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Abstract. Atmospheric observations in remote locations of-
fer a possibility of exploring trace gas and particle concen-
trations in pristine environments. However, data from remote
areas are often contaminated by pollution from local sources.
Detecting this contamination is thus a central and frequently
encountered issue. Consequently, many different methods
exist today to identify local contamination in atmospheric
composition measurement time series, but no single method
has been widely accepted. In this study, we present a new
method to identify primary pollution in remote atmospheric
datasets, e.g., from ship campaigns or stations with a low
background signal compared to the contaminated signal. The
pollution detection algorithm (PDA) identifies and flags pe-
riods of polluted data in five steps. The first and most impor-
tant step identifies polluted periods based on the derivative
(time derivative) of a concentration over time. If this deriva-
tive exceeds a given threshold, data are flagged as polluted.
Further pollution identification steps are a simple concentra-
tion threshold filter, a neighboring points filter (optional), a
median, and a sparse data filter (optional). The PDA only re-
lies on the target dataset itself and is independent of ancillary
datasets such as meteorological variables. All parameters of
each step are adjustable so that the PDA can be “tuned” to be
more or less stringent (e.g., flag more or fewer data points as
contaminated).

The PDA was developed and tested with a particle number
concentration dataset collected during the Multidisciplinary
drifting Observatory for the Study of Arctic Climate (MO-
SAiC) expedition in the central Arctic. Using strict settings,
we identified 62 % of the data as influenced by local contam-
ination. Using a second independent particle number concen-
tration dataset also collected during MOSAiC, we evaluated
the performance of the PDA against the same dataset cleaned
by visual inspection. The two methods agreed in 94 % of the
cases. Additionally, the PDA was successfully applied to a
trace gas dataset (CO2), also collected during MOSAiC, and
to another particle number concentration dataset, collected at
the high-altitude background station Jungfraujoch, Switzer-
land. Thus, the PDA proves to be a useful and flexible tool
to identify periods affected by local contamination in atmo-
spheric composition datasets without the need for ancillary
measurements. It is best applied to data representing primary
pollution. The user-friendly and open-access code enables re-
producible application to a wide suite of different datasets. It
is available at https://doi.org/10.5281/zenodo.5761101 (Beck
et al., 2021).
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1 Introduction

Aerosol and trace gas measurements in remote environments,
such as polar or high-altitude regions, are essential to im-
prove our understanding of key climate and biogeochemi-
cal processes and to constrain numerical models (Carslaw et
al., 2010; Bukowiecki et al., 2016; Reddington et al., 2017).
A major challenge associated with obtaining atmospheric
composition measurements in such locations is that data are
often impacted by emissions from local activities, which
are not representative of the remote environment and in-
terfere with the observation and data analysis objectives
(Bukowiecki et al., 2021). Such local pollution emissions
can originate from the measurement platform itself, e.g., re-
search vessels (Schmale et al., 2019; Baccarini et al., 2020;
Humphries et al., 2016), or from touristic (Bukowiecki et
al., 2021), local anthropogenic (Asmi et al., 2016), or nearby
industrial (Kolesar et al., 2017) activities. Local emissions
often originate from combustion processes and can directly
affect trace gas mixing ratios (hereafter referred to as con-
centrations), aerosol concentrations, and other particle prop-
erties. For subsequent analysis, the influence of local con-
tamination must be correctly detected to separate polluted
from unaffected data. Local contamination influence is typ-
ically characterized by enhanced particle or trace gas con-
centrations and strong variations in the signal amplitude on
timescales varying between a few seconds (Bukowiecki et
al., 2021; Baccarini et al., 2020) and several hours, depend-
ing on the nature of the emitting activity and wind direc-
tion. Pollution “spikes” disturb the measurement of the re-
gional or remote background concentrations, which are in-
herently continuous and vary over time due to meteorologi-
cal factors such as the boundary layer evolution (Bukowiecki
et al., 2021), synoptic situations (Alroe et al., 2020) or rela-
tively slow natural processes such as marine biogenic emis-
sions (Frossard et al., 2014) or sea-ice-related new particle
formation (Baccarini et al., 2020).

Numerous atmospheric composition measurements have
been conducted in remote environments, such as the Arctic
(Leck et al., 1996; Uttal et al., 2002; Tjernström et al., 2014)
and the Southern Ocean (McFarquhar et al., 2021; Schmale
et al., 2019), or at regional background sites around the Arc-
tic (Uttal et al., 2016; Freud et al., 2017) or throughout Eu-
rope as part of the established monitoring network Aerosols,
Clouds, and Trace gases Research Infrastructure (ACTRIS)
(Herrmann et al., 2015; Asmi et al., 2013; Bukowiecki et
al., 2021; Schmale et al., 2018). Different approaches have
been applied to detect and remove polluted data from a large
variety of measurement sites. We provide a short overview
here.

In one approach, Herrmann et al. (2015) removed polluted
data based on visual inspection of the submicron particle
size distribution spectra. Other approaches are based on the
application of statistical filters that identify contamination
based on outliers that deviate from a curve fitted to the data.

Bukowiecki et al. (2002) developed a method for aerosols
based on the 5th percentile within each minute, assuming
it reflects uncontaminated background concentrations. This
method has the caveat that for times without contamination,
the background is biased low, while for highly contaminated
data, the background is biased high. Ruckstuhl et al. (2012)
assumed that a trace gas background signal is a combination
of a baseline signal with the contribution of pollution. The
background signal is estimated by applying a linear regres-
sion. The outliers are detected as the data points that exceed
the estimated background by a factor of 3σ . This method
is called robust extraction of a baseline signal (REBS). El
Yazidi et al. (2018) applied the REBS method to four datasets
of trace gas measurements and compared it to the standard
deviation method for particles (Drewnick et al., 2012), which
detects contamination as data points that differ by more than
3σ from the median of the data, and to the coefficient of vari-
ation (COV) method (Hagler et al., 2012), which uses the
99th percentile of the COV as a threshold for contamination.
Hereby, the COV is defined as the standard deviation of a
moving time window (5 min) divided by the mean value of
the whole dataset. Brantley et al. (2014) compared a stan-
dard deviation-based method to the COV method to detect
exhaust plumes from air quality measurements on a road.
Both these methods work for datasets in which the signal
of plumes is characterized by high variability and magni-
tude (Brantley et al., 2014). McNabola et al. (2011) applied
baseflow separation techniques, such as low-pass filters or
moving interval filters, known from streamflow hydrology,
to separate background concentrations in urban PM10 mea-
surements and compared the result to background PM10 mea-
surements. Gallo et al. (2020) developed a method to retrieve
the regional aerosol number concentration baseline at the
Eastern North Atlantic (ENA) Atmospheric Radiation Mea-
surement (ARM) user facility from the US Department of
Energy. The ENA Aerosol Mask (ENA-AM) identifies data
points, which exceed the standard deviation of the data below
the median of a 1-month period by more than a factor of α.
They found the method to work best for time periods between
2 weeks and 1 month, and less than half of the data points
were influenced by local contamination. Liu et al. (2018)
used a de-spike algorithm, based on a 24 h running median
window, to remove short-term local contamination events of
less than 1 h duration from an aerosol time series measured
at McMurdo Station in Antarctica. Giostra et al. (2011) used
a statistical approach where they extract the baseline with a
decomposition of the probability density function of the data.
Polluted data show a gamma distribution, and the baseline is
represented as a Gaussian distribution. This method was ap-
plied to halocarbon data from remote marine or alpine sta-
tions. Most recently, Bukowiecki et al. (2021) developed a
new spike detection method for regional background obser-
vations. First, a signal baseline was determined for the 1 min
total particle number concentration data based on a running
5th percentile, with an optimized time window and percentile
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threshold. This baseline was then subtracted from the origi-
nal time series to isolate spikes in the time series. Finally,
a spike flag was applied by removing data when the 1 min
spike time series exceeded the 80th percentile of the sur-
rounding 1 h time window by a user-defined fixed threshold.
Generally, such statistical methods are not suited to reveal-
ing background signals at times when they are dominated
by non-background signals, because this carries a risk that
the non-background signals are falsely included in the back-
ground signals (Ruckstuhl et al., 2012).

Another commonly used pollution filtering method is
based on wind direction. In this case, a contamination source
sector can be defined as flagging all time periods in a
dataset with wind coming from this sector; winds from out-
side the source sector are assumed to be contamination free
(Leck et al., 1996; Asmi et al., 2016; Kyrö et al., 2013).
For the Arctic Summer Cloud Ocean Study in 2008 on the
Swedish icebreaker Oden, the measurement of a pollution
tracer (toluene) was used in addition to a wind filter. If the
toluene concentration running mean exceeded a threshold,
the data were flagged as polluted (Tjernström et al., 2014).
Toluene concentration measurements require complex instru-
mentation and are therefore not routinely observed. An in-
herent limitation of wind filters is that they cannot take into
account the effect of recirculation of the emitted pollution,
which can lead to contaminated measurements from differ-
ent wind sectors. Humphries et al. (2019) used a combina-
tion of a carbon monoxide (CO) concentration threshold with
a statistical filter applied to carbon dioxide (CO2) and black
carbon (BC) data to clean particle number concentration and
cloud condensation nuclei datasets. Data were collected on
the Australian R/V Investigator in 2016 in the Tasman Sea.
The statistical filter flags the data points that deviate from
the 5 min mean of each variable by a certain threshold. Addi-
tionally, a window filter was applied that sums all data points
in a 20 min time window. If the sum of the polluted data
points surpassed 10 % of the data points in the time window
in one of the three datasets (CO, CO2, or BC), all data points
within this time window were flagged as polluted. Similarly,
Schmale et al. (2019) and Moallemi et al. (2021) used a com-
bination of CO2 and particle number concentration data to
detect contamination from ship exhaust. A binomial smooth-
ing was applied to each time series, and when the ratio of the
smoothed data over the original time series exceeded certain
thresholds, the data were flagged as polluted.

The above examples demonstrate that there are many dif-
ferent ways of detecting local contamination in a dataset and
that no single method has established itself and is widely
used. While custom-made methods have the advantage that
they are designed to work particularly well for a specific
dataset, they have the disadvantage that they cannot necessar-
ily be applied to other datasets, because they rely on ancillary
information that might not be readily available at all mea-
surement sites. This means that pollution detection methods
are not always reproducible and make comparison between

cleaned datasets more challenging. Therefore, a common fil-
tering method, which relies on a minimal number of input
variables, is desirable to achieve reproducible pollution de-
tection across a variety of datasets.

Here, we propose an algorithm to clean up particle number
concentrations, particle number size distribution and trace
gas concentration datasets collected at remote or background
sites that experience random influence from local primary
pollution sources. This method only requires a time series
of the target particle number or trace gas concentration data
and is independent of ancillary datasets such as BC or mete-
orological variables. As a result, the method can be applied
to a large number of measurement sites. The algorithm de-
tects contaminated periods in five steps. To increase the us-
ability of this algorithm, the parameters can be “tuned” to
adapt to different datasets, ambient conditions, and require-
ments. This makes the algorithm an efficient and consistent
way of detecting local contamination in large remote atmo-
spheric time series, as they exist for example from ship cam-
paigns or from remote stations. This method is objective as
the treatment of the data is consistent throughout the whole
time series considered, because the same value of each pa-
rameter is applied to the entire dataset.

