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Abstract. Lidar at 1064 nm and Ka-band millimetre-wave
cloud radar (MMCR) are powerful tools for detecting the
height distribution of cloud boundaries and can monitor the
entire life cycle of cloud layers. In this study, lidar and
MMCR are employed to jointly detect cloud boundaries
under different conditions. By enhancing the echo signal
of lidar at 1064 nm and combining its signal-to-noise ratio
(SNR), the cloud signal can be accurately extracted from
the aerosol signals and background noise. The interference
signal is eliminated from Doppler spectra of the MMCR by
using the noise ratio of the smallest measurable cloud sig-
nal (SNRmin) and the spectral point continuous threshold
(Nts). Moreover, the quality control of the reflectivity fac-
tor of MMCR obtained by the inversion is conducted, which
improves the detection accuracy of the cloud signal. We anal-
ysed three typical cases studies; case one presents two in-
teresting phenomena: (a) at 19:00–20:00 CST (China stan-
dard time), the ice crystal particles at the cloud top bound-
ary are too small to be detected by MMCR, but they are
well detected by lidar. (b) At 19:00–00:00 CST, the cirrus
cloud changes to altostratus where the cloud particles even-
tually grow into large sizes, producing precipitation. Fur-
ther, MMCR has more advantages than lidar in detection
of the cloud top boundary within this period. Considering
the advantages of the two devices, the change characteris-
tics of the cloud boundary in Xi’an from December 2020 to
November 2021 were analysed, with MMCR detection data
as the main data and lidar data as the assistant data. The sea-
sonal variation characteristics of clouds show that, in most
cases, high clouds often occur in summer and autumn, and
the low clouds are usually in winter. The normalized cloud
cover shows that the maximum and minimum cloud cover
occur in summer and winter, respectively. Furthermore, the

cloud boundary frequency distribution results for the whole
of the observation period show that the cloud bottom bound-
ary below 1.5 km is more than 1 %, the frequency within the
height range of 3.06–3.6 km is approximately 0.38 %, and
the frequency above 8 km is less than 0.2 %. The cloud top
boundary frequency distribution exhibits the characteristics
of a bimodal distribution. The first narrow peak lies at ap-
proximately 1.0–3.1 km, and the second peak appears at 6.4–
9.8 km.

1 Introduction

A cloud is a mixture of water droplets or ice crystals sus-
pended in the air at a certain height through condensation or
condensing after the water vapour in the atmosphere reaches
saturation (Zhou et al., 2016; Wild, 2012; Stephens et al.,
2012). Cloud vertical structure information (Thorsen et al.,
2013; Lohmann and Gasparini, 2017; Stephens, 2005; Wang
and Rossow, 1995; Nakajima and King, 1990) reflects the
thermodynamic and dynamic processes of the atmosphere
and participates in the global water cycle through forma-
tion, development, movement, and dissipation (Wild, 2012;
Zhang et al., 2016, 2017; Sherwood et al., 2014; Dong et al.,
2010). However, the vertical structure distribution of clouds
has great temporal and spatial heterogeneity and a high rate
of change, which leads to great challenges in accurately eval-
uating the radiation effects of clouds at different cloud types
and heights. Research on the characteristics of vertical cloud
structures has always been an important direction in cloud
physics research (Zhou et al., 2019). Cloud boundaries are
the main information in the study of vertical cloud structure,
mainly referring to the cloud bottom and top boundaries, in-
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cluding the side boundary. The cloud boundary in this study
mainly refers to the cloud bottom and top boundaries. Mul-
tilayer clouds also include boundary information of interme-
diate discontinuous clouds (Zhou et al., 2019; Varikoden et
al., 2011; Li et al., 2013; Ward and Merceret 2004; Zhang et
al., 2018; Kuji, 2013; Kitova et al., 2003; Cao et al., 2021).
With the development of remote sensing detection technol-
ogy, Ka-band millimetre-wave cloud radar (MMCR) (Görs-
dorf et al., 2015; Kollias et al., 2007a, b) and lidar (Apit-
uley et al., 2000; Protat at et al., 2011; Motty et al., 2018;
Cordoba-Jabonero et al., 2017) have become effective instru-
ments for cloud boundary detection.

