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Abstract. The paper presents an approach to revealing the
variability in aerosol type, at high spatiotemporal resolution,
by combining fluorescence and Mie–Raman lidar observa-
tions. The multiwavelength Mie–Raman lidar system in op-
eration at the ATOLL (ATmospheric Observation at liLLe)
platform, Laboratoire d’Optique Atmosphérique, University
of Lille, has included, since 2019, a wideband fluorescence
channel allowing the derivation of the fluorescence backscat-
tering coefficient βF. The fluorescence capacity GF, which
is the ratio of βF to the aerosol backscattering coefficient, is
an intensive particle property, strongly changing with aerosol
type, thus providing a relevant basis for aerosol classifica-
tion. In this first stage of research, only two intensive prop-
erties are used for classification, namely the particle depolar-
ization ratio at 532 nm, δ532, and the fluorescence capacity,
GF. These properties are considered because they can be de-
rived at high spatiotemporal resolution and are quite specific
to each aerosol type. In particular, in this study, we use a
δ532–GF diagram to identify smoke, dust, pollen, and urban
aerosol particles. We applied our new classification approach
to lidar data obtained during the 2020–2021 period, which
includes strong smoke, dust, and pollen episodes. The parti-
cle classification was performed with a height resolution of
about 60 m and temporal resolution better than 8 min.

1 Introduction

Atmospheric aerosol is one of the key factors influencing the
Earth’s radiation budget through the absorption and scatter-
ing of solar radiation and by affecting cloud formation. The
processes of aerosol–radiation and aerosol–cloud interaction

depend on aerosol size, shape, morphology, absorption, solu-
bility, etc.; thus, knowledge of the chemical composition and
mixing state of the aerosol particles is important for model-
ing the aerosol impact (Boucher et al., 2013). The aerosol
properties may vary in a wide range, so, in practice, usu-
ally several main types of aerosols are separated based on
their origin, e.g., urban, dust, marine, and biomass burning
(Dubovik et al., 2002). Successful remote characterization of
the column-integrated aerosol composition from the observa-
tions of sun–sky photometers and spaceborne multiangle po-
larimeters has been demonstrated in numerous publications
(Dubovik et al., 2002; Giles et al., 2012; Hamill et al., 2016;
Schuster et al., 2016; Li et al., 2019; Zhang et al., 2020).
The aerosol impacts, however, depend also on vertical varia-
tions/distributions of particle concentration and composition,
which cannot be derived from these instruments.

One of the recognized remote sensing techniques for the
vertical profiling of aerosol properties is lidar. Multiwave-
length Mie–Raman lidar and HSRL (high spectral resolu-
tion lidar) systems provide a unique opportunity to derive
height-resolved particle intensive properties, such as lidar ra-
tios, Ångström exponents, and depolarization ratios at mul-
tiple wavelengths. Based on this information, the particle
type can be determined (Burton et al., 2012, 2013; Groß et
al., 2013; Mamouri and Ansmann, 2017; Papagiannopou-
los et al., 2018; Nicolae et al., 2018; Hara et al., 2018;
Voudouri et al., 2019; Wang et al., 2021; Mylonaki et al.,
2021 and references therein). However, there is a fundamen-
tal difference between the particle classification based on the
sun–sky photometer and on lidar observations. From direct
Sun and azimuth scanning measurements of the photome-
ter, more than 100 observations are available. From this in-
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formation, the spectrally dependent refractive index and ab-
sorption Ångström exponent can be determined, which is im-
portant for aerosol classification (Schuster et al., 2016; Li et
al., 2019). The commonly used multiwavelength lidars are
based on a tripled Nd:YAG laser and are capable of provid-
ing three types of backscattering (355, 532, 1064 nm), two
extinction (355, 532 nm) coefficients, and up to three parti-
cle depolarization ratios (so-called 3β + 2α+ 3δ set). Thus,
the number of available lidar observations is eight or less,
which limits the performance of the aerosol classification al-
gorithms. Nevertheless, the results obtained by different re-
search groups demonstrate that lidar-based particle identifi-
cation is possible. In the publications of Burton et al. (2012,
2013), a classification was performed based on four intensive
parameters measured by the HSRL system, i.e., the lidar ra-
tio at 532 nm (S532), the backscattering Ångström exponent
for 532 and 1064 nm wavelengths (BAE532/1064), and parti-
cle depolarization ratios at 532 and 1064 nm (δ532 and δ1064).
With these input parameters, there are eight aerosol types,
i.e., smoke, fresh smoke, urban, polluted maritime, maritime,
dusty mix, pure dust, and ice, discriminated.

Important information on aerosol vertical distribution
comes from the EARLINET (European Aerosol Research
Lidar Network) and ACTRIS (Aerosol, Clouds and Trace
Gases Research Infrastructure) lidar network, aiming at
unifying multiwavelength Mie–Raman lidar systems over
Europe (Pappalardo et al., 2014). For the automation of
aerosol classification, several approaches were developed
in the frame of EARLINET. These approaches include the
Mahalanobis distance-based classification algorithm (Papa-
giannopoulos et al., 2018), a neural network aerosol classifi-
cation algorithm (NATALI; Nicolae et al., 2018), and an al-
gorithm based on source classification analysis (SCAN; My-
lonaki et al., 2021). All of these algorithms have demon-
strated their ability for aerosol classification. In particular,
NATALI is able to identify up to 14 aerosol mixtures from
3β + 2α+ 1δ observations.

Nevertheless, the abovementioned algorithms have to deal
with a fundamental limitation, namely that the particle in-
tensive properties, even for pure aerosols (generated by a
single source), exhibit strong variations. For example, the
lidar ratio S355 of smoke in the publication of Nicolae et
al. (2018) varies in the 38–70 sr range, and in our own mea-
surements, we observed values for aged smoke S355 as low
as 25 sr (Hu et al., 2022). Strong variation in the smoke li-
dar ratios in EARLINET/ACTRIS observations is discussed
also in the recent publication of Adam et al. (2021). Such un-
certainty in the parameters of the aerosol model complicates
the aerosol classification. Thus, it is desirable to combine the
Mie–Raman observations with another range-resolved tech-
nique that provides additional independent information about
aerosol composition. Such information can be obtained from
laser-induced fluorescence emissions.

The application of fluorescence lidar technique was in-
tensively considered during the last decade to study aerosol

particles. Lidar measurements of the full fluorescence spec-
trum with multi-anode photomultipliers (Sugimoto et al.,
2012; Reichardt, 2014; Reichardt et al., 2018; Saito et al.,
2022) provide an obvious advantage in particle identifica-
tion. However, even a more simple fluorescence lidar with
a single wideband fluorescence channel opens new opportu-
nities for aerosol characterization (Veselovskii et al., 2021,
2022; Zhang et al., 2021). Such a fluorescence configura-
tion could be implemented in existing Mie–Raman lidars,
and the fluorescence backscattering coefficient βF is calcu-
lated from the ratio of fluorescence and nitrogen Raman sig-
nals. To characterize the aerosol fluorescence properties, the
fluorescence capacity GF is introduced as the ratio of βF to
aerosol backscattering coefficient at one of laser wavelengths
(Veselovskii et al., 2020b). In this study, the backscattering
at 532 nm was used. The fluorescence capacity is an inten-
sive particle parameter, which changes strongly with aerosol
type, with the highest value for smoke and the lowest for
dust. Thus, the combination of Mie–Raman and fluorescence
backscatter provides a basis to improve particle classifica-
tion. A Mie–Raman lidar provides several particle-intensive
parameters; however, the profiles of particle parameters asso-
ciated with the extinction coefficient, such as the lidar ratio
or extinction Ångström exponent, may contain strong noise
because the extinction coefficients are derived from the slope
of Raman lidar signals. Thus, averaging over the significant
spatiotemporal intervals is demanded. Meanwhile, the parti-
cle depolarization and the fluorescence capacity can be cal-
culated with a high spatiotemporal resolution.

