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Abstract. Carrying a laser Doppler instrument, the Aeolus
satellite was launched in 2018, becoming the first mission for
atmospheric wind profile measurements from space. Before
utilizing the Aeolus winds for different applications, evalu-
ating their data quality is essential. With the help of ground-
based wind profiling radar measurements and the European
Centre for Medium-Range Weather Forecasts (ECMWF)
model equivalents, this study quantifies the error character-
istics of Aeolus L2B (baseline-11) near-real-time horizontal
line-of-sight winds across Australia during October 2020–
March 2021 by using both inter-comparison and triple col-
location analysis. The results of the inter-comparison analy-
sis indicate that both Rayleigh-clear winds and Mie-cloudy
winds are in good agreement with the ground-based radar
measurements with overall absolute mean biases smaller than
0.7 m s−1 and correlation coefficients larger than or equal to
0.9. Moreover, assuming the radar measurements as the ref-
erence data set, Mie-cloudy winds are shown to be more pre-
cise than Rayleigh-clear winds with an overall random er-
ror of 4.14 and 5.81 m s−1, respectively. Similar results were
also found from triple collocation analysis, with error stan-
dard deviations of 5.61 and 3.50 m s−1 for Rayleigh-clear
winds and Mie-cloudy winds. In addition, the Mie channel is
shown to be more capable of capturing the wind in the plan-
etary boundary layer (< 1500 m). The findings of this study
demonstrate the good performance of space-borne Doppler
lidar for wind profiling and provide valuable information for
data assimilation in numerical weather prediction.

1 Introduction

The lack of wind profiles is still one of the major deficien-
cies in the Global Observing System (GOS), which limits our
knowledge of atmospheric dynamics and the performance of
numerical weather prediction (NWP) (World Meteorologi-
cal Organization, WMO, 2005). To help close this gap, after
more than 15 years of design, the Aeolus satellite carrying
an Atmospheric Laser Doppler Instrument (ALADIN) was
launched by the European Space Agency (ESA) in 2018, be-
coming the first satellite mission in the world for measuring
wind profiles from space. After a successful launch, Aeo-
lus is in a sun-synchronous orbit with a 7 d repeat cycle. It
crosses the Equator at 18:00 LT (local time) during ascending
orbits (from south to north) and at 06:00 LT during descend-
ing orbits (from north to south). The azimuth angle of Aeolus
is∼ 260◦ for ascending orbits and∼ 100◦ for descending or-
bits, away from the poles. The viewing angle of ALADIN
toward the atmosphere is 35◦ off-nadir. The measured wind
along the laser beam line-of-sight (LOS) is then converted
to the horizontal to give the horizontal line-of-sight (HLOS)
wind component, which is approximately east–west oriented
for most of the orbits (Andersson et al., 2008).

Wind retrievals of ALADIN are based on light scattering
by atmospheric molecules and particulates (aerosol, cloud
droplets, and ice crystals), which move with the ambient
wind, and on the Doppler effect (Andersson et al., 2008). The
laser system of ALADIN emits a beam of powerful light in
the ultraviolet part of the electromagnetic spectrum at 355 nm
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towards the Earth. Then, the backscattered light from the at-
mosphere is collected by the telescope and transferred to the
receiver for analysis. Since the laser light can be backscat-
tered by both molecules and particulates in the atmosphere,
ALADIN has two separate detection channels. One is for
Rayleigh scattering from molecules, such as oxygen and ni-
trogen, with the diameter being about 0.3–0.4 nm, which is
smaller than the light wavelength; the other is for Mie scat-
tering from the large particles such as cloud droplets and ice
crystals, dust, and aerosols, the diameters of which are usu-
ally greater than 1 µm (Calvert, 1990; Wallace and Hobbs,
2006b; Ingmann and Straume, 2016; Vallejos-Burgos et al.,
2018). From the backscattered signal, winds from the sur-
face to about 30 km in height can be derived, depending on
the range bin settings, i.e. the size of the 24 bins defining the
wind profile.

By detecting global wind profiles from space, the Aeolus
satellite has the potential to serve a variety of applications, in-
cluding further exploring atmospheric dynamics, improving
numerical weather predictions, and better estimating the dis-
persion of air pollutants (Banyard et al., 2021; ESA, 2020a;
Rennie et al., 2021). However, before employing Aeolus
winds for different applications, it is essential to know the er-
ror characteristics of the wind products. In situ measurements
(e.g. radiosondes), ground-based remote sensing observa-
tions (e.g. lidar or radar), and NWP model equivalents are
the three main reference products used for wind validation.
After the successful launch, Aeolus winds have been inter-
compared with different reference data over many regions.
For example, Aeolus winds in the early mission stage were
compared with radiosonde observations in different climate
zones over the Atlantic Ocean and NWP model equivalents
for the Northern Hemisphere, and larger biases were reported
for both Rayleigh-clear and Mie-cloudy winds (Baars et al.,
2020; Martin et al., 2021). This is associated with the early
processing algorithms which have since been developed fur-
ther to account for such issues. Later, Guo et al. (2021) com-
pared the Aeolus winds with radar wind profiler (RWP) mea-
surements over China, showing that the mean differences are
−0.64 and −0.28 m s−1 with the standard deviations of 6.82
and 4.2 m s−1 for Rayleigh-clear and Mie-cloudy winds, re-
spectively. Validation was also conducted over the polar re-
gions, and a good agreement with ground-based RWP mea-
surements was obtained in most cases (Belova et al., 2021).
More recently, Iwai et al. (2021) validated Aeolus 2B02
and 2B10 wind products by comparing with wind profil-
ers, ground-based coherent Doppler wind lidars, and GPS
radiosondes over Japan, with the inter-comparison results
for wind profilers and radiosondes showing improved qual-
ity of Aeolus 2B10 winds as both biases and random er-
rors were smaller compared to those for the 2B02 product.
Although validation and calibration have been carried out
over many regions, the data quality of Aeolus measurements
across Australia has not been investigated so far.