Common methods for detecting cloud boundaries using
lidar include the threshold method and differential zero-
crossing method. The threshold method (Kovalev et al.,
2005) uses a background signal to measure the echo signal
amplitude. The first point where the echo signal is higher
than the background signal and exceeds the set threshold
is the cloud bottom boundary. However, because of the ex-
istence of noise, a point with a marked increase in ampli-
tude may not be found under the condition of a low signal-
to-noise ratio (SNR); therefore, the cloud bottom boundary
cannot be judged. Pal et al. (1992) proposed the differen-
tial zero-crossing method through calculation of dP/dr us-
ing lidar backscattering intensity P and range r , and the
first derivative of backscatter intensity dP/dr changes sign
from negative to positive, and this zero crossing is cloud
bottom. The threshold, differential zero crossing, and vari-
ant detection methods are all based on the feature points
of cloud boundaries (Streicher et al., 1995). They are eas-
ily affected by noise, and some indicators must be intro-
duced in the specific implementation process to determine
the cloud boundary by changing the experience threshold fre-
quently during calculation, which causes difficulties in ac-
curate cloud boundary detection. Young (1995) designed an
independent double-window algorithm to detect cloud bot-
tom and top boundaries by combining the lidar signal and
a known atmospheric backscatter signal. However, the algo-
rithm needs to manually adjust the window size or the se-
lection of the threshold. Based on the wavelet covariance
transform method, Morille et al. (2007) determined the lo-
cal maxima on both sides of the cloud peak as cloud bottom
and cloud top, but this method mistakes some real signals at
the cloud bottom as noise and misses some information at
the cloud top, resulting in overestimation and underestima-
tion of cloud base and cloud top height, respectively. Mao et
al. (2011) adopted a multiscale hierarchical detection algo-
rithm, selected the starting and ending points of the feature
area as the cloud bottom and cloud peak, and detected the
cloud top and bottom through multiple iterative updates.

The determination of the cloud boundary by MMCR is
mainly based on the threshold of the echo reflectivity fac-
tor used to detect the cloud boundary (Hobbs et al., 1985;
Platt et al., 1994). Kollias et al. (2007a) judge step by step
from the bottom to the top of the reflectivity. If the SNR

of more than nine consecutive distance gates reaches the set
threshold, these gates are represented as cloud signals; other-
wise, it is deemed a noncloud signal. Clothiaux et al. (1999)
used 35 GHz millimetre wave cloud measuring radar to anal-
yse different types of clouds and considered that the dynamic
range of the cloud reflectivity factor is from −50 to 20 dBZ.
The existence of certain ground object echoes and biologi-
cal groups (including insects and other biological particles)
in the lower atmosphere interferes with real cloud echo sig-
nals (Luke et al., 2008; Görsdorf et al., 2015; Oh et al., 2016;
Melnikov et al., 2014, 2015). If the subjective reflectivity fac-
tor threshold is directly used to determine the cloud signal, it
is not suitable for all cloud types. Therefore, when a cloud
signal cannot be accurately identified, large errors in the de-
tection of cloud boundaries result.

Research on the macro- and microscopic structures of
clouds in a specific area mainly relies on ground-based ob-
servations. Currently, for better cloud detection, it is neces-
sary to combine lidar and MMCR to observe and study lo-
cal clouds (Sauvageot, 1996; Intrieri et al., 1993; Sassen and
Mace, 2001; Borg et al., 2011; Delanoe and Hogan, 2008).
This study combined the advantages of lidar and MMCR in
detecting clouds to achieve high-precision cloud boundary
detection and inversion. We effectively identify cloud signals
from Doppler spectra data of MMCR, and through data qual-
ity control, the interference signal caused by floating debris
is eliminated to improve the detection accuracy of the cloud
boundary. Based on the idea that the MMCR only presents
the cloud signal to make cloud boundary detection simple
and easy to operate, in this study, we effectively separate the
cloud signal from aerosol and background noise by enhanc-
ing and transforming the lidar signal and combining the SNR
(Xie et al., 2017) to realize the accurate detection of cloud
boundaries. By analysing the results of cloud boundary de-
tection by the two instruments under special weather condi-
tions in Xi’an, the cloud boundary evaluation criteria for the
joint observation of the two instruments are established, and
the variation characteristics of cloud boundary height over
Xi’an in 2021 are statistically analysed in detail.

