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Abstract. Measurement of light absorption of solar radia-
tion by aerosols is vital for assessing direct aerosol radiative
forcing, which affects local and global climate. Low-cost and
easy-to-operate filter-based instruments, such as the Particle
Soot Absorption Photometer (PSAP), that collect aerosols
on a filter and measure light attenuation through the filter
are widely used to infer aerosol light absorption. However,
filter-based absorption measurements are subject to artifacts
that are difficult to quantify. These artifacts are associated
with the presence of the filter medium and the complex in-
teractions between the filter fibers and accumulated aerosols.
Various correction algorithms have been introduced to cor-
rect for the filter-based absorption coefficient measurements
toward predicting the particle-phase absorption coefficient
(Babs). However, the inability of these algorithms to incorpo-
rate into their formulations the complex matrix of influenc-
ing parameters such as particle asymmetry parameter, parti-
cle size, and particle penetration depth results in prediction of
particle-phase absorption coefficients with relatively low ac-
curacy. The analytical forms of corrections also suffer from
a lack of universal applicability: different corrections are re-
quired for rural and urban sites across the world. In this study,
we analyzed and compared 3 months of high-time-resolution
ambient aerosol absorption data collected synchronously us-
ing a three-wavelength photoacoustic absorption spectrome-
ter (PASS) and PSAP. Both instruments were operated on the
same sampling inlet at the Department of Energy’s Atmo-

spheric Radiation Measurement program’s Southern Great
Plains (SGP) user facility in Oklahoma. We implemented the
two most commonly used analytical correction algorithms,
namely, Virkkula (2010) and the average of Virkkula (2010)
and Ogren (2010)–Bond et al. (1999) as well as a random
forest regression (RFR) machine learning algorithm to pre-
dict Babs values from the PSAP’s filter-based measurements.
The predicted Babs was compared against the reference Babs
measured by the PASS. The RFR algorithm performed the
best by yielding the lowest root mean square error of predic-
tion. The algorithm was trained using input datasets from the
PSAP (transmission and uncorrected absorption coefficient),
a co-located nephelometer (scattering coefficients), and the
Aerosol Chemical Speciation Monitor (mass concentration
of non-refractory aerosol particles). A revised form of the
Virkkula (2010) algorithm suitable for the SGP site has been
proposed; however, its performance yields approximately 2-
fold errors when compared to the RFR algorithm. To gen-
eralize the accuracy and applicability of our proposed RFR
algorithm, we trained and tested it on a dataset of laboratory
measurements of combustion aerosols. Input variables to the
algorithm included the aerosol number size distribution from
the Scanning Mobility Particle Sizer, absorption coefficients
from the filter-based Tricolor Absorption Photometer, and
scattering coefficients from a multiwavelength nephelome-
ter. The RFR algorithm predicted Babs values within 5 % of
the reference Babs measured by the multiwavelength PASS

Published by Copernicus Publications on behalf of the European Geosciences Union.



4570 J. Kumar et al.: Filter-based aerosol light absorption correction

during the laboratory experiments. Thus, we show that ma-
chine learning approaches offer a promising path to correct
for biases in long-term filter-based absorption datasets and
accurately quantify their variability and trends needed for ro-
bust radiative forcing determination.

1 Introduction

Aerosols affect the climate through the absorption and scat-
tering of radiation, which has been the subject of inten-
sive ongoing research (Brown et al., 2021). Aerosols are
one of the most significant sources of uncertainty in climate
model predictions of radiative forcing (Masson-Delmotte et
al., 2021). The US Department of Energy’s Atmospheric
Radiation Measurement (ARM) program was established in
1990 to collect measurements to better understand processes
that affect atmospheric radiation in climate models (Stokes
and Schwartz, 1994). The ARM program currently operates
three heavily instrumented fixed-location sites to gather at-
mospheric data: Southern Great Plains (SGP), North Slope
of Alaska (NSA), and Eastern North Atlantic (ENA). The
SGP site is the world’s most comprehensive climate research
facility, with extensive in situ and remote sensing instrument
clusters deployed over about 143 000 km2 centered near La-
mont, Oklahoma, USA. Instruments at the SGP site measure
radiation, cloud properties, and other meteorological quan-
tities (Sisterson et al., 2016). Light absorption by aerosols
is measured at the site using a three-wavelength (467, 530,
and 660 nm) Particle Soot Absorption Photometer (PSAP;
Radiance Research Inc.) (Sheridan et al., 2001) and a three-
wavelength (405, 532, and 781 nm) Photoacoustic Absorp-
tion Spectrometer (PASS; Droplet Measurement Technolo-
gies Inc.), which is an extension of the single-wavelength
instrument that was deployed at the island of Jeju, South
Korea (Flowers et al., 2010), and in Utqiagvik, Alaska (My-
ers et al., 2021). Aerosol light scattering is measured using a
three-wavelength (450, 550, and 700 nm) nephelometer (TSI
model 3563).

