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Abstract. Multi-angle polarimetric (MAP) measurements
can enable detailed characterization of aerosol microphysi-
cal and optical properties and improve atmospheric correc-
tion in ocean color remote sensing. Advanced retrieval al-
gorithms have been developed to obtain multiple geophysi-
cal parameters in the atmosphere–ocean system. Theoretical
pixel-wise retrieval uncertainties based on error propagation
have been used to quantify retrieval performance and deter-
mine the quality of data products. However, standard error
propagation techniques in high-dimensional retrievals may
not always represent true retrieval errors well due to issues
such as local minima and the nonlinear dependence of the
forward model on the retrieved parameters near the solution.
In this work, we analyze these theoretical uncertainty esti-
mates and validate them using a flexible Monte Carlo ap-
proach. The Fast Multi-Angular Polarimetric Ocean coLor
(FastMAPOL) retrieval algorithm, based on efficient neural
network forward models, is used to conduct the retrievals and
uncertainty quantification on both synthetic HARP2 (Hyper-
Angular Rainbow Polarimeter 2) and AirHARP (airborne
version of HARP2) datasets. In addition, for practical appli-
cation of the uncertainty evaluation technique in operational
data processing, we use the automatic differentiation method
to calculate derivatives analytically based on the neural net-
work models. Both the speed and accuracy associated with

uncertainty quantification for MAP retrievals are addressed
in this study. Pixel-wise retrieval uncertainties are further
evaluated for the real AirHARP field campaign data. The
uncertainty quantification methods and results can be used
to evaluate the quality of data products, as well as guide
MAP algorithm development for current and future satellite
systems such as NASA’s Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission.

1 Introduction

Satellite remote sensing has revolutionized Earth observa-
tion capabilities and plays a significant role in studying at-
mosphere, ocean, and land systems. Remote sensing tech-
niques have advanced rapidly to provide highly accurate geo-
physical property retrievals by utilizing the rich informa-
tion content of observations at multiple spectral bands, view-
ing angles, and polarization states. Multi-angle polarimeters
(MAPs) are particularly well suited to characterize aerosol
microphysical properties (Mishchenko and Travis, 1997;
Chowdhary et al., 2001; Hasekamp and Landgraf, 2007;
Knobelspiesse et al., 2012). Improved aerosol characteriza-
tion helps reduce uncertainties in aerosol radiative forcing
estimates and thereby advances our understanding of Earth’s
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climate (Bender, 2020; IPCC, 2022). Furthermore, better
quantification of the aerosol path radiance in the atmosphere
reduces error in the retrieval of spectral water-leaving ra-
diances from ocean color remote sensing systems (Mobley
et al., 2016; Mobley, 2022), which is important for the study
of aquatic phytoplankton dynamics, marine ecosystems, and
the global carbon cycle (Frouin et al., 2019; Groom et al.,
2019).

Joint aerosol and ocean color retrieval algorithms have
been developed for a variety of spaceborne and airborne
MAPs such as the Polarization and Directionality of the
Earth’s Reflectances (POLDER) instruments (Hasekamp
et al., 2011; Dubovik et al., 2011, 2014; Li et al., 2019;
Hasekamp et al., 2019b; Chen et al., 2020), the Airborne
Multiangle SpectroPolarimetric Imager (AirMSPI; Xu et al.,
2016, 2019), the Spectropolarimeter for Planetary EXplo-
ration (SPEX) airborne (Fu and Hasekamp, 2018; Fu et al.,
2020; Fan et al., 2019), SPEXone (spaceborne version of
SPEX airborne; Hasekamp et al., 2019b), the Research Scan-
ning Polarimeter (RSP; Chowdhary et al., 2005; Wu et al.,
2015; Stamnes et al., 2018; Gao et al., 2018, 2019, 2020), the
Directional Polarimetric Camera (DPC)/GaoFen-5 (Wang
et al., 2014; Li et al., 2018), Airborne Hyper-Angular Rain-
bow Polarimeter (AirHARP; Puthukkudy et al., 2020; Gao
et al., 2021a, b), and HARP2 (the spaceborne version of
AirHARP; Gao et al., 2021b). The algorithms typically fol-
low iterative optimization approaches utilizing a vector ra-
diative transfer forward model and simultaneously retrieve a
suite of geophysical parameters. A thorough review of MAP
instruments and retrieval algorithms can be found in Dubovik
et al. (2019).

Uncertainty quantification is an integral part of retrieval
algorithm development. The uncertainties of the retrieved
products (hereafter “retrieval uncertainties”) are key to un-
derstanding retrieval performance, gauging whether the al-
gorithm provides results of useful quality, and guiding where
further efforts for improvement are best focused. In this
study, we define retrieval error as the difference between the
retrieval results and truth (whether synthetic data or exter-
nal reference data), and we define retrieval uncertainty as the
standard deviation (1σ ) confidence interval around the re-
trieval solution (assuming a Gaussian distribution). Broadly,
two methods are commonly used to determine retrieval un-
certainties (see Sayer et al., 2020, for a review in the context
of aerosol remote sensing).

1. Propagated (hereafter “theoretical”) uncertainty.
Based on Bayesian theory, the uncertainty in observa-
tions and forward models as well as a priori assumption
(hereafter “input uncertainty model”) can be mapped
to the domain of retrieved parameters based on sensi-
tivities derived from radiative transfer modeling (e.g.,
Rodgers, 2000). Pixel-wise uncertainties can be con-
veniently determined from an optimization algorithm
based on its Jacobian matrix, which represents the

measurement sensitivity with respect to the retrieval
parameters.

However, theoretical uncertainties derived from these
techniques often represent a best-case scenario as they
rely on several assumptions (discussed by Povey and
Grainger, 2015): (a) the input uncertainty model is suf-
ficient, (b) the retrievals converge to their global mini-
mum, and (c) the forward model is linear with respect
to the retrieval parameters near the solution. Evaluating
these assumptions for a given sensor and algorithm is
therefore important. For MAP measurements, theoreti-
cal uncertainties have been widely used for aerosol and
cloud retrieval algorithms for sensors, such as POLDER
(Hasekamp et al., 2011; Dubovik et al., 2011), RSP
(Knobelspiesse et al., 2012), ground-based AERONET
photo-polarimetric measurements (Xu and Wang, 2015;
Xu et al., 2015), and general polarimetric instrument
concept studies (Hasekamp and Landgraf, 2007; Kno-
belspiesse et al., 2012).

2. Truth-based (hereafter “real”) uncertainty. Retrieval
errors are evaluated by comparing retrieval results with
reference data taken as a truth and used to draw gen-
eral inference about retrieval uncertainties under var-
ious conditions. The real uncertainty does not require
the same assumptions as error propagation but requires
the existence of “truth” data of high and known con-
fidence, which may be unavailable for some geophysi-
cal parameters. Additionally, the truth data and matchup
process have their own uncertainties which must be con-
sidered. In the absence of independent external truth,
simulated retrievals are a useful tool. For MAP mea-
surements, real uncertainties have been discussed for
aerosols over ocean, land, and cloud by comparing re-
trievals with synthetic data and in situ measurements,
such as for POLDER (Hasekamp et al., 2011; Dubovik
et al., 2011; Chen et al., 2020), RSP (Chowdhary
et al., 2012; Stamnes et al., 2018; Gao et al., 2019; Fu
et al., 2020), AirMSPI (Xu et al., 2016), SPEX Air-
borne (Fu et al., 2020), SPEXone (Hasekamp et al.,
2019a), AirHARP (Puthukkudy et al., 2020; Gao et al.,
2021a, b), and HARP2 (Gao et al., 2021b).