After introducing the pollution detection algorithm (PDA)
in detail in the methods, we evaluate its performance in the
results section in three steps. First, the general evaluation is
based on particle number concentration data measured dur-
ing the MOSAiC expedition (Multidisciplinary drifting Ob-
servatory for the Study of Arctic Climate) between Septem-
ber 2019 and October 2020 (Shupe et al., 2022). Second, we
test results from the PDA against other common pollution-
identifying methods. Third, we evaluate its applicability to
further ship-based datasets such as aerosol number size dis-
tributions, aerosol mass composition, and trace gas concen-
trations as well as to a particle number concentration dataset
from a high-altitude observatory. We also provide an open-
source, python-based tool for download on Zenodo (Beck et
al., 2021), including a manual which allows users to apply
the same method to other datasets.

2 Methods

In this paper, we use the terms “contamination” and “pol-
lution” interchangeably to describe local contamination. We
define local contamination as fresh exhaust plumes from the
ship, skidoos, snow groomers and other local, anthropogenic
sources of pollution. We define the background concentra-
tion as unaffected by local contamination but well-mixed am-
bient concentrations. This means that background observa-
tions can contain aged pollution, e.g., an aged plume which is
long-range transported to RV Polarstern (Dada et al., 2022).
Note that the aim of the PDA is to identify fresh local con-
tamination, and we do not aim at detecting aged, well-mixed
contamination. In this section, we first present the datasets
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and instruments used for this study. In Sect. 2.2 and 2.3, we
describe alternative filtering methods used to test the perfor-
mance of the PDA. In Sect. 2.4, we describe the PDA with
each of the five filtering steps in a dedicated subsection.

We developed and tested the PDA using atmospheric
aerosol and trace gas concentrations measured in the Swiss
Container during the year-long MOSAiC expedition in the
central Arctic. The expedition started in September 2019
in Tromsø, Norway, and ended in October 2020 in Bre-
merhaven, Germany, where RV Polarstern (Alfred-Wegener-
Institut Helmholtz-Zentrum für Polar- und Meeresforschung,
2017) drifted with sea ice in the central Arctic Ocean. The
drift track is shown in Fig. A1. The aim of the expedition
was to study sea ice, ecological, biogeochemical, ocean, and
atmospheric processes in the Arctic Ocean. A research camp
was set up on the ice around the ship. A comprehensive in-
troduction to the atmospheric measurements carried out dur-
ing the expedition is presented in Shupe et al. (2022). The
Swiss Container was placed on the D deck of the ship (see
Fig. A2) to monitor the aerosol- and gas-phase atmospheric
composition. Aerosols and trace gases were sampled from
two different inlets: (i) a whole-air inlet (total inlet) which
allowed sampling of all particles and droplets up to 40 µm
and (ii) an interstitial inlet equipped with a cyclone to cut off
particles larger than 1 µm, designed to sample particles that
do not activate in cloud and fog (Fig. A3). The total inlet was
built following Global Atmosphere Watch recommendations
(World Meteorological Organization, 2016). An automated
valve inside the container switched hourly between the to-
tal and interstitial inlets to allow instruments connected be-
hind the valve to sample from each of the inlets alternately.
The measurement setup and the instrumentation used dur-
ing the expedition are shown in Fig. A3 in Appendix A. The
flow of the inlets was kept constant at 10 (total inlet) and
16.7 L min−1 (interstitial inlet). The inlets above the con-
tainer had a length of 1.5 m and sampled at a height of ap-
proximately 15 m above sea level (a.s.l.). The temperature
inside the Swiss Container was kept constant at 20 ◦C. The
sampled air was dried when entering the container due to the
strong temperature gradient between outside and inside, but
additional inline heating was applied when necessary. Rela-
tive humidity (RH) in the inlet lines was continuously mea-
sured and maintained below 40 %.

Aerosol and trace gas measurements were regularly im-
pacted by a variety of local pollution sources (e.g., ship stack,
snow groomers, diesel generators, helicopters, ship vents).
Polluted periods varied in time from seconds up to hours or
days, and the intensity of contamination varied with the dis-
tance from and type of source and with the wind direction,
wind speed, and turbulent air motion around the ship.

To segregate polluted from unaffected data for final analy-
sis, we developed an algorithm that detects and tags polluted
periods independently of the pollution source’s position rel-
ative to the measurement site. For the development of the
PDA, we used a particle number concentration dataset. In the

following subsections, we describe the methodology used to
develop and evaluate the performance of the PDA.

2.1 Instruments and data

2.1.1 Particle number concentration data

We used a particle number concentration dataset collected
with a condensation particle counter (CPC) model 3025 from
TSI Inc. (referred to as CPC3025) to develop the PDA. The
CPC3025 has a minimum detectable particle diameter (50 %
counting efficiency) of Dp_50 = 3 nm and a maximum de-
tectable particle concentration of 9.99× 104 cm−3. It col-
lected data at 10 s intervals during the expedition. The in-
strument was connected to the interstitial inlet. The sample
flow of the CPC was set to 0.3 L min−1 during the entire ex-
pedition and was checked daily. We performed weekly zero
tests with high-efficiency particulate air (HEPA) filters.

In addition to the CPC3025, we used particle number con-
centration data from the Aerosol Observing System (AOS) to
evaluate the performance of the PDA. It was operated as part
of the United States Department of Energy Atmospheric Ra-
diation Measurement (ARM) facility during the same expe-
dition. The ARM AOSs are measurement containers capable
of measuring a suite of aerosol microphysical and chemical
properties in a standardized, field-deployable design. Only
a brief summary of the AOS is given here; a more compre-
hensive overview of the ARM AOS design, instrumentation,
deployment history, and measurement objectives for the dif-
ferent facilities can be found in Uin et al. (2019).

The AOS was also located on the D deck, on the port
side of the Swiss Container, 2 m away (see Fig. A2). The
aerosol instrumentation inside the AOS sampled from a sin-
gle, shared total aerosol inlet on top of the AOS container.
The inlet itself was 5 m in length, and the inlet height was
approximately 18 m a.s.l. The particle number concentra-
tion data in the AOS container were obtained from a CPC
model 3772 by TSI (referred to as CPCf) with a minimum
detectable particle diameter of Dp_50 = 10 nm (Kuang et
al., 2021). It ran with a flow rate of 1 L min−1 and a sampling
resolution of 1 s. The air to the CPC was dried before sam-
pling using a Nafion dryer. Weekly filter tests and daily flow
rate checks were performed. The temperature inside the AOS
was maintained between 18 and 22 ◦C. The AOS inlet was
equipped with a purge blower that was designed specifically
for this campaign to prevent ship stack pollution from enter-
ing the instruments. The purge blower was set up to trigger
automatically according to elevated carbon monoxide (CO)
concentrations, which were measured from a separate sam-
ple line that was collocated with the aerosol inlet. The purge
blower was able to provide a high flow rate of continuous
particle-free air into the AOS inlet, effectively purging the
inlet of ship stack pollution. However, due to the relatively
low sensitivity of CO concentrations to pollution from the
ship stack plume (see Fig. A4), the automated triggering sys-
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tem did not work automatically as planned. Thus, the purge
blower was turned on manually when the bow of the ship was
exposed to pollution for extended periods of time. As a result,
the ARM CPC datasets show periodic gaps during local pol-
lution events, but there are still times when the datasets are
influenced by local contamination and additional cleaning is
required. Therefore, the ARM CPC datasets are well suited
to testing the performance of the PDA.

To test the broader applicability of the PDA to datasets
from sites with different characteristics, we used a particle
number concentration dataset collected at the high-altitude
GAW and ACTRIS research station Jungfraujoch (JFJ) in
the Swiss Alps (Bukowiecki et al., 2016). The station is lo-
cated at 3580 m a.s.l. In winter it often represents the remote
European free troposphere, while in warmer seasons, intru-
sions of boundary-layer air masses are frequently observed
(Herrmann et al., 2015). The site is also a touristic destina-
tion, meaning that local contamination affecting the measure-
ments interferes with the aim of achieving unpolluted back-
ground measurements (Bukowiecki et al., 2021). Data were
collected by a CPC model 3772 by TSI. The measurement
setup is described in more detail by Bukowiecki et al. (2021).
The results of this application are presented in Sect. 3.3.3.

2.1.2 Description of particle number concentration
characteristics

During MOSAiC, local contamination occasionally origi-
nated from other sources than the stack, such as helicopters,
snow groomers and snowmobiles as well as small diesel gen-
erators on the ice. Therefore, the algorithm needs to detect
contamination from different sources and directions. Figure 1
shows the whole dataset of minute-averaged particle number
concentrations as a function of the relative wind direction.
Note that we used this particle number concentration dataset
to develop the PDA. The stack is located at 180◦ from the
bow and is marked as a gray vertical line in the figure. The
majority of high concentration events (> 104 cm−3) are re-
lated to emissions from the stack, but there were occasions
where high concentrations came from different directions.
We define high concentrations as> 104 cm−3 because empir-
ically we did not find any situation where the particle number
concentration would increase to such high values in the Arc-
tic without involvement of expedition-related activities (see
Sect. 2.4.1). In contrast, we find low particle number concen-
trations of< 100 cm−3 for almost all wind directions, includ-
ing from the stack direction. A stable and very low boundary
layer occasionally avoided the polluted air from the stack to
down-mix to the inlets of the Swiss Container so that the
measurements remained unaffected by it despite the air com-
ing directly from the exhaust (this is illustrated in the picture
in Fig. A5). This makes it difficult to apply a simple but com-
monly used (Leck et al., 1996; Cox et al., 2003) filter based
on wind direction. In addition, introducing a maximum con-
centration as a single threshold below which data are con-

sidered clean is not feasible, because natural particle con-
centrations vary across several orders of magnitude (Fig. 1).
Pollution influence can also occasionally be so small that it
would not surpass the threshold, e.g., when it is on the order
of hundreds of particles on top of a low (e.g., < 100 cm−3)
natural concentration (background concentration).

Generally, concentration data from remote regions, char-
acterized by the absence of dominant local (anthropogenic)
sources, vary only slowly with time compared to when influ-
enced by local contamination. This means that the concen-
tration gradient (time derivative) is small. In contrast, con-
centration data show distinct variations, such as rapid fluctu-
ations, when affected by contamination from nearby sources
(e.g., Fig. A4). The PDA builds on this abrupt variation in
concentration and detects polluted data based on the rate and
magnitude of change in the concentration signal over a given
time period. The basic principle of the PDA was developed
and used for the 2018 Microbiology-Ocean-Cloud-Coupling
in the High Arctic (MOCCHA) campaign on the Swedish ice
breaker Oden by Baccarini (2021). Here, we further develop
this algorithm and test it against different datasets. Impor-
tantly, the algorithm is only based on target concentration
data and does not rely on ancillary datasets, such as particle
size distribution or meteorological variables.

2.1.3 Particle number size distribution data

Furthermore, we applied the PDA to a particle size distribu-
tion dataset collected by a Scanning Mobility Particle Sizer
(SMPS). The custom-built SMPS (Schmale et al., 2017) was
located in the Swiss Container behind the switching valve
and recorded the size distribution of particles between 17 and
600 nm with a time resolution of 3 min. We applied the PDA
to the SMPS integrated particle number concentration. The
results are presented in Sect. 3.1.2.