The PSAP instrument infers aerosol light absorption us-
ing a low-cost filter-based method by measuring transmit-
tance through aerosol particles collected on a filter substrate.
The instruments based on this method, such as PSAP, fa-
cilitate semi-continuous sampling of particles and produce
time-averaged bulk absorption measurements (Pandey et al.,
2016). Filter-based aerosol light absorption measurement in-
struments such as PSAP are widely used due to their low
cost and operational ease, even though their accuracy suf-
fers from “unquantifiable artifacts” such as multiple scatter-
ing, which can overestimate absorption (Bond et al., 1999;
Clarke, 1982; Gorbunov et al., 2002), aerosol overloading on
the filter, which can underestimate absorption (Arnott et al.,
1999; Weingartner et al., 2003), and the changed morphol-

ogy of the deposited aerosol on the filter (Subramanian et al.,
2007).

The PASS instrument was deployed at the SGP site in Jan-
uary 2009, followed by its decommission in October 2015.
The PASS is a contact-free method to measure the particle-
phase aerosol light absorption coefficient (Babs). The work-
ing principle of the PASS is described in detail in Arnott et
al. (1999). Briefly, photons from a modulated laser beam are
absorbed by light-absorbing aerosol particles. The absorbed
energy is transmitted as heat to the surrounding air, which re-
sults in modulated pressure waves that are detected as sound
waves by a microphone. The microphone can be calibrated
to determine light absorption by the particles. The measure-
ments from the PASS are highly accurate, but they have
low sensitivity (1 h average signal–noise ratio ∼ 0.2 Mm−1

at SGP), and long-term deployments can be expensive. PASS
also has issues with liquid and/or multiphase particles, as
some of the laser energy goes into the phase change associ-
ated with heating the particles rather than producing acoustic
waves.

Various correction algorithms (Bond et al., 1999; Virkkula
et al., 2005; Li et al., 2020; Müller et al., 2014; Nakayama et
al., 2010), based on a general analytical equation form, have
been developed and used in climate research facilities across
the world. The general form of the various previously de-
veloped correction algorithms for the PSAP is summarized
in Eq. (2), where f is some function that varies between
different correction approaches and C0 is a constant repre-
senting a fraction of total light scattered by the particles col-
lected on the filter. The absorption coefficient reported by
the PSAP (Babs_PSAP) is auto-corrected using an empirical
correction f (Tr) applied by the instrument firmware to cor-
rect for magnification of the aerosol absorption by the fil-
ter medium and nonlinearities in the response as the filter is
loaded (Bond et al., 1999; Ogren et al., 2010). The DOE’s
PSAP Instrument Handbook (Springston, 2018) reports the
filter area (APSAP = 17.81 mm2) and parameters used for
f (Tr) as shown in Eq. (1). Therefore, to obtain the uncor-
rected absorption coefficients from the PSAP, we undo the
filter-loading correction with the same parameters as men-
tioned in the handbook.

Babs_uncorrected_PSAP =
APSAP

QPSAP1t
ln
(

I (t)

I (t +1t)

)
=
Babs_PSAP

f (Tr)
=

Babs_PSAP(
1

1.317×Tr+0.866

) (1)

Babs = Babs_uncorrected_PSAP

× f (Tr(λ),SSA(λ),AAE(λ))−C0(λ)×Bscat (2)

These algorithms, however, are non-universal in applicability
and hence limited in accuracy because the fitting parameters
of the transmission functions calculated in such algorithms
are based on datasets of laboratory-generated aerosols which
may or may not represent the diverse aerosol types in various
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parts of the world (Collaud Coen et al., 2010; Zuidema et al.,
2018). The large variation in results of correction creates a
need for a universal systematic approach for correcting filter-
based measurements that is more accurate than previously
stated algorithms.

In this study, we used 3 months of high-resolution ambi-
ent data collected by the PASS and PSAP at ARM’s SGP site.
We corrected for filter-based absorption measurements using
Virkkula (2010) (referenced as “unrevised Virkkula” going
forward), the Virkkula equation with revised coefficients for
the SGP site (referenced as “revised Virkkula”), the average
of unrevised Virkkula and Ogren (2010) modified Bond et
al. (1999) correction (referenced as the “Average”), and ran-
dom forest regression (RFR), which is a supervised ensem-
ble machine learning (ML) algorithm used for a wide range
of classification and regression predictive problems (Kumar
and Sahu, 2021). We provide an intercomparison of the per-
formances of these algorithms and identify the best correc-
tion algorithm suitable for the SGP site.

