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Abstract. Most studies on validation of satellite trace gas
retrievals or atmospheric chemical transport models assume
that pointwise measurements, which roughly represent the
element of space, should compare well with satellite (model)
pixels (grid box). This assumption implies that the field of
interest must possess a high degree of spatial homogene-
ity within the pixels (grid box), which may not hold true
for species with short atmospheric lifetimes or in the prox-
imity of plumes. Results of this assumption often lead to a
perception of a nonphysical discrepancy between data, re-
sulting from different spatial scales, potentially making the
comparisons prone to overinterpretation. Semivariogram is
a mathematical expression of spatial variability in discrete
data. Modeling the semivariogram behavior permits carry-
ing out spatial optimal linear prediction of a random pro-
cess field using kriging. Kriging can extract the spatial in-
formation (variance) pertaining to a specific scale, which in
turn translates pointwise data to a gridded space with quanti-
fied uncertainty such that a grid-to-grid comparison can be
made. Here, using both theoretical and real-world experi-
ments, we demonstrate that this classical geostatistical ap-
proach can be well adapted to solving problems in evaluating
model-predicted or satellite-derived atmospheric trace gases.
This study suggests that satellite validation procedures using
the present method must take kriging variance and satellite
spatial response functions into account. We present the com-
parison of Ozone Monitoring Instrument (OMI) tropospheric
NO2 columns against 11 Pandora spectrometer instrument
(PSI) systems during the DISCOVER-AQ campaign over
Houston. The least-squares fit to the paired data shows a low

slope (OMI= 0.76×PSI+1.18×1015 molecules cm−2, r2
=

0.66), which is indicative of varying biases in OMI. This per-
ceived slope, induced by the problem of spatial scale, dis-
appears in the comparison of the convolved kriged PSI and
OMI (0.96×PSI+ 0.66× 1015 molecules cm−2, r2

= 0.72),
illustrating that OMI possibly has a constant systematic bias
over the area. To avoid gross errors in comparisons made be-
tween gridded data vs. pointwise measurements, we argue
that the concept of semivariogram (or spatial autocorrelation)
should be taken into consideration, particularly if the field ex-
hibits a strong degree of spatial heterogeneity at the scale of
satellite and/or model footprints.

1 Introduction

Most of the literature on validation of satellite trace gas re-
trievals or atmospheric chemical transport models assumes
that geophysical quantities within a satellite pixel or a model
grid box are spatially homogeneous. Nevertheless, it has long
been recognized that this assumption can often be violated;
spatially coarse atmospheric models or satellites are often not
able to represent features, nor physical processes, transpiring
at fine spatial scales. Janjić et al. (2016) used the term rep-
resentation error to describe this complication. They posit
that this problem is a result of two combined factors: unre-
solved spatial scales and physiochemical processes. To elab-
orate on this definition, let us assume that an atmospheric
model simulating CO2 concentrations can represent the ex-
act physiochemical processes but is fed with a constant CO2
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emission rate. This model obviously cannot resolve the spa-
tial distribution of CO2 concentration because we use an un-
resolved emission input. As another example, if we know the
exact rates of CO2 emissions but use a model unable to re-
solve atmospheric dynamics, the spatial distribution of CO2
concentrations will be unrealistic due to unresolved physical
processes.

Numerous scientific studies have reported on this matter.
The simulations of short-lifetime atmospheric compounds
such as nitrogen dioxide (NO2), isoprene, formaldehyde
(HCHO), and the hydroxyl radical (OH) have been found to
be strongly sensitive to the model spatial resolution (Vinken
et al., 2011; Valin et al., 2011; Yu et al., 2016; Pan et
al., 2017a). Likewise, the performance of weather forecast
models in resolving non-hydrostatic components heavily re-
lies on both model resolution and parameterizations used.
For example, when Kendon et al. (2014), Souri et al. (2020a),
and Wang et al. (2017) defined a higher spatial resolution in
conjunction with more elaborate model physics, they were
able to more realistically simulate extreme or local weather
phenomena such as convection and sea–land breeze circula-
tion.

The spatial representation issue is not only limited to mod-
els. Satellite trace gas retrievals optimize the concentration
of trace gases and/or atmospheric states to best match the
observed radiance using an optimizer along with an atmo-
spheric radiative transfer model. This procedure requires var-
ious inputs such as surface albedo, cloud and aerosol optical
properties, and trace gas profiles, all of which come with dif-
ferent scales and representation errors. Moreover, the radia-
tive transfer model by itself has different layers of complexity
with regards to physics. A myriad of studies have reported
that satellite-derived retrievals underrepresent spatial vari-
ability whenever the prognostic inputs used in the retrieval
are spatially unresolved (e.g., Russell et al., 2011; Laughner
et al., 2018; Souri et al., 2016; Goldberg et al., 2019; Zhao
et al., 2020). Additionally, the large footprint of some sen-
sors relative to the scale of spatial variability of species in-
evitably leads to some degree of the representativity issues
(e.g., Souri et al., 2020b, Tang et al., 2021; Judd et al., 2020).
It is because of this reason that several validation studies re-
sorted to downscaling their relatively coarse satellite obser-
vations using high-resolution chemical transport models so
that they could compare them to spatially finer datasets such
as in situ measurements (Kim et al., 2018; Choi et al., 2020).
Nonetheless, their results largely arise from modeling exper-
iments which might be biased.

The validation of satellites or atmospheric models is
widely done against pointwise measurements. Mathemati-
cally, a point is an element of space. Hence, it is not meaning-
ful to associate a point with a spatial scale. If one compares
a grid box to a point sample (i.e., apples to oranges), they are
assuming that the point is the representative of the grid box.
At this point, the fundamental question is the following: can
the average of the spatial distribution of the underlying com-

pound be represented by a single value measured at a subgrid
location? This question was answered in Matheron (1963).
He advocated the notion of the semivariogram, a mathemat-
ical description of the spatial variability, which finally led to
the invention of kriging, the best unbiased linear estimator of
a random field. A kriging model can estimate a geophysical
quantity in a common grid. This is not exclusively special; a
simple interpolation method such as the nearest neighbor has
the same purpose. The power of kriging lies in the fact that it
takes the data-driven spatial variability information into ac-
count and informs an error associated with the interpolated
map. This strength not only makes kriging a relatively su-
perior model over simplified interpolation methods, but also
reflects the level of confidence pertaining to spatial hetero-
geneity dictated by both data and the semivariogram model
used through its variance (Chilès and Delfiner, 2009).

