of this de-
vice but indicating a spatial heterogeneity in some key error
sources. It is also worth noting that the gold standard instru-
ments at the two sites are not “reference method” but “ref-
erence equivalent methods” (GDE, 2010), each using a dif-
ferent measurement technique: while an optical spectrometer
(Palas Fidas 200) is used in Manchester, the York instrument
uses a beta attenuation method (Met One BAM 1020), which
could also potentially lead to some of the observed differ-
ences. The increased apparent random variability for LCS4,
combined with the proportional bias, results in significantly
higher measurement uncertainty across the observed range,
as can be seen by the REU plots, with LCS4 never reaching
an acceptable DQO level (50 % for PM2.5). If the observed
proportional bias is corrected, the linearly bias-corrected sen-
sors (Fig. S3) show a much-improved comparison with the
reference measurement, especially LCS3∗ in autumn and
LCS4∗. (The asterisk is to indicate the LCS has been bias cor-
rected.) The error distribution for the LCS3 (autumn) shown
by the B–A plot is greatly narrowed (∼ 3 times) and now the
sensor is accomplishing the DQO below 10 µgm−3 as the
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Figure 6. Two LCS systems (LCS3 and LCS4, same brand) measuring PM2.5 (time resolution 1 h). While LCS3 is shown for the same
location (Manchester) but unfolded in two different seasons (a: April to May 2020; b: October to November 2020), LCS4 is at a different
location (c: York, April to May 2020). Time series (first column), regression (second column), Bland–Altman (third column) and REU (fourth
column; DQOPM2.5 = 50 %) plots are used to characterise the device’s error structure. All but the time series plots have been coloured by
data density. (Darker colours denote lower density and lighter colours denote higher density.)

REU plot indicates. For LCS4 the B–A plot shows an error
characteristic more dominated by random errors, and a sig-
nificant reduction in the relative uncertainty, with the REU at
10 µgm−3 decreasing from ∼ 75 % to ∼ 50 %.

As a comparison for the LCS data shown above, Fig. 7
shows two identical NO2 reference grade instruments, Tele-
dyne T200U (chemiluminescence method) at the Manchester
urban background site (Fig. 7a and b) during two differ-
ent time periods, with a Teledyne T500U (CAPS detection
method) used as the “ground truth” instrument. Instrument
“a” manifests a significant proportional bias, in contrast to
instrument “b”, but both show differences that could be non-
negligible depending on the application. The deviation ob-
served in instrument “a” was due to the cell pressure being
above specification by ∼ 20 %, unnoticed while the instru-
ment was in operation. This demonstrates the importance of
checking instrument parameters regularly in the field even if
the data appear reasonable.

As the LCS error structure is determined relative to the
performance of a reference measurement, if the reference in-
strument suffers from significant errors this will affect the
outcomes of the performance assessment, due to the assump-
tion that all the errors reside with the LCS. As Fig. 7 shows,
however, this assumption is not necessarily always valid and
potentially argues that reference instruments used in colo-
cation studies should be subject to further error character-

isation, including possible colocation with other reference
instruments. As a similar comparison of reference instru-
ments, Fig. S3 shows two ozone research grade instruments
(a Thermo 49i and a 2B).

It is worth noting that even when using reference, or ref-
erence equivalent, grade instrumentation, inherent measure-
ment errors mean that relative uncertainty, as shown in the
REU plot, increases asymptotically at lower values. This is
not unexpected but is potentially important as ambient tar-
get concentration recommendations continue to fall based on
updated health evidence (World Health Organization, 2021).

5 Discussion

The widespread use of colocation studies to assess mea-
surement device performance means many examples exist
in the LCS literature where different devices are compared
using summary metrics for field or laboratory studies (Bro-
day, 2017; Duvall et al., 2016; Hofman et al., 2022; Karag-
ulian et al., 2019; Mueller et al., 2017; Rai et al., 2017;
van Zoest et al., 2019). Although these comparisons do pro-
vide useful information, they can be misleading for end users
wanting to compare the performance of different devices, as
they are often carried out under different conditions and do
not present the data or experimental design in full. Even in
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Figure 7. Time series (first column), regression (second column), Bland–Altman (third column) and REU (fourth column; DQO for NO2 =
25 %) plots for two identical (Teledyne T200U) reference NO2 instruments (a, b) colocated at the Manchester Supersite (1 h time resolution).
The first instrument indicates the period between October and November 2020 and the second between July and August 2021. All but the
time series plots have been coloured by data density. (Darker colours denote lower density and lighter colours denote higher density.)

the case where comparisons have been done under identical
conditions, the data still need to be treated with caution, as
inevitable differences between assessment environment and
proposed application environment, as well as any changes to
instrument/sensor design or data processing, mean that past
performance does not guarantee future performance.