2 Methodology

2.1 Ambient data from the SGP observatory

This study used ambient ground-based aerosol data from the
SGP site corresponding to a 3-month period from 27 June
to 25 September 2015. High-resolution data from the PASS,
PSAP, nephelometer, and Aerodyne’s Aerosol Chemical
Speciation Monitor (ACSM) with sampling intervals of 2 s,
1 min, 1 min, and 30 min, respectively, were used. Figure A1
provides the descriptive statistics of the raw data obtained
from the three optical instruments. Figure A2 presents the
non-refractory aerosol composition data collected by the
ACSM over the study period. We observed that organic
aerosols consist of more than 60 % of the mass concen-
tration, followed by sulfates, ammonium, and nitrate. The
summary of elemental carbon (EC) concentration, measured
by a Sunset Model-4 Semi-Continuous OC-EC instrument
from 3 June to 27 November 2013, is shown in Fig. A3.
The average EC and organic carbon (OC) concentrations
were found to be 0.174± 0.123 and 2.267± 1.400 µg m−3,
respectively. Figure A4 illustrates the time series of the un-
corrected aerosol absorption data as derived from the PSAP
(Babs_uncorrected_PSAP) and PASS (Babs) instruments. We ob-
served that the average particle-phase Babs at the SGP site
ranged from 0 to 8 Mm−1 for most times, with an aver-
age Babs of 1.36 Mm−1 across all three wavelengths. A de-
tailed description of the working of each of the instruments
at the SGP site can be found in the ARM and SGP aerosol-
observing system Instrument Handbook (Uin and Smith,
2020).

Previous studies have measured non-refractive submi-
crometer aerosol concentration and the composition of its or-
ganic and inorganic constituents at the SGP site (Parworth

et al., 2015; Liu et al., 2021). Across all studies, the high-
est mass concentration at the SGP site occurs in the winter
and decreases from spring to fall. The nitrates dominate dur-
ing the winters, while OC, accounting for more than 60 % of
total non-refractory particulate matter mass concentrations,
dominates for the rest of the year. The PSAP-derived Babs
and aerosol scattering coefficient (Bscat) at 550 nm ranged
from 0 to 10 and 0 to 50 Mm−1 from 2010 to 2013, respec-
tively (Sherman et al., 2015). Since the site is rural, long-term
transport aerosols (such as mineral dust, absorbing organic
aerosol, OA, and secondary organic aerosol, SOA) may af-
fect local aerosol properties (Andrews et al., 2019).

In this study, the rationale behind choosing a short-
duration time frame in 2015 was because of the availabil-
ity of quality-controlled PASS datasets. The 532 nm laser
module in the PASS underwent an upgrade at the site in
early 2015. From Figs. A1a, d and A4, however, we suspect
that either the newly installed 532 nm PASS laser could be
slightly overestimating absorption or that the old 405 and
781 nm lasers could be slightly underestimating absorption
compared to their true values. We preprocessed the data into
the following three broad steps for each instrument; first, we
only included those timestamps where data were valid across
all instruments without incorrect (i.e., negative absorption
coefficients), suspect (i.e., PASS measurements > 15 Mm−1

at the SGP site), and missing values (i.e., missing times-
tamps corresponding to parallel instrument measurements).
Second, we smoothed the data from all instruments into
1 h averages. Third, to compare the measurements from dif-
ferent instruments at the same wavelengths, we extrapolate
the PASS Babs and nephelometer Bscat to PSAP’s operat-
ing wavelengths (467, 530, and 660 nm) using the absorp-
tion Ångström exponent (AAE) and scattering Ångström ex-
ponent (SAE). The Ångström exponent is an aerosol optical
parameter used for aerosol characterization and to extrapo-
late a given particle-phase aerosol absorption or scattering
coefficient to any wavelength of interest. The AAE and SAE
values were inferred using Eqs. (3) and (4) (Liu et al., 2018).
Statistics of AAE and SAE values from SGP’s PASS and
nephelometer data are summarized in Figure A1. Since the
standard deviations of AAE values for the SGP data were sig-
nificantly high, time-dependent AAE and SAE values were
used to extrapolate the particle-phase absorption and scat-
tering coefficients to the PSAP’s operating wavelengths. The
parameters Babs1 and Babs2 in Eqs. (3) and (4) are the absorp-
tion coefficients at wavelengths λ1 and λ2.

AAE=−
ln(Babs 1/Babs 2)

ln(λ1/λ2)
(3)

SAE=−
ln(Bscat 1/Bscat 2)

ln(λ1/λ2)
(4)

The extrapolation of filter-based measurements to other
wavelengths using an AAE is less accurate than the extrapo-
lation of PASS measurements because filter-based measure-
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ments are inherently biased due to artifacts, and their extrap-
olation to other wavelengths further adds to the error.