Different studies leveraged this classical geostatistical
method to map the concentrations of different atmo-
spheric compounds at very high spatial resolutions (Tadić et
al., 2017; Li et al., 2019; Zhan et al., 2018; Wu et al., 2018).
To the best of our knowledge, Swall and Foley (2009) is the
only study that used kriging for a chemical transport model
validation with respect to surface ozone. They suggested that
kriging estimation should be executed in grids rather than
discrete points. Kriging uses a semivariogram model in a
continuous form. Optimizing the kriging grid size (i.e., do-
main discretization) at which the estimation is performed
is an essence to fully obtaining the maximum spatial infor-
mation from data. Another important caveat with Swall and
Foley (2009) is that averaging discrete estimates (points) to
build grids is not applicable for remote sensing data. De-
pending on the optics and the geometry, the spatial response
function can transform from an ideal box (simple average)
to a sophisticated shape such as a super Gaussian function
(weighted average) (Sun et al., 2018). Moreover, the foot-
print of satellites is not spatially constant. We will address
these complications in this study using both theoretical and
real-world experiments.

Our paper is organized with the following sections. Sec-
tion 2 is a thorough review of the concept of the semivar-
iogram and kriging. We then provide different theoretical
cases, their uncertainty, sensitivities with respect to differ-
ence tessellation, grid size, and the number of samples. Sec-
tion 3 proposes a framework for satellite (model) validation
using sparse point measurements and elaborates on the rep-
resentation error using idealized experiments. Section 4 in-
troduces several real-world experiments.

2 Semivariogram and ordinary kriging estimator

2.1 Definition

The semivariogram is a mathematical representation of the
degree of spatial variability (or similarity) in a function de-
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scribing a regionalized geophysical quantity (f ), which is de-
fined as (Matheron, 1963)

γ (h)=
1

2V

∫ ∫ ∫
V

[
f (x+h)− f (x)

]2dV, (1)

where x is a location in the geometric fields of V , f (x) is the
value of a quantity at the location of x, and h is the vector
of distance. If discrete samples are available rather than the
continuous field, the general formula can be simplified to the
experimental semivariogram defined as

γ (h)=
1

2N(h)

∑
|xi−xj |−|h|≤ε

[
Z(xi)−Z(xj )

]2
, (2)

where Z(xi) (and Z(xj )) is discrete observations (or sam-
ples), N(h) is the number of paired observations separated
by the vector of h. The |.| operator indicates the length of a
vector. The condition of

∣∣xi − xj ∣∣−|h| ≤ ε is to allow certain
tolerance for differences in the length of the vector. For sim-
plicity, we only focus on an isotropic case, meaning we rule
out the directional (or angular) dependency in γ (h). Under
this condition, the vector of h becomes scalar (h= |h|).

If a reasonable number of samples is present, one can de-
scribe γ (h) through a regression model (e.g., Gaussian or
spherical shapes). The degree of freedom (dof) for this re-
gression is

dof=N −p, (3)

where p is the number of parameters defined in the model.
For instance, to fit a Gaussian function to the semivariogram
with three parameters (p = 3), three paired (N = 3) observa-
tions are required at minimum. Different regression models
can be used to describe γ (h) depending on the characteristic
of the quantity of interest. In this study, we will use a stable
Gaussian function:

γ (h)= a

(
1− e

−

(
h
b

)c0)
: c0 = 1.5, (4)

where a and b are fitting parameters. A non-linear
least-squares algorithm based on the Levenberg–Marquardt
method will be used to estimate the fitting parameters.

The kriging estimator predicts a value of interest over a
defined domain using a semivariogram model derived from
samples (Chilès and Delfiner, 2009). The kriging model is
defined as (Matheron, 1963)

Z(x)= Y (x)+m(x), (5)

where Y (x) is a zero-mean random function, and m(x) is a
systematic drift. If we assumem(x)= a0, the model is called
ordinary kriging. Similar to an interpolation problem, the es-
timation point (Ẑ) is determined by linearly combining n
number of samples with their weights (λj ):

Ẑ =

n∑
j=1

λjZ(xj )+ λ0, (6)

where Ẑ is the estimation, λ0 is a constant weight, xj is the
location of samples, and Z(xj ) is point data (i.e., samples).
The mean squared error of this estimation can be written as

E(Ẑ−Z0)
2
= Var

(
Ẑ−Z0

)
+

[
λ0+

(
n∑
j=1

λj − 1

)
a0

]2

, (7)

whereZ0 is point observations (Z0 = Z(xj ), j = 1,2, . . .,n),
and a0 is the mean of Z which is unknown. In order to esti-
mate the weights, we are required to minimize Eq. (7), but
this cannot be done without knowing the exact value of a0. A
solution is to assume λ0 = 0 and impose the following con-
dition:
n∑
j=1

λj = 1. (8)

This condition warrants E(Ẑ−Z0) be zero and removes the
need for the knowledge of a0. Therefore Eq. (7) can be writ-
ten as

E(Ẑ−Z0)
2
= Var

(
Ẑ−Z0

)
=

n∑
j1=1

n∑
j2=1

λj1 λj2 γ j1j2

− 2
n∑

j1=1
λj1γ j10+ γ00, (9)

where γ j1j2 is the spatial covariance between the point ob-
servations and γ j10 is the spatial covariance of between the
observations and the estimation point. The spatial covari-
ance is modeled by a semivariogram. Using the method of
Lagrange multiplier and considering the constraint on the
weights, Eq. (9) can be minimized by solving the following
problem (Chilès and Delfiner, 2009):
λ1
...

λn
µ

=

γ (x1− x1) · · · γ (xn− x1) 1

...
. . .

...
...

γ (x1− xn) · · · γ (xn− xn) 1
1 · · · 1 0


−1


γ (x1− x0)

...

γ (xn− x0)

1

 , (10)

where µ is the Lagrange parameter and x0 is the location
of estimation. The first term in the right-hand side of this
equation shows the spatial variability described by the semi-
variogram model among samples, whereas the second term
indicates the modeled variability between samples and the
estimation point. The unknowns (the left-hand side of the
equation) have a unique solution if, and only if, the semivar-
iogram model is positive definite and the samples are unique
(Chilès and Delfiner, 2009). The estimation error can be ob-
tained by
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σ 2
= E

(
Ẑ−Z0

)2
=

n∑
j=1

λjγ j0−µ. (11)

This equation is an important component in the kriging es-
timator. Not only can we estimate Z(x) given a selection of
data points, but also an uncertainty associated with such es-
timation can be provided.