Moreover, regarding the validation method, most works
related to Aeolus are based on inter-comparison analysis. In
addition to this, triple collocation analysis is another advanta-
geous method to evaluate space-borne remote sensing prod-
ucts. Unlike inter-comparison that treats a reference data set
free of errors, triple collocation analysis requires three inde-
pendent measurement systems and assumes that each system
contributes to the truth. The outputs are the error standard
deviation of each system and calibration relations based on
a reference data set, which can provide valuable informa-
tion for cost function in data assimilation (Stoffelen, 1998;
Vogelzang et al., 2011). Triple collocation analysis has been
widely employed to assess the wind measurements from dif-
ferent instruments, including scatterometers, altimeters, and
radiometers (Caires and Sterl, 2003; Portabella and Stoffe-
len, 2009; Ribal and Young, 2020). However, very few stud-
ies have evaluated wind products from the space-borne lidar
by this method so far. To complement to earlier validation
studies, this study evaluates the Aeolus L2B HLOS wind
product over Australia by inter-comparison with ground-
based wind profiling radar (WPR) measurements. In addi-
tion, a triple collocation analysis for Aeolus HLOS winds is
conducted with the help of WPR measurements and NWP
model equivalents.

A description of the data and methods used in this study
is available in Sect. 2. Key research findings from data anal-
ysis are presented in Sect. 3, followed by the discussions in
Sect. 4. The final section summarizes the study briefly and
draws conclusions.

2 Data and methods

2.1 Aeolus L2B wind product

Aeolus Level-2B baseline 11 near-real-time HLOS winds
during the Australian summer from October 2020 to March
2021 were used for validation, being the most recent avail-
able near-real-time wind product when conducting this
study. The data were obtained from the ESA Aeolus On-
line Dissemination System (https://aeolus-ds.eo.esa.int/oads/
access/) (ESA, 2021). According to signal-to-noise ratio, Ae-
olus L2B winds are categorized into four types, which are
Rayleigh-clear, Rayleigh-cloudy, Mie-clear, and Mie-cloudy
(de Kloe et al., 2022). The measurements from the Rayleigh
channel have better performance in a clear sky (Rayleigh-
clear), for which there is little or no contamination from
Mie scattering; the wind measurements in the Mie chan-
nel need strong backscattering from aerosols, water droplets,
or ice crystals (Mie-cloudy) (Rennie et al., 2020). In addi-
tion, Rayleigh-clear and Mie-cloudy winds are currently the
only two types of Aeolus winds that are assimilated into the
ECMWF model for operational weather forecast (Rennie et
al., 2021). Based on these considerations, only Rayleigh-
clear and Mie-cloudy winds were extracted for evaluation.
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Figure 1. Location of wind profiling radars and Aeolus ground
tracks over Australia. The pink marks on the map represent the sites
of WPR used in this study, and the blue and orange lines indicate
the Aeolus ground tracks for ascending and descending orbits, re-
spectively. The red dashed line at 30◦ S is the boundary between the
tropics and extratropics. Shading with different colours represents
the earth relief. The elevation data were accessed and the map was
created by the authors using PyGMT (Wessel et al., 2019; Tozer et
al., 2019; Uieda et al., 2021).

The horizontal accumulation along the ground track of each
observation is typically 87 km for Rayleigh winds (which
takes 12 s) and 15 km for Mie winds (which takes around
2 s), but it may be shorter locally due to the classification
in cloudy and clear scenes. Vertically, there are 24 range
bins with sizes varying from 250 m to 2 km. To capture the
characteristics of atmospheric circulation over different cli-
mate zones, range bin settings vary along the orbit according
to geographic location and in time, as requested by special
measurement requests and to adapt to seasons and climate
zones. Over Australia, there are two different range bin set-
ting regions (Fig. 1), i.e. the tropical setting region (30◦ S–
30◦ N) and the extratropical setting region (30–60◦ S). The
differences in range bin settings are measurement heights and
range bin thickness. For tropical setting, the measurements
can reach just over 20 km in height with a range bin thickness
of 750 m between 12 and 15 km to capture the gravity waves,
while the maximum measurement height of the extratropical
setting is about 17.5 km with a higher vertical resolution of
500 m between 5 and 10 km for jet stream detection (ESA,
2020b).

Referring to the existing recommendations for quality con-
trol, the HLOS wind speed with a validity flag of 0 and es-
timated error larger than 8 m s−1 for Rayleigh-clear winds

and 4 m s−1 for Mie-cloudy winds were removed (Rennie
and Isaksen, 2020).

2.2 Wind profiling radar measurements

Wind profiling radar (WPR) is remote sensing equipment
that can measure the three-dimensional wind field (Dolman
et al., 2018). The Australian WPR network is operated by
the Australian Government Bureau of Meteorology, and the
data are available from the Centre for Environmental Data
Analysis (CEDA) archive (Met Office, 2008). There are two
main types of WPR in the Australian network: stratospheric
tropospheric profilers (STPs) and boundary layer profilers
(BLPs) (Dolman et al., 2018). Both operate at 55 MHz. The
maximum detection heights of STPs are 8 km for low mode
and 20 km for high mode with a range resolution of 250
and 500 m, respectively. For BLPs, the maximum detection
height for low mode is 7 km, and it is 14 km for high mode,
with a range resolution of 100 and 250 m, respectively. Both
types of WPR measurements have been validated and cali-
brated with radiosonde data, achieving the slope of the least-
squares line of best fit close to 1 for both zonal winds and
meridional winds and the random difference between WPR
and radiosonde data of about 2 m s−1 (Dolman et al., 2016).
The wind vectors of WPR measurements from the CEDA
archive are 30 min averaged winds.

2.3 NWP model winds

In order to carry out the triple collocation analysis, predicted
winds were extracted from the Aeolus Auxiliary Meteorolog-
ical Data (AUX_MET) files. AUX_MET contains forecasted
meteorological information at Aeolus observation locations
(e.g. temperature and pressure) that is required for processing
the L2B product (de Kloe et al., 2022). These meteorological
parameters are generated by the fifth-generation European
Centre for Medium-Range Weather Forecasts (ECMWF) In-
tegrated Forecast System (IFS) model. Predicted winds from
the AUX_MET files, rather than model winds from analy-
ses, are selected to avoid dependency between model anal-
yses and observed winds during validation, as Aeolus winds
used for validation have not yet been assimilated. In addition,
although WPR measurements have been assimilated, the de-
pendency of predicted winds with WPR measurements be-
comes weaker with forecast time. As a result, these three data
sets are assumed independent of each other, which is required
for triple collocation analyses.