Figure 1 presents the comparison of uncorrected filter-
based absorption coefficients to the calibrated, particle-phase
Babs measured using the PASS. We observed that the un-
corrected filter-based absorption coefficients are more than
4 times greater than the particle-phase Babs measured by the
PASS across all the wavelengths. Hence, at least for the SGP
site, if we choose not to apply any correction algorithm to the
filter-based absorption data, we can use a factor of 4 to ob-
tain the Babs with a wavelength-averaged RMSE (root mean
square error) of 2.58± 0.11 Mm−1. This overestimation of
the filter-based aerosol light absorption measurements is due
to the scattering of light away from the forward direction by
the filter fibers and due to the changed morphology of the de-
posited aerosol on the filter (Subramanian et al., 2007; Bond
et al., 1999; Clarke, 1982; Gorbunov et al., 2002).

2.2 Correction algorithms

In order to correct for these “difficult-to-quantify” artifacts
associated with the filter-based measurement of the aerosol
absorption, various correction algorithms (Bond et al., 1999;
Ogren, 2010; Virkkula et al., 2005; Li et al., 2020) have
been introduced to predict the particle-phase absorption co-
efficient (Babs) using filter-based absorption coefficient mea-
surements. Ogren (2010) modified Bond et al. (1999) and
Virkkula (2010) correction algorithms are widely used in
global atmosphere monitoring networks such as the Global
Atmosphere Watch Programme (GAW) and the NOAA Fed-
erated Aerosol Network (Andrews et al., 2019). In this study,
we only discuss the commonly used correction algorithms
on the ground sites and compared them to the proposed ML-
based filter correction algorithm.

2.2.1 Virkkula (2010) with unrevised parameters

Virkkula et al. (2005) developed an analytical correction
equation that iteratively calculates Babs from filter-based
measurements. The transmittance correction function in the
Virkkula equation was a multivariate function of the natural
logarithm of transmission and single scattering albedo (SSA)
as shown in Eq. (6). The parameters in the Virkkula equation
h0, h1, k0, and k1 vary with wavelength. Virkkula (2010) re-
calculated these parameters by correcting for flowmeter cali-
bration in Eq. (6).

Babs = Babs_uncorrected_PSAP× (k0+ k1 ln(Tr))

− s×Bscat (5)

Babs(Virkkula-corrected)= Babs_uncorrected_PSAP

× (k0+ k1 (h0+h1ω0) ln(Tr))− s×Bscat (6)

The parameters in Eq. (6) represent the particle-phase
absorption coefficient (Babs), the uncorrected absorption
coefficient derived from the PSAP (Babs_uncorrected_PSAP),

transmission values from the PSAP (Tr), the particle-
phase scattering coefficient from the nephelometer (Bscat),
SSA=ω0=Babs/(Babs+Bscat), and Virkkula parameters/-
constants (k0, k1, h0, h1, s).

Using these parameters of the Virkkula equation, we cal-
culated the Babs values from the uncorrected filter-based ab-
sorption coefficients. Following the procedure mentioned in
Virkkula (2005), due to the unknown values of SSA, the
Virkkula equation was iteratively solved for Babs. Babs was
first calculated using Eq. (5) and then was used to compute
the initial guess for ω0. Next, this value of ω0 was used in
Eq. (6) to compute a more accurate value of Babs, and this
procedure was repeated until Babs values converged.

2.2.2 Virkkula (2010) with revised parameters for the
SGP site

Using the reference measurements of Babs from the PASS
at the SGP site, we refitted the parameters in the Virkkula
equation (h0, h1, k0, k1) to obtain revised parameters. The fit-
ting was implemented using the “curvefit” function from the
“SciPy” Python library, which uses nonlinear least squares
to fit a functional equation form to given data. After fitting
of optimized parameters of the Virkkula equation, we solved
for the particle-phase absorption coefficients using the filter-
based absorption coefficients. It is important to note that the
calculated revised Virkkula parameters may only be valid for
the SGP site because these revised parameters were com-
puted using the absorption data from the PASS and PSAP
at the SGP site.

2.2.3 Ogren (2010)–Bond et al. (1999) correction and
its average with unrevised Virkkula (2010)

Bond et al. (1999) published a correction scheme for
the PSAP which was updated by Ogren (2010). The
Ogren (2010) modified Bond et al. (1999) correction is ap-
plied using Eq. (7) to obtain the corrected Babs value. An-
other correction technique that is often used by the DOE
ARM community involves computing a simple arithmetic
mean of Virkkula (2010) correction with unrevised param-
eters and the Ogren (2010)–Bond et al. (1999) correction to
obtain an average corrected Babs value as shown in Eq. (8)
(Flynn et al., 2020; Zuidema et al., 2018). For brevity, going
forward we will refer to this correction scheme as the “aver-
age” correction algorithm.

Babs(Bond–Ogren-corrected)=

BPSAP×

(
1

1.5557×Tr+ 1.0227

)
− 0.0164×Bscat (7)

Babs(average-corrected)=[
Babs(unrevised Virkkula-corrected)
+Babs(Bond–Ogren-corrected)

]
2

(8)
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Figure 1. Scatterplot of absorption coefficients from the PSAP and extrapolated PASS measurements corresponding to the (a) 467 nm,
(b) 530 nm, and (c) 660 nm wavelengths at the SGP site.