2.1.4 Aerosol chemical composition data

In addition, we tested the performance of the PDA against
the aerosol chemical composition dataset obtained by the
High-Resolution Time-of-Flight Aerosol Mass Spectrome-
ter (HR-ToF-AMS) from Aerodyne Research Inc., located in
the Swiss Container. The AMS measures the chemical com-
position of non-refractory aerosols, i.e., species that evapo-
rate at temperatures up to 600 ◦C. It typically detects sulfate
(SO2−

4 ), nitrate (NO−3 ), ammonium (NH+4 ), chloride (Cl−),
and organics (DeCarlo et al., 2006) from particles in the size
range 0.07–1 µm, defined by the type of aerodynamic lens.
The AMS was operated behind the switching valve to sample
both interstitial and total inlet aerosol populations. Here, we
use the mass signal of the ion fragment C4H+9 at a mass-to-
charge ratio ofm/z= 57. This fragment is a typical indicator
of fresh fossil fuel combustion (Enroth et al., 2016; Massoli
et al., 2012) and has been used before to detect contamina-
tion in remote regions (Schmale et al., 2013). The results of
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Figure 1. Particle number concentrations averaged over 1 min as a function of relative wind direction (0◦ indicates wind coming from the
bow) and color-coded by relative wind speed. Concentrations were higher with winds from the broader direction of the stack (located at 180◦

from the inlet position, this position is marked with a vertical line).

the application of the PDA to the chemical composition data
will be discussed in Sect. 3.3.1.

2.1.5 Trace gas data

We also used trace gas data collected in the Swiss Container
to test the algorithm on datasets other than particle number
concentration (Sect. 3.3.2). A detailed description of trace
gas measurements during the MOSAiC expedition is given in
Angot et al. (2022b). Briefly, carbon dioxide (CO2), methane
(CH4), and CO ambient air mixing ratios were monitored
by cavity ring-down spectroscopy using a Picarro instrument
(model G2401) behind the interstitial inlet. Regular calibra-
tions were carried out during the expedition with gas mix-
tures of known CO2, CH4, and CO mixing ratios.

2.1.6 Wind data

Wind speed and direction were measured with a 2D sonic
anemometer on the main mast of RV Polarstern. We used
this wind dataset at a time resolution of 1 min in this study
(Schmithuesen, 2021a, b, c, d, e).

2.2 Wind-based filtering method

The main source of local pollution during the MOSAiC ex-
pedition was the stack of the ship. Based on Fig. 1, it is possi-
ble to define a polluted wind sector from 90 to 270◦ relative
to the bow of the ship. The wind-based filter flags all data
points collected when the relative wind direction was coming

from the polluted sector. This wind filter is introduced here
for comparative purposes only. The comparison of the wind-
based filtering method to the PDA is presented in Sect. 3.2.1.

2.3 Visual filtering method

The following visual filtering method is introduced here for
comparative purposes: every pollution filtering method con-
tains a certain level of subjectivity since the final decision
about polluted versus non-polluted must be made by the user.
Therefore, we compared the performance of the PDA to the
result of a visual-only filtering method, which was applied
to the dataset of the CPCf. Impact from local contamina-
tion is often evident from the time series of pollution-related
variables, such as wind direction, wind speed, total particle
number concentration, 1 standard deviation of particle num-
ber concentration within 1 min periods (NSD_1 m), and parti-
cle number size distribution. Time series of these variables
were visually inspected for each day to identify the periods
impacted by the local contamination. NSD_1 m was used as
the core feature of pollution influence. In periods unaffected
by pollution, it was below 30 cm−3. When the total particle
number concentration was higher than ∼ 600 cm−3 (such as
during new particle formation events in the summertime or
during Arctic haze events in the wintertime), NSD_1 m often
increased to between 30 and 100 cm−3. However, these peri-
ods were not treated as local contamination influenced. Data
were flagged as polluted whenNSD_1 m was above 103 cm−3,
the Aitken mode particle (i.e., diameter below 100 nm) num-
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ber concentration was greatly enhanced, and wind was com-
ing from the stack direction. Periods moderately influenced
by the local contamination, during which NSD_1 m was typi-
cally between 102 and 103 cm−3 and the wind direction was
usually not directly from the stack direction, are also flagged
in this dataset. The visual filtering method also considered
spikes and neighboring points. A spike of NSD_1 m was de-
fined as a point with a value that was 2 times higher than the
5 min moving average of NSD_1 m. When two polluted flags
were within 5 min of each other, all data points in between
were flagged as polluted.

2.4 PDA

The PDA consists of a set of filters which can be applied
in various combinations to identify polluted data. Figure 2
shows a schematic of the workflow. First, data points with
a derivative exceeding a given threshold are tagged as pol-
luted (Sect. 2.4.1). Second, a simple threshold filter tags data
points which exceed a specific threshold, e.g., > 104 cm−3

in our case, because such concentrations are beyond the ex-
pected range for the central Arctic (see Sect. 2.4.1). Option-
ally, for every tagged data point, the neighboring point can be
tagged too (Sect. 2.4.2). An optional median filter identifies
outliers in the dataset which are left untagged (Sect. 2.4.3).
Lastly, sparse data points left untagged in a series of tagged
data points are also tagged (Sect. 2.4.4). Individual parame-
ters and thresholds in each step can be adjusted to customize
the PDA and to adjust its strictness. The neighboring and sta-
tistical median filters are optional and can be skipped, for
example, if the resulting segregation of polluted data points
satisfies the needs of the user already after the first steps. This
allows retention of more data points in the final dataset. The
different steps of the PDA are explained in detail in the fol-
lowing subsections. Table 1 summarizes all the parameters
of the PDA described in Sect. 2.

2.4.1 Steps 1 and 2: derivative and threshold filters

The derivative filter is used to separate periods characterized
by rapid fluctuations in concentrations (we consider them to
be polluted periods) from those dominated by slow changes
in concentration (we consider them to be unaffected periods).
At each data point at the native time resolution (10 s in our
dataset) we calculate the absolute value of the time derivative
(i.e., change in concentration) of the concentration using the
central differences formula.∣∣dC′t ∣∣≈ ∣∣∣∣Ct+1−Ct−1

2

∣∣∣∣ , (1)

where dC′t refers to the derivative of concentration C at
time t , and Ct+1 and Ct−1 refer to the previous and follow-
ing measured concentrations at times (t + 1) and (t − 1), re-
spectively. Note that the derivative cannot be calculated with
Eq. (1) at the edges of the dataset (very first and very last

data points in the time series). Instead of the derivatives, the
algorithm calculates the difference between the first (last)
two data points at the beginning (end) of the dataset and
uses those values for the derivative filter. This ensures that
the edges of the dataset are also considered in the PDA. The
derivative filter also ignores data gaps. For data points at the
beginning and the end of a data gap, the derivative will still
be calculated considering the previous and following data
points, regardless of the duration of the gap (see Eq. 1). To
separate polluted from unaffected data, we developed two
methods.

Method A separates polluted from unaffected data with
a power law. We average the time derivatives of the parti-
cle number concentration over 1 min (six values) and plot
them against the 1 min-averaged particle number concentra-
tions (Fig. 3). The averaging time can be varied and adapted
to datasets with different time resolutions. This is discussed
in Appendix C. We choose 1 min for a pragmatic reason: at
1 min time resolution we can still see influences of short-
lived changes in particle number concentration (e.g., from
contamination), and it makes data processing faster as the
size of the 1-year-long dataset is large. Figure 3a shows two
“branches” of data points (visually emphasized by the rela-
tive wind direction color code): one with higher derivatives
representing periods of high concentration variability, i.e.,
due to local contamination, and one with lower derivatives,
indicating smooth variation, i.e., not affected by local con-
tamination. Separating the polluted and unaffected branches
is the fundamental step of the PDA developed here. The
derivative of the particle number concentration can be de-
scribed as a power law of the particle number concentration,
and the two branches distribute around two different power
laws. Thus, for the separation, we use a power law between
those two branches:(
y = a× xm

)
. (2)

m corresponds to the slope and log(a) to the intercept with
the logarithmic y axis. Values for the power law fits are em-
pirically selected.

Finding optimal values for a and m is an empirical pro-
cess which can be validated by looking at the time series
of the polluted and unaffected data together. This process
likely needs several iterations until values for a and m are
found which satisfy the needs of the intended data analy-
sis. A higher slope in the separation line means that, for a
fixed particle number concentration, the threshold of sepa-
ration moves towards higher derivatives of particle number
concentration and therefore allows more variability in the
data; i.e., the method is less strict. A higher intercept sets the
threshold of separation to higher derivatives at lower con-
centrations, allowing for more variability there. Examples
of four different separation lines are shown in Fig. 3a. For
the MOSAiC dataset, we found values of m= 0.55 s−1 and
a = 0.5 cm−3 s−1 (red line) to work well with our dataset
(see Sect. 3.1).
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Figure 2. Schematic of the pollution detection algorithm. The key is the power law filter (highlighted in a dotted rectangle), which is followed
by a series of steps. The neighboring points and the median filter are optional and can be skipped. Parameters of each step can be adjusted.
IQR stands for interquartile range (see Sect. 2.4.1).

Table 1. Overview of all filter steps and parameters of the PDA applied to different datasets.

Filter step Parameter Particle number Particle size CO2 Particle number Particle number
concentration distribution MOSAiC concentration concentration
MOSAiC MOSAiC dataset JFJ CPCf

1A. Derivative filter a 0.5 cm−3 s−1 1.4 cm−3 s−1 – – 0.5 cm−3 s−1

(power law) m 0.55 s−1 0.5 s−1 – – 0.5 s−1

1B. Derivative filter (IQR) IQR factor – – 1.5 1.7 –
IQR window size – – 24 h 24 h –

2. Threshold filter Upper threshold 104 cm−3 104 cm−3 none 104 cm−3 104 cm−3

Lower threshold 60 cm−3 60 cm−3 none 60 cm−3 60 cm−3

3. Neighboring points filter On/off On On On On On

4. Median filter Median time interval 30 min 30 min 30 min 30 min 30 min
Median deviation factor 1.4 1.4 1.001 1.5 1.3

5. Sparse data filter Sparse window 30 10 30 30 30
(no. of data points) Sparse threshold 24 3 20 24 23

Method B separates data based on the interquartile range
(IQR) of the derivatives within a defined period. Not all
datasets show an equally clear separation of the derivatives
into two branches like the particle number concentration
shown in Fig. 3a. An example is the particle number con-
centration dataset from Jungfraujoch (Fig. 3b). An alterna-
tive method is thus to separate polluted from unaffected data
based on the deviation of the derivatives from their centered
IQR. For this, we calculate the centered IQR of the deriva-
tives of each data point in a moving time window (called the
IQR window) (24 h in the case study described in Sect. 3.3.3,
which is equal to 1440 data points). This means that, for each
data point, we calculate the IQR from the data ± half of the
IQR window before and after the data point. When the ab-
solute derivative of a data point exceeds the 75th percentile
by a given factor (hereafter called the IQR factor), the data
point is flagged. We use an IQR factor of 1.7 to identify con-
tamination in the JFJ dataset. Both the IQR window size and

the IQR factor of the IQR method can be adjusted in the PDA
code. Method B is well suited to separating datasets with less
obvious differences between polluted and unaffected periods.
As a first start, we therefore suggest trying an IQR window
size of 1440× x, where x is the time resolution of the dataset.
We found the factor 1440 to work for datasets with 1 min
time resolution, where it represents a time window of 24 h.