2 Observation and instrument

Xi’an City (33◦42′–34◦45′ N, 107◦40′–109◦49′ E), Shaanxi
Province (31◦42′–39◦35′ N, 105◦29′–111◦15′ E), is located
in the Guanzhong Basin in the middle of the Weihe River
basin, bordering the Weihe River and Loess Plateau to the
north and the Qinling Mountains to the south. Xi’an has a
semi-humid climate. Owing to its special geographical loca-
tion, it is particularly urgent to analyse cloud observations
and analyses in Xi’an. The lidar and MMCR are installed at
the Jinghe National Meteorological Station in China, placed
side by side at a distance of 50 m, and both adopt the ver-
tical observation mode to obtain the vertical structure infor-
mation of clouds. In Fig. 1 the black line represents Shaanxi
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Figure 1. Geographical coverage of Shaanxi Province (31◦42′–
39◦35′ N, 105◦29′–111◦15′ E). The red dot indicates the location
of the Jinghe National Meteorological Station in Xi’an (33◦42′–
34◦45′ N, 107◦40′–109◦49′ E).

Table 1. Main parameters of the lidar.

Indicators Devices Main parameter

Launch system Laser Nd:YAG;
0.75 J at 1064 nm

Receiving system Cassegrain telescope 8400 mm
Filter 0.5 nm

Detection system Detector APD
Sampling mode Analogue detection

Spatiotemporal Time resolution 2 min
resolution Range resolution 3.75 m

Pulse accumulation 2000

Province, dark blue represents the Yellow River, light blue
represents the Weihe River, and the red dot indicates the lo-
cation of the Jinghe National Meteorological Station.

The lidar used in this study was developed by Xi’an Uni-
versity of Technology. The MMCR is the HT101 all-solid-
state cloud radar researched by Xi’an Huateng Microwave
Co., Ltd. The main parameters are listed in Tables 1 and 2,
respectively.

Table 2. Main parameters of MMCR.

Indicators Detailed description

Radar system All solid-state; all coherent
Doppler; pulse compression

Working frequency 35 GHz, and wavelength is
8.6 mm

Detection altitude range 15 km

Detection blind area 150 m

Spatiotemporal time resolution 5 s
resolution range resolution 30 m

Scanning mode Vertical headspace fixed
pointing

Pulse width 1, 5, 20 µs

Detection accuracy Z ≤ 0.5 dBZ, V ≤ 0.5 m s−1,
W ≤ 0.5 m s−1

3 Method

Using active instruments to determine cloud boundaries
through remote sensing measurements, echo signals in clear-
sky areas decay rapidly with increasing detection distance.
When a cloud signal is detected, the amplitude of the echo
signal begins to increase sharply. Usually, during the actual
observation, the background noise or aerosol layer also in-
creases the amplitude of the echo signal, but the backscat-
tering intensity of the cloud layer is more continuous and
stronger than the aerosol layer and background noise. There-
fore, cloud layer and cloud boundary detection can be real-
ized according to the characteristic changes in the echo sig-
nals.

3.1 Lidar cloud boundary detection

The lidar equation owing to elastic backscattering
(Wandinger, 2005; Motty et al., 2018) can be written
as

P (λ,r)= P0
cτ

2
Aη
O (r)

r2 β (λ,r)

· exp

−2

r∫
0

σ (λ,r)dr

 , (1)

where λ is the wavelength of the emitted light, r represents
the detection distance, and β(λ,r) and σ(λ,r) are the at-
mospheric backscattering and extinction coefficients, respec-
tively. O(r) is the laser-beam receiver field-of-view overlap
function, c is the speed of light, P0 is the average power of
a single laser pulse, τ is the temporal pulse length, η is the
overall system efficiency, and A is the area of the primary re-
ceiver optics responsible for the collection of backscattered
light.
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Considering the influence of the background noise and re-
sponse noise of the photomultiplier detector, Eq. (1) can be
further expressed as

P (λ,r)= C ·
1r

r2 ·β (λ,r) · exp

−2

r∫
0

σ (λ,r)dr


+E(λr)+Nback(λr

′), (2)

where C is the system constant, which is determined by the
laser energy, receiving area of the telescope, and quantum
efficiency of the detector.1r is the detection range resolution
of the system. Nback(λ,r

′) is the background noise received
by the system. E(λ,r) represents the noise introduced to the
detection system by calibration.