2.2.4 Random forest regression model

RFR is an ensemble-supervised ML algorithm used for a
wide range of classification and regression predictive prob-
lems (Kumar and Sahu, 2021). Random forest involves con-
structing a large number of decision trees with each decision
tree fitted on a different subset of the training dataset (also
called bagging) in addition to selecting a random subset of
input variables at each split point in the construction of trees.
Random forest is known to reduce overfitting of data in de-
cision trees and to provide accurate predictions (Biau, 2012;
Breiman, 2001). The three most essential hyperparameters
to tune the random forest are (1) a number of random input
variables to consider at each split point, (2) the depth of the
decision trees, and (3) the number of decision trees in the
forest. The core concept behind the random forest is that it
aggregates the results of many trained decision trees empiri-
cally and outputs the most optimal result.

ML algorithms perform very well on the trained dataset;
therefore, it is crucial to test their performance on unseen or
untrained data. We split the SGP dataset into training and
testing sets in the ratio of 70 : 30. The training set was used
to train the RFR model, and then the testing set was used to
evaluate the model’s performance on the new input data that
the model had not encountered before. For the SGP data, we
trained the RFR model with an uncorrected absorption coef-
ficient derived from the PSAP (Babs_uncorrected_PSAP), PSAP
transmission (Tr), scattering coefficient (Bscat) from the
nephelometer, and total mass concentration of non-refractory
aerosol components obtained by the ACSM as input vari-
ables. The predicted Babs is the output variable and is com-
pared against the reference Babs measured by the PASS. The
values of the hyperparameters used for the construction of
the RFR model are the number of features to consider while
looking for the best split= 5, the number of trees= 100, and
the max_depth such that nodes were expanded until all leaves
were pure or until all leaves contained fewer than two sam-
ples.

The RFR algorithm is entirely a data-driven approach to
correct filter-based measurements. The algorithm was trained

on input–output variables, which were measured by differ-
ent instruments installed at the site. The instrument detection
limits, precision, and accuracy play a significant role in the
training and predicting ability of the RFR algorithm. In order
to gain highly accurate predictions from the RFR algorithm
on the test dataset (data that are not used while training but
that are used to check the accuracy of the algorithm on un-
seen data), the algorithm requires good-quality training data
and with a reasonably large number of samples/instances in
the training dataset to ensure that the algorithm’s accuracy on
the unseen test dataset is not limited by the number of sam-
ples of the training dataset on which it is trained. Figure A5
presents the general workflow of ML-based correction mod-
els developed in this study.

3 Results

3.1 Application of the Virkkula (2010) algorithm with
unrevised parameters

The parameters mentioned in Virkkula (2010) as shown
in Table 1 were directly used to iteratively solve for
Babs using Eq. (6). Figure 2 shows comparisons be-
tween the unrevised Virkkula calculated Babs and refer-
ence Babs measured using the PASS. We observed the
%RMSE values (calculated over all three wavelengths as =
6i(RMSEi/mean reference Babs_i)× 100), which show that
the percentage of uncertainty for unrevised Virkkula in the
calculation or predictions of Babs is ∼ 376 %, and R2 values
are negative for all three wavelengths, which suggests that
the unrevised Virkkula algorithm performs worse than a con-
stant prediction of the mean Babs value.

The variance in Babs calculated using unrevised Virkkula
is large enough to undermine the algorithm’s applicability
without revising the parameters/coefficients. Since fitting pa-
rameters in Virkkula (2010) were based on experimental burn
data of kerosene soot and “white” ammonium sulfate aerosol,
those parameters cannot be universally applied to differ-
ent types of ambient aerosols (Collaud Coen et al., 2010;
Zuidema et al., 2018).
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Table 1. Unrevised parameters as mentioned in Virkkula (2010) to be used in the Virkkula algorithm (i.e., Eq. 6).

k0 k1 h0 h1 s

467 nm 0.377± 0.013 −0.640± 0.007 1.16± 0.005 −0.63± 0.09 0.015
530 nm 0.358± 0.011 −0.640± 0.007 1.17± 0.003 −0.71± 0.05 0.017
660 nm 0.352± 0.013 −0.674± 0.006 1.14± 0.11 −0.72± 0.16 0.022

Figure 2. Comparison between PSAP absorption coefficients, corrected for using the Virkkula (2010) algorithm with unrevised coefficients
and the reference PASS absorption coefficients measured at the SGP site corresponding to the (a) 467 nm, (b) 530 nm, and (c) 660 nm
wavelengths.