In short, theoretical uncertainties provide pixel-wise esti-
mates of performance for every parameter, while real uncer-
tainties provide a more complete assessment of performance,
but with limitations due to the availability of high-quality ref-
erence data. The two are a natural complement as ground-
truth data or simulated retrievals provide an avenue to evalu-
ate theoretical uncertainties in a statistical sense. A statistical
(not one-to-one) comparison is necessary because a retrieval
with associated uncertainty represents a range of plausible
values of a geophysical quantity, whereas an individual refer-
ence truth has a definite value. Several approaches have been
proposed to address the question of whether the distribution
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of observed retrieval errors is consistent with the distribution
as expected from the theoretical uncertainty (Hasekamp and
Landgraf, 2005; Sayer et al., 2020). For example, Hasekamp
and Landgraf (2005) found the retrieval errors normalized
by theoretical uncertainties from polarimetric retrievals can
reproduce the general features of a Gaussian distribution,
which was then used to discuss the impact of local min-
ima and non-linearity around the truth. Sayer et al. (2020)
illustrated a framework for aerosol retrievals based on nor-
malized error distributions to quantitatively compare the real
and theoretical uncertainties. Meanwhile, Monte Carlo meth-
ods based on random sampling (Kalos and Whitlock, 2008)
have been widely used to generate random error samples and
used for analyzing their uncertainties (see Zhang, 2021, for
a survey) with applications to assess uncertainties of ocean
bio-optical algorithms (McKinna et al., 2019). Monte Carlo
methods are flexible and robust given sufficient sampling but
have not been well explored for MAP retrieval uncertainty
studies.

In this paper, we discuss theoretical uncertainties from
MAP retrievals over a coupled atmosphere and ocean sys-
tem, and then we propose a flexible framework to validate
these theoretical uncertainties against real uncertainties. The
following topics will be addressed in this work.

1. Performance. How well do theoretical uncertainties
represent real retrieval uncertainties for both aerosol
properties and the ocean color signal?

This will be assessed not just for properties retrieved
directly from the MAP data, but also derived proper-
ties such as aerosol optical depth (AOD), single scat-
tering albedo (SSA), and various aspects of the derived
water-leaving signals. To quantify the performance in
this study, random errors are sampled from theoretical
pixel-wise uncertainties using a Monte Carlo method,
and results are compared with the real errors.

2. Speed. How can uncertainty estimation be made
sufficiently fast to be practical in operational data
processing?

Uncertainty evaluation often requires Jacobian matrix
and derivative calculations, which can be computation-
ally expensive. To achieve optimal speed within the
framework of this work, all Jacobian matrix and deriva-
tives are evaluated analytically using automatic differ-
entiation based on neural networks.

3. Input uncertainty model. How representative is the
algorithm’s input uncertainty model?

The input uncertainty model includes two main compo-
nents: (a) measurement uncertainties, which are mostly
characterized by instrument calibration uncertainties,

and (b) forward model uncertainties, which refer to
whether the forward model can sufficiently describe the
measurements.

This work focuses on the first two topics. The third
topic has been partially addressed using an adaptive angu-
lar screening approach, described in Gao et al. (2021b), to
automatically remove MAP angles where the input uncer-
tainty model is insufficient to describe forward model un-
certainty due to contamination by cirrus clouds and other
anomalies (Gao et al., 2021b). Noise correlation in the un-
certainty model may impact retrieval results, though it is of-
ten ignored as assumed in this study (Knobelspiesse et al.,
2012). We study both theoretical and real uncertainties based
on retrievals from synthetic AirHARP and HARP2 mea-
surements, as well as AirHARP field measurement. This
work provides a general approach to understand and evaluate
pixel-wise uncertainties of high-dimensional retrieval prob-
lems and can guide further uncertainty studies and algorithm
development when more advanced instruments with high an-
gular and spectral resolutions are available. Our primary fo-
cus is on these instruments due to HARP2’s inclusion in
NASA’s upcoming Plankton, Aerosol, Cloud, ocean Ecosys-
tem (PACE) mission (Werdell et al., 2019), but the analysis
is useful for future MAP missions, such as NASA’s Multi-
Angle Imager for Aerosols (MAIA) (Diner et al., 2018)
and Atmosphere Observing System (AOS) missions (https:
//aos.gsfc.nasa.gov/, last access: 18 August 2022), and the
Multi-view Multi-channel Multi-polarization Imager (3MI)
that will fly on ESA’s MetOp-SG mission (Marbach et al.,
2015; Fougnie et al., 2018). Section 2 of this paper describes
the FastMAPOL retrieval algorithm used in the study, Sect. 3
discusses the methodology in the retrieval uncertainty eval-
uation, Sect. 4 quantified the performance of retrieval un-
certainties based on synthetic AirHARP and HARP2 data,
Sect. 5 applied the pixel-wise uncertainties on the retrievals
from AirHARP field measurements, and Sect. 6 provides dis-
cussions and conclusions.

2 FastMAPOL aerosol and ocean color retrieval
algorithm

The FastMAPOL algorithm (Gao et al., 2021a) uses neural
network forward models of a coupled atmosphere–ocean sys-
tem and has been used to perform retrievals on synthetic and
observed AirHARP measurements (Gao et al., 2021a) and
synthetic HARP2 measurements (Gao et al., 2021b). In this
section, we will first introduce the MAP measurements from
the PACE mission and then review key components of the
retrieval algorithm.

2.1 HARP MAP measurement

PACE will carry three instruments that are expected to ad-
vance our characterization of the atmosphere, ocean, and
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land states (Werdell et al., 2019; Remer et al., 2019a, b;
Frouin et al., 2019). The main instrument on PACE is a hy-
perspectral scanning radiometer named the Ocean Color In-
strument (OCI). There are two MAP instruments on PACE.
The first is SPEXone, contributed by a consortium of orga-
nizations in the Netherlands including SRON (Netherlands
Institute for Space Research) and Airbus Defence and Space
Netherlands, which will perform multi-angle measurements
at five along-track viewing angles of 0, ±20, and ±58◦, with
a narrow cross-track nadir surface swath of 100 km and a
continuous spectral range spanning 385–770 nm at resolu-
tions of 2–3 nm for intensity and 10–40 nm for polarization
(van Amerongen et al., 2019; Rietjens et al., 2019; Hasekamp
et al., 2019a). The second is HARP2, contributed by UMBC
(University of Maryland, Baltimore County), a wide field-of-
view imager that measures the total and polarized radiances
at 440, 550, 670, and 870 nm, with a nadir-view swath of
1556 km (Martins et al., 2018). The 670 nm band will mea-
sure 60 viewing angles compared to the other bands’ 10 an-
gles. AirHARP is the airborne version of HARP2 and mea-
sures the same number of viewing angles at 670 nm but 20
viewing angles at the other three bands. Note that, for the
HARP instruments, the view angles observed by different
spectral bands are close but not identical.

The total measured reflectance (ρt(λ)) and degree of lin-
ear polarization (DoLP; Pt(λ)) are taken as input to the
FastMAPOL retrieval algorithm, defined as

ρt =
πLt

µ0F0
, (1)

Pt =

√
Q2

t +U
2
t

Lt
, (2)

where Lt,Qt, and Ut are the first three Stokes parameters; F0
is the extraterrestrial solar irradiance; and µ0 is the cosine of
the solar zenith angle. We adopt instrument calibration uncer-
tainties of 3 % in reflectance for both AirHARP and HARP2,
0.01 in DoLP for AirHARP, and 0.005 in DoLP for HARP2
(McBride et al., 2019; Puthukkudy et al., 2020; Gao et al.,
2021a, b).