To avoid amplifying the high-level noise signals, we do
not perform distance square correction in Eq. (2) but directly
process it as follows:

Pnew (λ,r)=
P (λ,r)−E(λ,r)−Nback

(
λ,r ′

)
C ·1r

. (3)

For ground-based lidar, the echo signal at a certain height
range (> 15 km in this study applied to the Xi’an region) can
be considered molecular scattering, Nback(λ,r

′) can be es-
timated with the signal within this range, and the standard
deviation of the noise within the distance range is calculated
as follows:

SD=
[

1
n− 1

∑n

i=1

(
xi −

1
n

∑n

i=1
xi

)] 1
2
, (4)

where x denotes the background noise signal. The noise of
the lidar signal can be expressed as

noise(r)= k ·SD. (5)

After the statistical analysis of the system noise, we set k = 4
in this study. The algorithm flow chart of detecting cloud
boundary by lidar is shown in Fig. 2. Usually, the moving
average of Pnew(λ,r) of lidar echo signal is calculated to
reduce the influence of random noise. However, the selec-
tion of a sliding window directly affects the signal quality.
Therefore, wavelet denoising is used to deal with Pnew(λ,r),
the symlets7 wavelet base is selected as the wavelet decom-
position basis function, the decomposition layer is 5, and
the threshold value is the heursure-based heuristic thresh-
old value provided by MATLAB. Compared with the smooth
function, wavelet denoising can avoid eliminating cloud sig-
nals with steep changes due to too much smoothing. Obtain-
ing cloud boundaries mainly includes three parts. The first
part is signal preprocessing. Pnew_s(λ,r) after wavelet de-
noising is discretized based on the estimates of noise, and the
useful signals Pnew_s1(λ,r) and Pnew_s2(λ,r) are obtained.
The second part is to enhance the signal to make the cloud
signal sharper from the background noise and aerosol signal.

We average the signals Pnew_s1(λ,r) and Pnew_s2(λ,r) to ob-
tain Pnew_sf(λ,r). Ascending arrangements are conducted for
Pnew_sf(λ,r), and the new sequence RS and the correspond-
ing index ID are recorded. The maximum and minimum RS
values are denoted as Ma and Mi, respectively. By building
a new mapping proportion coefficient Pe(i), the enhanced
signal Pnew_sp(λ,r) is obtained. Pnew_sp_smooth is obtained
after smoothing Pnew_sp(λ,r). The slope K1 of baseline-1
was obtained from the points (15, V1) and (endpoint, V2)
on Pnew_sp_smooth, and baseline-2 was obtained by using K1
and the point (starting point, V0) as shown in Figs. 3b and
4b. Signals exceeding baseline-2 are regarded as candidate
cloud signals as shown in Figs. 3b and 4b. The third part is to
extract cloud signal and realize boundary detection by com-
bining the SNR of the echo signal. By fitting the echo signal
slope in the height range of 15–20 km, the slope is used as the
slope to distinguish the cloud and aerosol layers (as shown by
the magenta line in Figs. 3b and 4b). Without considering the
bottom echo signal (0–2 km), the amplitude of the echo sig-
nal received by the lidar decreased with increasing detection
height according to the fitted slope, as shown by the blue line
baseline in Figs. 3b and 4b. When the beam senses the pres-
ence of clouds, the amplitude of the echo signal will exceed
the blue baseline. The SNR of the echo signal is an impor-
tant parameter for distinguishing the cloud and aerosol layers
in the echo signal and calculating the SNR of Pnew_sf using
Eq. (6) (Xie et al., 2017),