Recently, we have demonstrated that the δ–GF diagram
allows us to separate several aerosol types, such as dust,
pollen, urban (continental), and smoke (Veselovskii et al.,
2021). In the present study, we use this technique to clas-
sify aerosol particle types in the troposphere at a high spa-
tiotemporal resolution. We present the results of aerosol clas-
sification on the basis of fluorescence and Mie–Raman lidar
measurements performed at the ATOLL (ATmospheric Ob-
servation at liLLe) at Laboratoire d’Optique Atmosphérique,
University of Lille, during 2020–2021, which includes strong
smoke, dust, and pollen episodes. The paper starts with a
description of the experimental setup and data processing
scheme in Sect. 2. In Sect. 3, we present the algorithm for
aerosol classification based on depolarization and fluores-
cence measurements. Results of the application of the devel-
oped approach to different atmospheric situations, including
smoke, dust, and pollen episodes, are given in Sect. 4.

2 Experimental setup and data analysis

2.1 Lidar system

The multiwavelength Mie–Raman lidar LILAS (LIlle Lidar
AtmosphereS) is based on a tripled Nd:YAG laser with a
20 Hz repetition rate and pulse energy of 70 mJ at 355 nm.
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Backscattered light is collected by a 40 cm aperture Newto-
nian telescope, and the lidar signals are digitized with Licel
transient recorders with a 7.5 m range resolution, allowing
simultaneous detection in the analog and photon counting
mode. The system is designed for the detection of elastic and
Raman backscattering, allowing the so-called 3β + 2α+ 3δ
data configuration, including three particle backscattering
values (β355, β532, β1064) and two extinction (α355, α532)
coefficients, along with three particle depolarization ratios
(δ355, δ532, δ1064). The particle depolarization ratio, deter-
mined as a ratio of cross- and co-polarized components of
the particle backscattering coefficient, was calculated and
calibrated in the same way as described in Freudenthaler et
al. (2009). Many calibration and operation procedures have
been automated for the LILAS system to improve the overall
performance of the lidar in terms of observation frequency
and data quality. The aerosol extinction and backscattering
coefficients at 355 and 532 nm were calculated from Mie–
Raman observations (Ansmann et al., 1992), while β1064 was
derived by using the Klett (1985) method. The full geometri-
cal overlap was achieved at approximately 750 m range. For
the calculation of α and β at 532 nm, we use the rotational
Raman scattering instead of the vibrational one (Veselovskii
et al., 2015), which allows us to increase the power of Raman
backscatter and to decrease separation between the wave-
lengths of elastic and Raman components. Additional infor-
mation about atmospheric parameters was available from ra-
diosonde measurements performed at Herstmonceux (UK)
and Beauvechain (Belgium) stations, located 160 and 80 km
away from the observation site, respectively.

The LILAS system can also profile the laser-induced fluo-
rescence of aerosol particles. A part of the fluorescence spec-
trum is selected by a wideband interference filter of 44 nm
width centered at 466 nm. The strong sunlight background
during the daytime restricts the fluorescence observations to
nighttime hours. The fluorescence backscattering coefficient,
βF, is calculated from the ratio of fluorescence and nitro-
gen Raman backscattering signal, as described in Veselovskii
et al. (2020b). This approach allows us to evaluate the ab-
solute values of βF, if the relative sensitivity of the chan-
nels is calibrated and the nitrogen Raman scattering differen-
tial cross section is known. All βF profiles presented in this
work were smoothed with the Savitzky–Golay method, us-
ing second-order polynomials with 21 points in the window.
For the calculation of the fluorescence capacity GF, in prin-
ciple, backscattering coefficients at any laser wavelength can
be used. In our study, we always used β532 because it is cal-
culated with the use of a rotational Raman component and
is considered to be the most reliable; thus, the fluorescence
capacity is calculated as GF =

βF
β532

.

2.2 Calculation of the particle backscattering
coefficient from Mie–Raman measurements

Mie–Raman lidar measurements allow the independent eval-
uation of aerosol extinction and backscattering coefficients.
A commonly used approach for β calculation was formu-
lated in the paper of Ansmann et al. (1992). This approach
includes the choice of a reference height, where the scatter-
ing is purely molecular. However, such a height range is not
always available, for example, in the presence of the low-
level clouds. Moreover, when long-term spatiotemporal vari-
ations in backscattering coefficients are analyzed, then the
uncertainty in the choice of the reference height leads to os-
cillations in β profiles. To resolve this issue, we modified the
Raman method as described below.

In an elastic channel, the backscattered radiative power
PL, at wavelength λ0 and distance z, is described by the lidar
equation as follows:

PL =O(z)
1
z2CL

(
βa

L+β
m
L
)
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−2
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(
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L
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dz′
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L
)
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L , (1)

while in a Raman channel, it can be written as follows:
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R
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Here O(z) is the geometrical overlap factor, which is as-
sumed to be the same for elastic and Raman channels. CL
and CR are the range independent constants, including the
efficiency of the detection channel. TL and TR are one-way
transmissions which describe light losses on the way from
the lidar to distance z at laser λL and Raman λR wavelengths.
Backscattering and extinction coefficients contain the fol-
lowing aerosol and molecular contributions: βa

L+β
m
L and

αa
L+α

m
L , where the superscripts a and m indicate aerosol and

molecular scattering, respectively. The Raman backscatter-
ing coefficient is as follows:

βR =NσR, (3)

where N is the number of Raman scatters (per unit of vol-
ume), and σR is the Raman differential scattering cross sec-
tion in the backward direction.

Dividing Eq. (1) into Eq. (2), we obtain the following:

PL

PR
=
CL

CR

(
βa

L+β
m
L
)

βR

TL

TR
. (4)

The backscattering coefficient is calculated from Eqs. (3) and
(4) as follows:

βa
L =

PL

PR

CR

CL
σRN

TR

TL
−βm

L =
PL

PR
KN

TR

TL
−βm

L . (5)
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The differential transmission TL
TR

can be calculated in the
same way as it is done for the water vapor measurements
(Whiteman, 2003). For a rotational Raman signal, which
we use in our 532 nm channel (Veselovskii et al., 2015),
λL ≈ λR, so that TL

TR
= 1.

The calibration constant K = CR
CL
σR can be found by com-

paring βa
L in Eq. (5) with the backscattering coefficient β̃a

L
computed with the traditional Raman method and using the
reference height (Ansmann et al., 1992).

K =
(
β̃a

L+β
m
L

) PR

PL

1
N

TL

TR
. (6)

For simplicity, hereinafter we will use the notation βL in-
stead of βa

L. Thus, if during the measurement session we have
a temporal interval where the reference height is available,
then we can determine the calibration constant K and use it
for βL calculations from Eq. (5), assuming that the relative
sensitivity of the channels during the session is not changed.
Even if cloud layers occur during the whole session, we can
useK from the previous cloud-free profiles (assuming, again,
that the relative sensitivity of the channels is the same). We
will call this approach for β calculation the modified Raman
method to distinguish it from the traditional one (Ansmann
et al., 1992).