2.2 Theoretical cases

2.2.1 Sensitivity to spatial variability of the field

The present section illustrates the application of ordinary
kriging for several numerical cases. Five idealized cases are
simulated in a grid of 100× 100 pixels, namely, a constant
field (C1), a ramp starting from zero in the lower left to
higher values in the upper right (C2), an intersection with
concentrated values in four corridors (C3), a Gaussian plume
placed in the center (C4), and multiple Gaussian plumes
spread over the entire domain (C5). We randomly sample 200
data points from each field as is and successively create the
semivariograms in 100 binned distances. Except C1, which
lacks a spatial variability and thus γ (h)= 0, other semivar-
iograms are fit with the stable Gaussian function. Using the
semivariogram model, we solve Eq. (10) to estimate Ẑ(x) for
each pixel (i.e., 100× 100) with the estimation errors based
on Eq. (11). Figure 1 depicts the truth field (Z(x)), semi-
variograms made from the samples, estimated values (Ẑ(x)),
difference of Z(x) and Ẑ(x), and error associated with the
estimation.

As for C1, the uniformity results in a constant semivari-
ogram leading the estimation to be identical to the truth. This
estimation signifies the unbiased characteristic of ordinary
kriging. C1 is never met in reality; however, it is possible
to assume some degree of uniformity among data restrained
to background values; a typical example of this can be seen
in the spatial distribution of a number of trace gases in pris-
tine environments such as NO2 (e.g., Wang et al., 2020) and
HCHO (Wolfe et al., 2019). Under this condition, any data
point within the field (i.e., the satellite footprint) can be as-
sumed to be representative of the spatial variability in truth.

Concerning C2, the semivariogram shows a linear shape,
meaning data points at larger distances exhibit larger dif-
ferences. Generally geophysical samples are uncorrelated at
large distances; thereby one expects the semivariogram to in-
crease more slowly as the distance increases. The steady in-
crease in γ (h) is indicative of a systematic drift in the data
invalidating the assumption of m(x)= a0. In many appli-
cations, a simple polynomial can explain m(x) and subse-
quently be subtracted from the data points. An example of
this problem is tackled by Onn and Zebker (2006); it con-
cerns the spatial variability of water vapor columns measured
by GPS signals. Onn and Zebker (2006) observed a strong

relationship between the water vapor columns and GPS alti-
tudes resulting from the vertical distribution of water vapor
in the atmosphere. Because of this complication, a physical
drift model describing the vertical dependency was fit and
removed from the measurements so that they could focus on
the horizontal fluctuations. In terms of C2, one can effort-
lessly reproduce Z(x) by fitting a three-dimensional plane to
barely three samples, indicating that the semivariogram is of
little use.

C3 is an example of an extremely inhomogeneous field
manifested in the stabilized semivariogram at a value of
γ ∼ 500, called the sill (Chilès and Delfiner, 2009), indicat-
ing insignificant information (variance) from the samples be-
yond this distance (∼ 20), called the range. Range is defined
as the separation distance at which the total variance in data is
extracted. The smaller the range is, the more heterogeneous
the samples will be. While the estimated field roughly cap-
tures the shape of the intersections, it is spatially distorted at
places with relatively sparse data points. The kriging model
error is essentially a measure of the density of information. It
converges to zero in the sample location and diverges to large
values in gaps.

C4 is a close example of a point source emitter with faint
winds and turbulence. The semivariogram exhibits a bell
shape. As samples get further from the source, the variance
diverges, stabilizes, and then sharply decreases. This is es-
sentially because many data points with low values, apart
from each other, have negligible differences. This tendency is
recognized as the hole effect, which is characterized for high
values to be systemically surrounded by low values (and vice
versa). It is possible to mask this effect by fitting a semi-
variogram model stabilizing at a certain sill (like the one in
Fig. 1). Nonetheless, if the semivariogram shows periodic
holes, the fitted model should be modified to a periodic co-
sine model (Pyrcz and Deutsch, 2003).

The last case, C5, shows a less severe case of the hole ef-
fect previously observed in C4. This is due to the presence
of more structured patterns in different parts of the domain.
The range is roughly twice as large as the previous case (C4),
denoting that there is more information (variance) among the
samples at larger distances. A number of experiments using
this particular case will be discussed in the following subsec-
tions.

2.2.2 Sensitivity to the number of samples

It is often essential to optimize the number of samples used
for kriging. The kriging estimator somewhat recognizes its
own capability at capturing the spatial variability through
Eq. (11). Thus, if the target is spatially too complex and/or
the samples are too limited, the estimator essentially informs
that Ẑ(x0) is unreliable through large variance. However,
there is a caveat; Y (x) must be a Gaussian random model
with a zero mean so that kriging can capture the statistical
distribution of Ẑ given the data points. Except this case, the
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Figure 1. First column: five theoretical fields randomly sampled with 200 points (dots), namely, a constant field (C1), a ramp starting from
zero in the lower left to higher values in the upper right (C2), an intersection with concentrated values in four corridors (C3), a Gaussian plume
placed in the center (C4), and multiple Gaussian plumes spread over the entire domain (C5). Second column: the corresponding isotropic
semivariograms computed based on Eq. (2); the red line shows the stable Gaussian fitted to the semivariogram based on the Levenberg–
Marquardt method. Third column: the kriging estimate at the same resolution of the truth (i.e., 1× 1) based on Eq. (6). Fourth column: the
difference between the estimate and the truth. Fifth column: the kriging standard error based on Eq. (11).

kriging variance can either be underestimated or overesti-
mated depending on the level of skewness of the statistical
distribution of Y (x) (Armstrong, 1994). Figure 2 shows the
kriging estimation for C5 using 5, 25, 50, 100, and 500 ran-
dom samples in the entire field. Immediately apparent is a
better description of the semivariogram when a larger num-
ber of samples is used, which in turn results in a better esti-
mation of Z(x). The optimum number of samples to repro-
duce Z(x) depends on the requirement for the relative error
(σ/Z(x)) being met at a given location.

2.2.3 Sensitivity to the tessellation of samples

A common application of kriging is to optimize the tessella-
tion of data points for a fixed number of samples to achieve
a desired precision. In real-world practices, the objective of
such optimization is very purpose-specific; for example, one
might prefer a spatial model representing a certain plume
in the entire domain. Different ways for data selection ex-
ist (e.g., Rennen, 2008), but for simplicity, we focus on four
categories: purely random, stratified random, a uniform grid,
and an optimized tessellation. Figure 3 demonstrates the es-

timation of C5 using 25 samples chosen based on those four
procedures.