3.2 Application of the Virkkula (2010) algorithm with
revised parameters for the SGP site

To overcome the imprecision of the unrevised Virkkula algo-
rithm, we fitted the Virkkula equation to the SGP data to ob-
tain revised Virkkula parameters (i.e., k0, k1, h0, h1) shown
in Table 2. The same values of s were used as mentioned
in Virkkula (2010) because parameter s represents a fraction
of total light scattered, which is experimentally determined
by fitting to ammonium sulfate experiments (Virkkula et al.,
2005). The Virkkula equation with these newly computed pa-
rameters was then used to iteratively solve for Babs using
Eq. (6). Figure 3 presents a comparison of filter-based ab-
sorption corrected using the revised Virkkula algorithm and
reference Babs measured using the PASS. We observed that
the Virkkula algorithm performed comparatively well with
revised parameters because the RMSE values decreased and
R2 values increased in comparison to unrevised Virkkula
evaluation metrics (i.e., RMSE, %RMSE, and R2). The re-
sults of Figs. 2 and 3 clearly imply that it is essential to re-
vise the parameters before implementing the Virkkula equa-
tion for predicting Babs at each site. Since the Virkkula equa-
tion does not undertake the seasonal, source, and particle size
distributions as inputs, the Virkkula parameters are subject to
change with these external factors too.

It is important to note that, since the Babs predictions of
revised Virkkula as shown in Fig. 3 were based on the same
data that were used to calculate the Virkkula parameters, the
performance of this algorithm on these data is the best that is
possible. The %RMSE for the revised Virkkula predictions
for the SGP data was ∼ 58 %, which is less than that of un-

revised Virkkula, but it still represents significant uncertainty
in the calculation/prediction of Babs. This major shortcoming
of analytical fits led us to the ML approach to predict theBabs
using filter-based measurements.

3.3 Application of the Ogren (2010) modified Bond et
al. (1999) correction and its average with unrevised
Virkkula (2010)

Figure 4 presents a comparison of filter-based absorption
corrected using only the Ogren (2010) modified Bond et
al. (1999) algorithm as presented in Eq. (7) and the refer-
ence Babs measured using the PASS. The %RMSE for this
algorithm on the SGP data is ∼ 312 %, which is almost the
same as the %RMSE of unrevised Virkkula (2010). Since
the general equation form of Ogren (2010) modified Bond
et al. (1999) is similar to that of Virkkula (2010) and both
the unrevised versions of the algorithms perform with simi-
lar accuracy, the improvement in accuracy of Ogren (2010)
modified Bond et al. (1999) with revised coefficients can be
expected to be very similar to that in the case of Virkkula.

Figure 5 presents a comparison of filter-based absorption
corrected using the average of unrevised Virkkula (2010) and
Ogren (2010) modified Bond et al. (1999) and reference Babs
measured using the PASS. The %RMSE values for the “aver-
age” correction are ∼ 343 %, and R2 is negative for all three
wavelengths, suggesting that the model performs worse than
a constant prediction of the mean Babs value. We observed
that the “average” correction performed better than the un-
revised Virkkula but still worse than the revised Virkkula al-
gorithm. This justifies the application of the “average” algo-
rithm at ARM sites for better accuracy when PASS-derived
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Table 2. Revised parameters for the Virkkula equation computed using the SGP dataset.

k0 k1 h0 h1 s

467 nm 0.141± 0.007 −0.09± 0.007 11.043± 3.226 −10.369± 3.33 0.015
530 nm 0.162± 0.005 −0.092± 0.006 0.043± 2.667 0.547± 2.77 0.017
660 nm 0.148± 0.004 −0.064± 0.005 20.35± 2.509 −20.059± 2.6 0.022

Figure 3. Comparison between PSAP absorption coefficients, corrected for using the Virkkula algorithm with revised coefficients, and the
reference PASS absorption coefficients measured at the SGP site corresponding to the (a) 467 nm, (b) 530 nm, and (c) 660 nm wavelengths.

Figure 4. Comparison between PSAP absorption coefficients, corrected for using the Bond–Ogren correction algorithm, and the reference
PASS absorption coefficients measured at the SGP site corresponding to the (a) 467 nm, (b) 530 nm, and (c) 660 nm wavelengths.

Babs values are not available to revise the parameters of the
Virkkula equation, and using the unrevised Virkkula algo-
rithm only yields low accuracy.

3.4 Application of the RFR algorithm

We used RFR, which is a supervised ML algorithm, to cor-
rect for the filter-based PSAP-derived uncorrected absorp-
tion coefficients (Babs_uncorrected_PSAP). Figure 6 presents the
comparison of RFR-predictedBabs to the referenceBabs mea-
sured using the PASS. We observed from Fig. 6 that, for all
three wavelengths, %RMSE values for the Babs predictions
from the RFR algorithm are ∼ 32 %, and the R2 values are
also greater than ∼ 0.8, which are much better than the eval-
uation metrics for both unrevised and revised Virkkula al-
gorithms even when the RFR algorithm’s evaluation metrics
were computed on unseen test data.