To estimate variations in the relative sensitivity of the
channels, we analyzed long-term cloudless measurements
when the reference height was available for every individ-
ual profile. The results demonstrate that variations in the cal-
ibration constant during the session (about 8 h) were below
3 %. Figures 1 and 2 present the application of this modi-
fied Raman method to the measurements on 2 March 2021.
The dust layer extended from 2 to 8 km height, and inside
this layer, the ice and liquid clouds were formed during the
00:00–05:00 UTC interval; thus, β532 could not be calculated
with the traditional Raman technique. The temporal inter-
val of 19:00–20:00 UTC was used to find calibration con-
stant K . Figure 1 shows the vertical profiles of backscatter-
ing coefficient β̃532, calculated with the traditional Raman
method (with reference height), and β532 ,calculated with
the modified method (with the calibration constant). Profiles
of β̃532 and β532 coincide for the whole height range. The
calibration constant K , shown on the same plot, does not
demonstrate height dependence, though oscillations around
the mean value increase with height. For computations, we
choose the value of K at low altitudes averaged inside some
height interval.

Figure 2 provides spatiotemporal variations in β532, par-
ticle depolarization δ532, and the fluorescence capacity GF.
Depolarization measurements reveal the presence of dust
(δ532 ≈ 30 %) and the ice cloud above 4 km (δ532> 40 %).
The liquid cloud below 4 km after midnight can be identified
by a low depolarization ratio δ532< 3 %. The fluorescence
capacity of dust is low, at about 0.2× 10−4. However, below
2 km, GF is significantly higher, up to 1.2× 10−4. In com-

Figure 1. Backscattering coefficients at 532 nm for the period
19:00–20:00 UTC on 2 March 2021, calculated from Mie–Raman
observations, using the same reference height as Ansmann et
al. (1992; green) or the calibration constant as in Eq (5) (magenta).
The profile of the calibration constant K is shown with a red line.

bination with a high depolarization ratio (up to 20 %), it can
indicate the presence of pollen at low altitudes. On the flu-
orescence capacity panel, we can see that, after 01:00 UTC,
the dust and pollen layers are mixed below 2 km, resulting
in a value of GF of about 0.5× 10−4. The fluorescence ca-
pacity inside ice and liquid clouds is below 0.01× 10−4. Fig-
ure 2 clearly demonstrates the advantage of simultaneous de-
polarization and fluorescence measurements for the study of
cloud formation in the presence of aerosol. All spatiotempo-
ral distributions of β532 presented in this paper were calcu-
lated from Eq. (5) with a modified Raman method.

3 Aerosol classification based on fluorescence
measurements

3.1 Approach for aerosol classification

As was discussed in our recent publication (Veselovskii et
al., 2021), the δ-GF diagram allows us to separate several
aerosol types, including smoke, dust, pollen, urban, and ice
and liquid water particles. Smoke and urban aerosols both
have a small depolarization ratio, but the fluorescence ca-
pacity of smoke is almost 1 order of magnitude higher, so
these particles can be separated. Dust and pollen both have
a high depolarization ratio (up to 30 %), but GF of dust is
significantly lower, which again provides the basis for dis-
crimination. The depolarization ratio of some aerosol types is
characterized by a strong spectral dependence. For example,
the depolarization ratio of aged smoke decreases with wave-
length. It is below 5 % at 1064 nm, but at 355 nm in upper
troposphere, it may exceed 20 % (Burton et al., 2015; Haarig
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Figure 2. Spatiotemporal distributions of the backscattering coef-
ficient β532, the particle depolarization ratio δ532, and the fluores-
cence capacityGF on the night of 2–3 March 2021. The backscatter-
ing coefficient β532 is calculated with the modified Raman method.
The values of δ532 and GF are shown for β532> 0.2 Mm−1 sr−1.

et al., 2018; Hu et al., 2019; Veselovskii et al., 2022), which
complicates the smoke and dust separation. For pollen, on
the contrary, the depolarization ratio at 1064 nm can be the
highest (Veselovskii et al., 2021). Thus, the choice of δ1064
for the δ-GF diagram could be advantageous. However, as
already mentioned, the backscattering coefficient at 1064 nm
is calculated with the Klett (1985) method, which, besides
the assumptions about lidar ratio, needs a reference height
and cannot be used in cloudy situations. This is why, in our
study, we used the δ532-GF diagram.

In our present work, we consider a simple classification
scheme since we use only two intensive parameters, GF and
δ532. Our goal is to demonstrate that, in the δ532-GF dia-
gram, our lidar observations form clusters and characteris-
tic patterns which can be attributed to different aerosol types
or their mixtures. We consider four aerosol types, i.e., dust,
smoke, pollen and urban, and two cloud types, i.e., liquid and
ice clouds. Dust and pollen are large particles of a compli-
cated shape, characterized by high depolarization ratio, while
smoke and urban pollution are small particles with low depo-
larization. In our classification, urban aerosol includes conti-

nental aerosol, sulfates, and soot. At this stage, we do not yet
consider absorption to discriminate the particles.

The choice of the range of particle properties variations
for each aerosol type is an important aspect of the approach.
Typical ranges of GF and δ532 variations used in our classifi-
cation scheme are given in Table 1 and are shown in Fig. 3.
These ranges are based on results obtained in LOA (Labo-
ratoire d’Optique Atmosphérique) and on results presented
in aerosol classification studies (Burton et al., 2012, 2013;
Nicolae et al., 2018; Papagiannopoulos et al., 2018; Mylon-
aki et al., 2021).

– Dust. The depolarization ratio, δ532, of Saharan dust
near the source regions is up to 35 % (Veselovskii
et al., 2020a). However, after transportation and mix-
ing with local aerosol, δ532 can be as low as 20 %
(Rittmeister et al., 2017). In many studies, the dust
events having a smaller depolarization ratio are clas-
sified as polluted dust (e.g., Burton et al., 2012,
2013). At the moment, we do not introduce the
discrimination between the two subtypes and mark
as dust the particles with 20 %<δ532< 35 % and
0.1× 10−4<GF< 0.5× 10−4.

– Smoke. In 2021–2022, we regularly observed, over the
ATOLL platform, smoke layers originating from Cal-
ifornian and Canadian forest fires (Hu et al., 2022).
The particle depolarization and fluorescence capac-
ity of this transported smoke varied from episode to
episode, and for classification, we selected the ranges
2 %<δ532< 10 % and 2× 10−4<GF< 6× 10−4. At
this stage, we do not discriminate between fresh and
aged smoke, and the range of the δ532 variation is sim-
ilar to the one used in the classification of Burton et
al. (2012).

– Pollen. The pollen over northern France is usually
mixed with other aerosol, and the particles which we
mark as pollen are actually the mixtures. The depo-
larization ratio of clean pollen varies strongly for dif-
ferent taxa. For birch pollen, Cao et al. (2010) re-
ported δ532= 33 %, and in the measurements over Fin-
land during birch pollination, Bohlmann et al. (2019)
observed values of δ532 up to 26 %. The observations
over Lille during the pollen season (Veselovskii et
al., 2021) rarely revealed values δ532 exceeding 20 %.
Based on those observations, we classify as pollen
the particles mixtures with 15 %<δ532< 30 % and
0.8× 10−4<GF< 3.0× 10−4.