The ECMWF IFS model uses octahedral reduced Gaus-
sian grid Tco1279 with the grid spacing of about 9 km at mid-
latitudes. Vertically, there are 137 model levels. The effective
spatial resolution in the free atmosphere of a model is usually
7–10 times the grid distance (Skamarock, 2004), so the effec-
tive resolution of the ECMWF IFS model is around 90 km in
the free atmosphere. Although the effective spatial resolution
may be higher in the planetary boundary layer (PBL) due to
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orographic forcing, the upper air where Aeolus mainly oper-
ates is generally uninformed. Therefore, in this study, we take
about 90 km as the model effective resolution. It is noted that
the AUX_MET extracts data from the ECMWF IFS model
every 3 s along the Aeolus predicted ground track. With mov-
ing speed at around 7 km s−1 with respect to the surface, each
AUX_MET vertical profile is placed at an interval of about
21 km for a given off-nadir prediction (Michael Rennie, per-
sonal communication, 2021), which does not affect the effec-
tive resolution of the model. Regarding the data quality, the
typical differences between radiosonde and ECMWF winds
are 2–3 m s−1 (Houchi et al., 2010).

2.4 Collocation criteria

To carry out error analyses, all data should be collocated both
in time and in space. First, the nearest Aeolus L2B wind pro-
files were extracted based on their distance from WPR sites,
which should be less than 75 km (Zhang et al., 2016; Guo et
al., 2021). This is because many WPR sites in Australia are
in coastal regions. The Aeolus ground tracks 100 km or more
away from the WPR sites would be either over the ocean
or inland. Thus, the wind difference caused by two different
representative regions may have much impact on the inter-
comparison analysis between Aeolus observations and WPR
measurements, especially for the Mie-cloudy winds that are
usually sampled at a lower level. Additionally, we would like
to keep consistency with the existing Aeolus wind validation
using radar profiler measurements, to enable comparison re-
sults easily. The validation for China from Guo et al. (2021)
was the only study available when we carried out this work.
Therefore, we chose the WPR sites within 75 km to the Aeo-
lus profiles. The vector winds from WPR measurements with
time closest to Aeolus observations were selected. The vec-
tor winds from AUX_MET were extracted from the profiles
closest to each Aeolus L2B wind profile. Based on this crite-
rion, there are six WPR sites available over Australia, shown
in Fig. 1. Over the study period, there should be 5016 Aeolus
data samples in total for each detection channel. After qual-
ity control based on the criteria in Sect. 2.1, there are 2171
and 394 data samples remaining, accounting for 43.28 % and
7.85 % of the Rayleigh and Mie wind measurements, respec-
tively. The site information and available Aeolus data sam-
ples are summarized in Table 1.

Wind vectors from the WPR and AUX_MET data sets
were converted to HLOS winds by using the following
Eq. (1):

HLOS=−uRef sinA− vRef cosA, (1)

where A is the azimuth angle of the Aeolus satellite, and Ref
represents either WPR or AUX_MET. The geometry of Ae-
olus wind measurements is shown in Fig. 2.

Vertically, the HLOS winds from WPR and AUX_MET
were converted to winds corresponding to Aeolus range bins

by averaging the winds between the top and bottom heights
of each vertical bin, shown in Fig. 3.

2.5 Inter-comparison analysis

For inter-comparison analysis, we assumed that WPR is the
ground truth. After data filtering and collocation, the mean
bias (BIAS), standard deviation of wind difference (SD),
scaled median absolute deviation (scaled MAD), and corre-
lation coefficient (R) of both Rayleigh-clear winds and Mie-
cloudy winds were quantified based on Eqs. (2), (3), (4), and
(5). Scaled MAD is used to represent random error because
it is a robust statistic to measure data variability. When ran-
dom errors are purely Gaussian distributed, scaled MAD is
identical to SD; when distributions are not purely Gaussian,
scaled MAD is less sensitive to outliers (Ruppert, 2011).

BIAS=
1
N

N∑
i=1

(
HLOSAeolus,i −HLOSRef,i

)
(2)

SD=

√√√√ 1
N − 1

N∑
i=1

((
HLOSAeolus,i −HLOSRef,i

)
−BIAS

)2 (3)

scaled MAD= 1.4826

×median
(∣∣(HLOSAeolus,i −HLOSRef,i

)
−median

(
HLOSAeolus,i −HLOSRef,i

)∣∣) (4)

R =

[∑N
i=1

(
HLOSAeolus,i −HLOSAeolus

)(
HLOSRef,i −HLOSRef

) ]
√∑N

i=1
(
HLOSAeolus,i −HLOSAeolus

)2√∑N
i=1
(
HLOSRef,i −HLOSRef

)2
 (5)

Here the subscript Ref represents WPR; N is the total num-
ber of data points; i is from 1, 2, 3, . . . , N .

The confidence limits (uncertainty) for the biases are de-
fined at a 95 % confidence interval. Since the distributions
of wind differences are not always Gaussian, the confidence
limits were estimated using the bootstrap method when the
sample size is greater than 2.

Analyses were performed for all data, but also separated
in ascending and descending orbits. In addition, errors as a
function of height were also investigated. Since Aeolus ob-
servations over Australia have different vertical range bin set-
tings for tropical and extratropical regions, we defined 12
new range bins based on the number of match-up samples
in each range bin and the characteristics of the atmospheric
circulation. Within the PBL and at a higher height, avail-
able match-up samples are limited. So, we defined several
new groups at these heights by increasing the spacing. The
500 hPa pressure surface is usually around 5.5 km above sea
level, which is important for weather analysis and forecast,
so we defined a group between 4.5 and 6 km; the jet stream
is usually from 8 to 12 km in height, so two new groups
were defined, which are 7.5–10 and 10–12.5 km (Wallace and

Atmos. Meas. Tech., 15, 4107–4124, 2022 https://doi.org/10.5194/amt-15-4107-2022



H. Zuo et al.: Evaluation of Aeolus winds with WPR and NWP model equivalents over Australia 4111

Table 1. Information of ground-based WPR sites and Aeolus measurements.