2.2 Neural network radiative transfer forward model

Vector radiative transfer models (VRTMs) are used to sim-
ulate the reflectance and polarization over a coupled atmo-
sphere and ocean system (Zhai et al., 2009, 2010). How-
ever, it is computationally time consuming to call a VRTM
within a retrieval scheme, and the large number of retrieval
parameters mean that creating a lookup table of results in rea-
sonable size, as is common for retrievals with a small num-
ber of parameters, is prohibitive. Therefore, to achieve high
speed and accuracy for retrievals, Gao et al. (2021a) trained
several feed-forward neural network (NN) models with syn-
thetic data generated by the VRTM developed by Zhai et al.
(2009, 2010, 2022). NNs for reflectance (ρt) and DoLP (Pt)

Table 1. Parameters used to train the FastMAPOL forward model
as described in Sect. 2.2. The minimum (min) and maximum (max)
values of each parameter are also shown. The a priori uncertainties
(σa) are estimated as the difference between the max and min values
for the study in Sect. 3, except the four parameters as indicated,
which are assumed as known input.

Parameters Unit Min Max σa

θ0
◦ 0 70 [input]

θv
◦ 0 60 [input]

φv
◦ 0 180 [input]

nO3 DU 150 450 [input]
V1 µm3 µm−2 0 0.11 0.11
V2 µm3 µm−2 0 0.05 0.05
V3 µm3 µm−2 0 0.05 0.05
V4 µm3 µm−2 0 0.19 0.19
V5 µm3 µm−2 0 0.58 0.58
mr,f (None) 1.3 1.65 0.35
mr,c (None) 1.3 1.65 0.35
mi,f (None) 0 0.03 0.03
mi,c (None) 0. 0.03 0.03
w m s−1 0.5 10 9.5
Chl a mg m−3 0.01 10 10

are trained individually, both with an input layer with 15 pa-
rameters, followed by three hidden layers with 1024, 256,
and 128 nodes and a final output layer with 4 nodes to repre-
sent the four HARP bands. Details of the forward model and
the NN training process are provided by Gao et al. (2021a).

The atmospheric model for the airborne measurements
consists of a combination of aerosols and air molecules
from surface to 2 km, an aerosol-free molecular layer
(i.e., Rayleigh scattering) above that, and (for the airborne
AirHARP instrument) an additional aerosol-free layer above
the aircraft altitude. A total of 15 geophysical parameters,
shown in Table 1, are used as inputs to the forward model.
The solar and viewing geometries are represented by the so-
lar and viewing zenith angles (θ0 and θv) and a relative az-
imuth angle (φv). The aerosol complex refractive index for
both fine and coarse modes is assumed to be spectrally flat,
represented by four parameters, including both real (mr,f and
mr,c) and imaginary (mi,f and mi,c) parts. In this work, we
only consider weakly absorbing aerosols with mi < 0.03. It
will be a subject of future studies on how the theoretical
uncertainties represents the real uncertainties for more com-
plex aerosol models, following the approach discussed in this
study.

The aerosol size distribution is assumed as a combination
of five lognormally distributed aerosol sub-modes, each with
prescribed mean radii and variances; the five volume densi-
ties (Vi) are free parameters (Dubovik et al., 2006; Xu et al.,
2016). The five-mode approach is found to provide good
retrievals for most aerosol parameters (Fu and Hasekamp,
2018). The combined aerosol fine mode consists of the three
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smaller sub-modes, and the coarse mode consists of the two
larger sub-modes. Therefore, the fine-mode volume fraction
(fvf) is defined as

fvf=
∑3
i=1Vi∑5
i=1Vi

. (3)

Ozone absorption is quantified by the ozone column den-
sity (nO3 ); absorption by other gaseous species is minimal
in HARP’s spectral bands and is therefore neglected. Ocean
surface roughness is represented by the isotropic Cox and
Munk (1954) model parameterized by wind speed (m s−1).
Strong sunglint is excluded here by removing view angles
within 40◦ of the specular reflection direction due to the
challenges to represent the sunglint signals from ACEPOL
field campaign using the isotropic Cox and Munk model
(Gao et al., 2020, 2021a). We only consider open-ocean wa-
ters modeled as a uniform layer with bio-optical properties
parameterized as a function of chlorophyll a concentration
(Chl a) (Gao et al., 2019). Complex bio-optical properties
for coastal waters require additional parameters in the bio-
optical model (Gao et al., 2018), which require additional
NN trainings that will be pursued in a future study.

NN uncertainties σNN are < 1 % for reflectance and
< 0.003 for DoLP for all HARP bands, which are much
smaller than the measurement uncertainties (Sect. 2.1). To
achieve high NN accuracy, numerical uncertainty on the ra-
diative transfer simulations used to train the NN has an un-
certainty σRT much smaller than σNN (Gao et al., 2021a).
The forward calculation of aerosol optical depth (AOD) and
single scattering albedo (SSA) from aerosol size and refrac-
tive index is also performed using NNs based on simulations
using the numerical code based on the Lorenz–Mie theory
(Mishchenko et al., 2002). In addition, the spectral ocean
color remote sensing reflectance (Rrs(λ)) is derived based on
the retrieved aerosol properties through atmospheric correc-
tion, a procedure to derive ocean color signals by removing
the contributions with atmosphere and ocean surface from
the top-of-atmosphere (TOA) measurements (Mobley et al.,
2016; Mobley, 2022). The atmospheric correction and other
associated procedures have been implemented using NNs by
Gao et al. (2021a) with more details provided in Appendix A.
The atmospheric correction method also provides a conve-
nient way to derive ocean color signals from other sensors,
such as PACE OCI, using the MAP retrieved aerosol proper-
ties. Note that NN method has also been used to directly link
Rayleigh-corrected TOA radiances with normalized remote
sensing reflectance by Fan et al. (2021).

2.3 Cost function and input uncertainty model

The optimal values of retrieval parameters are obtained us-
ing a maximum likelihood approach by minimizing the dif-
ference between the measurements and the forward model fit

represented by a cost function (Rodgers, 2000):

χ2
=

1
N
[F (x)−m]T S−1

ε [F (x)−m], (4)

where m is a vector including measurements from all angles
and bands (both total reflectance and DoLP; Eqs. 1 and 2) and
F (x) is the forward-modeled observations described in the
previous section. The state vector x includes the 11 parame-
ters retrieved as summarized in Table 1.N is the total number
of measurements. The input uncertainty model is character-
ized by the error covariance matrix Sε representing the com-
bined measurement and forward model uncertainty. In this
work, we assume uncorrelated uncertainty, and therefore Sε
is a diagonal matrix. The diagonal elements (σε) include con-
tributions from instrumental σins, neural network σNN, and
VRTM σRT, assuming no correlations between these uncer-
tainty sources:

σ 2
ε = σ

2
ins+ σ

2
NN+ σ

2
RT. (5)

As discussed in Sect. 1, an adaptive data screening method is
used to remove the real measurements which cannot be fitted
well by the forward model (Gao et al., 2021b). In this way,
the impact of forward model uncertainties can be reduced.
We do not consider additional forward model uncertainties
in this study.

The subspace trust-region interior reflective (STIR) algo-
rithm is employed to conduct non-linear least-square mini-
mization of the cost function (Branch et al., 1999). Its imple-
mentation in the Python package SciPy is used in this study
(Virtanen et al., 2020). STIR is based on the Levenberg–
Marquardt algorithm combined with an interior method and
reflective boundary technique (Branch et al., 1999). The inte-
rior method ensures that the retrieval parameters are searched
strictly within the interior of the feasible region as specified
in Table 1, while the reflection technique can significantly
reduce the number of iterations in the minimization process.