– Urban. This type of aerosol includes a variety of par-
ticle types (e.g., sulfates and soot), and its properties
may depend on the relative humidity. Based on our
measurements inside the boundary layer, for classifi-
cation, we choose the ranges 1 %<δ532< 10 % and
0.1× 10−4<GF< 1.0× 10−4. A similar range for δ532
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Table 1. Ranges of particle depolarization δ532 and fluorescence
capacity GF, which were used for aerosol classification.

Aerosol δ532 GF
type (%) (× 10−4)

Dust 20–35 0.1–0.5
Pollen 15–35 0.8–3.0
Urban 1–10 0.1–1.0
Smoke 2–10 2.0–6.0
Ice > 40 < 0.01
Water < 5 < 0.01

Figure 3. Aerosol type with a δ532-GF diagram. The ranges of
the particle parameter variations for dust, pollen, smoke, and urban
aerosol are given by rectangles. The symbols show the results of
simulation performed for pollen and urban (circles) and smoke and
dust (stars) mixtures. The relative contribution of pollen (smoke) to
the total backscattering β532 varied in the 0–1.0 range, with steps
of 0.1. The particle parameters used in the calculations are given in
the text.

is used in the classification of Burton et al. (2013). Ur-
ban and smoke particles both have a low depolarization,
but the smoke fluorescence capacity can be up to 1 order
of magnitude higher, so these particles can be reliably
discriminated.

– Ice and water clouds. Both cloud types have low fluo-
rescence capacity GF< 0.01× 10−4. However, the ice
clouds are usually observed at the heights where the flu-
orescence signal is low and cannot be used for classifi-
cation. Thus, above ∼ 8 km, the ice cloud are identified
by a high depolarization ratio δ532> 40 %. The depo-
larization ratio of the liquid water clouds is usually af-
fected by the effects of the multiple scattering, so for
their identification, we use δ532< 5 %.

The analysis of aerosol mixtures is an important subject,
and the possibility to separate the mixture components based
on lidar measurements was discussed in publications of Sug-
imoto and Lee (2006), Groß et al. (2011), Gasteiger and
Freudenthaler (2014), Tesche et al. (2009), and Burton et

al. (2014). The information about the mixture composition
can be also revealed in the δ532–GF diagram. For exam-
ple, pollen can be mixed with urban particles. At different
heights, the pollen contributes differently to β532, so in the
δ532–GF diagram, the data points will form the pattern, which
extends from the location attributed to pure urban aerosol to
the location attributed to pure pollen. To estimate how such
a pattern looks, simplified modeling for fixed particle param-
eters was performed. The corresponding results are shown
in Fig. 3 by the symbols (circles). The particle depolariza-
tion ratio δ of the mixture, containing urban aerosol (u) and
pollen (p), with the depolarization ratios δu and δp, can be
calculated as follows:

δ =

(
δp

1+δp

)
βp
+

(
δu

1+δu

)
βu

βp

1+δp +
βu

1+δu

. (7)

The fluorescence capacity of the mixture is given by the fol-
lowing:

GF =
βuGu

F+β
pG

p
F

β
. (8)

Here, the total backscattering β = βu
+βp.

The computations in Fig. 3 were performed for values

of the pollen contribution β
p
532
β532

in the 0–1.0 range, with
steps of 0.1. We assume that the depolarization ratios of
pollen and urban aerosol are δp

532= 30 % and δu
532= 3 %,

while the fluorescence capacities are Gu
F= 0.2× 10−4 and

G
p
F= 2.5× 10−4. We remind the reader that the fluorescence

capacities are calculated at 532 nm wavelength. In the δ532–
GF diagram, the computed points provide a characteristic
curve, which in the next section will be compared with ex-
perimental results. The same computations were performed
for a smoke (s) and dust (d) mixture, assuming δd

532= 30 %,
δs

532= 3 %, Gd
F= 0.2× 10−4, and Gs

F= 4.0× 10−4.. The
corresponding results are shown in Fig. 3 with stars. In a sim-
ilar way, the characteristic curves for other mixtures can also
be represented.

We are also able to identify liquid water and ice layers.
Liquid water cloud layers have low fluorescence capacity
(GF< 0.01× 10−4) and δ532< 3 %. Ice particles also have
lowGF, but at heights where ice clouds are usually observed,
the signal of the fluorescence backscattering is noisy. Thus,
at high altitudes, ice particles are discriminated by a high de-
polarization ratio δ532> 40 %.

3.2 Classification of spatiotemporal observations

The input parameters in our classification scheme are the
spatiotemporal distributions of β532, δ532, and GF, which
are presented as matrices βi,j532, δi,j532, and Gi,jF , where i =
1, . . .,NT; j = 1, . . .,NH. Values NT and NH are the numbers
of temporal and height intervals in the analyzed dataset. In a
single measurement, we accumulate 2× 103 laser pulses, so
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Figure 4. Spatiotemporal distributions of the backscattering coefficient β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio δ532, and the fluorescence capacity GF on the night of 12–13 September 2020. The
calculation of δ532 andGF was not performed for β532< 0.2 Mm−1 sr−1. The values of the backscattering coefficient and the depolarization
ratio of ice clouds are high (above 20 Mm−1 sr−1 and 40 %, respectively) and are off the scale for the maps presented.

Figure 5. (a) The δ532-GF diagram for the data from Fig. 4 in the 500–6000 m height range. Red crosses show the uncertainty of the
measurements. (b) Spatiotemporal distribution of aerosol types on the night of 12–13 September 2020. The gray coloring shows undefined
aerosol types, while measurements with β532< 0.2 Mm−1 sr−1 are marked in black.

the temporal resolution of the measurements is about 100 s,
while the height resolution is 7.5 m.

The particle intensive parameters cannot be evaluated reli-
ably when the backscattering coefficient is low. Thus, we set
a threshold value for β532 (normally 0.2 Mm−1 sr−1), namely
when βi,j532< 0.2 Mm−1 sr−1, then the elements of the matri-
ces δi,j532 andGi,jF are classified as low signal and ignored. For
the remaining elements, we determine the aerosol type, using
our approach. A primary classification is being made for each
point (i,j) separately, in accordance with parameter ranges
given in Table 1. The elements, which are out of all these
ranges, are marked as undefined. We consider six types of
the particles, i.e., dust, smoke, pollen, urban, ice crystals, and
water droplets, respectively. Moreover, there can be two addi-
tional results of primary classification, namely undefined and

low signal. Thus, there are altogether eight possible results
of primary classification. For every aerosol type, a NT×NH
dimension matrix is constructed. If at this first stage of clas-
sification some single pixel point (i,j ) is classified as, e.g.,
dust, then the corresponding value in the dust matrix is set to
1; otherwise, it is set to 0.

The single pixel particle parameters contain statistical
noise, which influences the results of the primary classifi-
cation, thus producing high-frequency oscillations of non-
physical character. From a physical point of view, the aerosol
single-type areas should form smooth regions, so a special
smoothing procedure (stage 2 of our algorithm) was devel-
oped to remove the oscillations. The smoothing procedure is
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Figure 6. Spatiotemporal distributions of the backscattering coefficient β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio δ532, and the fluorescence capacity GF on the night of 30–31 May 2020. The values
of δ532 and GF are shown for β532> 0.2 Mm−1 sr−1.