Concerning the random selection, the lack of samples over
two minor plumes causes the estimation to deviate largely
from the truth. While a random selection may seem to be
practical because it is independent of the underlying spa-
tial variability, it can suffer from undersampling issues, thus
being inefficient. As a remedy, it might be advantageous to
group the domain into similar zones and randomly sample
from each, which is commonly known as stratified random
selection. We classify the domain into four zones by running
the k-mean algorithm on the magnitudes ofZ(x) (not shown)
and randomly sample six to seven points from each one (to-
tal 25). We achieve a better agreement between the estimated
field and the truth because we exploited some prior knowl-
edge (here the contrast between low and high values).

As for the uniform grid, we notice that there are fewer
data points in the semivariogram stemming from redun-
dant distances, which is indicative of correlated information.
Nonetheless, if the desired tessellation is neutral with regard
to location, meaning that all parts of the domain are of equal
scientific interest, the uniform grid is the most optimal design
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Figure 2. First column: the multi-plume case (C5) randomly sampled with a different number of samples (5, 25, 50, 100, and 500); second
column: the corresponding isotropic semivariogram; third column: the kriging estimate; fourth column: the difference between the estimate
and the truth; and fifth column: the kriging standard error.

Figure 3. The multi-plume case (C5) randomly sampled by four different sampling strategies using a constant number of samples (25).
The sampling strategies include purely random (first row), stratified random (second row), uniform grids (third row), and an optimized
tessellation proposed based on kriging (fourth row). Columns represent the truth, the isotropic semivariogram, the kriging estimate, the
difference between the estimate and the truth, and the kriging standard error.
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for the prediction of Z(x) under an ideally isotropic case. A
mathematical proof for this claim can be found in Chilès and
Delfiner (2009).

To execute the last experiment, we select 25 random sam-
ples for 1000 times and find the optimal estimation by finding
the minimum sum of |Ẑ(x0)−Z(x)|. It is worth mentioning
that the optimized tessellation is essentially a local minimum
based on 1000 kriging attempts. The optimized location of
samples seems to be more clustered over areas with large
spatial gradients. Not too surprisingly, we observe the small-
est discrepancy between the estimation and the truth.

A lingering concern over the application of these numer-
ical experiments is that the truth is assumed to be known.
The truth is never known; this means we may never exactly
know how well or poorly the kriging estimator is perform-
ing. However, it is highly unlikely for some prior understand-
ings or expectations of the truth to be absent. If this is the
case, which is rare, a uniform grid should be intuitively pre-
ferred to deliver the local estimations of average values in
uniform blocks. In contrast, if the prior knowledge is artic-
ulated by previous site visits, model predictions, theoretical
experiments, pseudo observations, or other relevant data, the
tessellation needs to be optimized.

It is important to recognize that the uncertainties associ-
ated with the prior knowledge directly affect the level of con-
fidence in the final answer. Accordingly, the prior knowledge
error should ultimately be propagated to the kriging variance.
The determination of the prior error is often done pragmat-
ically. For example, if the goal is to design the location of
thermometer sites to capture surface temperature during heat
waves using a yearly averaged map of surface temperature,
it would be wise to specify a large error with this specific
prior information to play down the proposed design. This is
primarily because the averaged map underrepresents such an
atypical case. A possible extension of this example would be
to use a weather forecast model with quantified errors ca-
pable of capturing retrospective heat waves. Although a rea-
sonable forecast in the past does not necessarily guarantee a
reasonable one in the future, it is rational to assume for the
uncertainty with a new tessellation design using the weather
model forecast to be lower than that using the averaged map.

A general roadmap for the data tessellation design is
shown in Fig. 4. As proven in Chilès and Delfiner (2009),
if the field is purely isotropic, the uniform grid is the most
intuitive sensible choice when the prior information on the
spatial variability is lacking. When the prior knowledge with
quantified errors is available, an optimum tessellation can
be achieved by running a large number of kriging models
with suitable γ (h) and picking the one yielding the minimum
difference between the prior knowledge and the estimation.
The choice of the cost function (here L1 norm) is purpose-
specific. For example, if the reconstruction of a major plume
was the goal, using a weighted cost function, geared towards
capturing the shape of plume, would be more appropriate.

2.2.4 Sensitivity to the grid size

A kriging model can estimate a geophysical quantity at a de-
sired location considering the data-driven spatial variability
information. Since the kriging model is practically in a con-
tinuous form, the desired locations can be anywhere within
the field of V . A question is whether or not it is necessary
to map the data onto a very fine grid. There is a trade-off
between the computational cost and the accuracy of the in-
terpolated map. The range of the underlying semivariogram
helps in finding the optimal solution. The greater the range is
(i.e., a more homogeneous field), the less important to map
the data in a finer grid are.

Figure 5a depicts an experiment comparing the estimates
of C2 at different grid sizes with the truth. The departure of
the estimate from the truth is rather negligible for several
coarse grids (e.g., 10× 10). The homogeneous field, mani-
fested by the large range (Fig. 1), allows for a reasonable es-
timation of Z(x) at coarse resolutions with inexpensive com-
putational costs. Figure 5b shows the same experiment but on
C5 with the optimized tessellation. As opposed to the previ-
ous experiment, the estimate substantially diverges from the
truth when increasing the grid size, suggesting that a finer
resolution should be used for fields with smaller ranges (i.e.,
heterogeneous fields).

The complexity of directly using the range for choosing
the optimal grid size arises from the fact that the level of
spatial homogeneity can vary within the domain. In fact, the
range is derived from a semivariogram model representing a
crude estimate of varying ranges occurring at various scales.
It is intuitively clear that depending on the degree of het-
erogeneity, which is spatiotemporally variable, the grid size
needs to be adaptively adjusted (Bryan, 1999). For the sake
of simplicity, but at a higher computational cost, we adopt a
numerical solution which is to first simulate on a coarse grid
and then on a finer one until the difference with respect to
the previous grid size across all pixels reaches an acceptable
value (< 1 %). We name this output (1× 1) with the opti-
mized tessellation for C5 as C5opt.

3 Comparison of points to satellite pixels

3.1 Synching the scales between the gridded field and
satellite pixels

To minimize the complications of different spatial scales be-
tween two gridded data, we first need to upscale the finer-
resolution data to match the coarse ones. In case of numerical
chemical transport or weather forecast models, the size of the
grid box is definitive. Likewise, a satellite footprint, mainly
dictated by the sensor design, the geometry, and signal-to-
noise requirements (Platt et al., 2021), is known. However,
the grid size of the kriging estimation is a variable subject to
optimization which has been discussed previously.

https://doi.org/10.5194/amt-15-41-2022 Atmos. Meas. Tech., 15, 41–59, 2022



48 A. H. Souri et al.: Dealing with spatial heterogeneity in pointwise-to-gridded-data comparisons

Figure 4. A schematic illustrating a framework for optimum sampling (tessellation) strategy. The prior knowledge refers to any data being
capable of describing our quantity of interest including site visits, theoretical models, satellite observations, and emissions.