3 Uncertainty quantification for MAP retrievals

3.1 Pixel-wise retrieval uncertainty quantification

The propagated (theoretical) pixel-wise uncertainty quantifi-
cation is based upon a Bayesian approach which assumes
Gaussian distributions of input uncertainty (including mea-
surements, forward model, and a priori) and output (retrieval)
uncertainty (Rodgers, 2000). These represent the 1 standard
deviation (1σ ) uncertainty on the retrieved state and are de-
termined by mapping the measurement and forward model
uncertainties into retrieval parameter space,

S−1
=KT S−1

ε K+S−1
a , (6)

where S is the retrieval uncertainty covariance matrix, Sε is
the error covariance matrix as in Eq. (4) which includes con-
tributions from measurement and forward model as shown

https://doi.org/10.5194/amt-15-4859-2022 Atmos. Meas. Tech., 15, 4859–4879, 2022



4864 M. Gao et al.: Uncertainty quantification: performance and speed

in Eq. (5), K is the Jacobian matrix, and Sa is the a pri-
ori uncertainty covariance matrix. FastMAPOL does not use
explicit a priori information on the cost function. However,
each retrieval parameter has a range of acceptable values
(Table 1) which are imposed by the STIR optimization al-
gorithm; therefore, these parameter ranges work as implicit
prior constraints. To capture the impact of these constraints,
we assume Sa is diagonal and take the permitted range of
each state parameter as an assumed a prior uncertainty as
listed in Table 1. This is an approximation to the Rodgers
(2000) formalism and serves to stop the retrieval uncertainty
exceeding the physically plausible range (though in most
cases it has little numerical effect). The Jacobian matrix, K,
expresses the sensitivity of the forward model to changes in
the retrieval parameters, which is defined as

Kij (x)=
∂Fi(x)

∂xj
, (7)

where indices i and j represent the different measure-
ments and the retrieved parameters, respectively. The finite-
difference method is often used to compute the Jacobian ma-
trix, but it is time-consuming due to the many retrieval pa-
rameters used to calculate the derivatives. In our previous
work (Gao et al., 2021b), we implemented an analytical ap-
proach based on neural networks, which is extended here
with significant speed improvement as discussed in Sect. 3.3.

The 1σ uncertainties on each retrieved parameter are sim-
ply the square roots of the diagonal elements of S. For quan-
tities b that are not directly contained in x but can be calcu-
lated from it, such as AOD or SSA, their uncertainty (1b)
can be expressed as

1b =

√∑
i

∑
j

Si,j
∂b

∂xi

∂b

∂xj
. (8)

The additional derivatives of b with respect to state parame-
ters are necessary to compute 1b. Automatic differentiation
is used to calculate both the Jacobian matrix and the deriva-
tives defined in Eq. (8) for AOD and SSA, as well as water-
leaving signals involving atmospheric corrections. More de-
tails are discussed in Appendix A.

Other Bayesian inference methods exist that are capable of
deriving retrieval uncertainties without explicitly computing
the Jacobian matrix or requiring that uncertainties be Gaus-
sian. For example, Knobelspiesse et al. (2021) applied the
Generalized Nonlinear Retrieval Analysis (GENRA, Vukice-
vic et al., 2010) method on simulated MISR data to access the
retrieval uncertainties of multiple retrieval parameters. How-
ever, such methods often require a large number of compu-
tationally expensive forward model calculations and are less
practical for high-dimensional problems such as this. Thus,
the more computationally efficient Jacobian-based approach
is the main focus of this work.

3.2 Retrieval uncertainty performance evaluation

Verifying theoretical uncertainty estimates is necessary be-
cause real retrieval performance depends on other factors. A
key factor is how well the inversions converge to the global
minimum of the cost function instead of a false convergence
to a local minimum. This is not captured by Eq. (6). Several
factors can lead to false convergence to local minima, e.g.,

– accuracy of the forward model and Jacobian matrix;

– tolerance for iterative optimization, which may impact
how early the iterative parameter updates stop;

– the possibility that retrievals may get stuck at parame-
ter boundaries, if not adequately treated in the inversion
algorithm;

– the possibility that the input uncertainty model may be
insufficient, leading to inappropriate weights of differ-
ent measurements in the cost function; and

– false convergence from non-monotonic cost functions
due to insufficient information in the measurements.

To evaluate the performance of the uncertainty quantifica-
tion using error propagation, we can compare theoretical un-
certainty with the uncertainties calculated by comparing the
final retrieval results with reference truth values. Two useful
metrics, the mean absolute error (MAE) and the root mean
square error (RMSE) between the truth (Ti) and retrievals
(Ri), are defined as

RMSE=

√√√√ 1
M

M∑
i=1
(Ri − Ti)

2, (9)

MAE=
1
M

M∑
i=1
|Ri − Ti |, (10)

where M is the total number of retrieval cases. For a Gaus-
sian distribution, RMSE and MAE are related as

RMSE=
√
π/2MAE. (11)

MAE is more robust to outliers than RMSE, so compar-
ing the two can be informative as to whether the overall error
distribution is close to Gaussian. MAE has also been shown
to be less dependent on the number of cases considered than
RMSE (Willmott and Matsuura, 2005). Over a large ensem-
ble of cases, the overall error distribution is not necessarily
expected to be Gaussian because it may be drawn from a
large number of different atmospheric/oceanic states, each
with a different magnitude of uncertainty.

Chlorophyll a concentration (Chl a) varies across several
orders of magnitude and plays an important role to deter-
mine Rrs and their the uncertainties (McKinna et al., 2019).
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As recommended by Seegers et al. (2018), we use a log-
transformed metric:

MAE(log)= 10Y ,

where

Y =
1
M

M∑
i=1
|log10(Ri)− log10(Ti)|. (12)

MAE(log) indicates the averaged ratio between the retrieval
and truth values in such a way that a value of 1.2 indicates
that the retrievals exceed truth by 20 %. To compare with the
theoretical uncertainty for Chl a requires that its retrieval un-
certainty must be transformed to a log 10 scale as follows:

1log10(Chl a)=
1Chl a

Chl a · ln10
. (13)

Direct comparison of theoretical uncertainties and real er-
rors is difficult because the former is a measure of the esti-
mated dispersion of the retrieval in terms of a distribution of
1σ uncertainties, and the latter is a distribution of retrieval
errors indicating the difference between real retrieval results
and the truth reference data that relate specifically to observa-
tional conditions available at the time of collection. To effec-
tively compare the theoretical uncertainties and real errors,
we propose a sampling-based method, Monte Carlo error
propagation (MCEP), which samples random retrieval errors
from the theoretical uncertainties and therefore enables com-
parisons on the same retrieval error domains. This method
is demonstrated in Fig. 1 using 1000 synthetic retrievals of
AOD at 550 nm from HARP2 data. The synthetic datasets
are generated with random draws from a uniform distribu-
tion of AOD values from 0.01 to 0.5. The selection of a uni-
form AOD distribution is to ensure the same number of cases
are considered in each sub-interval for later statistical discus-
sion. Detailed information on the synthetic data is provided
in the next section. This choice of synthetic data is to ex-
plore the dependency of retrieval uncertainties with respect
to AOD. To represent the overall retrieval performance of ac-
tual PACE data, synthetic or real HARP2 data with realistic
statistical distributions will be studied in the future.

The goal is to generate a statistical distribution of the re-
trieval error (defined as the difference between retrieval and
truth) for both theoretical and real uncertainties and to de-
velop proper metrics for comparison based on the distribu-
tion. Steps involved in MCEP are listed below using the ex-
ample in Fig. 1.

1. Conduct retrievals and compute theoretical retrieval un-
certainties according to the error propagation method
discussed in Sect. 3.1. Here AOD is derived from the di-
rectly retrieved refractive indices and volume densities
shown in Table 1, and1AOD is thereby calculated from
Eq. (8) for each individual retrieval. Figure 1a shows the

theoretical AOD uncertainties evaluated for 1000 cases
with its histogram shown in Fig. 1b.

2. Generate a distribution of random theoretical errors.
This is done by taking the theoretical uncertainty for
each retrieval and generating a random number from a
Gaussian distribution with a zero mean and a standard
deviation equal to the theoretical uncertainty (i.e., indi-
vidual points from Fig. 1a). This random number will
be the theoretical retrieval error for the corresponding
theoretical retrieval uncertainty. These sampled random
errors are shown in Fig. 1c.