Figure 7. (a) The δ532-GF diagram for observations in the 500–2500 m height range and (b) spatiotemporal distribution of aerosol types
on the night of 30–31 May 2020. The gray coloring shows an undefined aerosol type, which is a mixture of urban and pollen for this case.
Measurements with β532< 0.2 Mm−1 sr−1 are marked in black.

based on a convolution with a Gaussian kernel, as follows:

Z = exp

(
−

(
t2

s2
T
+
h2

s2
H

))
, (9)

where t and h are temporal and height coordinates. The res-
olution of the classification is being controlled by the param-
eters sT and sH, which are set as the number of temporal and
height bins.

In the second stage of classification, each of these matri-
ces is separately convoluted with the Gauss kernel Z. After
the convolution, the values for each pixel (i,j ) are compared.
If, e.g., the dust matrix contains a maximal value at the pixel
(i,j ) in respect to all other matrices, then the pixel (i,j ) is
finally classified as dust. The choice of smoothing param-
eters depends on the aerosol loading and aerosol type. For
the measurements inside the boundary layer, in many cases

the single pixel classification (sT= 1, sH= 1) is possible,
while for analysis of the weak elevated layers, the smoothing
should be applied. All results presented in this study were
obtained for sT= 3 and sH= 5; thus, the temporal and range
resolutions of our classification procedure are estimated to be
about 8 min and 60 m, respectively.

4 Application of classification approach to LILAS data

The classification approach, described in the previous sec-
tion, was applied to the data of the Mie–Raman fluorescence
lidar at the ATOLL platform, located on the campus of Lille
University, during 2020–2021. Here we present the results of
the aerosol classification for several relevant atmospheric sit-
uations to demonstrate that different aerosol types are well
separated based on the δ532–GF diagram.
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Figure 8. Spatiotemporal distributions of the backscattering coefficient β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio δ532, and the fluorescence capacity GF on the night of 14–15 September 2020. The
values of δ532 and GF are shown for β532> 0.2 Mm−1 sr−1.

Figure 9. (a) The δ532-GF diagram for observations in the 500–8000 m height range and (b) spatiotemporal distribution of aerosol types
on the night of 14–15 September 2020. The gray coloring shows an undefined aerosol type, which is a mixture of pollen, urban, and smoke
particles. Measurements with β532< 0.2 Mm−1 sr−1 are marked in black.

4.1 12 September 2020: wildfire smoke

Figure 4 presents the spatiotemporal variations in aerosol and
fluorescence backscattering coefficients (β532 and βF), to-
gether with the particle depolarization ratio δ532 and the fluo-
rescence capacityGF, during the smoke episode on the night
of 12–13 September 2020. The smoke layer extends from
approximately 2 to 5 km in height, and it is characterized
by a high fluorescence capacity GF> 3.0× 10−4 and low
depolarization ratio δ532< 7 %. The cirrus clouds occurred
above 11 km height during the whole night. The smoke layer
was transported from North America; detailed analysis of the
layer origin and transportation is given in a recent publica-
tion of Hu et al. (2022). The results of the aerosol classi-
fication for this episode are shown in Fig. 5. On the δ532-
GF diagram, these data form two clusters. The first cluster

includes points in the range 2.0× 10−4<GF< 6.0× 10−4

and 2 %<δ532< 7 %, and such a high fluorescence and
low depolarization should be attributed to smoke parti-
cles. The second cluster consists of points localized inside
0.1× 10−4<GF< 0.8× 10−4 and 1 %<δ532< 3 % inter-
vals, which corresponds to the urban particles in Table 1.
After cluster localization, the observations can be plotted as
aerosol types, using the parameters in Table 1 and the ap-
proach described in Sect. 3.2. The aerosol types in Fig. 5b
are spatially separated and contain no high-frequency oscil-
lations. Urban particles are localized at low heights, below
1 km. We would like to remind the reader that, under the con-
dition of high relative humidity (RH), the fluorescence ca-
pacity can decrease due to the particle’s hygroscopic growth.
The water uptake increases the particle backscattering but
does not change the fluorescence. As a result, the fluores-
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Figure 10. Vertical profiles of (a) backscattering coefficient β532
and particle depolarization ratios δ532 and δ1064. (b) Fluorescence
backscattering βF, fluorescence capacity GF, and backscattering
Ångström exponent Aβ532/1064 on 15 September 2020 for the pe-
riod 00:00–04:00 UTC.

cence capacity decreases (Veselovskii et al., 2020b). In ac-
cordance with radiosonde data, the relative humidity below
1 km was quite high (about 70 % at 500 m) and decreased
with height, which can explain the wide range in theGF vari-
ation observed for urban particles in Fig. 5a.

The particle intensive properties, such as the lidar ra-
tios at 355 nm and 532 nm wavelengths (S355, S532), the
particle depolarization ratios (δ355, δ532, δ1064), the extinc-
tion (Aα355/532), and the backscattering (Aβ355/532, Aβ532/1064)
Ångström exponents for the episodes analyzed in this study,
are summarized in Table 2. For this measurement session, in
the smoke layer, the lidar ratio at 532 nm significantly ex-
ceeds the corresponding value at 355 nm (S532= 80± 12 sr
and S355= 50± 7 sr). The particle depolarization ratio de-
creases with wavelength from 4.5 % at 355 nm to 2 % at
1064 nm. Such a spectral dependence of the lidar ratio and
depolarization ratio for the aged smoke is in agreement with
previous studies (e.g., Haarig et al., 2018; Hu et al., 2022,
and references therein).

4.2 30 May 2020: urban vs. pollen

Pollen grains represent a significant fraction of primary bi-
ological materials in the troposphere, and a fluorescence-
induced emission provides an opportunity for their identifica-
tion. Figure 6 presents the spatiotemporal variations of β532,
βF, δ532, and GF during the pollen season on the night of
30–31 May 2020. The presence of different types of pollen
over Lille in spring–summer 2020 was discussed in our re-
cent publication (Veselovskii et al., 2021). In particular, on
30 May 2020, the in situ measurements on the roof of the
building demonstrate the presence of a significant amount of

grass pollen. The transport of pollen can be analyzed with a
global scale to mesoscale dispersion model, SILAM (Sofiev
et al., 2015). In the Appendix, we show the maps of the
pollen index for four sessions from this study at 22:00 UTC.
On 30 May, the pollen index in the Lille region is about 5.0,
indicating a high content of pollen.

The aerosol is located inside the planetary boundary layer
(PBL) below 2.5 km. At altitudes below 1 km, the depolariza-
tion ratio δ532 after 23:00 UTC increases up to∼ 15 % simul-
taneously, with an increase in the fluorescence capacity up to
2.0× 10−4, which can be an indication of pollen presence. In
the δ532-GF diagram in Fig. 7a, the single pixel data points
spread from the values typical for the urban particles to the
values typical for the pollen. The contribution of pollen to
the total backscattering changes with height, and the points
form the pattern, similar to a characteristic curve, calculated
for urban–pollen mixture in Fig. 3. In accordance with ra-
diosonde data from the Herstmonceux station, the RH at mid-
night was about 40 % at 500 m, and it increased up to 70 %
at 2000 m; thus, the spatiotemporal variations in RH could
influence the observed values of the backscattering coeffi-
cient and depolarization ratio. In particular, the hygroscopic
growth can decrease the values of both δ532 andGF. However,
the value of the fluorescence capacity in Fig. 7a changes for
almost 1 order of magnitude, and such a strong change in
GF cannot be explained by the particle hygroscopic growth
only. For example, from the recent publication of Sicard et
al. (2022), an increase of β532 in urban aerosol for this range
of RH is below a factor of 1.5. Thus, we suppose that the pat-
tern in Fig. 7a is due to the mixing of the urban and pollen
particles. The spatiotemporal distribution of aerosol types
is shown in Fig. 7b. The urban particles (brown) are pre-
dominant, while pollen (yellow) is localized below 1 km in
height. The gray color corresponds to an unidentified aerosol
type which, in our case, is the mixture of urban particles and
pollen.