When we compare the grid size of the kriging estimate to
that of a satellite (or a model), three situations arise: first,
the kriging spatial resolution is coarser than the satellite, a
condition occurring when either the field is homogeneous
or the field is undersampled. In situations where the field
is homogeneous (γ (h)∼= 0), it is safe to directly compare
the data points to the satellite measurements without having
to use kriging. If the undersampling is the case (see Fig. 2
with 5 samples), it is sensible to first investigate if the field
is homogeneous within the satellite footprint using differ-
ent data (if any). If the homogeneity is met, we can com-
pare two datasets either without kriging or, to match the size
of kriging grid cell, with the satellite footprint and statisti-
cally involve the kriging variance in the comparison (dis-
cussed later); nonetheless, the kriging estimate beyond the
location of samples must be used with extra caution because
their variance very quickly departs from zero to extremely
large numbers (see Fig. 1). Thus, there is a compromise be-
tween increasing the number of paired samples between two
datasets and enhancing the level of confidence in statistics.
If independent observations suggest that there might be large
heterogeneity within a satellite footprint, it is strongly ad-
vised against quantitatively comparing the points to the satel-
lite observations. Second, the number of samples is fewer
than three observations in the field, so it is in principle im-
possible to build a semivariogram. Validating a satellite un-
der this condition is prone to misinterpretation because the
spatial heterogeneity cannot be modeled. Nonetheless, if one
presumes a good degree of homogeneity within the sensor

footprint (such as very high-resolution remote sensing air-
borne data), the direct comparison of point measurements
might be possible. Third, the satellite footprint is coarser than
the kriging estimate. Under this condition, we upscale the
kriging map to match the spatial resolution of the satellite
using

Ẑc = Ẑf∗S =

∫
Ẑf(x)S(x− y)dy, (12)

where S is the spatial response function, Ẑc is the coarse krig-
ing field,< ∗> is the convolution operator, y is shift, and Ẑf
is the fine field. In discrete form we can rewrite Eq. (12) in

Ẑc[ij ] =
∑
m

∑
n

Ẑf
[
i−m,j − n

]
S[m, n], (13)

where m and n are the dimension of the response func-
tion. The mathematical formulation of S[m,n] for a num-
ber of satellites can be represented by two-dimensional super
Gaussian functions as discussed in Sun et al. (2018). Atmo-
spheric models have a uniform response to the simulated val-
ues within a grid box; therefore, S[m,n] = 1

m×n
Jm,n, where

J is the matrix of ones. In the same way, the kriging variance
should be convolved through

σ 2
c[i, j ] =

∑
m

∑
n

σ 2
f
[
i−m,j − n

]
S2
[m, n], (14)

where a superscript of 2 denotes squaring, and σ 2
c and σ 2

f are
the kriging variance matrices in the coarse and the fine grids,
respectively.
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Figure 5. Finding an optimum grid size for kriging. (a) The kriging estimates of the ramp (C2) at different grid resolutions ranging from
25× 25 pixel to 0.2× 0.2. (b) The kriging estimates of the multi-plume (C5) with optimized samples shown in Fig. 3 for different grid
resolutions. C2 is more homogeneous than C5; as a result, it is less sensitive to the resolution of the kriging estimate. The optimum grid
resolution for C2 is 10×10, whereas it is 1×1 for C5. These numbers are based on observing the negligible difference (< 1 %) between the
kriging estimate at the optimum resolution and the one computed at a finer-resolution step. We call the optimum output for C5 as C5opt.

To demonstrate the upscaling procedure, we use C5opt
(1×1) and upscale it at six grid sizes (m,m) of 5×5, 10×10,
15× 15, 20× 20, 25× 25, and 30× 30. For simplicity, we
consider S= 1

m2 Jm,m; this spatial response function results
in averaging the values in the grid boxes. Figure 6 shows the
resultant map overplotted with the samples along with the er-
ror estimation. Two tendencies from this experiment can be
identified: first, the discrepancy of the point data and Ẑ is be-
coming more noticeable as the grid size grows; this directly
speaks to the notion of the spatial representativeness; large
grid boxes are less representative of subgrid values. Second,
the gradients of the field along with the estimation error be-
come smoother primarily due to convolving the field with the
spatial response function, which acts as a low pass filter.

We further directly compare Ẑ to the samples (i.e., obser-
vations) shown in Fig. 7. We see an excellent comparison be-
tween Ẑ at 1× 1 resolution with the observations underscor-
ing the unbiasedness characteristic of the kriging estimator.
Conversely, the upscaled field gradually diverges from the
observations. This divergence is the problem of scale.

3.2 Point to pixel vs. pixel to pixel

To elaborate on the problem of scale, we design an idealized
experiment theoretically validating pseudo satellite observa-
tions against some pseudo point measurements. The pseudo
satellite observations are created by upscaling the C5 truth
(Z) to 30×30 grid footprint considering S= 1

m2 Jm,m, mean-
ing that the satellite is observing the truth but in a different
scale (Fig. S1 in the Supplement). The pseudo point measure-
ments are the ones used for C5opt. Figure 8a shows the direct
comparison of the satellite pixel with the point observations.
By ignoring the fundamental fact that these two datasets are
inherently different in nature, displaying the same geophys-
ical quantity at different scales, we observe a perceived dis-
crepancy (r2

= 0.64). The comparison suggests a wrong con-
clusion that the satellite observations are biased low. This dis-
crepancy is unrelated to any observational or physical errors,
rendering any physical interpretation of the comparison bi-
ased due to spatial-scale differences in the datasets. Figure 8b
depicts the comparison of each grid box of the upscaled krig-
ing estimate (30× 30) with that of the satellite. This direct
comparison shows a strong degree of agreement (r2

= 0.98),
shaking off the erroneous idea of directly comparing point
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Figure 6. First row: C5Opt outputs convolved with an ideal box kernel with different sizes (1× 1 up to 30× 30) overlaid by the C5Opt
optimum samples. Second row: the associated kriging errors convolved with the same kernel. The coarser the resolution is, the larger the
discrepancy between the samples and the estimates is.

Figure 7. Illustrating the problem of spatial scale: comparisons of the kriging estimates at seven different spatial scales with the samples
used for the C5opt estimation. The perceived discrepancies are purely due to the spatial representativeness.

data to gridded data when the field exhibits substantial spa-
tial heterogeneity.