Note that the moving centered IQR can only be calculated
for data points with a distance of half of the IQR window
from the edges in the dataset. To also account for the edges
of the dataset, we fill the first (last) data points with the calcu-
lated IQR value of the first (last) calculated data point. This
means that the IQR is assumed constant for half of the IQR
time window at the edges. In our case (with an IQR window
of 24 h), this affects the first and last 12 h of the dataset.

Simultaneously with the derivative filter, we introduce up-
per and lower concentration thresholds (step 2), as described
below, beyond which data are removed. For specific regions,

Atmos. Meas. Tech., 15, 4195–4224, 2022 https://doi.org/10.5194/amt-15-4195-2022



I. Beck et al.: Automated identification of local atmospheric contamination 4203

Figure 3. Absolute value of the minute-averaged particle number concentration derivative as a function of the minute-averaged particle
number concentration. (a) The dataset collected during the MOSAiC expedition. The color code indicates the relative wind direction. The
four lines show potential separation lines between polluted and unaffected data points for four different combinations of slope and intercept
(y = a× xm). Here we used the red line. (b) The binned dataset collected at Jungfraujoch station in the Swiss Alps in 2016 (Bukowiecki et
al., 2021). The color code indicates the number of observations per bin.

like the central Arctic in our case, one can assume concen-
trations not to exceed a certain threshold as long as they
are not influenced by local contamination sources. Based
on the particle number concentration dataset throughout the
whole MOSAiC and MOCCHA observation periods, we ar-
gue that it is safe to assume that particle number concentra-
tions above 104 cm−3 can be considered to be influenced by
local contamination with the detection limits of the instru-
ments used for the two campaigns. Note that new particle
formation events, which typically lead to the highest num-
ber concentrations second to ship activities during the expe-
dition, do not exceed this threshold. See Fig. 3, where the
branch of unaffected data below the separation line does not
show any data points > 104 cm−3. A similar principle is ap-
plied to a lower limit, here 60 cm−3. Below this threshold, we
assume the dataset is not influenced by contamination. This
threshold helps to maintain the background when a sudden
concentration drop (e.g., from a precipitation event) would
trigger the derivative filter. We choose 60 cm−3 to be a suit-
able threshold for this dataset because we did not observe
such low values during polluted time periods, except on very
rare occasions, but those data points would be detected by the
sparse filter (Sect. 2.4.4). Both thresholds can be adjusted in
the tool, because they will vary with location, the detection
limit of the instrument, averaging time, and target compound.
For example, a higher lower-limit threshold might be appro-
priate in a remote forest region, where lower particle number
concentration limits can be as high as 500 cm−3 (Schmale et
al., 2018). If the lower threshold is set to zero, all data below
the upper-limit threshold are included in the filtering algo-
rithm. The threshold filter activates automatically with the

application of the derivative filter. Hereafter we also mean
the threshold filter when we talk about the derivative filter.

2.4.2 Step 3: neighboring points filter

It can be useful to discard points at the beginning and end
of polluted periods where single data points might not be
tagged because the deviation of their values from previous
or subsequent points is too small to be detected by the PDA.
This filter targets data points at the transition from polluted
to unaffected periods and vice versa. Applying this filter is
optional as it discards additional data but in return results in
a dataset less affected by local contamination. We show and
discuss the results of this step in Sect. 3.1.

2.4.3 Step 4: median filter

The median filter aims at detecting false negatives, i.e., data
points which are not representative of the background signal
but which were not flagged by the previous filter. For each
data point, we calculate its deviation from the running me-
dian over a time interval (the median time interval). If the de-
viation exceeds a given factor above this median, it is flagged
as polluted. The factor can be adjusted to lower (stricter) or
higher (less strict) values with the trade-off of more false pos-
itive data points (i.e., unaffected data points flagged as pol-
luted) or false negative data points (i.e., polluted data points
which are not flagged), respectively. We found an empirical
deviation factor of 1.4 to support the detection of outliers for
MOSAiC and keep the number of false positively detected
data points as small as possible. This is further discussed in
Sect. 3.1.
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2.4.4 Step 5: sparse data filter

As a last step, we apply a sparse data filter to tag leftover
unaffected data points in periods affected by local contam-
ination. More quantitatively, if the number of polluted data
points in a given time window (subsequently called a sparse
window) exceeds a given threshold (termed a sparse thresh-
old), all points in the sparse window are flagged as polluted.
We use a sparse threshold of 24 within 30 data points (which
corresponds to 30 min in our case). The sparse threshold and
the associated time window can be adjusted in the PDA. The
sparse data filter is automatically activated as the final filter-
ing step. To de-activate the sparse data filter, one can simply
set the sparse threshold to the same number of data points as
in the sparse window.

3 Results and discussion

In this section, we present and discuss the performance of
the PDA and compare the results to other commonly used
approaches to identify local contamination (wind direction
and visual inspection methods). We test the PDA on differ-
ent types of atmospheric measurements as well as on parti-
cle number concentration datasets with different time resolu-
tions.

3.1 Performance of the PDA

First, we demonstrate the effect of the successive application
of the various pollution filter steps, and second, we evalu-
ate the performance of the final PDA settings against char-
acteristic situations from the MOSAiC expedition. While the
algorithm was applied to the entire dataset, below we show
24 h case studies to illustrate the results.

Figure 4a–c show, for the case study from 6 March 2020,
how the individual filtering steps (the derivative filter, the
derivative filter combined with the neighboring points fil-
ter, and all filters together) affect the final cleaned parti-
cle number concentration dataset. The original time series is
marked in red, while the cleaned dataset appears in blue. The
case study shows a stable signal with concentrations around
100 cm−3, which is interrupted by a pollution event with par-
ticle number concentrations up to 105 cm−3 from 09:00 to
12:00 UTC. The derivative filter (Fig. 4a) detects the major-
ity of the polluted data points. Only 10 data points in this pe-
riod remain untagged. Including the neighboring points filter
(Fig. 4b) and the median and sparse data filters (Fig. 4c) re-
moves all those points, improving the performance of the al-
gorithm. Figure 4d shows histograms of the entire MOSAiC
particle number concentration record for the original dataset
and, after application of the derivative filter, the derivative
and neighboring points filter and all filters. Concentrations
below 200 cm−3 remain nearly untouched by all filters in the
PDA. The strongest filter effect is visible at larger number
concentrations (> 3000 cm−3), where only a few counts re-

main in the cleaned dataset. In accordance with the threshold
filter, number concentrations above 104 cm−3 are removed.
The application of all the filters combined is not always nec-
essary, as shown in Fig. A6. Here, the derivative filter already
detects all the polluted data points, and no further filters are
needed. Table 2 shows how the year-round dataset is reduced
in size after applying the derivative filter, the derivative and
neighboring points filters, or all filters combined. The second
row shows the percentage of the original dataset that is left
after applying the respective filters. After application of the
derivative (and threshold) filter, 44 % of the data points are
retained, showing the importance of the application of a fil-
tering method in general. Applying further filtering with the
neighboring points and median filters removes only 5 % and
1 % of additional data points, respectively. This demonstrates
that the derivative filter alone captures the majority of locally
polluted data points (90 %), while the additional filters have
a “fine-tuning” effect. This effect can still be very important
for individual cases as shown in Fig. 4a–c. Figure A7 sum-
marizes the percentage of clean data per day after application
of the PDA for the whole expedition. The data were most af-
fected from contamination in spring and summer and least
affected in winter. Note that this graph is indicative of con-
tamination visible in the particle number concentration data
and not necessarily for all atmospheric chemical and micro-
physical measurements taken during MOSAiC. To assess the
effect of each filtering step, we applied each of them individ-
ually to the CPC3025 dataset and discuss this in Appendix B.

3.1.1 Case studies

Particle number concentrations in the Arctic can vary by
orders of magnitude. To verify that the algorithm can be
used under different environmental and contamination con-
ditions, we tested its performance in characteristic situations
throughout the expedition.

First, under conditions when the dataset is not affected
by strong pollution spikes, it is required that the algorithm
still detects small influences from local contamination. Fig-
ure 5a shows a day in January with a very stable and low
boundary layer, resulting in a stable particle number concen-
tration background around 150 cm−3 and occasional pollu-
tion spikes around 12:00. The algorithm successfully detects
polluted data points and leaves the background untouched.
In contrast, the wind filter would not detect any of the con-
tamination. In this case, a stricter wind filter would not be
possible since it would basically have to be extended to all
wind directions. Second, under very polluted conditions, the
requirement for the algorithm is to detect the full contami-
nated period and to not leave polluted data points undetected
(false negatives).

In Fig. 5b, a transition from unaffected to polluted con-
ditions can be seen around 09:00 UTC due to changes in
wind direction that resulted in stack exhaust contamination.
The variability in the signal increases strongly, and so does
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Figure 4. Comparison of the derivative filtering method with additional filtering steps. Cleaned data (in blue) are plotted over raw data (in
red). (a) Only derivative filter applied. (b) Derivative and neighboring points filters applied. (c) All filters applied. (d) Histogram of the
original (in red) and remaining datasets after steps (a) (black contour line) and (c) (purple). “PDA filtered” means all options of the PDA
were applied. For all plots we used data from the CPC3025. Raw data have only been pre-cleaned for zero filter measurements. The orange
circles indicate areas where the additional filters remove additional data points.

Table 2. Number of data points and percentage (relative to raw data) of data left when different filtering steps are applied.

Original data, Derivative Derivative and neighboring All filters
no filter filter points filter applied

Dataset size 521 593 231 269 204 077 196 628
Percentage 100 44 39 38

the gradient between data points. The PDA detects all rele-
vant points as pollution. The wind filter would, in this case,
also detect all the relevant points but would become effective
much earlier and thus detect false positives.

Third, new particle formation (NPF) and subsequent
growth of particles are common processes in the Arctic
which lead to an increase in particle number concentrations
over a relatively short time (Kulmala et al., 2014; Baccarini
et al., 2020; Schmale and Baccarini, 2021; L. J. Beck et
al., 2021). This could potentially cause the derivative algo-
rithm to accidentally flag naturally high concentrations as
pollution (false positives). We analyze one NPF event ob-
served on 21 June 2020 where the particle number concen-
tration increased from < 100 cm−3 to more than 1000 cm−3

within 3 h (Fig. 5c). In addition, a few pollution spikes were
observed during the NPF event. The derivative filter detects
the pollution spikes and leaves the background untouched
during the NPF-driven rise as well as during the subsequent

drop in particle number concentration later in the day. If a
specific case study on this NPF event was done, the user
could decide to apply the PDA only to this event and to
tune the parameters specifically. Here we show that the set-
tings chosen for the entire campaign treat the NPF event ad-
equately.