SNR(r,λ)=
N ·P (r,λ)

√
N ·P (r,λ)+N ·Pback

, (6)

where N is the pulse accumulation, Pback is the solar back-
ground noise power, and SNR in the Shannon formula is the
power ratio of signal to noise, which is a dimensionless unit.
As shown in Figs. 3c and 4c, the SNR of the cloud layer is
higher than that of the aerosol layer and background noise,
and the SNR in the cloud layer is approximately greater than
5 (obtained based on multi-data statistical analysis in differ-
ent situations). Combined with the SNR threshold, the de-
tected cloud information is shown in Figs. 3d and 4d. Com-
pared with the traditional method of finding cloud bottom
and cloud top from echo signals, this method first accu-
rately extracts cloud signals and then obtains cloud bound-
aries (cloud bottom and top). This method greatly reduces
the interference caused by noise and aerosol signal.

3.2 MMCR cloud boundary detection

Identifying cloud signals from Doppler spectra of the MMCR
is affected by the noise level, particularly when the SNR is
low. As shown in Fig. 5 (Di et al., 2022), if all spectral points
above the noise level are integrated, it will result in a large er-
ror in the inversion of its characteristic parameters (reflectiv-
ity factor, spectral width, radial velocity, etc.). Therefore, it is
necessary to carefully identify cloud signals in Doppler spec-
tra signal. Figure 6 includes two parts: recognition of cloud
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Figure 2. Use lidar to detect cloud boundary. (a) Signal preprocessing, (b) baseline determination based on enhanced signal, and (c) identi-
fying cloud boundary with SNR.

signals from Doppler spectra of MMCR and data quality con-
trol for MMCR. Part one is mainly to prepare for obtaining
effective cloud signals. Generally, cloud signals have a cer-
tain number of continuous spectral points and SNR. With
part one of Fig. 6, we use the segmental method to calcu-
late the noise level and take it as the noise and signal bound-
ary (as shown is Fig. 5). If spectral data amplitude is greater
than SNRmin, search for consecutive velocity bins in its spec-
tral data and record the number of bins (Zheng et al., 2014).
When the number is larger than Nts, the corresponding spec-
tral signals are determined as an effective spectrum segment.
Intersections of effective spectral segment and noise and sig-
nal boundary are left and right endpoints of cloud spectral,
that is, the starting and end points of the spectral moment

calculation.

SNRmin =
25
√
NF − 2.1325+ 170

NP

NF ·NP
, (7)

where NF is incoherent accumulation, and NP is the num-
ber of fast Fourier transform sampling points. The NF and
NP of the MMCR used in this study are 32 and 256, respec-
tively, and the SNRmin obtained by calculating the SNRmin
is −17.74 dB. The SNRmin is adjusted according to the
measured data of the MMCR, and SNRmin is finally deter-
mined as −20 dB. Based on the research results of Shupe et
al. (2008), Nts is set to 7.

The echo signals of floating debris in the low-level at-
mosphere have the characteristics of a small reflectivity fac-
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Figure 3. Detection results of lidar at 12:13 CST on 5 March 2021. (a) Pnew_sf of the 1064 nm signal, (b) Pnew_sp of the 1064 nm signal,
(c) SNR of Pnew_sf, and (d) cloud information detected.

Figure 4. Detection results of lidar at 22:44 CST on 8 June 2021. (a) Pnew_sf of the 1064 nm signal, (b) Pnew_sp of the 1064 nm signal,
(c) SNR of Pnew_sf, and (d) cloud information detected.

tor, low velocity, and large spectral width. To further elimi-
nate interfering wave information, we obtained the data qual-
ity control threshold by counting the characteristic changes
in planktonic echoes in the boundary layer under cloud-
free conditions. As shown in (2) of Fig. 6, the reflectivity
factor Z<−20 dBZ, the absolute value of radial velocity
< 0.2 m s−1, and the velocity spectrum width> 0.3 m s−1 are
used as the threshold of noncloud information in the bin. If
the characteristic parameters of each bin meet the threshold,
assign NaN to the corresponding bin in the reflectivity fac-
tor. The echo signals of floating debris in the reflectivity fac-
tor are eliminated by the method, and the quality-control for
reflectivity factor is realized.