Sites Latitude Longitude Elevation Aeolus ascending Aeolus descending

(type) (◦) (◦) (m) Overpass time Available samples Overpass time Available samples
(UTC) (Rayleigh/Mie) (UTC) (Rayleigh/Mie)

Longreach (STP) −23.44 144.28 192 08:41 Thursday 301/57 20:01 Wednesday 320/15
Carnarvon (STP) −24.89 113.67 4 – – 22:00 Friday 368/13
Tennant Creek (STP) −19.64 134.18 376 – – 20:40 Saturday 151/35
Cairns (BLP) −16.95 145.75 4 08:31 Wednesday 198/94 20:00 Wednesday 173/49
East Sale (BLP) −38.12 147.13 5 08:37 Thursday 245/56 19:40 Monday 321/49
Ceduna (BLP) −32.13 133.70 15 09:32 Monday 94/26 – –

Figure 2. Geometry of Aeolus wind measurements.

Figure 3. Sketch map of WPR and AUX_MET wind conversion to
Aeolus range bins, where green bars represent the heights of WPR
or AUX_MET winds.

Hobbs, 2006a). HLOS winds from their original range bins
were grouped to defined range bins based on their centre of
gravity (COG) heights. Moreover, to investigate the impact

of range bin settings on error characteristics, we separated
the results for the tropics and extratropics.

2.6 Triple collocation analysis

To carry out triple collocation analysis, two other measure-
ment systems are required besides Aeolus. In this study, they
are WPR measurements and ECMWF IFS model equiva-
lents. The temporal and spatial resolutions of these three sys-
tems are summarized in Table 2. We choose WPR measure-
ment as the reference, which is system 1. Aeolus L2B winds
and NWP winds are systems 2 and 3, respectively. All three
systems are linearly correlated with the true HLOS winds,

https://doi.org/10.5194/amt-15-4107-2022 Atmos. Meas. Tech., 15, 4107–4124, 2022



4112 H. Zuo et al.: Evaluation of Aeolus winds with WPR and NWP model equivalents over Australia

which can be described by Eqs. (6), (7), and (8).

HLOS1 = T + e1 (6)
HLOS2 = a2+ b2T + e2 (7)
HLOS3 = a3+ b3T + e3 (8)

Here T is the true value of HLOS winds; ai and bi are the
intercept and the slope of the calibration for each system; ei
is the random error of each system.

The method and equation derivation of triple collocation
analysis are formulated in Vogelzang and Stoffelen (2012).
To simplify the study, we assume the true measurement er-
rors of each system are independent. Hence, no represen-
tation error contributes to the error covariances. Thus, the
equations to calculate the error standard deviation of each
system can be simplified to Eqs. (9), (10), and (11).

σ1 =

√〈
e2

1
〉
=

√
C11−

C12C13

C23
(9)

σ2 =

√〈
e2

2
〉
=

√
C22−

C12C23

C13
(10)

σ3 =

√〈
e2

3
〉
=

√
C33−

C23C13

C12
(11)

Here Cii is the variance of each system, and Cij is the covari-
ance between systems i and j , and 〈〉 represents the statistical
averaging.

The calibration coefficients can be described by Eqs. (12),
(13), (14), and (15), and the calibration relations are shown
in Eqs. (16) and (17).

b2 =
C23

C13
(12)

b3 =
C23

C12
(13)

a2 = 〈HLOS2〉− b2 〈HLOS1〉 (14)
a3 = 〈HLOS3〉− b3 〈HLOS1〉 (15)

HLOS∗2 =
HLOS2

b2
−
a2

b2
(16)

HLOS∗3 =
HLOS3

b3
−
a3

b3
(17)

Here HLOS∗2 and HLOS∗3 are the calibrated wind speed of
system 2 and system 3.

2.7 Wind variability analysis

Wind observations are closely connected to the local atmo-
spheric conditions. To investigate the influence of convection
on Aeolus wind measurements, for every Rayleigh or Mie
spatial sample, we employed the wind vectors from WPR
measurements ±2 h around the collocation points to quan-
tify wind variability in each component and the turbulence

kinetic energy (TKE); see Eqs. (18), (19), (20), and (21). The
results were averaged for Rayleigh and Mie channels, and the
Student t test was performed.

Var(u)=
∑n
i=1(ui − u)

2

n
(18)

Var(v)=
∑n
i=1(vi − v)

2

n
(19)

Var(w)=
∑n
i=1(wi −w)

2

n
(20)

TKE=
Var(u)+Var(v)+Var(w)

2
(21)

Here ui , vi , andwi are WPR east–west, north–south, and ver-
tical winds at each time step (30 min) of ±2 h (n= 9) around
the collocation points, and u, v, and w are the corresponding
mean winds, respectively.

3 Results

After filtering out the invalid data and collocating all HLOS
winds from the three data sets, results were derived from
1011 match-up samples of Rayleigh-clear winds and 224
match-up samples of Mie-cloudy winds.

3.1 Inter-comparison

The results of the inter-comparison analysis with WPR be-
ing the ground truth are summarized in Table 3 and pre-
sented in Fig. 4. From the scatter plots, it can be seen that
the winds detected by the Rayleigh channel range from −40
to 60 m s−1, while the wind speed from the Mie channel is
lower, mainly ranging between −20 and 30 m s−1. Overall,
both Rayleigh-clear winds and Mie-cloudy winds are in good
agreement with WPR measurements with R no less than
0.9 for all data. For Rayleigh-clear winds, the overall bias
is −0.48 m s−1 with a SD of 6.22 m s−1 and a scaled MAD
of 5.81 m s−1. A larger bias (−0.71 m s−1) was found during
descending orbits, but no significant difference in random er-
rors was detected during ascending and descending orbits.
For Mie-cloudy winds, the bias for all data is 0.69 m s−1,
and the SD and the scaled MAD are 4.77 and 4.14 m s−1,
respectively. Moreover, the Mie channel has better per-
formance on descending orbits (bias: −0.24 m s−1; scaled
MAD: 3.63 m s−1) than ascending orbits (bias: 1.35 m s−1;
scaled MAD: 4.11 m s−1).