Fourth, another potentially challenging situation for the al-
gorithm is wet-removal events. Aerosols can be washed out
of the atmosphere by rain or snow and their number con-
centration can decrease quickly, leading to elevated deriva-
tives. We report such an event observed on 13 September
2020 from 09:00 to 12:00 UTC (Fig. 5d). The rate of change
of the particle number concentration is not strong enough to
cause false positives. These results demonstrate that the al-
gorithm is able to deal with relevant situations and is there-
fore an adequate tool to clean particle number concentration
datasets, which are influenced by both natural variability and
local contamination sources.
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Figure 5. Performance test of the PDA method in four different situations. (a) Under overall stable conditions, (b) transition from clean
to polluted conditions, (c) a natural increase in particle number concentration due to new particle formation, and (d) a natural decrease in
particle number concentration due to a precipitation event (freezing rain) in the morning (from 09:00 to 12:00 UTC). Green shaded areas
indicate where the wind filter would flag data as polluted. Green points show the wind direction, and red points show the raw particle number
concentration, overlaid with the cleaned data points in blue.

To verify that the spikes in particle number concentra-
tion are caused by pollution and not by a natural local (or
regional) event, we compare the particle number concentra-
tion data during a pollution event on 27 July to several other
signals like nitric oxide (NO), CO, and BC (Fig. A4). The
main pollution spike in this example (ca. 18:00 UTC) coin-
cides with the NO signal, which also shows a distinct spike at
the same time (panel a). The BC signal also reacts during this
event with elevated concentrations (panel d). The CO signal
does not react at this time. Note that the CO signal does not
react strongly to ship pollution. This is in agreement with
what we observed during the expedition and highlights the
issues in operating the automated purge system in the AOS
container (Sect. 2.1.1). The ship exhaust from RV Polarstern
during the MOSAiC expedition did not consistently show el-
evated CO signals that could allow CO to be used to identify
pollution reliably. However, there were cases where apparent
pollution events did result in higher observed CO concentra-
tions. During the event described here, there are two minor

spikes at 08:00 and 10:00 UTC where the particle number
concentration shows spikes that coincide with the CO signal
(panel b). In contrast to the first example at 18:00 UTC, the
wind direction was not coming from the stack. This points
towards a different local source of contamination, e.g., a ski-
doo, snow groomer, or ship vent. These indicators lead us to
conclude that the particle number concentration signal is sen-
sitive to contamination from different sources and therefore
provides a good basis for the development of the PDA.

3.1.2 Application of the PDA to particle size
distribution

We applied the PDA with the parameters given in Table 1
to the measured total particle number concentration time se-
ries (i.e., the sum of the concentrations of all size bins) of
an SMPS dataset, collected during the MOSAiC expedition
in the Swiss Container. The result is shown in Fig. 6 on a
7 d subset of the particle size distribution (PSD) dataset. The
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polluted periods are clearly visible in the PSD and show as
distinct yellow vertical lines. At the same time, the total num-
ber concentration shows strong spikes. The PDA detects the
polluted periods (shown as red data points) and leaves unaf-
fected data (shown as black data points). This validates the
functionality of the PDA. The SMPS data have a time res-
olution of 3 min, which shows the ability of the PDA to de-
tect contamination in datasets with different time resolutions.
More tests of the PDA with datasets of different time resolu-
tions are discussed in Appendix C.

3.2 Comparison of the PDA to other commonly used
methods

3.2.1 Comparison to the wind filter

The majority of pollution events are associated with wind ar-
riving from the direction of the stack of the ship (Fig. 1).
Thus, applying a simple filter based on wind direction might
be sufficient to discard most polluted data. An example is
shown in Fig. 7, where we assumed a polluted wind sec-
tor between 90 and 270◦ and marked all tagged data points
with a red band. The wind filter flags 59 % of the data as
polluted compared to the PDA, which flags 62 %. However,
apart from detecting a large portion of polluted data, it also
creates false positives; i.e., it flags unaffected data as pol-
luted, as described in Sect. 3.1. It also does not detect any
polluted data outside of the polluted wind sector. This is illus-
trated in Fig. 8 for 17 February 2020, where we compare the
wind filter (panel b) with the PDA (panel a). On that day, the
wind came from the port side of the ship and carried polluted
air from a snow groomer. The PDA (panel a) detects and tags
more polluted data than the wind filter (panel b). In addition,
the PDA allows unaffected data in the polluted wind sector
to be kept (Fig. 7). The wind direction method might, how-
ever, be simple and easy to clean data when the only source
of local pollution is a point source and if the only contamina-
tion source is in a fixed wind direction from the measurement
point. Although widely used in ship campaigns (see Sect. 1),
the wind filter is not well suited for those campaigns where
multiple and moving emission sources exist.

3.2.2 Comparison of the PDA to the visual inspection
method

We applied the PDA to a dataset independently cleaned by
visual inspection and compared the results of these two meth-
ods. The dataset used for this test was collected from the
ARM AOS container during the MOSAiC expedition. The
visual filtering method is described in Sect. 2.3. The parame-
ters used to apply the PDA to the dataset are listed in Table 1.

Both methods detect roughly the same fraction of clean
data and agree in 93.9 % of all data points (see Table 3). The
visual filtering method identifies slightly more clean data.
Figure 9 shows the results of both methods in histograms. It

Table 3. Fraction of clean data points of the derivative filtering
method and the visual filtering method compared to the total num-
ber of data points (total counts) in numbers and in percent of the
total counts. This table is based on the CPCf dataset at 1 min time
resolution.

No. of data Percentage
points

Total counts 308 750 100.00 %
PDA clean 197 671 64.02 %
PDA polluted 111 079 35.98 %
Visual inspection clean 214 540 69.49 %
Visual inspection polluted 94 210 30.51 %
PDA clean, visual polluted 947 0.31 %
PDA polluted, visual clean 17 816 5.77 %
Both clean 196 724 63.72 %
Both polluted 93 263 30.21 %

shows the distribution of the raw data points (in gray) and the
fraction of data points where the two methods do not agree,
i.e., the fraction of data points which are identified as clean
by the visual inspection but not by the PDA and vice versa.

The fact that the visual method keeps slightly more data
points unaffected at lower concentrations compared to the
PDA could be an indication that visual inspection detects
slightly fewer false positives (unaffected data points detected
as polluted). However, the advantage of the PDA is that it can
be applied to other datasets with relatively little effort. Also,
it applies strict thresholds to the dataset, which makes the re-
sult reproducible, while the visual filtering method depends
on the users and their experience, which makes it more prone
to user bias. A comparison of both filtering methods in a time
series is shown in Fig. A8.

3.3 Broader application of the PDA

We test the performance of the PDA on datasets with dif-
ferent characteristics using time series of particle chemical
composition and ambient air CO2 concentrations collected
during MOSAiC (Sect. 3.3.1 and 3.3.2, respectively) and on
a particle number concentration dataset collected at JFJ in the
Swiss Alps (Sect. 3.3.3).

3.3.1 Application to aerosol chemical composition
datasets

To check whether the algorithm works on other datasets than
particle number concentration data, we applied it to the ion
fragment signal of C4H+9 (m/z= 57) measured by the AMS,
which characterizes fresh contamination from combustion.
In a perfect scenario, our developed algorithm is able to
group the signal of this fragment (C4H+9 ) into high mass (and
high derivative) resulting from ship emissions in comparison
to low background mass concentration (and low derivative),
the latter associated with a relative wind direction away from
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Figure 6. Application of the PDA to the total number concentration dataset (black line) collected by an SMPS. Data points identified as
polluted by the PDA are marked in red. The dataset is plotted over the particle size distribution data of the same instrument.

Figure 7. Same as Fig. 1 but after applying the PDA to the dataset. Flagged data points were removed to visualize the data product after
application of all filtering steps. The red shaded area indicates where the wind filter would flag polluted data (between 90 and 270◦ relative
to the bow). The direction of the stack is marked at 180◦ as a vertical line.

the stack (90 to 270◦ relative to the bow). Figure 10a shows
the relation of the derivative of the mass concentration of
C4H+9 (averaged over 5 min) as a function of its mass concen-
tration. We observe a separation of the derivatives into two
branches with two different slopes as in Fig. 3a. However,
the mass concentrations do not overlap in the two branches
of the derivatives (dM/dt) of clean and polluted periods, and
therefore a separation based on the derivative is impossible.

This is also visible based on the wind direction (indicated by
the color); a separation between the “pollution” and “clean”
data points occurs at approximately 10−2 µgm−3, resulting
in a critical concentration threshold rather than a defined
slope. However, such a separation at a defined mass con-
centration grouped certain “clean” data points into the “pol-
luted” category and thereby failed to produce a reliable pol-
lution mask. Our hypothesis for the failure of the derivative
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Figure 8. Comparison of the PDA (a) with the wind-based method, assuming a polluted-air sector of 90 to 270◦ from the bow (b, mirrored).
Both filtered time series (blue) are underlain with the original raw data (red). The wind-based filter method cannot detect pollution events
coming from other directions than the given wind sector. Panel (c) shows histograms of particle number concentrations before (blue) and
after application of the PDA (green) and the wind mask (red).

Figure 9. Comparison of the visual inspection method to the PDA
on the dataset of the CPCf of ARM. Original data are shown in gray.
The blue contour line shows the fraction of data points where only
the visual inspection method but not the PDA considered data to be
clean (6 %). The red contour line shows the opposite, i.e., the frac-
tion of data points where only the PDA but not the visual inspection
method considered data to be clean (< 1 %). The dark gray contour
line shows the fraction of data points where both methods consid-
ered data to be clean (∼ 64 %).

algorithm when applied to AMS data is that the AMS has
a lower particle cut-off of 70 nm and the > 70 nm particles
detected by the AMS are affected by contamination in a dif-
ferent way than the entire particle population also containing
smaller particles, as reflected by the CPC data, which contain
particles as small as 3 nm. We found that the typical peak di-

ameter of ship pollution observed on RV Polarstern was ap-
proximately 30 nm. An alternative way to produce a pollution
tag for AMS data is to apply a chemically resolved method,
where the mass spectrum as a whole is compared to a pre-
viously defined chemical pollution spectrum. This method is
described in more detail in Dada et al. (2022).

3.3.2 Application to trace gas datasets

Figure 10b shows the distribution of the derivatives for the
CO2 dataset. We used CO2 data at a 1 s time resolution and
averaged the derivative over 1 min. The CO2 signal varies
by less than 1 order of magnitude when affected by pollu-
tion. The majority of the data points do not deviate from the
observed atmospheric background concentration of around
400 parts per million (ppm). The color-coded wind direction
also gives no indication of separation of the data by wind di-
rection. One reason is that the magnitude of the derivative
of the CO2 signal in case of pollution is low compared to
its relatively high background concentration, and therefore
polluted data points do not separate clearly from the main
“branch” of data points. Therefore, the separation of polluted
and unaffected data points based on two branches of deriva-
tives (step 1A) does not work for the CO2 dataset. We thus
applied the PDA with step 1B (the derivative filter based on
the deviation from the running interquartile range) to the CO2
dataset. The parameters used for the PDA are shown in Ta-
ble 1. An example of the resulting time series is shown in
Fig. A9 on the same case study on 27 July as we described in
Sect. 3.1.1. The CO2 signal is noisy and shows a strong spike

https://doi.org/10.5194/amt-15-4195-2022 Atmos. Meas. Tech., 15, 4195–4224, 2022



4210 I. Beck et al.: Automated identification of local atmospheric contamination

Figure 10. (a) Derivative of the ion mass signal of C4H+9 (m/z= 57) compared to its total mass concentration, measured by the AMS.
(b) Derivative of the CO2 concentration signal compared to its concentration, measured by cavity ring-down spectroscopy. Colors indicate
the relative wind direction.

between 16:00 and 20:00 UTC. This spike matches the obser-
vations described in Fig. A4. The PDA detects and flags data
points within the spike as polluted. Situations like this ex-
ample with a noisy signal are further discussed in Sect. 3.4.
Angot et al. (2022b) applied this method and describe the
CO2 dataset in more detail.

