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Text S1. Differentiating Sea Spray Aerosol from Saharan Dust 

Absorbing particle influences from dust and other non-marine/continental aerosol were screened from the dataset using the 

sub-10 µm single-scattering albedo (SSA). The SSA is defined as  

 

𝑆𝑆𝐴 (𝜆) =  
𝑏𝑠𝑐𝑎(𝜆)

𝑏𝑠𝑐𝑎(𝜆)+𝑏𝑎𝑏𝑠(𝜆)
 ,           (S1), 15 

 

where bsca and babs are the scattering and absorption coefficients, respectively. Sea salt aerosol typically have a high SSA (~1), 

while the greater absorbance properties of dust and biomass burning decrease SSA to lower values (0.8 – 0.9) (Muller et al., 

2011; Wu et al., 2020; Zuidema et al., 2018). Observational estimates of Saharan dust SSA provide a range of 0.91 – 0.97 for 

wavelengths between 400 and 550 nm (Di Biagio et al., 2019; Von Hoyningen-Huene et al., 2009; Haywood et al., 2003) and 20 

a mean across these wavelengths of 0.95. Due to the predominantly coarse sizes of sea salt and dust, both are expected to have 

low scattering angstrom exponent values (SAE < 1) (Delene and Ogren, 2002). We therefore distinguish between these two 

types of aerosol by identifying the regime in which both the SSA is high (~ 1) and the SAE is low (< 1) for sea salt dominated 

periods.  

 25 

To estimate SSA, NEPH scattering was adjusted to match the PSAP wavelength of 470 nm using the sub-10 µm SAE at 450-

550 nm as described by De Faria et al. (2021). We note that the absorption and scattering coefficients were measured at 

different relative humidity during LASIC (PSAP RH < 25%, Zuidema et al. 2018; NEPH RH = 55%). These differences may 

lead to overrepresentation of the SSA due to the larger NEPH humidity, but it provides a baselevel estimate of the parameter 

that can be used to distinguish the aerosol types. The SSA estimate was calculated for the full 2-h LASIC dataset (April 2016 30 

– October 2017), which captures both the background (November – May) and biomass burning (June – October) seasons. The 

results relating the SSA and SAE are provided in Fig. S3. For non-marine periods (periods that did not meet criteria described 

in Sect. 2.2), the SAE tends toward larger values (> 1) and lower SSA (< 0.9). The average SAE and SSA during LASIC 

marine periods were 0.66  0.15 and 0.97  0.02, respectively, while non-marine SAE and SSA were 0.96  0.3 and 0.89  

0.03.  35 

 

Based on these observations, we chose to further screen periods for the LASIC sea spray retrieval using an SSA threshold of 

0.95. This threshold value is within the variability of the average SSA for LASIC marine periods and is consistent with the 

value observed for marine times at an island site periodically influenced by regional pollution (De Faria et al., 2021) and the 

observed average of Saharan dust SSA (Di Biagio et al., 2019; Von Hoyningen-Huene et al., 2009; Haywood et al., 2003). 40 
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Text S2. Retrieval Sensitivity to Refractive Index 

The sensitivity of the sea spray mode retrieval to different sea salt refractive indices (m) was evaluated by selecting values that 45 

represent the range of nephelometer inlet relative humidity. m values were selected in the range of 1.4 + 0i to 1.6 + 0i. This 

range was based on laboratory and modelling experiments of m and Mie scattering of sea salt aerosol at varying relative 

humidity between < 40% (dry) to > 75% (wet) (Randles et al., 2004; Bi et al., 2018; Wang and Rood, 2008; Saliba et al., 2019) 

(Table S1). For the purposes of these tests, we assumed the sea salt particles are largely inorganic mixtures with organic 

components contributing minor if not offsetting m differences. The imaginary component of m was neglected under the 50 

assumption that the clean marine criteria and single-scattering albedo restrictions limited influences of absorbing contributions 

from non-marine organics and mineral dust and this value is often quite small (< 10-6; Wang and Rood, 2008; Randles et al., 

2004; Bi et al., 2018). We also assumed that the wavelength dependence of m in the visible light range relevant to the 

nephelometer scattering (450 – 700 nm) is weak (Bi et al., 2018).  