An indicator of pollen presence in an aerosol mixture,
along with a high depolarization ratio, can be a higher value
of δ1064 with respect to δ532 or δ355 (Cao et al., 2010;
Veselovskii et al., 2021). Vertical profiles of the particle de-
polarization ratio at all three wavelengths for this episode
are given in Fig. 8c of Veselovskii et al. (2021). At 0.75 km
height, where δ1064 is about 15 %, the ratio δ1064

δ532
is 1.5, which

corroborates the suggestions about pollen presence. For ur-
ban aerosol, the depolarization spectral ratio δ1064

δ532
can also

be above 1.0 (Burton et al., 2013), but the absolute values of
depolarization are significantly lower than for pollen parti-
cles (below 10 %).

4.3 14 September 2020: wildfire smoke vs. pollen
mixture

Another strong smoke episode occurred on the night of 14–
15 September 2020, and the corresponding distributions of
β532, βF, δ532, and GF are shown Fig. 8. The elevated smoke
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Table 2. Intensive particle parameters, such as the lidar ratios (S355, S532), particle depolarization ratios (δ355, δ532, δ1064), extinction
(Aα355/532), and backscattering (Aβ355/532, Aβ532/1064) Ångström exponents for six episodes are analyzed in this work. The parameters are
given for chosen height–temporal intervals, and the types of aerosol are determined from fluorescence measurements.

Date Time (UTC) H (km) Type S355 S532 δ355 (%) δ532 (%) δ1064 (%) Aα355/532 A
β
355/532 A

β
532/1064

(dd.mm.yyyy) (sr) (sr)

10.04.2020 21:00–23:00 0.9–1.1 Urb.+poll. 48± 7 48± 7 5.0± 1.0 6.0± 1.0 10± 1.5 1.3± 0.2 1.4± 0.2 1.0± 0.2
2.0–2.2 Urban 50± 7 70± 10 7.0± 1.0 3.5± 0.7 3.0± 0.6 1.1± 0.2 2.0± 0.2 1.2± 0.2

30.05.2020 21:00–02:00 1.8–2.0 Urban 60± 9 55± 8 3.6± 0.8 4.0± 0.8 5.7± 1.0 2.0± 0.2 1.6± 0.2 1.2± 0.2

12.09.2020 20:00–23:00 3.2–3.8 Smoke 50± 7 80± 12 4.5± 1.0 3.0± 0.6 2.0± 0.4 1.0± 0.2 2.2± 0.2 1.2± 0.2

15.09.2020 00:00–04:00 1.4–1.6 Pollen 40± 6 37± 6 9.5± 1.5 8.0± 1.5 15± 2.5 1.6± 0.2 1.4± 0.2 0.9± 0.2
5.8–6.2 Smoke 45± 7 70± 10 9.0± 1.5 3.5± 0.7 1.4± 0.3 0.8± 0.2 2.0± 0.2 1.2± 0.2

01.04.2021 19:00–20:40 2.25–2.5 Dust 57± 8 52± 8 30± 4.5 30± 4.5 – 0± 0.2 −0.3± 0.2 –

11.08.2021 22:00–24:00 1.0–1.2 Urban 42± 7 55± 8 – 8.0± 1.2 5.7± 0.8 1.3± 0.2 1.5± 0.2 1.1± 0.2
1.5–2.0 Smoke 45± 7 72± 11 – 6.0± 0.9 2.5± 0.5 1.0± 0.2 2.2± 0.2 1.2± 0.2

Figure 11. Spatiotemporal distributions of the backscattering coefficient β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio δ532, and the fluorescence capacity GF on the night of 10–11 April 2020. Measure-
ments are performed at an angle of 45◦ to the horizon. The values of δ532 and GF are shown for β532> 0.2 Mm−1 sr−1.

layer with a low depolarization ratio (δ532< 5 %) and high
fluorescence capacity (up to 4.0× 10−4) was observed at ap-
proximately 6 km height during the whole night. Inside the
boundary layer, the depolarization ratio is higher, up to 15 %,
while the fluorescence capacity is lower (about 1.0× 10−4)
compared to the elevated layer. In the δ532-GF diagram in
Fig. 9a, we can see the cluster of data points corresponding
to the smoke. At the same time, a part of the points are in-
side the range of parameters attributed to the pollen (Table 1).
The remaining points should be attributed to the mixture of
pollen, smoke, and urban aerosol. The distribution of the par-
ticle types (Fig. 9b) of this mixture is marked with gray. The
pollen particles are localized below 1 km. The presence of
pollen over Lille in September is not common, but it can be
transported from other regions. The SILAM pollen index in
Fig. A1 for this date demonstrates the transport of pollen to

northern France from the southeast of France and the eastern
Mediterranean.

Figure 10a presents the profiles of δ532 and δ1064, together
with β532, for the temporal interval of 00:00–04:00 UTC. The
relative humidity, in accordance with radiosonde data from
Herstmonceux station, did not exceed 50 % below 1.7 km.
Above that height, RH increased up to 75 % at 2.5 km; thus,
the observed increase of β532 above 1.5 km can be partly re-
lated to RH growth. The relative humidity inside the smoke
layer did not exceed 10 %. Similar to Fig. 8, δ1064 exceeds
δ532 at low heights. The ratio δ1064

δ532
is about 1.5 at 1 km and

inside the smoke layer δ1064
δ532

0.4. Higher values of the depo-
larization ratio at 532 nm compared to 1064 nm are reported
for aged smoke by Haarig at al. (2018) and Hu et al. (2019,
2022). The BAE does not present significant height varia-
tions because Aβ532/1064 is about 1.0 inside the PBL, and it
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Figure 12. (a) The δ532-GF diagram for observations at 350–1500 m (blue symbols) and 1500–2500 m (pink symbols) height ranges. (b) Spa-
tiotemporal distribution of aerosol types on the night of 10–11 April 2020. The gray coloring shows an undefined aerosol type, which is a
mixture of urban and pollen for this case. Measurements with β532< 0.2 Mm−1 sr−1 are marked in black.

increases to 1.25 inside the smoke layer (Fig. 10b). Simul-
taneously, the fluorescence capacity in the smoke layer in-
creases about a factor of 4, compared to the PBL, which
demonstrates the efficiency of the fluorescence technique for
discriminating the smoke from other aerosol types.

4.4 10 April 2020: urban vs. pollen

At the beginning of April, we experienced several atmo-
spheric situations for which elevated layers were classified
as urban aerosols. One of these cases, on the night of 10–
11 April 2020, is shown in Fig. 11. Lidar observations were
performed at an angle of 45◦ to the horizon, so the minimum
height reachable in the analysis is 350 m. The relative humid-
ity, in accordance with radiosonde data from Herstmonceux
station, increased with height from 54 % at 1.0 km to 65 %
at 2.2 km. The layer with depolarization ratio δ532 below 5 %
was observed at about 2 km height during the night. The flu-
orescence capacity in the layer is low (below 0.5× 10−4), so
it is identified as urban aerosol. HYSPLIT (Hybrid Single-
Particle Lagrangian Integrated Trajectory model) backward
trajectories (not shown) indicate that the air masses at 750
and 2000 m heights were transported from England (HYS-
PLIT, 2022). For the period 21:00–23:00 UTC, the depolar-
ization ratio below 500 m increased simultaneously with the
fluorescence capacity, which can be an indication of pollen
presence.