Yet, the comparison misses an important point: the krig-
ing estimate is considered error-free. We attempt to incorpo-
rate the kriging variance through a Monte Carlo linear re-
gression method. Here, the goal is to find an optimal linear

fit (y = ax+ b+ ε) such that χ2
=
∑ [y−f (xi ,a,b)]2

σ 2
y+a

2σ 2
x

is min-

imized. σ 2
y and σ 2

x are the variances of y (here the satellite)
and x (the kriging variance), respectively. We set the errors
of y to zero and randomly perturb the errors of x based on
a normal distribution with zero mean and a standard devia-
tion equal to that of kriging estimate 15 000 times. The av-
erage of optimized a and b coefficients derived from each fit
is then estimated, and their deviation at the 95 % confidence
interval assuming a Gaussian distribution is determined. Fig-
ure 8b and c show the linear fit with and without considering
the kriging error estimate. The linear fit without involving
the kriging error gives a strong impression that it is nearly
perfect, following closely to the paired observations. This is
essentially explainable by the primary goal of χ2, which is to
minimize the L2 norm of residuals (y−f (xi,a,b)), portray-
ing a very optimistic picture of the satellite validation. The
linear fit considering the kriging errors is different. The un-

certainties associated with a and b are larger since x is vari-
able (shown in horizontal error bars). The optimal fit gravi-
tates towards the points with smaller standard deviations as
they impose a larger weight. The confidence in the linear fit
at higher values is lower due to their errors being large. This
fit is a more realistic portrayal of the satellite validation.

Figure 9 summarizes the general roadmap for satellite (and
model) validations against point measurements. To fit the
semivariogram with at least two parameters, we are required
to have three samples at minimum. Therefore, it is implau-
sible to derive the spatial information from the point data
where sampling is extremely sparse (< 3 samples within the
field). The only case of directly comparing point and satel-
lite pixels is when the field within satellite footprint or the
field in general is rather homogeneous, which is confirmed
by independent data/models. Having more samples allows
us to acquire some information on the spatial heterogeneity.
The information carried by the data is considered more and
more robust when increasing the number of samples. Subse-
quently, the kriging map along with its variance derived from
a reasonable semivariogram at an optimized grid resolution
should be convolved with the satellite response function so
that we can conduct an apples-to-apples comparison. A real-
world example on the satellite validation will be shown later.
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Figure 8. (a) The direct comparison of pseudo observations of a satellite observing the C5 case at 30×30 resolution vs. the 25 samples used
for C5opt. (b) Same for the y axis, but the point samples are transformed to grid boxes using kriging convolved with the satellite spatial
response function (ideal box with 30× 30 kernel size). The differences in statistics between these two experiments speak to the problem
of scale. Panel (b) ignores the kriging errors but panel (c) incorporates them using a Monte Carlo method. Note that the best linear fit has
changed, indicating that the consideration of the kriging variance is critical. MB: mean bias (point minus satellite); MAB: mean absolute
bias; RMSE: root mean square error; R2: coefficient of determination.

Figure 9. The proposed roadmap for transforming pointwise measurements to gridded data in satellite (model) validation.

4 Real-world experiments

4.1 Spatial distribution of NO2

We begin with focusing on tropospheric NO2 columns ob-
served by the TROPOMI sensor (Copernicus Sentinel data
processed by ESA and Koninklijk Nederlands Meteorol-
ogisch Instituut, KNMI, 2019; Boersma et al., 2018) at
∼ 13:30 LST. We choose NO2 primarily due to its spatial
heterogeneity (e.g., Souri et al., 2018; Nowlan et al., 2016,
2018; Valin et al., 2011; Judd et al., 2020). We oversam-
ple good-quality pixels (qa_flag> 0.75) through a physical-

based gridding approach (Sun et al., 2018) over Texas at
3×3 km2 resolution in four seasons in 2019. We extract sam-
ples by uniformly selecting the NO2 columns in the center
of each 30× 30 km2 block. The semivariogram along with
its model is calculated, and then we krige the samples. Fig-
ure 10 shows the NO2 columns map for four different sea-
sons, the semivariogram, the kriging estimates, and the dif-
ferences between the estimate and the field. High levels of
NO2 are confined to cities, indicating that the sources are
predominantly anthropogenic. Wintertime NO2 columns are
larger than summertime mainly due to meteorological con-
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ditions and the OH cycle, the major sink of NO2. All semi-
variograms exhibit the hole effect. This is because of high
values of NO2 being systematically surrounded by low val-
ues. Regardless of the season, we fit the stable Gaussian to
variances at distances smaller than 2.5◦ (∼ 275 km2). The b
parameter in Eq. (4) explaining the length scale is found to
be 0.94, 0.88, 0.71, and 0.83◦ for DJF, MAM, JJA, and SON,
respectively. These numbers strongly coincide with the sea-
sonal lifetime of NO2 (Shah et al., 2020); wintertime NO2
columns are spatially more uniform around the sources; thus,
in relative sense, they are more homogeneous (spatially cor-
related) than those in warmer seasons. On the other hand, the
shorter NOx lifetime in summer results in a steeper gradient
of NO2 concentrations. This tendency should not be gener-
alized because transport and various NOx sources including
biomass burning, soil emissions, and lightning can have large
spatiotemporal variability resulting in different length scales
at different times of a year. The differences between the krig-
ing estimate and the field show some spatial structures indi-
cating that NO2 is greatly heterogenous.

4.2 Optimized tessellation over Houston

The preceding TROPOMI data enabled us to optimize a tes-
sellation of ground-based point spectrometers over Houston.
Our goal here is to propose an optimized network for win-
ter 2021 given our knowledge on the spatial distribution of
NO2 columns in winter 2019 measured by TROPOMI. The
assumption of using a retrospective NO2 field for inform-
ing a hypothetical future campaign is not entirely unrealistic.
If we have a consistent number of pixels from TROPOMI
between two years, it is unlikely for the spatial variance of
NO2 to be substantially different for the same season. We
follow the framework proposed in Sect. 2.2.3 involving ran-
domly selecting samples from the field (for 50 000 iteration)
and calculating kriging estimates for a given number of spec-
trometers. We then choose the optimum tessellation based on
the minimum sum of |Ẑ (x0)−Z(x)|.

Figure 11 shows the optimized tessellation given 5, 10, 15,
and 20 spectrometers over Houston. The Houston plume is
better represented with more samples being used. All cases
share the same feature; the optimized samples are clustered
in the proximity or within the plume. This tendency is clearly
intuitive. We are required to place the spectrometers in loca-
tions where a substantial gradient (variance) in the field is
expected. The difference between the kriging estimate and
the TROPOMI observations using 20 samples does not sub-
stantially differ in comparison to the one using 15 samples.
Therefore, to keep the cost low, a preferable strategy is to
keep the number of spectrometers as low as possible while
achieving a reasonable accuracy. Based on the presented re-
sults, the optimized tessellation using 15 samples is preferred
among others because it achieves roughly the same accuracy
as the one with 20 samples.