Apart from the two common correction algorithms (Ogren,
2010, modified Bond et al., 1999, and Virkkula, 2010) ap-
plied to PSAP, recent attempts were made to develop new
correction algorithms (Li et al., 2020) by constructing a mul-
tivariate linear model in the general correction Eq. (2) and in-
cluding the interaction terms between AAE, SSA, and ln(Tr).
It was referred as “Algorithm A” by Li et al. (2020) and pro-
duced the R2 values of 0.62, 0.55, and 0.43 on the PSAP’s
operating wavelengths of 467, 528, and 652 nm, respectively.
Comparing just R2 values, the RFR algorithm fares better
than “Algorithm A” which is the most recent PSAP correc-
tion algorithm developed yet.

The RFR algorithm performs better than the analytical
models because it empirically captures the nonlinearities and
complex relationships between the input variables and Babs,
and it was trained on an extra input of total mass concentra-
tion from ACSM. It is important to note that after the elimi-
native pre-processing of the 3 months of bulk data, the num-
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Figure 5. Comparison between PSAP absorption coefficients, corrected for using the average of the Bond–Ogren and unrevised
Virkkula (2010) algorithms, and the reference PASS absorption coefficients measured at the SGP site corresponding to the (a) 467 nm,
(b) 530 nm, and (c) 660 nm wavelengths.

Figure 6. Random forest regression, a supervised machine learning algorithm, applied to correct for PSAP absorption coefficients, and
comparison of its performance with reference PASS absorption coefficients measured at the SGP site corresponding to the (a) 467 nm,
(b) 530 nm, and (c) 660 nm wavelengths.

ber of valid data samples that remained was relatively small
for a typical ML algorithm training; we can expect that the
RFR algorithm can perform even better with more extensive
data.

3.5 Improving the accuracy of the RFR algorithm

RFR is an ensemble-supervised machine learning algorithm
which builds many decision trees using the input data dur-
ing the training phase and predicts the output as the mean of
predictions from all of the trees. The accuracy of the RFR
directly depends on the number of different or uncorrelated
trees built during the training as shown in Fig. 7. In order
to produce many uncorrelated trees, we not only train the
trees on different random subsets of training data (i.e., bag-
ging), but also choose different input features or variables
randomly to split the nodes. Training the RFR algorithm on
all the input variables which significantly affect the output
variable not only enables us to increase the number of un-
correlated trees built during training, but also constrains the
model for accurate prediction. Hence, the accuracy of RFR in
predicting particle-phase Babs could be further improved by
training the algorithm using all possible input variables that
affect Babs, such as Babs_uncorrected_PSAP/TAP from PSAP/TAP

transmission, Bscat, aerosol number size distribution param-
eters, and composition.

As a proof of concept, we trained and tested the RFR
algorithm on a laboratory-generated published dataset of
burn chamber experiments (Sumlin et al., 2018; Shetty et
al., 2019, 2021). The algorithm was trained using the total
number concentration, geometric mean diameter, geometric
standard deviation, uncorrected filter-based Tricolor Absorp-
tion Photometer (TAP) Babs, and nephelometer Bscat as input
variables, while the output variable was the particle-phase
absorption coefficient. Figure 8 presents the comparison of
RFR-predicted Babs to the reference Babs measured using the
PASS during the burn. We observed from Fig. 8 that the RFR
algorithm correctly predicted the particle-phase Babs within
5 % (%RMSE) of the reference Babs. We also note that the
R2 values are∼ 1, which shows that the predictions correlate
almost perfectly with the reference PASS-derived absorption
values. This example demonstrates the capabilities of RFR in
capturing the complex relationship between filter-based mea-
surements and particle-phase Babs with the best possible ac-
curacy.
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Figure 7. Flowchart of RFR illustrating many uncorrelated trees built using random feature sampling whose average prediction is more
accurate than each of the individual trees.

Figure 8. An illustration of the power of the RFR algorithm in accurately predicting the particle-phase absorption coefficient when trained
with a robust set of input variables. The plots show the accuracy of RFR-trained TAP absorption coefficients in comparison to the reference
PASS absorption coefficients corresponding to (a) 405 nm and (b) 532 nm for laboratory-generated aerosols from combustion.

4 Conclusions

The uncertainties in predicting particle-phase absorption co-
efficients from filter-based absorption data are due to both
measurement uncertainties of the instruments and the uncer-
tainties of parameter computation while using analytical al-
gorithms like those put forth in Virkkula (2010). Little can
be done about the instruments’ measurement uncertainties,
originating from noise and calibration of instruments, stan-
dard temperature and pressure (STP) correction, and flow
rate uncertainties (Sherman et al., 2015). However, using ML
techniques, we can avoid the uncertainties introduced by pa-
rameter computation and stiff functional forms, which are
inevitable when using algorithms with analytical forms.