In the δ532–GF diagram (Fig. 12a), the single pixel mea-
surements at 350–1500 and 1500–2500 m height ranges are
shown by different colors. The data points related to the up-
per layer are within the range of parameters expected for ur-
ban aerosol. The points in the lower layer (below 1500 m) are
partly out of this range, so the aerosol type for these points
is undefined. We assume that this is the mixture of urban and
pollen particles because we observe particles with high de-
polarization (δ532> 15 %) and fluorescence capacity up to
0.7× 10−4. This mixture is marked in gray on the aerosol

Figure 13. Vertical profiles of the (a) backscattering coefficient
β532 and particle depolarization ratios δ532 and δ1064. (b) Fluores-
cence backscattering βF, fluorescence capacity GF, and backscat-
tering Ångström exponent Aβ532/1064 on 10 April 2020 for the pe-
riod 21:00–23:00 UTC.

mask in Fig. 12b. The pollen index provided by SILAM over
Lille at midnight is above 4.0, so the presence of pollen par-
ticles is expected.

The presence of pollen is also supported by the profiles
of δ532 and δ1064, as shown in Fig. 13. At low heights, δ1064
exceeds δ532, and the ratio δ1064

δ532
is about 1.4 at 0.5 km. How-

ever, inside the elevated layer, this ratio decreases and be-
comes about 0.8 at 2.25 km, which indicates that the mixture
composition has changed. For the same height range, the flu-
orescence capacity decreases from 0.6× 10−4 to 0.3× 10−4,
while Aβ532/1064 gradually increases from 0.75 to 1.25, which
can be due to a decrease in pollen contribution.
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Figure 14. Spatiotemporal distributions of the backscattering coefficient β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio δ532, and the fluorescence capacity GF on the night of 11–12 August 2021. The val-
ues of δ532 and GF are shown for β532> 0.3 Mm−1 sr−1.

Figure 15. (a) The δ532-GF diagram for observations in the 500–1400 m (blue symbols) and 1400–2500 m (pink symbols) height ranges.
(b) Spatiotemporal distribution of aerosol types on the night of 11–12 August 2021. Measurements with β532< 0.3 Mm−1 sr−1 are marked
in black.

As follows from Table 2, in the lower layer, the values of
S355 and S532 are close (about 48± 7 sr). However, in the el-
evated layer, S532 increases to 70± 7 sr, while S355 remains
the same. Higher values of S532, with respect to S355, are typ-
ical for aged smoke (e.g., Müller et al., 2005; Hu et al., 2022).
Moreover, Aβ355/532 significantly exceeds Aα355/532, which
was also reported for aged smoke. Thus, based on intensive
properties only, we could classify this layer as smoke. How-
ever, due to a low fluorescence capacity, in our approach, we
identify it as urban.

4.5 11 August 2021: contacting layers of smoke and
urban aerosol

Separation of smoke and urban particles is a challenging task
for Mie–Raman lidar because both types have a small effec-
tive radius and similar depolarization ratios δ532. However,

the fluorescence capacity of smoke is about a factor of 4–5
higher than that of urban aerosol, which allows their reliable
separation. The analyses of the measurements on the night of
11–12 August 2021 are shown in Fig. 14. The RH decreases
with height from 70 % to 40 % inside the 500–2250 m range.
The main part of aerosol is concentrated below 2500 m, and
two height intervals can be distinguished. Above approxi-
mately 1500 m, the layer with high fluorescence capacity (up
to 3.0× 10−4) is observed, while in the layer below 1500 m,
the GF is low (below 0.8× 10−4). HYSPLIT backward tra-
jectories (not shown) indicate that the air masses at 1800 m
heights were transported from North America, so these may
contain wildfire smoke.

In the δ532-GF diagram (Fig. 15a), the single pixel mea-
surements in the 500–1400 and 1400–2500 m height ranges
are shown by different colors. The cluster of points, corre-
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Figure 16. Vertical profiles of (a) backscattering coefficient β532
and particle depolarization ratios δ532 and δ1064. (b) Fluorescence
backscattering βF, fluorescence capacity GF, and backscattering
Ångström exponent Aβ532/1064 on 12 August 2021 for the period
00:00–03:30 UTC.

sponding to the upper layer, is localized mainly inside the in-
terval 1.8× 10−4<GF< 4.0× 10−4 and 4 %<δ532< 10 %
and can be attributed to smoke. The points corresponding to
the lower layer are partly identified as urban particles, but a
part of the points is out of the range and forms a pattern typ-
ical for urban–pollen mixture. The SILAM pollen index in
Fig. A1 is above 5.0, so the contribution of pollen can be no-
ticeable. The smoke and urban layers are in contact and the
particle mixing occurs, which increases dispersion within the
clusters.

Vertical profiles of δ532 and Aβ532/1064 in Fig. 16 do not
demonstrate significant differences for the upper and lower
layers. Meanwhile, the fluorescence capacity increases by
factor of 4. The lidar ratios S355 and S532 in the upper layer,
as follows from Table 2, are 45± 7 and 72± 11 sr, respec-
tively. The Aβ355/532 significantly exceeds Aα355/532 (2.2± 0.2
and 1.0± 0.2, respectively), so, based on intensive parame-
ters, the upper layer can be also identified as smoke.

4.6 1 April 2021: dust

Dust layers transported from Africa are regularly observed
over northern France. One such dust episode took place on
the night of 1–2 April 2021, and the corresponding spa-
tiotemporal variations of β532, βF, δ532, andGF are shown in
Fig. 17. The dust layer, with a depolarization ratio exceeding
30 % and low fluorescence, extends from approximately 1.0
to 5.0 km in height. The fluorescence capacity varied inside
the layer. In the center, it was the lowest (about 0.1× 10−4),
but at the bottom of the layer and near the top, GF increased
up to (0.2–0.3)× 10−4. In Fig. 18a (δ532-GF diagram), we
observe a cluster of particles which can be identified as

dust. There is also a second small cluster attributed to ur-
ban aerosols. In the distribution of particle types in Fig. 18b,
the urban aerosol occurs below 800 m after 23:00 UTC.

Figure 19 provides vertical profiles of β532, δ532, δ355, βF,
GF, and Aβ355/532. Measurements at 1064 nm were not avail-
able for this episode. Depolarization ratios at 355 and 532 nm
are close to 30 % through the layer, though, at heights below
1.5 km, there is a small enhancement of δ532 up to 34 %. The
fluorescence capacity is about 0.4× 10−4 at 1.5 km, and it
decreases with height to 0.1× 10−4 at 2.5 km. However, this
decrease is not accompanied by changes in the depolariza-
tion ratio. The backscattering Ångström exponent Aβ355/532
is sensitive to the enhancement of dust absorption in UV and
can be negative (Veselovskii et al., 2020a). For this episode,
A
β

355/532 decreases with height (together with GF) to −0.3

at 2.5 km. Similar values of Aβ355/532 were observed during
SHADOW campaign in the Western Sahara (Veselovskii et
al., 2020a). Above 3.75 km, both Aβ355/532 andGF start to in-
crease. Hence, dust properties change with height, and this
change is not revealed in the δ532 profile. We should mention
that, in the publication of Veselovskii et al. (2020a), the in-
crease in the dust imaginary part in the UV range also did not
lead to changes in δ532.