3.3.3 Application of the PDA to a long-term
high-altitude site-monitoring dataset

We applied the PDA to a particle number concentration
dataset collected at the high-altitude research station JFJ in
the Swiss Alps. The data have a time resolution of 1 min.
The calculated derivatives show a very different pattern com-
pared to those from the MOSAiC expedition (Fig. 3a–b). The
difference in magnitude between contamination and the JFJ
background dataset is much smaller (Fig. A10) compared to
MOSAiC. The JFJ dataset is therefore well suited for sepa-
rating polluted data using the IQR filtering method (step 1B).
The parameters used in the PDA are shown in Table 1. The
PDA was applied to an example time series from 2 d in July
2016 (Fig. A10), where a diurnal cycle of the background
and pollution spikes during daytime are visible. This exam-
ple demonstrates how the background is distinguished from
the spikes even when the background varies by an order of
magnitude. Given the different approach by Bukowiecki et
al. (2021), i.e., detecting and counting spikes versus masking
polluted time periods with the PDA, we cannot make a di-
rect comparison between the two methods like in Sect. 3.2.2
(visual method). The final decision about flagging individual

data points remains the user’s responsibility and will depend
on the objective of the analysis.

3.4 Limitations of the PDA

This study shows that the PDA is capable of cleaning con-
tamination from a variety of particle and trace gas datasets.
However, a challenge for the algorithm remains to deal with
false negatives, which are left after applying the derivative
filter (step 1 of the PDA). In situations with small pollution
peaks, which occur on top of a clean background, this is often
the case at the beginning and at the end of the affected period.
The application of the neighboring points filter on top of the
derivative filter improves the result significantly but might
not catch all pollution-affected points. An example of this is
shown in Fig. A11a and b.

Another challenge for the PDA is situations where the sig-
nal is influenced by subtle contamination, which does not re-
sult in large spikes but rather in a very noisy signal with low
amplitude above a background. Two examples are shown in
Figs. A9 and A11. These situations are also difficult to as-
sess for an expert using the visual inspection method. The
boundary between polluted and unaffected data is blurred,
and the derivative filter in Fig. A11 only flags a subset of
data points that protrude from the main signal. In this ex-
ample, some of the flagged data points do not exceed the
“baseline” concentration at all. The difference between an
unaffected and a flagged data point can be 2 cm−3 at concen-
trations of 190 cm−3 or 10 cm−3 at 390 cm−3 (the derivative
filter threshold depends on the concentration). If we choose a
stricter derivative filter, for example, with a = 0.45 (instead

Atmos. Meas. Tech., 15, 4195–4224, 2022 https://doi.org/10.5194/amt-15-4195-2022



I. Beck et al.: Automated identification of local atmospheric contamination 4211

of 0.5) and m= 0.5 (instead of 0.55), more data points are
flagged as contaminated and hence fewer false negatives re-
main (Fig. A12). However, this might also remove unaffected
data points, and it is up to the user to make this decision.

The applicability of the PDA to a dataset also depends on
the response time of the instrument. A response time which
is slower than the occurrence of pollution (i.e., the instru-
ment cannot capture the sharp rise and fall in concentrations)
leads to smaller derivatives of the measured particle num-
ber concentrations. This would set an upper limit to the mea-
sured derivative. Still, pollution could be detected as long as
this upper limit is substantially higher than the derivatives
of the natural signal. This does not matter for the measure-
ments with the CPCs, since the response time is typically
lower than 1 s (Enroth et al., 2018). In essence, this issue is
similar to recording data at a coarse time resolution, which
would smear out the difference in magnitude between back-
ground and pollution (see Appendix C).

4 Conclusions

We developed a pollution detection algorithm (PDA) to iden-
tify periods of local contamination in atmospheric aerosol
and trace gas concentration time series. The PDA was suc-
cessfully tested with particle number concentration datasets
from two different sites – a ship-based expedition in the high
Arctic Ocean and a background station in the Swiss Alps
affected by tourism – as well as with a CO2 concentration
dataset from the high Arctic. In comparison to the commonly
used wind direction method to clean datasets, the PDA is
capable of identifying contamination from different sources
and directions and reduces false positive and false negative
results. Compared to a visual filtering method, the PDA iden-
tifies a similar amount of contamination (41 % with the visual
method compared to 43 % with the PDA). The PDA only uses
the target concentration data and does not rely on ancillary
datasets to identify polluted data points. It works for datasets
with a relatively low background where pollution spikes ex-
ceed the background significantly and the sampling rate is
fast enough so that the derivative of polluted signals separates
clearly from that of unaffected ones. “Fast enough” depends
on the variability of the background and occurrence of pol-
lution. In our case the methods worked for time resolutions
between 10 s and 10 min. The PDA is primarily designed for
remote locations, but it might also be applied to locations
where local contamination interference is so frequent that the
majority of data points exceed the contribution from the un-
derlying background in the period of interest, like in urban
areas, for example.

The relative magnitude of interference from local contam-
ination varies between different measurement campaigns and
may depend on the type of instrument. The PDA is best
suited to identifying primary pollution, i.e., for particle num-
ber concentration, trace gases directly emitted by the pollu-

tion source (e.g., CO2), or size distribution datasets with a
clear primary pollution mode. For other variables, such as
for accumulation-mode particle chemical composition data,
which are not representative of the main pollution size range
(around 30 nm), a different approach might be better (e.g.,
Dada et al., 2022) because the PDA will discard too many
data points.

The PDA is published open source in a user-friendly code
toolkit downloadable from Beck et al. (2021) (see reference
list). All PDA parameters can be adjusted to adapt it to spe-
cific datasets or to customize the filtering level for specific
needs. This makes it flexible and allows its application to lo-
cations where no ancillary datasets might be available. It also
allows a fast application to multiple datasets and provides an
objective, reproducible method to identify local contamina-
tion under remote or background conditions.

Appendix A: Supporting figures

Figure A1. Track of RV Polarstern during the MOSAiC expedi-
tion in the central Arctic (Schmithuesen, 2021a, c, d, e, b). Drift
(red line) started in October 2019 and ended in September 2020.
The black lines show periods where the ship was in transit. The sea
ice extent is displayed from September 2019 at the annual mini-
mum. We used sea ice data from the National Snow and Ice Data
Center (Maslanik and Stroeve, 1999). The background map is made
with Natural Earth (https://www.naturalearthdata.com/, last access:
6 October 2021).
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Figure A2. Bow of the ship during the expedition. In red with a white cross, the Swiss Container with its two inlets. The ARM measurements
were performed on the port side of the ship in the white container at the front with a higher inlet. Photo credit: Michael Gutsche.

Figure A3. Full setup of the Swiss Container during the MOSAiC expedition (not all elements are discussed in this paper). In yellow the total
inlet, in green the interstitial inlet. The valve switched between the two inlets to allow the instruments behind it (Aethalometer, AMS, SMPS,
cloud condensation nuclei counter) to measure from both inlets. The blue inlet is the new particle formation inlet. CI-Api-ToF stands for
chemical ionization atmospheric pressure interface time-of-flight mass spectrometer. NAIS stands for neutral cluster and air ion spectrometer.
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Figure A4. Particle number concentration (left axis) along with (a) NO (in parts per billion; ppb), (b) CO (ppb), (c) relative wind direction,
and (d) equivalent BC (ng m−3) at 880 nm with standard manufacturer settings for the correction factor and mass absorption cross section
during a local contamination event in the afternoon of 27 July 2020. Starting around 12:00, the particle number concentration and NO and
BC concentrations increased as wind came from the stack. Note that CO concentrations did not exhibit any significant variability during that
event.

Figure A5. A situation when the wind was coming from the stack’s direction and the exhaust plume went directly over the Swiss Container,
but due to the surface inversion no pollution spikes were measured in the Swiss Container. The container was located at the bow of the ship,
below the crane (left-hand side in this picture). Photo credit: Ivo Beck.
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Figure A6. Same as Fig. 4 but for another day (16 January 2020). Panels (a)–(c) show the original particle number concentration data in
red, overlaid with the unaffected data in blue. The application of additional filters in panels (b) and (c) does not show an effect. Panel (d)
shows the distribution of the particle number concentrations of the complete dataset in red after the application of the gradient filter as a
black contour line and after the application of all filters of the PDA in purple.

Figure A7. Percentage of clean particle number concentration data points per day during the MOSAiC expedition after application of the
PDA. Missing data are indicated in gray and correspond to data removed when R/V Polarstern was within Svalbard’s 12 nautical miles zone.
Please note that this figure is indicative only and does not necessarily reflect the percentage of clean data points collected by other instruments
during the expedition.

Figure A8. Time series with a comparison of the visual identification method and the PDA between 1 and 5 March. In red: data points which
are detected as contaminated by both methods. In blue: data points which are detected as unaffected by pollution by both methods. In black:
data points which are detected as unaffected by pollution only by the visual identification method. In magenta: data points which are detected
as pollution free only by the PDA.
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Figure A9. CO2 mixing ratios on 27 July 2020 after the application of the PDA using step 1B. Original data are shown in red, overlaid with
unaffected data filtered by the PDA in blue.

Figure A10. Time series of the particle number concentration dataset from JFJ after the application of the PDA. Original data are shown in
red, overlaid with unaffected data filtered by the PDA.
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Figure A11. Case study of 1 January 2020. The particle number concentration signal is influenced by contamination which shows as a noisy
signal and not in distinct spikes. Panels (a)–(d) show the original particle number concentration data in red, overlaid with the unaffected data
in blue after applying different filtering steps of the PDA. The orange circles highlight situations where applications of the neighbors filter
and the sparse data filter improve the detection of polluted data significantly.