The wind difference as a function of height for all data (a)
and ascending (b) and descending (c) orbits is presented
in Fig. 5. Overall, there are more valid paired samples
from the Rayleigh channel, except for heights below 750 m.
Most of the Rayleigh-WPR samples distribute between 1500
and 20 000 m, while Mie-WPR samples mainly distribute
below 10 000 m. Regarding the bias at each height, the
Aeolus Rayleigh channel shows negative biases of about
−1.7 m s−1 between 750 and 7500 m for ascending orbits
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Table 2. Spatial and temporal resolution of the three data sets.

1: WPR 2: Aeolus L2B 3: AUX_MET

Horizontal Point-based 87 km (Rayleigh)/10–15 km (Mie) ∼ 90 km
Vertical 100/250/500 m From 250 to 2 km 137 model levels
Temporal 30 min ∼ 10 s/∼ 1–2 s Instantaneous

Table 3. Results of inter-comparison with ground-based WPR measurements.

Orbit Bias SD Scaled MAD R N

(m s−1) (m s−1) (m s−1)

Rayleigh-clear All −0.48 [−0.86, −0.09] 6.22 5.81 0.92 1011
Ascending −0.06 [−0.73, 0.61] 6.59 5.76 0.89 368
Descending −0.71 [−1.18, −0.26] 5.99 5.73 0.88 643

Mie-cloudy All 0.69 [0.08, 1.33] 4.77 4.14 0.90 224
Ascending 1.35 [0.57, 2.19] 4.76 4.11 0.86 132
Descending −0.24 [−1.23, 0.67] 4.64 3.63 0.90 92

and about −0.8 m s−1 between 1500 and 10 000 m for de-
scending orbits, with the scaled MADs fluctuating at around
5 m s−1. Above 10 000 m, for most heights, biases and scaled
MADs become larger and/or more variable for Rayleigh
wind match-ups. For the Mie channel, positive biases were
detected between 750 and 10 000 m with about 1.8 m s−1 for
ascending orbits and about 0.6 m s−1 for descending orbits
except for the height of 6000–7500 m, and the scaled MADs
are almost within 5 m s−1. Negative biases and smaller scaled
MADs were found below 750 m and above 10 000 m for both
ascending and descending orbits for the Mie channel.

To investigate the error characteristics for regions with dif-
ferent range bin settings, we separated the results from two
regions, shown in Fig. 6. For the tropics, larger biases from
Rayleigh-clear winds and Mie-cloudy winds were found for
the lower range bins with a thickness of 500 m. The random
errors of Rayleigh-clear winds fluctuated at around 5 m s−1

over the range bins of 1 km thickness, and the larger random
errors were detected in range bins with a smaller thickness of
500 or 750 m. For Mie-cloudy winds, the random errors for
all range bins are lower than 5 m s−1. For the sites over the
extratropics, negative (positive) biases were found over most
range bins for Rayleigh-clear (Mie-cloudy) winds. Random
errors of Rayleigh-clear winds become smaller with height
increasing, except for the range bin of 500 m thickness from
higher heights, while the opposite is true for Mie-cloudy
winds. The uncertainties of biases increase with height due to
the limited number of match-up samples. Overall, based on
Fig. 6, smaller range bin thickness may contribute to larger
random errors, especially for Rayleigh-clear winds.

3.2 Triple collocation

The result of the triple collocation analysis is shown in
Table 4. For the combination of Rayleigh-clear winds, WPR,
and NWP model equivalents, the Aeolus measurements have
the largest error standard deviation of 5.61 m s−1 followed by
WPR observations of 2.01 m s−1. NWP model equivalent is
most precise, with an error standard deviation of 1.17 m s−1.
Similar results were also obtained from the combination with
Mie-cloudy winds, and the error standard deviations are 3.50,
2.60, and 1.70 m s−1 for Aeolus measurements, WPR obser-
vations, and NWP model equivalents, respectively.

The calibration coefficients and relations for Aeolus L2B
and NWP winds are shown in Table 5. For Rayleigh wind
comparison, the Aeolus and the NWP model have similar
patterns in wind estimation with intercepts of −0.404 and
−0.236 m s−1 and slopes of 1.044 and 1.033, respectively.
Regarding the Mie wind comparison, the intercepts are 0.388
and 0.064 m s−1 with the slopes of 1.106 and 1.075 for the
Aeolus and the NWP model winds, respectively.

3.3 Wind variability

According to Table 6, all metrics of WPR wind variability
for Mie-cloudy winds are higher than that of Rayleigh-clear
winds, but only the difference in w wind component is sta-
tistically significant (p value < 0.001). For Rayleigh wind
detection, there is no big difference in wind variability dur-
ing ascending and descending orbits, except for the w com-
ponent. For Mie wind detection, wind variability (v, w, and
TKE) during ascending orbits is significantly higher than that
during descending orbits, implying more convection in the
late afternoon. Overall, the result suggests that the atmo-
sphere may have larger variability during Mie-cloudy wind
sampling, especially for ascending orbits.
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Figure 4. Scatter plots of Aeolus HLOS winds against WPR HLOS winds for all data, ascending orbits, and descending orbits. Panels (a),
(c), and (e) are for the Rayleigh-clear winds, and (b), (d), and (f) are for the Mie-cloudy winds. Green and grey lines indicate the fitted
regression result and 1 : 1 agreement, respectively.

4 Discussion

The findings from the inter-comparison analysis indicate
that both Rayleigh-clear and Mie-cloudy winds are in good
agreement with the ground-based radar measurements with

the biases for all data meeting the mission requirement of
0.7 m s−1 (Ingmann and Straume, 2016). However, the ran-
dom errors represented by scaled MADs from both channels
are larger than the specified random error of < 3 m s−1 be-
low 20 km (Ingmann and Straume, 2016), especially from
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Figure 5. Wind differences (Aeolus-WPR) with height for (a) all data, (b) ascending orbits, and (c) descending orbits. Left: bias and scaled
MAD of wind differences as a function of height, with shading areas representing the uncertainty. Right: the number of available match-ups
at each height. Blue and orange colours indicate the results for the Rayleigh and Mie channels, respectively.

Table 4. Error standard deviation of three different systems.