According to the algorithm flow in Fig. 6, Doppler spectra
data at 22:44:00 CST on 8 June 2021 are analysed to obtain
the cloud signals of the MMCR reflectivity factor, radial ve-
locity, and velocity spectrum width, as shown in Fig. 7a–c.
The noncloud signals at the bottom (0–2 km) are effectively
eliminated using the quality control algorithm shown in (2)
of Fig. 6, and the accurate recognition of cloud boundary is
realized in Fig. 7d.
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Figure 5. Schematic diagram of cloud signal recognition in Doppler spectra.

Figure 6. Flow chart of MMCR cloud boundary detection. (a) Recognition of cloud signals from Doppler spectra of MMCR and (b) cloud
boundary with data quality control.
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Figure 7. Meteorological signals of MMCR at 22:44 CST on 8 June 2021. (a) Reflectivity factor, (b) radial velocity, (c) velocity spectrum
width, and (d) reflectivity factor after quality control.

4 Results and discussion

4.1 Joint observation and analysis of various types of
clouds

Clouds change rapidly (Veselovskii et al., 2017). They of-
ten appear in the form of single-layer, multilayer, and pre-
cipitating clouds. Section 4 uses the data inversion method
proposed in Sect. 3 to analyse the changing characteristics
of clouds under different conditions to obtain reliable cloud
macroinformation. Although the spatial and temporal reso-
lutions of the two detection devices are different, their close
proximity allows a good “point-to-point” quantitative com-
parison between lidar and MMCR. Before data comparison
and analysis, the low spatial resolution of MMCR and low
temporal resolution of the lidar were interpolated to keep the
spatial and temporal resolutions of the two consistent (the
time resolution is 5 s, and the spatial resolution is 3.75 m).

4.1.1 First case study period

Clouds in the sky often appear as single-layer clouds, and
the inversion of macroscopic parameters is simpler than that
of multilayer clouds. On 8–9 June 2021 (19:00–06:00 China
standard time, CST), lidar and MMCR jointly monitored the
appearance of monolayer clouds in Xi’an. According to the
data method described in Sect. 3.1, we can obtain cloud
change information of time–height indicator (THI) for SNR
of Pnew_sf and Pnew_sp of lidar at 1064 nm with a duration of
7 h, as shown in Fig. 8a and b. The inversion results show
that the thickness of the cloud layer is approximately 2 km,
and the height of the cloud bottom decreases from 8 to 4 km
with the passage of the observation time. After 05:00 CST,
the cloud layer developed deeper, and the laser beam pene-
trated 0.1 km into the cloud layer and was quickly attenuated.

Rainfall begins at 06:00 CST and the lidar cannot continue
effective observation, and the experiment ends. The SNR in
Fig. 8a causes the SNR of the bottom signal to be large (0–
2 km, and the echo signal within the range is not considered
in the following cases). Cloud signals have a higher SNR
than aerosols and background noise. Pnew_sp highlights the
cloud information from the aerosol signal and background
noise, and the details of the instability of the laser energy
from 23:00 to 00:30 CST are displayed in Fig. 8b. Combined
with the SNR (SNR> 5.2 without considering the low-level
saturation zone) and Pnew_sp thresholds of the cloud signal in
Fig. 8a and b, the cloud layer signal detected from the echo
signal is shown in Fig. 8c.