3. The real retrieval errors, shown in Fig. 1d, are calculated
as the difference between the retrieval results and truth
data. Figure 1c and d showed similar dependency on the
AOD.

4. The histograms for the error data in Fig. 1c and d are
compared in Fig. 1e, which shows directly compara-
ble statistical distributions. These distributions can be
analyzed using metrics such as RMSE and MAE in
Eqs. (10) and (11).

5. Evaluate the variations of the uncertainty metrics de-
rived from step 4: (1) generate multiple sets of random
theoretical errors following step 2; (2) compute the met-
rics for each set of errors; and (3) compute 1σ uncer-
tainties of the metrics. This uncertainty depends on the
number of cases used within each set and, therefore, can
also be used to approximate the uncertainty of the met-
rics evaluated from real errors due to the same number
of cases (M) used in Eqs. (9) and (10). The MAE re-
sults for M equal to 50, 200, and 1000 over 50 sets of
theoretical random errors are shown in Fig. 1f.

The MCEP method enables direct comparison of error
distributions between theoretical uncertainties and real re-
trievals, which therefore provide additional flexibility in an-
alyzing their statistics. For the example in Fig. 1e, the peak
of real retrieval errors is ∼0.01, suggesting that the retrievals
tend to overestimate total AOD. The sampling method used
in step (2) of MCEP does not assume any particular statisti-
cal distribution of the AOD values and their theoretical un-
certainties. The random sampled error distribution, similar to
the real errors, is more peaked than a Gaussian distribution,
with ratios between RMSE and MAE of 0.032/0.017= 1.88
and 0.030/0.021= 1.43 for the real and theoretical errors,
respectively. The larger ratios (compared to 1.25 for a Gaus-
sian, Eq. 11) confirm that both distributions have a narrower
peak and longer tails (therefore larger RMSE values) than a
Gaussian distribution. To evaluate the retrieval uncertainties
quantitatively and reduce the influence of outliers, in later
studies, we focus on MAE evaluated from the random er-
rors as shown in Fig. 1e. Since the MCEP method is directly
based on the statistical distribution, metrics other than MAE
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Figure 1. Demonstration of the procedures to compare theoretical and real uncertainties. (a) Theoretical uncertainties of AOD retrievals
over 1000 synthetic HARP2 measurements; (b) histogram of panel (a); (c) the retrieval error sampled from panel (a); (d) the retrieval error
derived from the difference between the real retrieval results and truth data; (e) the histogram for the retrieval errors in both panel (c) and
(d); (f) the MAE for 50 sets of random theoretical errors considering a total number of cases of 50, 200, and 1000.

and RMSE can also be derived. For example, the method pro-
posed by Sayer et al. (2020), which computes the 68th per-
centile from absolute normalized error distributions, can be
applied on the random error samples in the MCEP method as
a metric to evaluate 1σ uncertainties for both real and theo-
retical errors.

Furthermore, following step 5 in MCEP, we can analyze
the uncertainties of MAE with respect to a set of random er-
rors. MAE values for 50 sets of random theoretical errors are
computed as shown in Fig. 1f. The relative standard devia-
tion of these MAE values is about 3 % when all 1000 cases
are used. The relative uncertainties increase to 7 % and 12 %
when the number of cases are reduced to 200 and 50. There-
fore, for discussion in the next section with a smaller number
of cases considered, it is useful to understand how much the
MAE varies. A similar approach can be applied to compar-
isons with high-quality in situ measurements. The same chal-
lenge is that the metrics such as RMSE and MAE may suffer
from larger statistical variations if only a smaller number of
retrieval cases are available.

4 Retrieval uncertainties from synthetic AirHARP and
HARP2 measurements

To evaluate the retrieval capability of the FastMAPOL al-
gorithm on the HARP instruments, we conducted studies
on synthetic AirHARP and HARP2 data and then derived
the pixel-wise retrieval uncertainties. The theoretical uncer-

tainties are then compared with real uncertainties, and their
difference is quantified using the MCEP methodology dis-
cussed in Sect. 3. The real uncertainties are derived from
the retrieval results based on synthetic data which include
impacts from local minima in the cost functions as summa-
rized in Sect. 3.2; however, these synthetic data studies do
not address the potential impacts of modeling errors in the
forward model. To evaluate the assumption in the forward
model, comparison with in situ measurements is required in
future studies.

4.1 Synthetic data

We performed radiative transfer simulations to generate
1000 synthetic sets of measurement using the coupled
atmosphere–ocean VRTM (Zhai et al., 2009, 2010, 2022)
discussed in Sect. 2. A fixed solar zenith angle of 50◦ is used
to approximate the solar zenith angle from the AirHARP
measurements in the ACEPOL field campaign discussed in
the next section. The other input parameters in Table 1 are
sampled uniformly within their ranges, except aerosol vol-
ume densities and Chl a. Aerosol volume densities are deter-
mined by AOD at 550 nm, which is sampled uniformly over
the range [0.01, 0.5], and fine-mode volume fraction, which
is sampled uniformly within [0, 1]. Chl a is randomly sam-
pled with a log-uniform distribution. Although ozone density
is randomly sampled to generate synthetic data, it is assumed
as known input to the retrieval algorithm.
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Figure 2. (a) Random viewing geometry with different examples indicated by different colors in the polar plot of zenith angles (radial
direction) and azimuth angles. The red star symbol indicates the anti-solar direction at a zenith angle of 50◦ and azimuth angle of 180◦.
The blue oval shape indicates the sunglint region removed in this study. (b, c) Example synthetic HARP2 data with added random noise
for reflectance and DoLP. The sensor viewing angle indicates the viewing zenith angle in the along-track direction, with a positive angle
indicating forward-looking directions and a negative sign indicating the angle viewing backward (within the azimuthal angle between 90 and
270◦).

Figure 3. The histogram of the cost function values for the synthetic
retrievals.

Realistic HARP-like viewing geometries are constructed
as discussed in Gao et al. (2021b), which represents a sim-
plified PACE orbit geometry with some examples in Fig. 2a.
The number of viewing angles at each band is based on
AirHARP and HARP2 characteristics (Sect. 2.1).

Random noise is added to the 1000 sets of syn-
thetic AirHARP and HARP2 measurements, and then the
FastMAPOL retrieval algorithm is applied to them. The syn-
thetic data are computed directly using the vector radiative
transfer model, but the NN forward model is used in the re-
trieval algorithm to achieve maximum efficiency. In this way
the contribution of the NN uncertainties is captured both in
the simulation and the uncertainty model as shown in Eq. (5).
The retrieval cost function values (χ2) at convergence (Eq. 4)
are shown for both sensors in Fig. 3; the mean χ2 values for
both cases are approximately 1.0, but with the most prob-
able χ2 values being 0.8 for HARP2 and 0.9 for AirHARP,
which suggests slight overfitting of the data in general. To re-
duce the impact of outliers, we choose a maximum χ2 value
of 1.5 in this study as shown in Fig. 3, which corresponds
to a success rate of 96 % for AirHARP cases and 93 % for
HARP2 cases.

Figure 4. Example of AOD (solid line) and Rrs spectra retrieved
from one case of synthetic HARP2 measurements as shown in
Fig. 2b and c with retrieval uncertainties indicated by the error
bar. The triangles indicate truth values. Chl a for this case is
0.1 mg m−3.