Figure A12. Same as Fig. A11 but with slightly stricter coefficients of the derivative filter. We chose a derivative filter with a = 0.45 and
m= 0.5 to flag more data points in this case study.
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Appendix B: Comparison of individual filtering steps

In Fig. B1, we compare how the application of each indi-
vidual filtering step to the 1 min resolution dataset of the
CPC3025 performs in the case study from 6 to 8 March.
Panel (a) shows the result after the application of the deriva-
tive filter and the lower-threshold filter only (but not the
upper-threshold filter) with a = 0.5 and m= 0.55 and a
lower threshold of 60 cm−3. As we can see, the application of
the derivative filter detects and flags most data points during
the polluted time periods but leaves some during the contam-
ination event on 6 March. The application of the derivative
filter leaves 43 % of the data unaffected, and it reduces the
mean concentration from 5198 to 202 cm−3. Panel (b) shows
the application of the upper-threshold filter alone. Here we
set the upper threshold to as low as 130 cm−3 to be able to
retrieve the background signal as much as possible. With this
threshold, 23 % of the data are left unaffected, with a mean
concentration of 70 cm−3. However, the application of a sin-
gle threshold to a longer time series is difficult, since the
background concentration can rise to higher concentrations
(as can be seen, for example, in Fig. 6). The upper thresh-
old can be useful in cases when the measured concentration
stays at the upper detection limit of the instrument over a
long time period and thus the derivative filter would not catch
those contaminated data points. Panel (c) shows the appli-
cation of the median filter alone with a median window of
360 data points (6 h) and a median threshold of 1.05. The
application of the median filter alone with these parameters
leaves 68 % of the data unaffected, with a mean concentra-
tion of 2979 cm−3. It is not satisfying because it is not able
to flag the strong contamination on 8 March after 12:00. Too
many contaminated data points raise the median concentra-
tion. The median filter relies on a pre-cleaned dataset, where
most of the contaminated data points have been removed al-
ready. Therefore, it can only be applied after the application
of the derivative filter. Finally, panel (d) shows the result after
the application of the whole PDA, with the parameters pre-
sented in Table 1. The application of the whole PDA leaves
38 % of the data unaffected, with a mean concentration of
191 cm−3. Evaluated visually by expert judgment, we find
that it performs better than the application of the single fil-
ters, detects more contaminated data points, and results in a
time series which represents the background concentration.
Table B1 shows an overview of how many data remain un-
affected after the application of the different filtering steps.
Additionally, the mean concentrations and the standard de-
viations are shown. The derivative filter is by far the most
powerful step of the PDA, as it already detects 64 % of the
total contamination and reduces the mean concentration dras-
tically. The other filters of the PDA only have a “fine-tuning”
effect and add another 6 % of flagged data points. This effect
can still be very important for individual cases, as shown in
the case study on 6 March around 12:00 (Fig. 4).

Figure B1. Intercomparison of individual filtering steps in a case
study of 6 to 8 March. Clean data (in blue) are overlaid over the
original data (in red) after the application of one filtering step in-
dividually to the data: the (a) derivative filter, (b) threshold filter,
(c) median filter, and (d) all filtering steps of the PDA were ap-
plied. For all plots we used data from the CPC3025 at 1 min time
resolution. Original data have only been pre-cleaned for zero filter
measurements.

Figure B2. Power spectral density (PSD) of the particle number
concentrations of the CPC3025 as a function of the frequencies.
The dataset has a time resolution of 10 s. For this figure we used the
subset of the month of March.

Since local contamination often shows in quickly chang-
ing concentration spikes, it is worth exploring whether a low-
pass filter is applicable. For this, we looked at the power
spectral density of the CPC3025 particle concentration data
by means of a Fourier frequency decomposition (Fig. B2).
No high frequency is visible which would allow a low-pass
filter to be applied. Local contamination in this dataset does
not show in a high-frequency signal, which is distinguishable
from the background signal. The detection of pollution based
on frequency analysis is therefore not possible here.
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Table B1. Percentage of data declared as unaffected when different filtering steps are applied and the mean concentrations and standard
deviations of the corresponding particle number concentrations.

Comparison of single filters Parameters Remaining Mean Standard
data concentration deviation

(cm−3)

Total counts 100 % 5198 14 598

Derivative filter only a = 0.5, m= 0.55 43 % 202 618

Threshold filter only Threshold= 130 cm−3 23 % 70 37

Median filter only Median time= 360 min, 68 % 2979 10 646
median factor = 1.05

Derivative and threshold filter As in Table 1 43 % 198 244

Derivative, threshold and As in Table 1 39 % 191 221
neighbors filter

All PDA As in Table 1 38 % 191 214

In order to elaborate on the effect of changes in the param-
eters of individual filtering steps, we let the PDA run several
times and thereby only change one parameter at the time. The
resulting size of the filtered dataset is shown in Table B2.
The first row shows the initial setting as we used them in Ta-
ble 1. For example, the largest change is caused by turning
off the neighbors filter. This increases the dataset by 11.4 %.
Relatively small changes in the power law slope and inter-
cept of the derivative filter change the size of the dataset by
roughly 5 % to 10 %, whereby the effect of changes in the
slope are stronger. Changes in the median filter only cause
small changes by < 1 % to the final dataset, and setting the
sparse threshold from 24 to 18 out of 30 data points (from
80 % to 60 % allowed polluted data points in the sparse win-
dow) reduces the dataset by ca. 3 %. The table illustrates
again that the derivative filter is responsible for the largest
part of the filtering by the PDA. Even though the filtering
steps 2 to 4 only contribute little to the PDA, they are valu-
able for avoiding false negatives after the application of the
derivative filter.

Table B2. The effect of changes in the parameters of individual
filtering steps on the number of unaffected data points. The first
row shows the standard settings used to filter the CPC3025 dataset
and the number of remaining data points. The following rows show
changes in different parameters and again the number of unaffected
data points with these changes in the PDA.

Initial parameters of the PDA No. of data Percentage
points after
application
of the PDA

a = 0.5 cm−3 s−1

m= 0.55 s−1

Lower threshold= 60 cm−3

Median time interval= 30 min
Median deviation factor= 1.4
Sparse window= 30
Sparse threshold= 24 190 358 100.0 %

Changed parameter

a = 0.45 cm−3 s−1 184 297 96.8 %
a = 0.6 cm−3 s−1 198 733 104.4 %
m= 0.5 s−1 171 060 89.9 %
m= 0.6 s−1 202 292 106.3 %
Lower threshold= 100 cm−3 196 471 103.2 %
Median time interval= 120 min 188 503 99.0 %
Median factor= 1.8 191 316 100.5 %
Median factor= 5 191 893 100.8 %
Sparse threshold= 18 185 578 97.5 %
Sparse threshold= 27 192 761 101.3 %
No neighbors filter 212 073 111.4 %
No sparse filter 193 680 101.7 %
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Appendix C: Application of the PDA to various time
resolutions

Figure C1. Relation of the absolute value of the particle number concentration derivative to the absolute number concentration for two
different time resolutions: (a) 10 s; (b) 10 min. The color code indicates the relative wind direction. The red lines separate polluted from
unaffected data points with a slope of 0.44 s−1 and an intercept of 0.6 cm−3 s−1 in panel (a) and a slope of 0.49 s−1 and an intercept of
1 cm−3 s−1 in panel (b).

We use the averaged time series from the derivative fil-
ter for further filtering steps in the PDA. This comes with
the trade-off that the dataset loses time resolution when ap-
plying the PDA. In many applications this might not be a
problem since data are often collected at higher time resolu-
tions than needed for further analysis. We applied the PDA
to the original dataset of the CPC3025 (10 s time resolu-
tion). Figure C1a shows the derivatives plotted against the
total number concentrations for this dataset, which is used
to determine the separation line (in red) for the derivative
filter. It is less intuitive to find a good position of the separa-
tion line compared to the 1 min-averaged derivative (Fig. 3),
because the two branches do not separate as clearly. We
chose a separation line with the parameters a = 0.6 cm−3 s−1

and m= 0.44 s−1. Figure C1b shows the same graph for
the 10 min-averaged time series of the same dataset. Here,
we used a = 1 cm−3 s−1 andm= 0.49 s−1 for the separation
line. In both cases, it is possible to distinguish between the
two derivative branches, which indicates polluted and unaf-
fected data. We observe that the separation line tends to go to
higher derivatives with coarser time resolution, which is a re-
sult of the longer averaging time, because this smoothens the
variability. Figure C2 shows the original (in red) and filtered
(in blue) time series over 3 d after application of all PDA fil-
tering steps to the two datasets (10 s time resolution in panel a
and 10 min time resolution in panel b). The used parameters
of the PDA are listed in Table C1. The PDA detects the pol-
luted spikes in both cases and is able to separate clean and
polluted data. Even though the lower time resolution data do
not have as distinct pollution “spikes”, potential

outliers could have been smoothened when averaging. We
conclude that the possibility of “tuning” different parame-
ters of the PDA makes it applicable to datasets with different
temporal resolutions.

Figure C2. Performance test of the PDA on datasets with two differ-
ent time resolutions: (a) 10 s time resolution data; (b) 10 min time
resolution data. Filtered data in blue are shown on top of the original
data of the corresponding time series in red.
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Table C1. Parameters used for the application of the PDA to two datasets with different time resolutions.

Filter step Parameter Particle number concentration Particle number concentration
at 10 s time resolution at 10 min time resolution

1A. Derivative filter a 0.6 cm−3 s−1 1 cm−3 s−1

(power law) m 0.44 s−1 0.49 s−1

2. Threshold filter Upper threshold 104 cm−3 104 cm−3

Lower threshold 60 cm−3 60 cm−3

3. Neighboring points filter On/off On On

4. Median filter Median time window 30 min 60 min
Median deviation factor 1.4 1.4

5. Sparse data filter Sparse window 180 12
(no. of data points) Sparse threshold 144 10

Code availability. The pollution mask code is available via Zenodo
(https://doi.org/10.5281/zenodo.5761101; Beck et al., 2021).

Data availability. All Swiss Container MOSAiC data will
be publicly accessible from 1 January 2023 via PAN-
GAEA. Datasets of the raw and corrected particle number
concentrations at 10 s time resolution of the CPC3025 are
available on the data portal PANGAEA (Beck et al., 2022b,
https://doi.org/10.1594/PANGAEA.941873; Beck et al., 2022c,
https://doi.org/10.1594/PANGAEA.941886). A 1 min-averaged
dataset of the CPC3025, together with a pollution flag cre-
ated by the PDA, is available on PANGAEA (Beck et
al., 2022a, https://doi.org/10.1594/PANGAEA.941335). The
CO2 dataset is also available on PANGAEA (Angot et al., 2022a,
https://doi.pangaea.de/10.1594/PANGAEA.944248). The ARM
datasets are available via the ARM Data Discovery tool:
https://adc.arm.gov/discovery/#/ (last access: 6 December 2021;
Kuang et al., 2021, https://doi.org/10.5439/1046184). The 1 h
resolution Jungfraujoch data are available from Bukowieki and
Baltensperger (2021, http://ebas-data.nilu.no/Pages/DataSetList.
aspx?key=6316302E6BD54CF7AFBBDE1B71AAB448, last ac-
cess: 14 October 2021), and the 1 min resolution data are available
upon request.

Author contributions. AB and IB developed the PDA. JS conceived
the manuscript idea, and HA contributed substantially to the final
design. XG performed the visual data cleaning. LD provided the
AMS dataset, and HA provided the trace gas datasets. NB and MGB
provided the JFJ data. LQ, IB, JS, TJ, TL, HA, and MB performed
measurements on board. JS and TP acquired funding for the MO-
SAiC expedition. IB, HA, and JS wrote the manuscript. All the au-
thors commented on the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Data used in this paper were produced as
part of the international Multidisciplinary drifting Observatory for
the Study of the Arctic Climate (MOSAiC) with the tag MO-
SAiC20192020 and Project_ID AWI_PS122_00. We thank the
land-based MOSAiC teams of the University of Helsinki and the
Paul Scherrer Institute for their continuing support. We thank Byron
Blomquist, Stephen Archer, Jacques Hueber, Dean Howard, Hans-
Werner Jacobi, Detlev Helmig, Ludovic Bariteau, and Kevin Pos-
man for collecting and sharing the NO dataset used in the Appendix.
We also thank Chongai Kuang from Brookhaven National Labora-
tory for providing support with the data used for the visual filter-
ing method. The authors would like to thank the R/V Polarstern
crew and, in particular, the workshops for their fantastic support.
We thank all those who contributed to MOSAiC and made this en-
deavor possible (Nixdorf et al., 2021). The Foundation High Alti-
tude Research Stations Jungfraujoch and Gornergrat is thanked for
supporting the measurements taken at Jungfraujoch. Datasets of the
CPCf were obtained from the Atmospheric Radiation Measurement
(ARM) User Facility, a US Department of Energy (DOE) Office of
Science user facility managed by the Biological and Environmental
Research program.