4.3 Validating OMI tropospheric NO2 columns during
the DISCOVER-AQ 2013 campaign using Pandora

In order to understand ozone pollution (e.g., Mazzuca et
al., 2016; Pan et al., 2017b, 2015), characterize anthro-
pogenic emissions (Souri et al., 2016, 2018), and validate
satellite data (Choi et al., 2020), an intensive air quality
campaign was carried out in September 2013 over Hous-
ton (DISCOVER-AQ). The campaign encompassed a large
suite of Pandora spectrometer instrument (PSI) (11 sta-
tions) measuring total NO2 columns with a high precision
(2.7× 1014 molecules cm−2) and a moderate nominal accu-
racy (2.7× 1015 molecules cm−2) under the clear-sky con-
dition (Herman et al., 2009). We remove the observations
with an error of > 0.05 DU, contaminated by clouds, and
averaged them over the month of September at 13:30 LST
(±30 min). We attempt to validate OMI tropospheric NO2
columns version 3.0 (Bucsela et al., 2013) refined in Souri
et al. (2016) with the 4 km model profiles. The OMI sen-
sor resolution varies from 13× 34 km2 at nadir to ∼ 40×
160 km2 at the edge of the scan line. Biased pixels were re-
moved based on cloud fraction> 0.2, terrain reflectivity>
0.3, and main (xtrack) quality flags= 0. Following Sun et
al. (2018), we oversample high-quality pixels in the month
of September 2013 over Houston at 0.2× 0.2◦ resolution.
To remove the stratospheric contributions from PSI mea-
surements, we subtract OMI stratospheric NO2 (2.8±0.16×
1015 molecules cm−2) from the total columns over the area.
Figure 12 shows the monthly-averaged tropospheric NO2
columns measured by OMI overplotted by 11 PSIs. The ele-
vated NO2 levels (up to∼ 6×1015 molecules cm−2) are seen
over the center of Houston.

We then follow the validation framework shown in Fig-
ure 9 in which the number of point measurements and the
level of heterogeneity are the main factors in deciding if
we should directly compare them to the satellite pixels. Fig-
ure 13 shows the monthly-averaged PSI measurements along
with the semivariogram and resulting kriging estimate at an
optimized resolution (∼ 2km2

= 13800 data over the entire
region) and errors. The distribution of the semivariogram
suggests that there is a strong degree of spatial heterogeneity,
necessitating the use of kriging. We fit a stable Gaussian to
the semivariogram, resulting in 2.23×

(
1− e−(

h
0.19 )

1.5
)

. The
spatial information (variance) levels off at 0.19◦ (∼ 21 km),
with a maximum variance equal to 2.23 molecules2 cm−4.
The measurements beyond this range (21 km) have a min-
imal weight due to this length scale. It is because of this
reason that we see the kriging estimate converges to a fixed
value at places being further than this range. The kriging er-
rors of those grid boxes are constantly large (40 % relative er-
ror). The optimum grid size for kriging is found to be 2 km2

(< 1 % difference across all grid boxes). Subsequently, we
use the super Gaussian spatial response function described
in Sun et al. (2018) to convolve both the kriging estimate and
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Figure 10. First column: the spatial distribution of TROPOMI tropospheric NO2 columns oversampled in four different seasons in 2019
at 3× 3 km2 spatial resolution. Second column: the corresponding semivariogram from samples selected from uniform 30× 30 km2 blocks
(shown with black dots in the first column) along the fitted stable Gaussian model (red line). Third column: the kriging estimates. Fourth
column: the kriging estimates’ differences with respect to the observations.

Figure 11. Finding an optimum sample tessellation for wintertime over Houston given a different number of spectrometers (5, 10, 15, and
20).
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Figure 12. The spatial distribution of OMI tropospheric NO2
columns oversampled at the resolution at 0.2× 0.2◦ over Hous-
ton in September 2013. The plot is overlaid by the surface Pan-
dora spectrometer instrument averaged over the same month. The
surface measurements originally measured the total columns; there-
fore, we subtract the stratospheric columns provided by the OMI
data (2.8± 0.16× 1015 molecules cm−2) from the total columns to
focus on the tropospheric part.

error within (see Fig. S2). Figure 14 shows the differences
between the kriging estimate and error before and after con-
volution. The response function (OMI pixel) tends to be on
average coarser than 2 km2, resulting in smoothing of both
the kriging estimate and error.

We ultimately conduct two different sets of comparison:
directly comparing PSI to OMI pixels and comparing con-
volved kriged PSI to OMI. It is worth noting that PSI mea-
surements are monthly-averaged; similarly, OMI data are
oversampled on a monthly basis. In terms of the PSI, we
only account for grid boxes whose kriging error is below
1.2× 1015 molecules cm−2 (1193 samples, 8 % of total krig-
ing grid boxes). As for the grid-to-grid comparison, the krig-
ing variance is considered in the linear polynomial fitted to
the data through the Monte Carlo of the chi-square with 5000
iterations. The variability with the OMI stratospheric NO2
columns (0.16× 1015 molecules cm−2) is added to the PSI
error for both analyses. The left and right panels of Fig. 15
show the comparisons. As for the direct comparison of actual
points (PSI) to pixels (OMI), the PSI measurements indicate
a deviation of the slope (r2

= 0.66) from the unity line. This
suggests that there is an unresolved magnitude-dependent
systematic error. The grid-to-grid comparison not only of-
fers a clearer picture of the distribution of data points, but
also it hints at the offset being rather constant (0.66±0.18×
1015 molecules cm−2; r2

= 0.72). We also observe that the
statistics between the satellite and the benchmark are mod-
erately improved. This comparison in general provides an
important implication: the varying offsets in a plume shape
environment (high to low values) are not necessarily due to
variable offsets in the satellite retrieval, as the kriging es-

timate suggests that those varying offsets in point-to-pixel
comparison, manifested in slope= 0.76, are a result of vary-
ing spatial scales.