4.2 Pixel-wise retrieval uncertainties quantification

We apply the method discussed in Sect. 3 to compare theo-
retical and real uncertainties. An example of spectral AOD
and Rrs for one retrieval is shown in Fig. 4 with the re-
trieval uncertainties as a function of wavelength. Here, to-
tal AOD uncertainty is the combination of fine-mode and
coarse-mode uncertainties. The absolute Rrs uncertainties at
440 and 550 nm are larger than at 670 and 870 nm, as are the
retrieval errors. However, the Rrs percentage errors generally
increase with the wavelength due to the decrease of the Rrs
magnitudes.

For more general atmosphere and ocean conditions, Fig. 5
shows dependence of the retrieval uncertainties on AOD
at 550 nm for retrieved and derived parameters from syn-
thetic HARP2 measurements. In general, increasing AOD
is associated with increasing AOD uncertainty. The uncer-
tainty of ocean parameters also increases with AOD, which
is expected because the atmosphere is an obstruction to the
oceanic signal. Increasing AOD does, however, decrease the
uncertainty of retrieved and derived aerosol properties. These
changes are not always a linear function of AOD. The larger
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Figure 5. Theoretical retrieval uncertainties estimated from error propagation plotted against the AOD at 550 nm (horizontal axis) for AOD,
SSA, fine-mode volume fraction (fvf), refractive index (mr), effective radius (reff) and variance (veff), wind speed, Chl a in log 10 scale, and
remote sensing reflectance (Rrs). Synthetic HARP2 measurements are used in these retrievals. Colors indicate the relative density of the dots
in the plot.

spread of coarse-mode properties (particularly SSA) than
fine-mode results indicates less sensitivity to coarse-mode
aerosol property retrievals.

Following the methodology proposed in Sect. 3.2, the sta-
tistical distributions of the retrieval errors are shown in Fig. 6,
derived from the theoretical retrieval uncertainties in Fig. 5.
Most histograms show a distribution with a well-centered
peak and similar width and shape between the theoretical
and real uncertainties. The mean value indicates the bias of
the distribution. The AOD error distribution has a slightly
longer tail in the positive side, resulting in a mean difference
of 0.011 for both total and coarse-mode AOD; the mean value
difference for fine-mode AOD is negligible (0.001) (also dis-
cussed in Fig. 4). These results suggest that the source of the
bias in total AOD is due to the impacts from coarse-mode re-
trievals. Similar to AOD, most distributions in Fig. 6 are nar-
rower than a Gaussian distribution with longer tails, and the
ratios of RMSE and MAE from both theoretical and real un-
certainty results are mostly between 1.3 and 2. The histogram
of the wind speed error over the ensemble seems to be closer
to Gaussian. SSA has a relatively larger negative tail mean

values of −0.02, −0.01, and −0.04 for total, coarse-mode,
and fine-mode SSA. Refractive index differences also show
a larger negative tail indicating a trend of slightly underesti-
mating the refractive index, which leads to a mean value of
−0.01 and −0.03 for the fine- and coarse-mode real refrac-
tive indices. However, the most probable errors for refractive
index are well centered around zeros.

4.3 Evaluating the performance of pixel-wise retrieval
uncertainty

To quantify theoretical and real uncertainties, Fig. 7 shows
MAE for AirHARP and HARP2 averaged as a function
of AOD at 550 nm, based on the error distributions shown
in Fig. 6. The uncertainties of the total, fine- and coarse-
mode AOD increase as AOD increases, though the ratio
of AOD uncertainty to AOD shows a decreasing trend. As
in Fig. 5, uncertainties of aerosol microphysical properties
(SSA, refractive index, effective radius, and variance) de-
crease as AOD increases, which is consistent with Gao et al.
(2021a). The uncertainty for Chl a is represented in terms
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Figure 6. Histograms of the theoretical and real retrieval errors evaluated using the MCEP method in Sect. 3.2 for the same cases as in Fig. 5.

of MAE(log) as defined in Eq. (12) with a value between
1 and 3, which also depends upon the magnitude of Chl a
as discussed in Gao et al. (2021a). The uncertainty of Rrs
increases almost linearly with AOD. At 440 nm, the uncer-
tainty increases from 0.0004 to 0.0012, while for 550 nm,
the uncertainty increases from 0.0002 to 0.0007. Note that
the accuracy of the atmospheric correction used to derive Rrs
also depends upon the number of viewing angles used for
aerosol retrievals (Gao et al., 2021b).

The retrieval uncertainties for synthetic HARP2 and
AirHARP datasets are close to each other for most retrieval
cases as shown in Fig. 7. Gao et al. (2021b) demonstrated that
HARP2 has a smaller retrieval uncertainty than AirHARP
when the same number of viewing angles are used due to
HARP2’s smaller DoLP calibration uncertainty. However,
this is partially compensated for by AirHARP’s higher num-
ber of view angles, resulting in similar retrieval uncertainties
for the two sensors in Fig. 7. Note that the uncertainty cor-
relation between angles may also impact the retrieval perfor-
mance, which is not included in this study.

4.4 Averaged retrieval uncertainty

To understand the accuracy of the MAE as derived above
for each AOD range (each with around 200 cases), we gen-
erated multiple sets of random theoretical errors following
step 5 in Sect. 3.2 and compared the averaged MAE with
the MAE derived from real errors as shown in Fig. 8. Most
relationships are linear and close to the one-to-one line, indi-
cating that the retrieval is skillful at determining magnitudes
as well as which retrievals are better-constrained than oth-
ers. The exception is coarse-mode aerosol properties, which
tend to cluster together due to less dependency on the total
AOD as shown in Fig. 7. The 1σ uncertainties of the MAE
for theoretical uncertainties are also shown in Fig. 8 as the
horizontal error bar for both HARP2 and AirHARP. Ten sets
of random errors are found to be sufficient to evaluate the
uncertainties for MAE. We found that MAE varied within
approximately 10 % of its mean value in most cases, except
for coarse-mode properties, wind speed, and Rrs at 550 nm,
which can reach up to 15 %. The same values are used to es-
timate the uncertainties of the real errors due to the impact of
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Figure 7. The retrieval uncertainties represented by MAE averaged within several ranges of AOD at 550 nm, including [0.01, 0.1], [0.1, 0.2],
[0.2, 0.3], [0.3, 0.4], and [0.4, 0.5]. The horizontal axes indicate the maximum AOD used in the corresponding AOD range. Results for both
HARP2 and AirHARP are shown. Chl a in terms of MAE(log) as defined in Eq. (12) is used.

the number of cases. Therefore, the MCEP method can as-
sess the impact of the number of cases for comparison with
in situ measurement in future studies, where satellite/ground
matchup availability can vary dramatically depending on the
location of in situ site (Sayer et al., 2020).

Ratios between the averaged MAEs for the real and the-
oretical uncertainties over five AOD intervals from Fig. 8
are shown in Fig. 9. The ratios are mostly in the range 1–
1.5, indicating that the theoretical uncertainties work well
to represent the real retrieval uncertainties in most cases
but are generally underestimates. The largest ratios are for
fine- and coarse-mode aerosol refractive indices, especially
at small aerosol loading, probably due to the lack of infor-
mation and therefore more impact of local minima and ini-
tial values (Hasekamp and Landgraf, 2005). Parameters with
large gaps between real and theoretical uncertainties also in-
dicate where retrieval algorithms can be further improved,
for instance, by including additional a priori constraints, such
as smoothness in refractive index spectra and size distribu-
tion, as well as temporal and spatial variations of the re-
trieval parameters. Various constraints in the framework of
multi-term least-square method are summarized by Dubovik

et al. (2021). A similar uncertainty quantification method-
ology can be applied to validate the retrieval performance
of future space-borne sensors such as HARP2 measurements
from PACE, with more realistic parameter distributions.