All measurement devices suffer from measurement errors,
many of which are potentially significant depending on the
application, with devices and their error susceptibility cov-
ering a broad spectrum. As evidenced by Fig. 7, reference
instruments are not immune from these phenomena, with the
proportional bias of one of the NOx instruments clearly af-
fecting its measurements resulting in the absolute error in-
creasing with concentration. As the requirements on mea-
surement devices continue to increase, driven in part by new
evidence supporting the reduction of air pollutant target val-
ues, the devices currently being used for a particular applica-
tion could no longer be fit for purpose in the situation where
the limit value has decreased to the point where it is small
relative to the device’s uncertainty.

Single-value performance metrics, such as R2 and RMSE,
can seem convenient when comparing multiple colocated de-
vices as they facilitate decision making when a threshold cri-
terion is defined. However, these scalar values hide important
information about the scale and/or distribution of the errors
within a dataset; graphical summaries of the measurements
themselves can offer significantly more insight into the im-
pact of measurement errors on device performance and ulti-
mate capabilities. Of particular use in air pollution measure-
ments is the ability to see how the errors manifest in rela-
tion to our best estimate of the true pollutant concentration,
as often applications have specific target pollutant concen-
tration ranges of interest. For example, the two LCS devices

shown in Fig. 5 have considerably high R2 values (0.92 and
0.84) and relatively low RMSE and MAE, but one suffering
from non-linear errors (LCS1) and the other with data com-
ing from two different calibration states (LCS2).

Errors, or combinations of errors, frequently result in vary-
ing magnitudes of the observed measurement inaccuracies
across the concentration space observed, and it is often use-
ful to assess both the absolute and relative effects of the er-
rors. By getting a more complete picture of the device perfor-
mance, decisions can be made on the effectiveness of simple
corrections, such as correcting for an apparent proportional
bias using an assumption of a linear error model. Ultimately
end users need to identify the data requirements a priori and
design quantifiable success criteria by which to judge the
data. For example, rather than just wanting to measure the
8 h average NO2, be more specific and require that this be
accurate to within 5 ppb, have demonstrated approximately
normally distributed errors in a representative environment
for the period of interest and have no statistical evidence of
deviation from a linear correlation with the reference mea-
surement over the target concentration range for the period
of interest.

A major challenge comes from complex errors, such as
interferences from other compounds or with environmental
factors, that vary temporally and/or spatially. Similar graphi-
cal techniques to those presented above can be used to iden-
tify the existence of such relationships, but correcting for
them remains a challenge. For example, the correlation be-
tween measurement errors and relative humidity could be ex-
plored by replacing the abscissa with measured relative hu-
midity in both the B–A and REU plots. This would visualise
the relationship between absolute and relative errors with rel-
ative humidity but would not be able to confirm causality.
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The complex and covarying nature of the atmosphere means
that the best way to identify a device error source is through
controlled laboratory experiments, where confounding vari-
ables can be controlled, although these experiments are often
difficult and expensive to perform in a relevant way.

This brings into question the power of colocation studies,
as they can ultimately never be performed under the exact
conditions for every intended application. The PM2.5 sensors
shown in Fig. 6 demonstrate this, as if a colocation dataset
generated at the urban background site was used to inform
a decision about the applicability of these devices to a road-
side monitoring task; but then an overly optimistic assess-
ment of the scale of the errors to be expected would be likely.
It is therefore always desirable that colocation studies be as
relevant as possible to the desired application, and this is
even more paramount in the case where the error sources are
poorly specified. For this reason, complete metadata on the
range of conditions over which a study was conducted is key
information in judging its applicability to different users.