5 Summary

There needs to be increased attention to the spatial represen-
tativity in the validation of satellite (model) against point-
wise measurements. A point is the element of space, whereas
satellite (model) pixels (grid box) are (at best) the product
of the integration of infinitesimal points and a normalized
spatial response function. If the spatial response function is
assumed to be an ideal box, the resulting grid box will rep-
resent the average. Essentially, no justifiable theory exists to
accept that the averaged value of a population should abso-
lutely match with a sample, unless all samples are identical
(i.e., a spatially homogeneous field). This glaring fact is of-
ten overlooked in the atmospheric science community. At a
conceptual level, we are required to translate pointwise data
to the grid format (i.e., rasterization). This can be done by
modeling the spatial autocorrelation (or semivariogram) ex-
tracted from the spatial variance (information) among mea-
sured sample points. Assuming that the underlying field is
a random function with an unknown mean, the best linear
unbiased predictions of the field can be achieved by kriging
using the modeled semivariograms.

In this study, we discussed methods for the kriging es-
timation of several idealized cases. Several key tendencies
were observed through this experiment: first, the range cor-
responded to the degree of spatial heterogeneity; a larger
range indicated the lower presence of heterogeneity. Second,
the kriging variance explaining the density of information
quickly diverged from zero to large values when the field ex-
hibited large spatial heterogeneity. This tendency mandates
increasing the number of samples (observations) for those
cases. Third, while the semivariogram models were con-
structed from discrete pair of samples, they are mathemati-
cally in a continuous form. It is because of this reason that
we determined the optimal spatial resolution of the kriging
estimate by incrementally making the grids finer and finer
until a desired precision (= 1 %) was met.

The present study applied kriging to achieve an optimum
tessellation given a certain number of samples such that the
difference between our prior knowledge of the field, artic-
ulated by previous observations, models, or theory, and the
estimation is minimal. Usually there is uncertainty about the
prior knowledge that should be propagated to the final esti-
mates. The optimum tessellation for a range of idealized and
real-world data consistently voted for placing more samples
in areas where the gradients in the measurements were sig-
nificant such as those close to point emitters.

This study also revisited the spatial representativity is-
sue; it limits the realistic determination of biases associated
with satellites (models). In one experiment, we convolved the

Atmos. Meas. Tech., 15, 41–59, 2022 https://doi.org/10.5194/amt-15-41-2022



A. H. Souri et al.: Dealing with spatial heterogeneity in pointwise-to-gridded-data comparisons 55

Figure 13. The Pandora tropospheric NO2 measurements (made from subtracting the total columns from the OMI stratospheric NO2
columns) during September 2013, the corresponding semivariogram, the kriging estimates, and the kriging standard errors. Note that the
semivariogram suggests a large degree of spatial heterogeneity occurring at different spatial scales.

Figure 14. Convolving both kriging estimates and errors with the OMI spatial response function formulated in Sun et al. (2018). The
differences against the pre-convolved fields are also depicted.

kriging estimate for a multi-plume field with a box filter but
various sizes. The perfect agreement (r = 1.0) between the
samples (point) and kriging output (pixel) seen at a high spa-
tial resolution gradually vanished with coarsening of the res-
olution of grid boxes (r = 0.8). We also directly compared
samples (point) with pseudo satellite observations (showing
the truth) with a coarse spatial resolution, which led to a
flawed conclusion about the satellite being biased low. We
modeled the semivariogram of those samples, estimated the
field using kriging, and convolved with the pseudo satellite
spatial response function. The direct comparison of this out-
put with that of the satellite showed a completely different
story, suggesting that the data were rather free of any bias.
A serious caveat with using a spatial model (here kriging) is
that it consists of errors: the estimations that are further from
samples are less certain. It is widely known that discounting
the measurement/model errors in true straight-line relation-
ship between data can introduce artifacts. To consider the
kriging variance in the comparisons we employed a Monte

Carlo method on chi-square optimization, which ultimately
allowed us to not only provide a set of solutions within the
range of the uncertainty of the kriging model, but also to as-
sign smaller weights on gross estimates.

We further validated monthly-averaged Ozone Monitoring
Instrument (OMI) tropospheric NO2 columns using 11 Pan-
dora spectrometer instrument (PSI) observations over Hous-
ton during NASA’s DISCOVER-AQ campaign. A pixel-to-
point comparison between two datasets suggested varying
biases in OMI manifested in a slope far from the identity
line. By contrast, the kriging estimate from the PSI measure-
ments, convolved with the OMI spatial response function, re-
sulted in an inter-comparison slope close to the unity line.
This suggested that there was only a constant systematic bias
(0.66±0.18×1015 molecules cm−2) associated with the OMI
observations which does not vary with tropospheric NO2 col-
umn magnitudes.

The central component of satellite and model validation
is pointwise measurements. Our experiments paved the way
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Figure 15. (a) The direct comparison of OMI tropospheric NO2 columns with 11 pointwise Pandora measurements in September 2013
over Houston. (b) Same for the y axis, but the PSI measurements are translated to grid boxes using kriging convolved with the OMI spatial
response function. PSI tropospheric NO2 columns are estimated based on subtracting the OMI stratospheric NO2 columns (2.8± 0.16×
1015 molecules cm−2) from the total columns. We only consider kriging estimates whose errors are below 1.2× 1015 molecules cm−2. The
kriging variance is also considered using the Monte Carlo method applied on χ2. The slope has improved after considering the modeled
spatial representativeness. MB: mean bias (OMI vs. Pandora); MAB: mean absolute bias; RMSE: root mean square error.

for a clear roadmap explaining how to transform these point-
wise datasets to a comparable spatial scale relative to satel-
lite (model) footprints. It is no longer necessary to ignore the
problem of scale. The validation against point measurements
can be carefully conducted in the following steps:

i. construct the experimental semivariogram if the number
of point measurements allows (usually ≥ 3 within the
field; the field can vary depending on the length scale of
the compound);

ii. drop the quantitative assessment if the number of point
measurements are insufficient to gain spatial variance
and the prior knowledge suggests a high likelihood of
spatial heterogeneity within the field;

iii. choose an appropriate function to model the semivari-
ogram;

iv. estimate the field with kriging (or any other spatial esti-
mator capable of digesting the semivariogram) and cal-
culate the variance;

v. find the optimum grid resolution of the estimate;

vi. convolve the kriging estimate and its variance with the
satellite (model) spatial response function (which is
sensor-specific);

vii. conduct the direct comparison of the convolved kriged
output and the satellite (model) considering their er-
rors through a Monte Carlo (or a weighted least-squares
method).

Recent advances in satellite trace gas retrievals and atmo-
spheric models have helped extend our understanding of at-
mospheric chemistry, but an important task before us in im-
proving our knowledge on atmospheric composition is to em-
brace the semivariogram (or spatial autocorrelation) notion
when it comes to validating satellites/models using pointwise
measurements, so that we can have more robust quantitative
applications of the data and models.
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