The application of our new fluorescence–depolarization-
based approach to the six episodes considered in this sec-
tion demonstrates its ability to discriminate between several
aerosol types. The first step in the validation of the results
presented could be a comparison of the particle properties for
obtained aerosol types with the corresponding values used in
the existing classification algorithms. Table 3 provides the
range of the variation in particle intensive properties from
publications of Burton et al. (2013), synthetic values used in
the NATALI algorithm (Nicolae et al., 2018), and parame-
ters used in the algorithm of Papagiannopoulos et al. (2018)
for the urban, smoke, and dust particles. The table contains
also the range of properties variations for the episodes con-
sidered in the current study for the same aerosol types. The
parameters chosen in different algorithms, even for the same
aerosol type, vary in a wide range, and the values observed in
this study mainly match this range of variation. We observe
higher values of Aβ355/532 for urban and smoke particles, and,

for dust,Aβ355/532 could be negative. Still, the values obtained
in this study and the values used by other algorithms are in
reasonable agreement.

5 Conclusion

The results presented in this study can be considered as the
first important step in the combination of Mie–Raman and
fluorescence lidar data. In the approach presented, only two
intensive parameters are used for classification, i.e., the par-
ticle depolarization ratio δ532 and the fluorescence capac-
ity GF. These parameters are chosen because they are spe-
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Figure 17. Height–temporal distributions of the backscattering coefficient at 532 nm β532, the fluorescence backscattering coefficient βF (in
10−4 Mm−1 sr−1), the particle depolarization ratio at 532 nm δ532, and the fluorescence capacity GF on the night of 1–2 April 2021. The
values of δ532 and GF are shown for β532> 0.3 Mm−1 sr−1.

Figure 18. (a) The δ532-GF diagram for observations in the 500–5000 m height range and (b) spatiotemporal distribution of aerosol types
on the night of 1–2 April 2021. Measurements with β532< 0.3 Mm−1 sr−1 are marked in black.

cific for different types of aerosol and can be calculated
with a high spatiotemporal resolution. Moreover, δ532 andGF
can be calculated at lower altitudes compared to extinction-
related parameters such as the lidar ratio and extinction
Ångström exponent. Thus, classification, in principle, is pos-
sible at ranges with incomplete geometrical overlap. Finally,
the computation of βF does not demand the use of a reference
height, and only the calibration of relative sensitivity of the
channels is needed. Thus, aerosol classification is possible,
even in the presence of low-level clouds.

Though only two aerosol properties are considered, the use
of fluorescence provides advances in aerosol classification.
Analysis of numerous observations, performed at Lille Uni-
versity for the period 2020–2021, demonstrates the possibil-
ity to separate four types of aerosols, such as dust, smoke,
pollen, and urban. Moreover, we are able to identify the lay-
ers containing the liquid water particles and ice. The number

of determined aerosol classes can be increased by consid-
ering the particle mixtures. In particular, pure dust can be
considered separately from the polluted one, which can be
discriminated by lower values of the depolarization ratio.

The fluorescence technique is especially promising for the
separation of smoke and urban particles because the fluores-
cence capacity of smoke is about a factor of 5 higher. The im-
portant advantage of fluorescence measurements is the abil-
ity to identify the biological particles in the atmosphere, such
as pollen, which are usually not included in the classification
schemes based on Mie–Raman observations. At the same
time, our observations demonstrate that biological particles
are frequently observed during spring–autumn seasons and
may contribute significantly to the aerosol composition in-
side the PBL. The developed approach allows us to identify
aerosol types with high spatiotemporal resolutions, which is
estimated to be 60 m for height and less than 10 min for time,
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Figure 19. Vertical profiles of (a) backscattering coefficient β532
and particle depolarization ratios δ532 and δ355. (b) Fluorescence
backscattering βF, fluorescence capacity GF, and backscattering
Ångström exponent Aβ532/1064 on 1 April 2021 for the period
19:00–20:40 UTC.

Table 3. Intensive particle parameters from publications of Bur-
ton et al. (2013), Nicolae et al. (2018), and Papagiannopoulos et
al. (2018), together with values observed in current study for the
urban, smoke, and dust particles.

Burton et Nicolae et Papagiannopoulos This
al. (2013) al. (2018) et al. (2018) study

Urban Continental Clear Urban
(rural) continental

S355 (sr) 43–54 50± 8 42–60
S532 (sr) 43–81 52–53 41± 6 55–70
Aα355/532 – 1.2–1.3 1.7± 0.6 1.1–2.0

A
β
355/532 – 1.0–1.6 1.3± 0.3 1.5–2.0

A
β
532/1064 0.49–1.3 0.54–1.0 1.0± 0.3 1.1–1.2

Smoke

S355 (sr) – 56–72 81± 16 40–50
S532 (sr) 46–87 81–92 78± 11 70–80
Aα355/532 – 1.1–1.3 1.3± 0.3 0.8–1.0

A
β
355/532 – 1.4–2.1 1.2± 0.3 2.0–2.4

A
β
532/1064 0.48–1.6 0.7–0.8 1.3± 0.1 1.2

Dust

S355 (sr) – 43–46 58± 12 57
S532 (sr) 41–57 44–49 55± 7 52
Aα355/532 – 0.88–0.92 0.3± 0.4 0

A
β
355/532 – 0.91–0.97 0.3± 0.2 −0.3

A
β
532/1064 0.49–0.68 0.16–0.22 0.4± 0.1 –

for the current instrumental configuration. Such a resolution
provides an opportunity for investigating the dynamics of
aerosol mixing in the troposphere.

The next step in the algorithm development will be to in-
clude additional particle properties. We plan to include the
backscattering Ångström exponents and the depolarization
spectral ratios (δ355/δ532 and δ532/δ1064), which can be also
calculated with high spatiotemporal resolutions. The fluores-
cence capacity depends on the relative humidity, due to the
effects of hygroscopic growth. Thus, information about the
spatiotemporal distribution of RH should be included in the
analysis. It is also important to combine our algorithm with
existing classification schemes, which we plan to consider in
the near future.

Appendix A: Pollen index provided by SILAM

The SILAM is a chemical transport model developed by
the Finnish Meteorological Institute (Sofiev et al., 2015). It
provides information on the atmospheric composition, air
quality, and pollen. In the pollen module of SILAM, six
pollen types (alder, birch, grass, mugwort, olive, and rag-
weed) are considered. The pollen index is defined as a quan-
titative measure of the severity of the pollen season and a
proxy of the allergenic exposure (Sofiev et al., 2012; Sofiev,
2017). The higher the pollen index is, the more pollen grains
are in the atmosphere and the higher the allergy risk. Fig-
ure A1 shows the maps of pollen index in four cases. Ac-
cording to the description of SILAM model, the pollen index
is labeled as very high when its value is greater than 4.0.
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Figure A1. Pollen index provided by SILAM for 10 April 2020, 30 May 2020, 14 September 2020, and 11 August 2021. The levels of pollen
index are very low (< 1.0), low (1.0–2.0), moderate (2.0–3.0), high (3.0–4.0), and very high (> 4.0).
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