1: WPR 2: Aeolus L2B 3: AUX_MET N

(m s−1) (m s−1) (m s−1)

Rayleigh-clear 2.01 5.61 1.17 1011
Mie-cloudy 2.60 3.50 1.70 224
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Figure 6. Wind differences (Aeolus-WPR) with range bins for the (a) tropics and (b) extratropics. Left: distributions of bias and scaled MAD
of wind differences over different range bins, with shading areas representing the uncertainty. Right: the number of available match-ups at
each range bin. Blue and orange colours indicate the results for the Rayleigh and Mie channels, respectively. Note: the heights on the y axis
are just for reference, which are not exactly same with the actual heights of each vertical range bin.

Table 5. Calibration coefficients of Aeolus L2B and NWP winds.

2: Aeolus L2B 3: AUX_MET

a2 b2 HLOS∗2 a3 b3 HLOS∗3

Rayleigh-clear −0.404 1.044 0.958HLOS2+ 0.387 −0.236 1.033 0.968HLOS3+ 0.228
Mie-cloudy 0.388 1.106 0.904HLOS2− 0.351 0.064 1.075 0.930HLOS3− 0.060

the Rayleigh detection channel. These results are in line
with many existing studies over different regions (Baars et
al., 2020; Guo et al., 2021; Iwai et al., 2021; Chen et al.,
2021). The large random errors are mainly because of un-
wanted signal losses in the instrument transmission and de-
tection chain since the Aeolus launch (Krisch and the Aeolus
DISC, 2020), which impact the wind quality, especially for
the Rayleigh channel. Regarding the performance during dif-
ferent orbit phases, a larger absolute mean bias was found for
Rayleigh-clear winds during descending orbits, which is con-
sistent with the results for the Northern Hemisphere (Martin
et al., 2021), but the magnitudes of the biases (< 1 m s−1) are
smaller in this study. No big difference in random errors was
found from Rayleigh-clear winds. For Mie-cloudy winds, a
large mean bias (1.35 m s−1) and random error (4.11 m s−1)
were identified during ascending orbits. One possible reason
would be different representativeness conditions in the morn-
ing (descending) and afternoon (ascending). Figure 4d and f
show different wind distributions during ascending and de-
scending orbits, hence suggesting a different circulation in
the morning (descending) and afternoon (ascending). More-

over, Fig. 5 shows clouds peak at about 5 km height during
descending orbits (at about 06:00 LT), while during ascend-
ing orbits, there are more uniform clouds from 2 to 8 km
height at the end of the day (at about 18:00 LT). In addition,
Table 6 shows higher wind variability for ascending orbits
during Mie-cloudy wind sampling, implying more convec-
tion in the late afternoon. So, the meteorological conditions
during Mie wind measurements for the ascending and de-
scending orbit phases appear quite different, which may im-
ply different representativeness conditions and hence differ-
ent random errors.

The vertical distributions of wind differences indicate that
Mie-cloudy winds are more precise compared to Rayleigh-
clear winds below 1500 m for all data, which is consistent
with the studies for China and Japan (Iwai et al., 2021; Wu
et al., 2022). Higher random errors for Rayleigh-clear winds
can partly be attributed to the smaller range bin thickness
in the PBL. Below 750 m, large biases for both Rayleigh-
clear and Mie-cloudy winds were found during descending
orbits. This low accuracy may be related to the inhomoge-
neous topography at Cairns and at East Sale, which may have
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Table 6. Results of wind variability based on WPR measurements.

Var (u) Var (v) Var (w) TKE

Rayleigh-clear (m2 s−2) 2.24 2.09 0.01 2.15
Mie-cloudy (m2 s−2) 2.48 2.45 0.03 2.48
p value 0.358 0.181 < 0.001 0.110

Rayleigh-clear ascending (m2 s−2) 2.08 1.80 0.02 1.94
Rayleigh-clear descending (m2 s−2) 2.34 2.25 0.01 2.26
p value 0.298 0.070 < 0.001 0.097

Mie-cloudy ascending (m2 s−2) 2.78 2.95 0.03 2.89
Mie-cloudy descending (m2 s−2) 2.06 1.76 0.02 1.92
p value 0.143 0.029 0.002 0.033

a larger impact on descending wind measurements, shown in
Fig. 1. The large bias of Mie-cloudy winds between 6500
and 7250 m in the extratropical region mainly comes from
the East Sale site during descending orbit on 30 November
2020. The WPR data quality on that day is not good, with
missing data on many range bins. To collocate with Aeolus
wind at the COG height of 6907 m (6530–7285 m), WPR
winds should be converted by averaging the winds at the
height of 6755, 7005, and 7255 m, but only wind at 6755 m
is available. After conversion, the HLOSWPR (−22.76 m s−1)
is much lower than the Aeolus measurements (−41.5 m s−1).
Moreover, the higher accuracies of Mie-cloudy winds dur-
ing both ascending and descending orbits below 1500 m sug-
gest that the Mie channel is more capable of capturing winds
within the PBL. This may also suggest the potential large
impact of Mie-cloudy winds on data assimilation at these
heights. In addition, during the descending orbit phase, for
the Mie channel, the biases between 750 and 6000 m are
smaller than 0.7 m s−1, achieving the mission requirement.

The vertical distributions of available match-ups show
most Rayleigh-WPR match-ups between 1500 and 20 000 m,
since below 1500 m less Rayleigh-clear winds are available
due to the attenuation of the molecular signal because of Mie
scattering within the PBL. Above 1500 m, the number of
available match-ups decreases with height. This is because
the maximum measurement height of BLP is 7 km (10 km)
and of STP is 8 km (20 km) for the low mode (high mode), so
fewer data samples are available at higher heights. The ma-
jority of match-ups for Mie-cloudy winds distribute below
10 000 m, which is consistent with where Mie-scattering is
expected to take place. Moreover, the number of Mie-WPR
match-ups peaks between 4500 and 6000 m during the de-
scending orbits (about 06:00 LT) due to the mid-level clouds,
such as altocumulus clouds that are mostly observed in warm
spring and summer mornings (Gao et al., 2019).