Our findings show that the revised and unrevised
Virkkula (2010), as well as the “average” algorithms, need
to be significantly revised to improve their accuracy. We
demonstrate that our RFR algorithm corrects for the PSAP
filter-based biases in reference to the PASS measurements at
the SGP site accurately and much better than the standard
Virkkula algorithm. A unique feature of the SGP site is that,
while there are significant monthly variations in the aerosol
composition, the optical properties such as the Babs, Bscat,
and SSA are bounded in a small range with weak annual cy-
cles. Because of this feature of the SGP site, we argue that the
ML-based correction algorithm trained in this study is scal-
able to other months. Furthermore, the developed correction
algorithm can be applied to any climate research facility site
globally, provided the seasonality information is included as
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an input feature to the algorithm during the training using the
label-encoding method, which can be used to convert cat-
egorical variables such as names of months into numerical
variables.

RFR was an ML algorithm of choice in this study be-
cause of its high accuracy, even with relatively small train-
ing datasets (Kumar and Sahu, 2021). However, if training
of a large dataset is involved, other techniques such as XG-
Boost and neural networks could improve accuracy further
than RFR. The RFR algorithm captures nonlinear depen-
dence between variables with the highest accuracy compared
to the functional analytical form correction algorithms that
were previously developed. We confidently propose that ML
models can produce the most accurate and fastest predictions
possible of the particle-phase absorption coefficients com-
pared to any other analytical equation form algorithms if the
training data are accurate and of a reasonable size.

Major aerosol monitoring networks, such as the Intera-
gency Monitoring of PROtected Visual Environments (IM-
PROVE) network and the Chemical Speciation Network
(CSN), collect particle samples for measurement of the UV-
VIS-IR absorption coefficient. The correction scheme devel-
oped as part of this study might be applicable to infer aerosol
light absorption properties for samples collected from the
IMPROVE network, rural facilities, and federal Class-I ar-
eas. ML approaches offer a promising path to correct long-
term airborne filter-based absorption observations to accu-
rately quantify their variability and trends for robust climate
radiative forcing determination. Future work will be in the
direction of fine tuning the RFR algorithm to accurately pre-
dict light absorption by biomass burning aerosols from the
wildfires.
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Appendix A

Figure A1. Summary of the SGP dataset. The boxplots of raw measurement data are shown as obtained from various instruments used in
this study: (a) PASS, (b) PSAP {Babs_uncorrected_PSAP}, and (c) nephelometer. The boxplots of parameters derived from the raw data are also
shown: (d) AAE, (e) SAE, and (f) SSA. The green line is the median of the data. The bottom line of the box is the 25th percentile of the data,
and the top line of the box is the 75th percentile of the data. Therefore, the box represents the middle 50 % of all the data points, which is the
core of the data.

Figure A2. Composition of the ambient ground measurement site at SGP. The error bars represent the standard deviations. (a) Mass concen-
trations of various species. (b) Time series of the absolute mass concentration of particle chemical composition.
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Figure A3. (a) Time series of elemental carbon (EC) concentration. (b) Time series of the ratio of EC and OC concentrations at SGP from
June to November 2013.

Figure A4. Time series data of uncorrected absorption coefficients as derived from the PSAP {Babs_uncorrected_PSAP} (at 467, 530, and
660 nm) and PASS (Babs) (at 405, 532, and 781 nm) instruments at the SGP observatory.
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Figure A5. Workflow of a machine-learning-based correction model developed and used in this study.

Code availability. The code for SGP data analy-
sis and ML models is publicly available on Zen-
odo (https://doi.org/10.5281/zenodo.6835036, Kumar,
2022) and GitHub (https://github.com/joshinkumar/
Filter-correction-ML-code, last access: 31 July 2022).

Data availability. All the data from the SGP site used in this
study are available to download at the ARM’s Data Discovery
website for each of the following instruments used in this study.
PASS data: https://doi.org/10.5439/1190011 (ARM user facility,
2009), ACSM data: https://doi.org/10.5439/1763029 (ARM user
facility, 2010), PSAP data: https://doi.org/10.5439/1333829
(ARM user facility, 2011a), and Nephelometer data:
https://doi.org/10.5439/1258791 (ARM user facility, 2011b).
Field campaign data: semi-continuous OCEC SGP 2013:
https://adc.arm.gov/discovery/#/results/id::6561_ocec_
microchem_scocec_aerosol_blkcarbonconc?showDetails=true
(last access: 27 July 2022, Cary, 2013). The laboratory-
generated wood and kerosene burn dataset is available at
https://github.com/joshinkumar/Filter-correction-ML-code/blob/
main/Lab%20Burn%20Dataset.zip (last access: 31 July 2022, Paik
et al., 2022).
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