Although there is no strict definition on what makes a de-
vice an LCS, we often make the categorisation based on the
hardware used. Standard reference measurement instruments
are generally based on well-characterised techniques devel-
oped and improved over years, based primarily on the pro-
gressive refinement of hardware (e.g. materials used for the
detection elements, electronic circuits to filter noise, refine-
ment of production methods). Although LCS sensor tech-
nologies are improving, it is interesting that many of the
significant improvements that have been made to LCS per-
formance have been through software, rather than hardware,
advances. As more colocation data are generated in different
environments, many LCS manufacturers have been able to
develop data correction algorithms that minimise the scale
of the errors that are present on the LCS hardware. This
can greatly improve the performance of LCS devices and
has been a large factor in the improvements seen in these
devices over recent years. These algorithms are, however,
inevitably imperfect and can suffer from concept drift (De
Vito et al., 2020) caused by the lack of available colocation
data over a full spectrum of atmospheric complexity. Fur-
thermore, any kind of statistical model introduces a new er-
ror source that can work in conjunction with the pre-existing
measurement errors to drastically change the observed error
characteristics, making it much more difficult for users to in-
terpret and extrapolate from colocation study performance
to intended application. If end users are to be able to make
well-informed decisions about device applicability, then in-
formation on the scale of the measurement errors, and the im-
pact of corrections made to minimise them, should be made
available. Exemplary case studies in a range of relevant envi-
ronments would also be highly valuable. Unfortunately, these
colocation data are costly to generate, meaning relevant data
often do not exist, and when they do, they are often not com-
municated in such a way that enables the user to make a fully
informed decision.

6 Conclusions

In situ measurements of air pollutants are central to our abil-
ity to identify and mitigate poor air quality. Measurement
applications are wide ranging, from assessing legal compli-
ance to quantifying the impact of an intervention. The range
of available measurement tools for key pollutants is also in-
creasingly broad, with instrument price tags spreading sev-
eral orders of magnitude. In order for a measurement device
to be of use for a particular application it must be fit for pur-
pose, with cost, usability and data quality all needing to be
considered. Understanding measurement uncertainty is key
in choosing the correct tool for the job, but in order for this
to be assessed the job needs to be fully specified a priori. The
specific data requirements of each measurement application
need to be understood and a measurement solution chosen
that is capable of providing data with sufficient information
content.

In order to aid end users in extrapolating from coloca-
tion study performance to potential performance in a specific
application, performance metrics are often used. Although
single-value performance metrics do convey some useful in-
formation about the agreement between the data from the
measurement device being assessed and the reference data,
they can often be misleading in their evaluation of perfor-
mance. This dictates a more rigorous and empirical approach
to data uncertainty assessment in order to determine if a mea-
surement is fit for purpose. The ability to assess device per-
formance across the observed concentration range, as in the
B–A and REU plots, enables an end user to make an in-
formed decision about the capabilities of a measurement de-
vice in the target concentration range. These visual tools also
help identify any simple corrections that can be applied to
improve performance. In contrast, if an end user was only
provided with a single-value metric, such as R2 or RMSE,
then there would be significantly more difficult to understand
the likely implications of the measurement uncertainties.

All measurement devices suffer from errors, which result
in deviations between the reported and true values. These er-
rors can come from a multitude of sources, with the scale of
the deviation from the true value being dependent on the na-
ture of the error. Although a known measurement uncertainty
for all applications would be ideal for end users to be able to
assess measurement device suitability for purpose, in many
cases, especially for LCS, this is not possible due to the pres-
ence of poorly characterised, or sometimes unknown, error
sources. In the absence of this, useful information on likely
measurement performance can be obtained using colocation
data compared with a measurement with a quantified uncer-
tainty. It is important that such a colocation study be car-
ried out in an environment as similar as possible to the ap-
plication environment, as the unknown nature of many error
sources means their magnitude can change significantly be-
tween different locations and/or seasons (e.g. Fig. 6). Ideally,
depending on the measurement task, the user could use the
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colocation data to model the error causes and use this to de-
velop strategies to minimise final measurement uncertainty.
Unfortunately, relevant colocation studies are often not avail-
able, and to generate the data would be prohibitively costly,
which limits the user’s ability to make a realistic assessment
of likely uncertainties. The presence of error minimisation
post-processing or calibration algorithms, which are often
complex, further complicates things. This additional uncer-
tainty is most likely to bias any performance prediction if the
end user is unaware of the purpose or scale of the data correc-
tions and their applicability to the target environmental con-
ditions. Ideally, long-term colocation datasets demonstrating
the performance of measurement hardware and software in
a range of relevant locations, over multiple seasons and car-
ried out by impartial bodies, would be available to inform
measurement solution decisions.

In order for end users to take full advantage of the ever-
increasing range of air pollution measurement devices avail-
able, the questions being asked of the data must be commen-
surate with the information content of the data. Ultimately
this information content is determined by the measurement
uncertainty. Thus, providing end users with as accurate an
estimate as possible of the likely measurement uncertainty,
in any specific application, is essential if end users are to be
able to make informed decisions. Similarly, end users must
specify the data uncertainty requirements for each specific
task if the correct tool for the job is to be identified. This re-
quirement for air quality management strategies to acknowl-
edge the capabilities of available devices, both in the setting
and monitoring of limits, will only become increasingly im-
portant as target levels continue to decrease.
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