Cloud reflectivity factor of the MMCR for the same ob-
servation time period and the cloud signals observed by
the two devices have good macrostructural similarity before
06:00 CST. As shown in Fig. 8d, when the quality control
of reflectivity factor is not conducted, noncloud signals in
the range of 0–2 km are not prominent, and there are some
interference signals around the cloud. If we directly detect
the cloud boundary with reflectivity factor in Fig. 8a, it will
inevitably lead to underestimation or overestimation of the
cloud boundary. We can effectively eliminate the noncloud
signals at the bottom atmosphere and the interference signals
around the clouds using data quality control for the reflectiv-
ity factor in Fig. 8e. According to the reflectivity factor of the
MMCR, from 03:00 CST to the end of observation, the cloud
layer developed deeper, the cloud bottom height gradually
decreased from 7 km to 300 m, and the cloud top height de-
veloped to∼ 12 km (the lidar signal fails to show this detail).
When rain appeared at 06:00 CST (the microwave radiome-
ter accurately records the rainfall time), MMCR cannot accu-
rately detect the cloud bottom height, but lidar could detect it
effectively (the cloud bottom boundary was∼ 3.8 km). In this
case, we can apply lidar and MMCR to detect cloud bottom
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Figure 8. THI of the echo signal of the lidar at 1064 nm from 8 to 9 June 2021. (a) SNR of Pnew_sf, (b) Pnew_sp of the 1064 nm signal,
(c) cloud information detection results from lidar, (d) reflectivity factor without quality control, and (e) reflectivity factor with quality control
(black dotted line indicates rainfall time).

and top boundaries, respectively, to achieve high-precision
detection of cloud boundaries.

The cloud boundary is retrieved from the cloud signals
detected by lidar and MMCR (Fig. 8c and e), and the re-
sults are shown in Fig. 9. Between 19:00 and 05:00 CST,
the cloud bottom boundary height distributions retrieved by
the two instruments were in agreement. Between 21:00 and
06:00 CST, with the development of clouds, the MMCR can
detect more cloud information than lidar, especially from
03:00 to 06:00 CST. Although lidar cannot penetrate more
clouds during this period, it can provide an effective cloud
bottom boundary. At 19:00–20:00 CST, in cloud top bound-
aries where the ice crystals are too small to be detected by the
MMCR, lidar detects the real cloud top. This is attributable
to the echo intensity of the MMCR being proportional to the
sixth power of the particle diameter, and the lidar echo signal
is proportional to the square of the particles. From 19:00 to
00:00 CST, cirrus cloud transitions to altostratus, where size
of cloud particles increases in the form of collision and fi-
nally produces precipitation. In this process, the lidar beam
entering the cloud is attenuated, but MMCR has a good ad-
vantage in cloud top detection.

4.1.2 Second case study period

From 4 to 5 March 2021, the MMCR and lidar conducted
joint observations with a total observation time of 23 h. By
inverting the echo signal of the lidar at 1064 nm, we ob-
tained Pnew_sp of the echo signal and the SNR of Pnew_sf,
and the plotted THIs are shown in Fig. 10a and b. These
THIs reveal that the double layers of the clouds appeared in
the sky during the observation period. The low-level cloud
is located at a height of 4 km, and its thickness is approxi-
mately 2 km; the high-level cloud lies at 7 km, and its thick-
ness is∼ 2.7 km. The SNR of the low-level cloud was signif-
icantly stronger than that of the high-level cloud, as shown
in Fig. 10a. From the characteristic distribution of thePnew_sp
signal in Fig. 10b, the low-level cloud rained from 18:30 to
18:45 CST (the rainfall time is obtained by checking the mi-
crowave radiometer), and the cloud bottom height decreased
sharply from 4 to 0.6 km. Subsequently, the cloud layer grad-
ually dissipated from 2 to 0.05 km, and the dispersal that oc-
curred from 02:00 to 10:00 CST was too strong for the lidar
to detect more detailed information about the low-altitude
cloud. We also observed the high-level cloud change charac-
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Figure 9. Cloud boundary detected by lidar and MMCR from 8 to 9 June 2021.

teristics shown in Fig. 10b. From 17:00 to 01:00 CST, there
was a relatively weak Pnew_sp signal in the height range be-
tween 7 and 10 km. This indicates that the high-level cloud
may be in the formation stage at this time, and the particle di-
ameter and number concentration of clouds are so small that
lidar can only receive a very weak echo signal. As the obser-
vations progressed, the development of high-level clouds be-
came relatively mature, and the structure was relatively stable
from 01:00 to 15:00 CST (except at 13:00 CST). Combined
with the thresholds of the SNR and intensity information of
the cloud signal in Fig. 10a and b, complete cloud signal de-
tection can be realized, as shown in Fig. 10c.