The error standard deviations or random errors estimated
by the triple collocation analysis for Rayleigh-clear winds
(5.61 m s−1) and Mie-cloudy winds (3.50 m s−1) are roughly
comparable with the results from inter-comparison analy-

sis (5.81 m s−1 for Rayleigh-clear winds and 4.14 m s−1 for
Mie-cloudy winds), indicating the Mie-cloudy winds are
more precise than Rayleigh-clear winds. For the WPR, the
temporal and spatial representation errors associated with
the collocation criteria and the aggregated Aeolus observa-
tions are the main contribution to the random errors. The
NWP random errors obtained are in line with expectations.
Taking the spatial representation error into account, Ska-
marock (2004) argues that the effective spatial resolution
of a model in the free atmosphere is 7–10 times the grid
distance; thus the horizontal resolution of Aeolus measure-
ments for Rayleigh-clear winds and NWP model equivalents
are almost alike, with the WPR-resolving small-scale vari-
ance not detected by the Aeolus or the NWP model. Given
the coarse NWP resolution, the common variance of the
coarse Rayleigh-clear winds and WPR will be small, and
hence the impact of representativeness error on the Rayleigh
comparison is limited. For the Mie comparison, the remain-
ing common variance between the moderate-resolution Mie-
cloudy winds and WPR is not resolved by the NWP model,
which is coarsest, leading to the higher error standard devi-
ation of NWP. Assuming a spatial representativeness error
for NWP of 1 m s−1 (Stoffelen et al., 2020), then the error
standard deviations with respect to NWP become 1.37, 2.79,
and 3.64 m s−1 for NWP, WPR, and Mie-cloudy winds, re-
spectively. Compared with the results of triple collocation for
Rayleigh winds, the random errors for NWP and WPR are
higher. The study from Lin et al. (2016) explicitly showed
that model wind accuracy near the ocean surface over con-
vective areas is 4 times larger than that of clear areas. More-
over, based on the wind variability results in Sect. 3.3, these
higher values may be related to the vertical wind shear and
convective conditions during Mie wind sampling. Addition-
ally, the number of collocated samples for Mie comparison
is just 224, which is much lower than the optimal number
(at least 1000 samples) for triple collocation analysis; thus
the results contain some uncertainty. When performing in-
terpretation with respect to the system with the intermediate
spatial resolution, that is the Mie scale, the spatial represen-
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tation error represents part of the common resolved signal in
WPR and Mie-cloudy winds, but the NWP model does not
resolve this part of the signal. Thus, the error standard devi-
ations with respect to the Mie scale become 1.97, 2.40, and
3.35 m s−1 for NWP, WPR, and Mie-cloudy winds, respec-
tively, where the NWP winds still appear as the most precise.

This study is based on the Aeolus near-real-time 2B11
data. It is known that Mie-cloudy winds show systematic
biases, for which a solution has been in place for opera-
tional processing since July 2021 (Marseille et al., 2022).
The needed correction for non-linearities of the Mie spectral
response performs better when derived from an NWP-based
method than from in-orbit instrument calibration (Marseille
et al., 2022). The L2B processing was adjusted accordingly.
As a result, systematic biases for moderate winds were re-
moved, and overestimation of strong winds was reduced. In
order to evaluate whether these systematic errors impact the
current validation results, we applied the correction method
to the near-real-time 2B11 data during October 2020–March
2021 to yield corrected Mie winds. The method of correction
and validation results are shown in Appendix A. The analysis
based on corrected Mie-cloudy winds suggests that the non-
linearity bias correction has a potential to reduce the biases
and random errors, especially for the samples from low- to
mid-level heights. These results do not affect above discus-
sion.

In addition, at the beginning of this study, we also tried the
threshold values of 7 m s−1 for Rayleigh-clear and 5 m s−1

for Mie-cloudy winds for quality control referenced from the
study from Guo et al. (2021). The main results for inter-
comparison analysis and triple collocation are summarized
in Appendix B. We found that the threshold values obvi-
ously impact the number of available data points. When
we increase (decrease) the threshold value for Mie-cloudy
(Rayleigh-clear) winds, more (fewer) data points become
available. Regarding the statistics, the threshold values do
not have much impact on the determined systematic and ran-
dom errors for Rayleigh-clear winds that have around 1000
data points in total. For Mie-cloudy winds, the systematic
and random errors are more sensitive to the threshold value
partly because of fewer data points.

5 Conclusions

With the successful launch and operation of the Aeolus
satellite, this study was undertaken evaluating the Level-
2B baseline 11 HLOS wind product during the Australian
summer from October 2020 to March 2021. To achieve
this, the Aeolus Rayleigh-clear and Mie-cloudy winds were
inter-compared with ground-based WPR measurements. In
addition, the triple collocation analysis was attempted for
the combination of Aeolus winds (Rayleigh-clear and Mie-
cloudy), WPR measurements, and NWP model equivalents.

When comparing with the ground-based radar measure-
ments, no obvious biases (absolute mean bias < 0.7 m s−1)
and good agreements (R ≥ 0.9) were found for both
Rayleigh-clear and Mie-cloudy winds for all match-up sam-
ples, but the bias for Mie-cloudy winds has a larger uncer-
tainty. Moreover, the error characteristics are different be-
tween ascending and descending orbits. For the Rayleigh
channel, the wind detection during ascending orbits has
higher accuracy but larger uncertainty than during descend-
ing orbits, while for the Mie channel, larger bias and ran-
dom error were detected during ascending orbits. Vertically,
the Mie channel was found to be more capable of detect-
ing winds within the PBL, suggesting a larger impact of
Mie winds in data assimilation at these heights. In addi-
tion, both difference statistics and triple collocation anal-
ysis showed that Mie-cloudy winds are more precise than
Rayleigh-clear winds. Moreover, triple collocation analysis
showed that the NWP winds are most precise in represent-
ing Aeolus measurement scales, followed by WPR measure-
ments, and Aeolus observations have the largest errors for
both Rayleigh and Mie comparisons. Overall, the evidence
from this study demonstrates that the space-borne lidar is
able to detect winds with sufficient accuracy, which implies
the potential benefit of Aeolus winds for data assimilation in
numerical weather prediction, feeding different applications
such as aeroplane route optimization or wind energy predic-
tion.

Appendix A

The Mie-cloudy winds from 2B11 were corrected following
Marseille et al. (2022). The corrected Mie-cloudy winds were
sampled along the same profiles and range bins as the origi-
nal 2B11 data and were extracted for further validation. The
employed method is the same as for the original 2B11 Mie-
cloudy winds.