5 Retrieval uncertainties from AirHARP field
measurements

The pixel-wise theoretical uncertainties achieve a reasonably
good performance to represent real retrievals as discussed in
the last two sections. Their performances on various retrieved
geophysical properties are quantified by comparing with the
real retrieval errors. Based on these results, in this section,
we will use the theoretical uncertainties to analyze the re-
trieval results from AirHARP field measurements from the
Aerosol Characterization from Polarimeter and Lidar (ACE-
POL) field campaign conducted from October to November
of 2017, where the NASA’s ER-2 aircraft carried four MAPs
– AirHARP, AirMSPI, SPEX airborne, and RSP – and two
lidar sensors – HSRL-2 (Burton et al., 2015) and CPL (the
Cloud Physics Lidar) (McGill et al., 2002) – and flew over

Atmos. Meas. Tech., 15, 4859–4879, 2022 https://doi.org/10.5194/amt-15-4859-2022



M. Gao et al.: Uncertainty quantification: performance and speed 4871

Figure 8. Comparing the averaged MAE derived from theoretical and real uncertainties for both HARP2 and AirHARP. The error bars
indicate the 1σ uncertainties of the MAE based on the average of 10 sets of random theoretical errors as discussed in MCEP method in
Sect. 3.2. The same error bar is used for the real uncertainties as an approximation.

Figure 9. Ratio of real to theoretical retrieval MAE for the data
shown in Fig. 8. Chl a is in terms of MAE(log) as defined in Eq. 12.

a variety of scenes at a high altitude of approximately 20 km
(Knobelspiesse et al., 2020). Several MAP aerosol retrievals

from ACEPOL measurements have been reported (Fu et al.,
2020; Puthukkudy et al., 2020; Gao et al., 2020; Hannadige
et al., 2021; Gao et al., 2021a).

There are a total of five AirHARP ocean scenes available
in ACEPOL. Three scenes on 23 October 2017 (Scenes 1,
2, and 3) have been discussed by Gao et al. (2021a, b).
This study further analyzes the retrieval uncertainties on
Scenes 2 and 3 and adds two additional scenes from 27 Octo-
ber (Scene 4) and 7 November (Scene 5). The adaptive data
screening method (Gao et al., 2021b) was applied on all these
scenes to mask out viewing angles contaminated by cirrus
clouds, ocean surface floating objects, or other irregularities
that could not be represented adequately by the current for-
ward model.

Figure 10 shows retrieval results for Scene 2, with AOD
and Rrs (both at 550 nm) in Fig. 10b and c and their re-
trieval uncertainties shown in Fig. 10e and f, respectively.
The retrieved AOD and Rrs are reasonably smooth, varying
mostly in the ranges 0.07–0.1 and 0.003–0.004 respectively.
Figure 10d shows the total number of observations used in
the retrieval, which decreases toward the bottom of the im-
age due to sunglint as shown in Fig. 10a. A smaller number
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Figure 10. (a) RGB image for Scene 2 on 23 October 2017. Retrieval results are shown for (b) AOD and (c) Rrs, respectively; retrieval
uncertainties for these are shown in panels (e) and (f), respectively. (d) The number of total observations used in retrievals. The HSRL AODs
at 532 nm are indicated in panel (b). More detailed analysis on AOD and its uncertainties over the three solid lines are discussed in Fig. 11.

of measurements is also available at the top edge of the im-
age due to the sensor geometry, which also results in larger
AOD and Rrs uncertainties. There are several patches else-
where with fewer measurements due to the removal of cirrus-
cloud-contaminated angles (Gao et al., 2021b). Most pixels
have at least 100 suitable measurements; the largest number
of observations available is 228. A larger number of mea-
surements is generally associated with lower uncertainties
for both AOD and Rrs. Patches with small Rrs values in the
upper right portion of Fig. 10c also have larger uncertainties
in Fig. 10f. Retrieval uncertainties can be used as a flexible
quality flag for each pixel, which is more effective than rely-
ing solely on the number of measurements or the cost func-
tion values only, as uncertainty estimates are specific to each
retrieved parameter.

Figure 11 shows the retrieved AOD at 550 nm and its un-
certainties along the three black lines in Fig. 10a. Line 1 con-
tains the pixels closest to the HSRL track. Due to the impact
of cirrus clouds, only a few HSRL pixels are available, but
they agree with the retrieval results within the estimated un-
certainties. The regions with cirrus cloud angles removed by
the adaptive data screening approach also show larger uncer-
tainties (the left portion of line 1 and the peak in line 3 near
−122.6◦ longitude). The measurements in line 2 are less im-
pacted by cirrus clouds with an average of 155 observations
per retrieval, compared to 91 and 120 for lines 1 and 3 re-
spectively. The χ2 map (shown in Gao et al., 2021b) shows
that excluding the cirrus-contaminated angles makes retrieval
cost function more spatially uniform across the scene. The
mean χ2 values along the three lines are 1.54, 1.25, and 1.34;
since these χ2 values are still larger than 1, there may be ad-
ditional relevant uncertainties not captured in the input un-
certainty model that require future investigation.

Equivalent results for the other three scenes (3, 4, 5) are
shown in Fig. 12. The most probable χ2 are 1.2, 1.4, and

0.8 respectively. For Scene 3, the retrieved AOD values are
mostly around 0.05 but increase up to 0.1 near the coast as
shown in Fig. 12d. The retrieval uncertainties as shown in
Fig. 12h are typically around 0.01 but exceed 0.05 near the
coast and the edge of the image. For retrieval uncertainties
larger than 0.05, the average number of measurements is less
than 22, but for those with uncertainties under 0.05, an aver-
age of 80 measurements were available. Scene 4 is similar,
although with sunglint in the lower portion of the image and
larger associated uncertainties. For Scene 5 in Fig. 12, many
pixels in the left and lower half of the image are impacted
by the cirrus clouds, often leaving few suitable angles and
leading to AOD uncertainty larger than 0.05 (the brown color
shown in Fig. 12i). The central region with the smallest AOD
uncertainties less than 0.01 correspond to pixels with 161 or
more observations.

6 Discussions and conclusions

Quantifying the uncertainties associated with remote sensing
retrievals is key to understanding retrieval performance and
gauging the quality and utility of the retrieval results. Re-
trieval uncertainties depend on the spectral, angular, radio-
metric, and polarimetric characteristics of the instrument. In-
creasing dimensionality and accuracy of measurements ben-
efits retrievals but also introduces new challenges in the in-
version of geophysical properties and estimation of retrieval
uncertainties.

This study discussed and applied a practical, efficient
way to estimate theoretical uncertainties for aerosol and
ocean data products retrieved by FastMAPOL from syn-
thetic AirHARP and HARP2 measurements, as well as field
AirHARP measurements from the ACEPOL field campaign.
Theoretical retrieval uncertainties for aerosol and ocean color
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Figure 11. Retrieved AOD at 550 nm and their uncertainties along the three lines shown in Fig. 10 from bottom to top. Red dots are the
HSRL AOD at 550 nm as indicated in Fig. 10.

Figure 12. Three AirHARP scenes on 23 October, 27 October, and 7 November 2017, which are in different flight directions but over the
same region. The RBG images are shown in panels (a), (b), and (c); the retrieved AODs at 550 nm are shown in panels (d), (e), and (f); and
their uncertainties are shown in panels (g), (h), and (i).
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properties are discussed. The speed with which the uncertain-
ties can be computed is optimized using analytical deriva-
tives based on automatic differentiations. To validate how
well the retrieval uncertainties represent real retrievals, we
provided a flexible Monte Carlo error propagation (MCEP)
method to compare the retrieval uncertainties from error
propagation with errors from synthetic retrievals. More dis-
cussions are as follows.