Small differences between retrievals using different m were observed for the sea spray size distribution fit parameters, and 55 

mass correlations (Table S2). The retrieved sea spray mass concentrations using m that represent humidified and wet conditions 

(1.4 + 0i, 1.45 + 0i) were lower on average than those using a “dry” m (1.55 + 0i, 1.6 + 0i), but they were within the range of 

variability for dry m. Retrieved sea spray mass correlations with submicron chloride and supermicron scattering were slightly 

higher when simulating Mie scattering with m assumed under more humid conditions (1.45 + 0i, 1.5 + 0i), potentially reflecting 

a more accurate sea spray retrieval when the simulated scattering is comparable in RH to the measured scattering (average RH 60 

= 55  10 %) and UHSAS size distribution measurements (RH = 55  8%). The sea spray mass correlations with wind speed 

for all m did not exceed 0.2, but the most wet m (1.4 + 0i) and driest m (1.6 + 0i) cases had a lower correlations. The chloride 

and scattering sea spray tracer correlations are higher when using m of 1.45 + 0i and 1.5 + 0i. Even though the changes between 

the retrieved fit parameters and tracer correlations do not vary substantially, we selected an m value of 1.45 + 0i to simulate 

the sea spray scattering in our Mie calculations, which is assumed to appropriately reflect the sea spray refractive index for 65 

salt particles at 55% RH.  

  



4 

 

Text S3. Estimate of Humidified Sea Spray Particle Density 

Size distribution and scattering measurements were not collected under standard dry conditions (RH < 40%) during LASIC, 

meaning dry particle density assumptions could not be applied in the retrieval of sea spray size distributions using scattering. 70 

We instead estimate the sea spray particle density using reported density values for sea spray aerosol and water (Table S3), 

and a mass-based density mixing rule (Wang and Rood, 2008; Tang et al., 1997), which is represented as,  

 

1

𝜌
= ∑

𝜀𝑚,𝑖

𝜌𝑖
𝑖             (S2). 

 75 

 is the solution density, i is the density of material i, and m,i is the mass fraction of material i. Because the measured particles 

were sampled from high ambient relative humidity (88  8%) before being measured by the nephelometer (55  10%), 

efflorescence (dehydration) effects needed to be considered.  

 

We used efflorescence hygroscopicity sea spray mass fractions reported for NaCl and complex salt mixtures that included 80 

organic and inorganic species at relative humidity intervals within the mean and uncertainty of the nephelometer (45%, 55%, 

and 65%; Table S4) and determined solution densities (Table S5). The three densities at 45%, 55%, and 65% relative humidity 

were then used to retrieve sea spray size modal properties (Table S6). Overall, there were no significant differences in the 

mass, diameter, and widths for each of the densities tested. We therefore take the solution density assumed to be estimated at 

the average nephelometer and size distribution relative humidity (RH = 55%,  = 1.3 g cm-3) as the density value used to 85 

retrieve the sea spray mass size distribution.  
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 90 

Figure S1. Scatter plot of nephelometer inlet humidity and supermicron scattering at 450 nm (Mm-1). The delineation of black 

and red symbols indicates the restriction used for applicable UHSAS-NEPH sea spray mode retrieval (Section 2.1.2). Linear 

(dashed blue line) and power law (solid blue line) fits have been applied to the data. 
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 95 
 

Figure S2. (a) Nephelometer supermicron scattering at 550 nm, and (b) wind speed correlations with ACSM chloride 

concentrations for the period of January 2017 – May 2017 during LASIC. Linear regressions are fit to the data (solid lines) 

and Pearson correlation coefficients are provided at top left of each panel (p < 0.05). 

 100 
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Figure S3. Scatter plot of the 450-700 nm sub-10 µm scattering Angstrom exponent (SAE10) and the 470 nm single-scattering 

albedo (SSA470 nm). Blue circles represent measurements that meet the clean marine criteria identified in Section 2.2, while 

orange circles are non-marine times. The dashed vertical line marks an SAE10 value of 1 (criteria for clean marine screening) 105 

and the dashed horizontal line marks SSA470 nm 0.95 (criteria to distinguish sea salt from dust). 
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Figure S4. Sea spray mode Mie solutions that fall below the retrieval-specific scattering error threshold (∆𝑠𝑐𝑎,𝑅𝐺𝐵; NMie 110 

solutions). The retrieval presented is for the 2-h average beginning 3 December 2016 22:00 UTC. 1 in every 30 low error Mie 

solutions are shown to reduce clutter. The size of the reduced solution space for the most probable Mie solutions (Section 3.2) 

is identified as Nprobable solutions. 
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 115 

Figure S5. Comparisons of retrieved (a) sea spray mass, (b) sea spray mode mass mean diameter (µm), and (c) sea spray mode 

width for joint probability combinations of NT | g  and Dg | g applied to low error Mie solutions. In panel (a), the dashed red 

line symbolizes a 1:1 line.  
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Table S1. Refractive index (m) values of sea salt under various relative humidity conditions.  