Financial support. This research has been supported by the Swiss
National Science Foundation (grant no. 188478), the University
of Helsinki (HY-ACTRIS), the Academy of Finland (grant nos.
333397 and 334514), and the Atmosphere and Climate Compe-
tence Center (grant no. 337549). Further funding was provided by
the European Union’s Horizon 2020 research and innovation pro-
gram project EMME-CARE (grant no. 856612), the European Re-
search Council – ERC (GASPARCON – grant no. 714621), and the
Cyprus Government. Jian Wang and Xianda Gong were funded by
the US Department of Energy Office of Science (BER) and the At-
mospheric System Research program (grant nos. DE-SC0020259

Atmos. Meas. Tech., 15, 4195–4224, 2022 https://doi.org/10.5194/amt-15-4195-2022

https://doi.org/10.5281/zenodo.5761101
https://doi.org/10.1594/PANGAEA.941873
https://doi.org/10.1594/PANGAEA.941886
https://doi.org/10.1594/PANGAEA.941335
https://doi.pangaea.de/10.1594/PANGAEA.944248
https://adc.arm.gov/discovery/#/
https://doi.org/10.5439/1046184
http://ebas-data.nilu.no/Pages/DataSetList.aspx?key=6316302E6BD54CF7AFBBDE1B71AAB448
http://ebas-data.nilu.no/Pages/DataSetList.aspx?key=6316302E6BD54CF7AFBBDE1B71AAB448


I. Beck et al.: Automated identification of local atmospheric contamination 4221

and SC0021017). We received further funding from the Swiss Polar
Institute. Julia Schmale holds the Ingvar Kamprad Chair for Ex-
treme Environments Research sponsored by Ferring Pharmaceuti-
cals. Aerosol measurements at Jungfraujoch are performed within
the framework of the Swiss contribution to the Global Atmosphere
Watch (GAW) program, funded by MeteoSwiss, and within the AC-
TRIS research infrastructure, supported by the Swiss State Sec-
retariat for Education, Research and Innovation and by the Euro-
pean Commission under the Horizon 2020 Research and Innovation
framework program (ACTRIS-IMP) project (H2020-INFRADEV-
2019-2, grant agreement no. 871115).

Review statement. This paper was edited by Rebecca Washenfelder
and reviewed by two anonymous referees.

References

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung: Polar Research and Supply Ves-
sel POLARSTERN Operated by the Alfred-Wegener-
Institute, Journal of large-scale research facilities, 3, 119,
https://doi.org/10.17815/jlsrf-3-163, 2017.

Alroe, J., Cravigan, L. T., Miljevic, B., Johnson, G. R., Sell-
eck, P., Humphries, R. S., Keywood, M. D., Chambers, S.
D., Williams, A. G., and Ristovski, Z. D.: Marine productiv-
ity and synoptic meteorology drive summer-time variability in
Southern Ocean aerosols, Atmos. Chem. Phys., 20, 8047–8062,
https://doi.org/10.5194/acp-20-8047-2020, 2020.

Angot, H., Beck, I., Jokinen, T., Laurila, T., Quéléver, L., and
Schmale, J.: Carbon dioxide dry air mole fractions measured
in the Swiss container during MOSAiC 2019/2020, PANGAEA
[data set], https://doi.pangaea.de/10.1594/PANGAEA.944248,
in review, 2022a.

Angot, H., Blomquist, B., Howard, D., Archer, S. D., Bariteau, L.,
Beck, I., Boyer, M., Crotwell, M., Helmig, D., Hueber, J., Jacobi,
H.-W., Jokinen, T., Kulmala, M., Lan, X., Laurila, T., Madronich,
M., Neff, D., Petäjä, T., Posman, K., Quéléver, L. L. J., Shupe,
M. D., Wimont, I., and Schmale, J.: Year-round trace gas mea-
surements in the central Arctic during the MOSAiC expedition,
Sci. Data, in review, 2022b.

Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan,
P., Jefferson, A., Weingartner, E., Baltensperger, U., Bukowiecki,
N., Lihavainen, H., Kivekäs, N., Asmi, E., Aalto, P. P., Kulmala,
M., Wiedensohler, A., Birmili, W., Hamed, A., O’Dowd, C., G
Jennings, S., Weller, R., Flentje, H., Fjaeraa, A. M., Fiebig, M.,
Myhre, C. L., Hallar, A. G., Swietlicki, E., Kristensson, A., and
Laj, P.: Aerosol decadal trends – Part 2: In-situ aerosol particle
number concentrations at GAW and ACTRIS stations, Atmos.
Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-
2013, 2013.

Asmi, E., Kondratyev, V., Brus, D., Laurila, T., Lihavainen, H.,
Backman, J., Vakkari, V., Aurela, M., Hatakka, J., Viisanen, Y.,
Uttal, T., Ivakhov, V., and Makshtas, A.: Aerosol size distribution
seasonal characteristics measured in Tiksi, Russian Arctic, At-
mos. Chem. Phys., 16, 1271–1287, https://doi.org/10.5194/acp-
16-1271-2016, 2016.

Baccarini, A.: Investigation of New Aerosol Particle For-
mation in Polar Regions, Doctoral thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000502951, 2021.

Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J.,
Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M., Bal-
tensperger, U., Zieger, P., and Schmale, J.: Frequent new particle
formation over the high Arctic pack ice by enhanced iodine emis-
sions, Nat. Commun., 11, 4924, https://doi.org/10.1038/s41467-
020-18551-0, 2020.

Beck, I., Angot, H, Baccarini, A., Lampimäki, M.,
Boyer, M., and Schmale, J.: Pollution Detection
Algorithm (PDA), Version 1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.5761101, 2021.

Beck, I., Quéléver, L., Laurila, T., Jokinen, T., Baccarini, A., Angot,
H., and Schmale, J.: Pollution mask for the continuous corrected
particle number concentration data in 1 min resolution, measured
in the Swiss aerosol container during MOSAiC 2019/2020, PAN-
GAEA [data set], https://doi.org/10.1594/PANGAEA.941335,
2022a.

Beck, I., Quéléver, L., Laurila, T., Jokinen, T., and Schmale,
J.: Continuous raw particle number concentration data in
10 sec resolution, measured in the Swiss aerosol con-
tainer during MOSAiC 2019/2020, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.941873, 2022b.

Beck, I., Quéléver, L., Laurila, T., Jokinen, T., and Schmale,
J.: Continuous corrected particle number concentration data
in 10 sec resolution, measured in the Swiss aerosol con-
tainer during MOSAiC 2019/2020, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.941886, 2022c.

Beck, L. J., Sarnela, N., Junninen, H., Hoppe, C. J. M., Garmash,
O., Bianchi, F., Riva, M., Rose, C., Peräkylä, O., Wimmer, D.,
Kausiala, O., Jokinen, T., Ahonen, L., Mikkilä, J., Hakala, J.,
He, X.-C., Kontkanen, J., Wolf, K. K. E., Cappelletti, D., Maz-
zola, M., Traversi, R., Petroselli, C., Viola, A. P., Vitale, V.,
Lange, R., Massling, A., Nøjgaard, J. K., Krejci, R., Karlsson, L.,
Zieger, P., Jang, S., Lee, K., Vakkari, V., Lampilahti, J., Thakur,
R. C., Leino, K., Kangasluoma, J., Duplissy, E.-M., Siivola, E.,
Marbouti, M., Tham, Y. J., Saiz-Lopez, A., Petäjä, T., Ehn, M.,
Worsnop, D. R., Skov, H., Kulmala, M., Kerminen, V.-M., and
Sipilä, M.: Differing Mechanisms of New Particle Formation
at Two Arctic Sites, Geophys. Res. Lett., 48, e2020GL091334,
https://doi.org/10.1029/2020GL091334, 2021.

Brantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R.
W., Mukerjee, S., and Neas, L. M.: Mobile air monitoring data-
processing strategies and effects on spatial air pollution trends,
Atmos. Meas. Tech., 7, 2169–2183, https://doi.org/10.5194/amt-
7-2169-2014, 2014.

Bukowiecki, N. and Baltensperger, U.: Jungfraujoch
aerosol number concentrations, EBAS [data set], NILU,
http://ebas-data.nilu.no/Pages/DataSetList.aspx?key=
6316302E6BD54CF7AFBBDE1B71AAB448, last access:
14 October 2021.

Bukowiecki, N., Dommen, J., Prévôt, A. S. H., Richter, R., Wein-
gartner, E., and Baltensperger, U.: A mobile pollutant mea-
surement laboratory–measuring gas phase and aerosol ambient
concentrations with high spatial and temporal resolution, At-
mos. Environ., 36, 5569–5579, https://doi.org/10.1016/S1352-
2310(02)00694-5, 2002.

https://doi.org/10.5194/amt-15-4195-2022 Atmos. Meas. Tech., 15, 4195–4224, 2022

https://doi.org/10.17815/jlsrf-3-163
https://doi.org/10.5194/acp-20-8047-2020
https://doi.pangaea.de/10.1594/PANGAEA.944248
https://doi.org/10.5194/acp-13-895-2013
https://doi.org/10.5194/acp-13-895-2013
https://doi.org/10.5194/acp-16-1271-2016
https://doi.org/10.5194/acp-16-1271-2016
https://doi.org/10.3929/ethz-b-000502951
https://doi.org/10.1038/s41467-020-18551-0
https://doi.org/10.1038/s41467-020-18551-0
https://doi.org/10.5281/zenodo.5761101
https://doi.org/10.1594/PANGAEA.941335
https://doi.org/10.1594/PANGAEA.941873
https://doi.org/10.1594/PANGAEA.941886
https://doi.org/10.1029/2020GL091334
https://doi.org/10.5194/amt-7-2169-2014
https://doi.org/10.5194/amt-7-2169-2014
http://ebas-data.nilu.no/Pages/DataSetList.aspx?key=6316302E6BD54CF7AFBBDE1B71AAB448
http://ebas-data.nilu.no/Pages/DataSetList.aspx?key=6316302E6BD54CF7AFBBDE1B71AAB448
https://doi.org/10.1016/S1352-2310(02)00694-5
https://doi.org/10.1016/S1352-2310(02)00694-5


4222 I. Beck et al.: Automated identification of local atmospheric contamination

Bukowiecki, N., Weingartner, E., Gysel, M., Collaud Coen, M.,
Zieger, P., Herrmann, E., Steinbacher, M., Gäggeler, H. W., and
Baltensperger, U.: A review of more than 20 years of aerosol
observation at the high altitude research station Jungfraujoch,
Switzerland (3580 m asl), Aerosol Air Qual. Res., 16, 764–788,
https://doi.org/10.4209/aaqr.2015.05.0305, 2016.

Bukowiecki, N., Brem, B. T., Wehrle, G., Močnik, G., Af-
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