1. Using MCEP, statistical distributions can be compared
to understand their properties and develop proper met-
rics for comparison. The real and theoretical retrieval
uncertainties for multiple retrieval parameters are com-
pared directly by their error histograms sampled from
the Monte Carlo method based on the synthetic data
retrievals. The ratios of the statistical metrics such as
MAE for theoretical and real errors are computed and
compared. These ratios provide a tool to quantify the
overall performance of the retrieval uncertainty. The ra-
tios are mostly 1–1.5 with respect to different AOD
ranges, which suggests that the FastMAPOL retrieval
algorithm performs well as it approaches the opti-
mal uncertainties predicted from error propagation. The
larger ratios observed for aerosol refractive indices sug-
gest a need to improve constraints on and/or test for
proper convergence of those parameters, especially for
cases with small AODs. Future studies of synthetic data
with realistic statistics are needed to further evaluate the
overall performance of the retrieval algorithm.

2. Synthetic data are only one piece of the evaluation and
are limited because they use the same underlying for-
ward model as the retrieval. Future comparison of re-
trieval results with in situ measurements is desirable to
provide a more complete assessment. However, what is
available at present for AirHARP is sparse in volume,
as AirHARP data are only available for a few field cam-
paigns and PACE has not yet launched. Notably, there
is no avenue to validate all retrieved products at once.
The MCEP method and others (e.g., Hasekamp and
Landgraf, 2005; Sayer et al., 2020) can also be used to
compare uncertainty estimates with the in situ measure-
ments. Furthermore, the MCEP method provides a flex-
ible framework to evaluate the uncertainties associated
with the number of cases used in the statistical com-
parison, which can often be sparse for in situ data. Use
of in situ data, however, also involves additional mea-
surement and co-location uncertainties not included in
the input uncertainty model (e.g., Virtanen et al., 2018;
Sayer, 2020). Additionally, they may reveal assump-
tions in the forward model that are insufficient. For ex-
ample, for coastal waters, we may need a more complete
and realistic ocean bio-optical model as demonstrated
by Gao et al. (2019). The parameterization of aerosol
size bins and refractive index spectral shape may also
need refinement.

3. The Monte Carlo method has been used widely for un-
certainty quantification due to its flexibility and robust-
ness (e.g., Andrieu et al., 2003). In this work, the theo-
retical retrieval uncertainties are still computed through
the error propagation method. However, to validate the
theoretical uncertainties, we need to compare with ref-
erence truth data, which are often limited by their sam-
ple size, especially for in situ measurements. It is im-
portant to consider the impacts of sample size and the
statistical distribution on the robustness of metrics used
in the analysis. In this study, we chose a Monte Carlo
method to randomly sample errors from theoretical un-
certainties, which provides a direct bridge to compare
with the real retrieval errors. The current MCEP method
generates random errors from the theoretical uncertain-
ties derived through error propagation in step 2; another
approach is to generate random errors directly from the
error covariance matrix in Eq. (4) and then propagate
them through Eq. (6). The latter would be more flexi-
ble to deal with more general measurement uncertainty
statistics but more computationally expensive due to
the large number of measurements present in MAP re-
trievals. Our MCEP method can be further developed
to understand the impact of a priori constraints, broader
statistical types of measurement errors, for better vali-
dation and understanding of retrieval uncertainties.

4. Retrieval initialization and convergence can be impor-
tant. Gao et al. (2020) discussed the impact of initial
values by conducting hundreds of retrievals using ran-
dom initial values and found the RMSE of the retrieval
results produced a value similar to the error propagation
results reported by Knobelspiesse et al. (2012). As dis-
cussed in Sect. 5, the cost function may not always con-
verge to the values expected from χ2 distribution, and
large values are often observed as shown by Wu et al.
(2015) and Gao et al. (2020, 2021a). This may be due
to the impacts of anomalies not captured by the forward
model (such as, here, cirrus clouds) or modeled but not
quantified adequately in the input uncertainty model for
measurements plus forward models. Theoretical error
propagation can give inaccurate results in these cases. It
would be practical to remove such anomalous measure-
ments from the retrieval, as in the adaptive data screen-
ing method by Gao et al. (2021b). Fewer suitable mea-
surements tend to lead to larger retrieval uncertainty, al-
though this is arguably preferable (considering data cov-
erage) to discarding the whole retrieval based on a high-
cost function. In these situations, the theoretical uncer-
tainty estimate may guide whether a retrieval is useful
for a particular application on a per-parameter basis.

This work provides a general framework to understand
the uncertainties from the retrieval algorithm and provides a
bridge from theoretical uncertainty toward future evaluation
using in situ measurements. More complex input uncertainty
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model, such as the one including uncertainty correlations be-
tween the multi-angle measurements, can be evaluated based
on this framework. Although based on synthetic and air-
borne measurements, the methods on uncertainty quantifica-
tion are flexible and can be applied to existing and future
satellite missions such as NASA’s PACE mission with ad-
vanced multi-angle polarimetric instruments.

Appendix A: Speed improvement using automatic
differentiation

Fast speed to compute retrieval uncertainties is useful for op-
erational processing and analyzing satellite data. Although
the error propagation method used in this study is already
very efficient, it is still challenging to achieve a speed com-
plementary to the retrievals due to the requirement to com-
pute Jacobian matrix and multiple additional derivatives for
parameters not directly retrieved as shown in Eq. (8). Such
parameters in this study include aerosol properties such as
AOD, SSA, aerosol effective radius, and Rrs. Derivatives of
aerosol properties can be either computed from an analytical
function (e.g., effective size) or based on single scattering
calculations (e.g., AOD, SSA), such as using Lorenz–Mie
theory (Grainger et al., 2004; Spurr et al., 2012) or the T-
Matrix method (Xu and Davis, 2011; Spurr et al., 2012; Sun
et al., 2021). However, uncertainties for Rrs are more chal-
lenging to quantify as they require additional radiative trans-
fer simulations to conduct atmospheric and bidirectional re-
flectance distribution function (BRDF) corrections. Follow-
ing Mobley et al. (2016), Rrs is defined as

Rrs =

[
ρt− ρ

f
t,atm+sfc

π

]
×

[
CBRDF

Tdtu

]
, (A1)

where ρt is the reflectance measured by the sensor as de-
fined in Eq. (1), and ρf

t,atm+sfc is the reflectance with contri-
butions only from the atmosphere and ocean surface. CBRDF
is a BRDF correction that adjusts the water-leaving signal
from an arbitrary viewing and solar geometry to the sun at
zenith and nadir viewing direction. Td and tu are direct and
diffuse transmittance.

Gao et al. (2021b) reported that using the automatic differ-
entiation method to compute Jacobians resulted in a factor
of 5 to 10 times speedup in retrievals compared to numerical
calculations using finite difference; therefore, it provided a
feasible approach to accelerate retrieval uncertainty calcula-
tion. In this study, we use automatic differentiation to calcu-
late analytical Jacobians and other derivatives for AOD, SSA,
ρf

t,atm+sfc, and the combined factor of CBRDF/[Tdtu] based on
the NNs developed by Gao et al. (2021a). The mathematical
formulation for automatic differentiation summarized in Gao
et al. (2021b) can be generalized for all the feed-forward neu-
ral networks used in our study. Specifically, the derivatives of

Rrs with respect to a retrieval parameter xi are

∂Rrs

∂xi
=
(ρt−N1)

π

∂N2

∂xi
−
∂N1

∂xi

N2

π
, (A2)

where N1 and N2 represent the NNs for ρf
t,atm+sfc and

CBRDF/[Tdtu]. The uncertainty of Rrs is calculated by com-
bining Eq. (A2) with Eq. (8). Note that the retrieval uncer-
tainties in Rrs discussed in this study only include the con-
tribution from atmospheric correction and BRDF correction
as shown in Eq. (A2), which do not include uncertainties in
ρt. These results can demonstrate the accuracy when HARP
retrieved aerosol properties are applied to instruments with
higher accuracy in ρt such as OCI to assist their atmospheric
correction (Gao et al., 2020; Hannadige et al., 2021).
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