Refractive Index (m) Relative Humidity (RH) Reference remark 

1.5 + 0i “dry” Bi et al. (2018)  

1.45 + 10-8i 66% 

1.42 + 10-7i 71% 

1.39 + 10-9i 76% 

1.56 + 0i <40% Saliba et al. (2019) Assumed NaCl 

1.51 + 10-7i “dry” Randles et al. (2004) Organic – inorganic 

mixture 

1.54 + 0i “dry” Wang and Rood (2008) NaCl 

 120 

 

Table S2. Effects of refractive index changes on sea spray size distribution fit parameters and tracer correlations.  

m sea spray 

mass (µg 

m-3) 

Dg,mass (µm) g < 1 µm sea spray 

mass correlation  

(R) with < 1 µm 

Cl 

< 10 µm sea 

spray mass 

correlation (R) 

with <10 µm 

scattering 

< 10 µm sea 

spray mass 

correlation (R) 

with wind speed 

Average fit 

residual to 

UHSAS 

1.4+0i 8.03  

3.65 

1.42  0.16 2.3  

0.2 

0.30 0.82 0.16 1.25  0.83 

1.45+0i 8.37  

4.07 

1.47  0.17 2.4  

0.3 

0.35 0.84 0.20 1.26  0.89 

1.5+0i 8.89  

3.85 

1.47  0.16 2.4  

0.2 

0.34 0.85 0.20 1.26  0.90 

1.55+0i 8.92  

3.30 

1.5  0.15 2.4  

0.2 

0.31 0.84 0.20 1.26  0.85 

1.6+0i 9.26  

4.19 

1.52  0.17 2.46  

0.3 

0.31 0.83 0.17 1.26  0.83 

 

  



11 

 

Table S3. Dry sea spray and water densities. 125 

 g cm-3 reference remark 

 

 

 

(dry) sea spray 

(sea spray) 

2.17 Carper (1999) NaCl particle density. 

2.025 Saliba et al. (2019) Average observationally-constrained estimate of 

sea spray particle density from merger of marine 

size distributions and evaluation with salt mass. 

Value consistent with ~20% NaCl and lower 

density materials (organics, other marine salts). 

2.017 Zieger et al. (2017) Measured dry density of inorganic sea salt. 

2.2 Chin et al. (2002) 

Varlas et al.(2021) 

Used for GOCART model simulation and 

optical property validation of sea salt aerosol. 

water 

(water) 

1 Carper (1999)  

 

Table S4. Reported efflorescence “branch” hygroscopicity solute mass fractions at relative humidity (RH) within the range of 

nephelometer average and uncertainty (55  10%). 

solute mass fraction (m) reference 

m RH solute  

0.28 65% NaCl Tang et al. (1997) 

0.33 55% 

0.4 45% 

0.31 65% NaCl – Na2SO4 – NaNO3 Tang and Munkelwitz (1994) 

0.35 55% 

0.5 45% 

0.4 65% 64% wt NaCl, 34% wt KCl Ansari and Pandis (1999) 

0.45 65% Na2SO4-NaCl 

0.55 55% 

0.4 65%a NaCl + glycerol Choi and Chan (2002) 

0.5 55% a 

0.6 45% a 

0.55 65% a NaCl + succinic acid 

0.6 55% a 

>0.7 45% a 
awater activity  RH. 

Table S5. Mass fractions of sea spray (m,sea spray) and water (m,water) and the estimated solution density () using the mass-130 

based mixing rule Eq. (S2). 

assumed RH a 45% 55% 65% 

m,sea spray 0.5 0.4 0.3 

m,water
 b 0.5 0.6 0.7 

 (g cm-3)c 1.4 1.3 1.2 
abased on reported values in Table S4. 
bTwo component mixture, i.e. m,water

  = 1 - m,sea spray. 
cassumes homogenous sea spray particles with density equal to the average of reported values (2.103 g cm-3; Table S3) and water density of 

1.0 g cm-3. 135 
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Table S6. Sea spray size distribution modal parameters. 

 

(g cm-3) 

sea spray mass 

(µg m-3) 

Dg 

(µm) 
g 

1.2 7.93  3.5 1.42  0.15 2.3  0.2 

1.3 8.37  4.1 1.47  0.17 2.4  0.3 

1.4 8.98  3.8 1.5  0.15 2.4  0.3  
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Table S7. Sea spray tracer correlations for different fit RSS thresholds. 

Fit RSS 

 threshold 

Nsamples < 1 µm sea 

spray mass 

correlation  

(R) with < 1 

µm Cl 

< 10 µm sea 

spray mass 

correlation (R) 

with wind 

speed 

1 375 0.27 0.17 

2 639 0.31 0.17 

3 740 0.31 0.19 

4 775 0.32 0.20 

5 794 0.33 0.20 

6 800 0.33 0.19 

7 808 0.32 0.19 

8 811 0.31 0.18 

9 817 0.31 0.17 

10 825 0.31 0.18 
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