After filtering out the outliers, there are 227 match-ups for
analysis. Overall, the results from inter-comparison analysis
are almost the same as the original Mie-cloudy winds, with
bias and scaled MAD becoming slightly smaller for all data
(Table A1 and Fig. A1). However, for ascending orbits, the
scaled MAD increased by 0.28 m s−1. This may be caused
by the low data quality over complex terrain at East Sale and
Cairns. For descending orbits, both bias and scaled MAD in-
creased somewhat, but not obviously.

Regarding the wind difference as a function of height
(Fig. A2), some improvements in accuracy and precision can
be found mainly below 10 000 m. In particular, for data from
all orbits, the random error below 3000 m reduced by at least
0.6 m s−1; the biases between 1500 and 6000 m during de-
scending orbits are close to 0. The reduction in random error
can also be seen below 4000 m and between 6000 and 8000 m
in the tropics; the reduction in both biases and random errors
can be found from 1750 to 3500 m and from 4250 to 5000 m
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in the extratropics (Fig. A3). These are in line with the fact
that most of the corrected Mie winds are from the moderate
wind speed range.

The results from triple collocation analysis (Table A2) in-
dicate that the correction can reduce the random error of Mie-
cloudy winds to some extent, but there is some uncertainty
due to the limited number of collocated samples. The cali-
bration coefficients (Table A3) are almost comparable with
the results based on original 2B11 winds.

The results based on corrected Mie-cloudy winds suggest
that the non-linearity bias correction has a potential to re-
duce the bias and random errors, especially for the low- to
mid-level heights, which needs to be further demonstrated
by enlarging the data samples or extending the study period.

Figure A1. Scatter plots of corrected Mie-cloudy winds against
WPR HLOS winds for all data (a), ascending orbits (b), and de-
scending orbits (c). Green and grey lines indicate the fitted regres-
sion result and 1 : 1 agreement, respectively.

https://doi.org/10.5194/amt-15-4107-2022 Atmos. Meas. Tech., 15, 4107–4124, 2022



4120 H. Zuo et al.: Evaluation of Aeolus winds with WPR and NWP model equivalents over Australia

Figure A2. Wind differences (Aeolus-WPR) with height for (a) all data, (b) ascending orbits, and (c) descending orbits. Left: bias and scaled
MAD of wind differences as a function of height, with shaded areas representing the uncertainty. Right: the number of available match-ups
at each height. Orange and green colours indicate the results for Mie-cloudy and corrected Mie-cloudy winds, respectively.

Table A1. Results of inter-comparison with ground-based WPR measurements for corrected Mie-cloudy winds.

Orbit Bias SD Scaled MAD R N

(m s−1) (m s−1) (m s−1)

Corrected All 0.67 [0.03, 1.31] 4.90 4.10 0.89 227
Mie-cloudy Ascending 1.33 [0.52, 2.20] 4.96 4.39 0.85 134

Descending −0.29 [−1.28, 0.61] 4.68 3.72 0.90 93
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Figure A3. Wind differences (Aeolus-WPR) with range bins for the (a) tropics and (b) extratropics. Left: distributions of bias and scaled
MAD of wind differences over different range bins, with shaded areas representing the uncertainty. Right: the number of available match-ups
at each range bin. Orange and green colours indicate the results for Mie-cloudy and corrected Mie-cloudy winds, respectively. Note: the
heights on the y axis are just for reference, which are not exactly the same as the actual heights of each vertical range bin.

Table A2. Error standard deviation of three different systems.

1: WPR 2: Aeolus L2B 3: AUX_MET N

(m s−1) (m s−1) (m s−1)

Corrected 3.00 3.34 1.63 227
Mie-cloudy

Table A3. Calibration coefficients of Aeolus L2B and NWP winds.

2: Aeolus L2B 3: AUX_MET

a2 b2 HLOS∗2 a3 b3 HLOS∗3

Corrected Mie-cloudy 0.337 1.115 0.897HLOS2− 0.302 −0.031 1.129 0.886HLOS3+ 0.027
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Appendix B

Regarding quality control, error estimate threshold values of
7 m s−1 for Rayleigh-clear and 5 m s−1 for Mie-cloudy winds
were applied at the beginning of this study. The main results
of inter-comparison and triple collocation analysis are sum-
marized in Tables B1 and B2.

Table B1. Results of inter-comparison with ground-based WPR measurements based on the error estimate threshold values of 7 m s−1 for
Rayleigh-clear and 5 m s−1 for Mie-cloudy winds.

Orbit Bias SD Scaled MAD R N

(m s−1) (m s−1) (m s−1)

Rayleigh-clear All −0.51 [−0.89, −0.13] 6.10 5.80 0.92 998
Ascending −0.17 [−0.81, 0.48] 6.27 5.62 0.89 360
Descending −0.70 [−1.17, −0.23] 6.00 5.76 0.88 638

Mie-cloudy All 0.72 [0.06, 1.38] 5.13 4.19 0.89 231
Ascending 1.54 [0.69, 2.42] 5.13 4.16 0.85 136
Descending −0.46 [−1.49, 0.49] 4.91 3.63 0.89 95

Table B2. Error standard deviation of three different systems based on the error estimate threshold values of 7 m s−1 for Rayleigh-clear and
5 m s−1 for Mie-cloudy winds.

1: WPR 2: Aeolus L2B 3: AUX_MET N

(m s−1) (m s−1) (m s−1)

Rayleigh-clear 2.01 5.51 1.17 998
Mie-cloudy 2.49 3.96 1.86 231

Code and data availability. The Aeolus Level-2B11 wind prod-
uct is available at the ESA Aeolus Online Dissemination Sys-
tem (https://aeolus-ds.eo.esa.int/oads/access/, last access: 5 Jan-
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can be obtained from the CEDA Archive (https://catalogue.ceda.ac.
uk/uuid/9e22544a66ba7aa902ae431b1ed609d6, last access: 18 De-
cember 2021, Met Office, 2008). Aeolus AUX_MET files were cre-
ated by the ECMWF and obtained from the workstation at the Royal
Netherlands Meteorological Institute (KNMI) upon reasonable re-
quest. Earth relief data are from Tozer et al. (2019) and were ac-
cessed through PyGMT (https://doi.org/10.5281/zenodo.5607255,
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