During lidar observations, the MMCR also observed dou-
ble clouds. Figure 10d and e show the signal distribution
characteristics of the reflectivity factor of the MMCR with-
out quality control and after quality control, respectively. It
can be seen in Fig. 10e that after data quality control the
noncloud signals and interference signals at the bottom are
effectively eliminated. The joint observation results of the
lidar and MMCR reveal that the appearance and shape of
clouds observed by the two are similar, and the occurrence
of rainfall was monitored from 18:30 to 18:45 CST. From
17:00 to 01:00 CST, the penetration ability of the MMCR
was markedly better than that of the lidar, and more high-
level cloud information was obtained. However, between
01:00 and 04:00 CST for high-level clouds (approximately
8 km), the MMCR detected only part of the debris cloud echo
signal, whereas the lidar detected more cloud information.
We can speculate that the main reason for this is that clouds
were in the growth stage during this time period, their particle
diameters were small, or their concentrations were low. The
echo signal of the MMCR is proportional to the sixth power
of the particle diameter, whereas the echo signal of the lidar
is proportional to the second power of the particle diameter;
therefore, the lidar can detect clouds that the MMCR cannot
detect. From 10:00 to 15:00 CST, the MMCR also failed to
detect the thin cloud signal in the lower layer (a height of
approximately 4 km). Another reason for MMCR failing to

detect thin clouds may be that its spatial resolution is lower
than that of lidar, which makes it unable to detect thin clouds.

The height distribution of the double-layer cloud bound-
aries was detected based on the cloud signals (Fig. 10c and
e) jointly observed by lidar and MMCR, as shown in Fig. 11.
The cloud boundary height distribution shows that the cloud
boundary height distributions detected by lidar and MMCR
are relatively consistent for low-level clouds. For high-level
clouds, the heights of the cloud bottom boundary detected by
the two instruments were similar, and the cloud top boundary
detected by MMCR was higher than that detected by lidar.
However, compared with MMCR, lidar is superior in detect-
ing thin cloud information.

4.1.3 Third case study period

On 10 March 2021 lidar and MMCR jointly observed clouds
before rainfall for 6 h (06:00–11:00 CST and began to rain at
10:45 CST). Figure 12a shows the distribution of the SNR
of Pnew_sf with time and space, Fig. 12b shows the THI
of Pnew_sp of the 1064 nm echo signal, and Fig. 12c shows
the cloud signal detected by the thresholds of the SNR and
Pnew_sp. We inverted the reflectivity factor of the MMCR and
performed data quality control operations on them. The re-
sults are shown in Fig. 12d and e, which are the reflectivity
factor of the MMCR without quality control and with quality
control, respectively. From the comparison, it is evident that
data quality control can eliminate the interference signal very
well, which simplifies the process of merging the high-level
convective cloud and the low-level stratiform cloud.

By comparing the cloud information detected by the lidar
and MMCR (Fig. 12c and e), we can see that during the pe-
riod from 06:00 to 10:00 CST, the energy of the lidar beam
is severely attenuated at a height of approximately 4 km, re-
sulting in a very weak echo signal and SNR above 4 km. As
the observation time progressed, the phenomenon of virga
(>−15 dBZ) occurred in the cloud (Ellis and Vivekanandan,
2011; Williams et al., 2014). The severe attenuation of lidar
in the cloud leads to a sharp decrease in its detection abil-
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Figure 10. THI of the echo signal of the lidar at 1064 nm from 4 to 5 March, 2021. (a) SNR of Pnew_sf, (b) Pnew_sp of the 1064 nm signal,
(c) cloud information detection results, (d) reflectivity factor without quality control, and (e) reflectivity factor with quality control (black
dotted line indicates rainfall time).

Figure 11. Cloud boundary detected by the lidar and MMCR from 4 to 5 March 2021.

ity, whereas the millimetre wave still has a strong penetrat-
ing ability. When rainfall occurs (the microwave radiome-
ter showed that rainfall occurred at 10:45 CST), neither lidar
nor MMCR can effectively identify the cloud bottom bound-
ary, but MMCR can still detect cloud top boundary infor-
mation. The height distributions of the cloud boundaries de-

tected by lidar and MMCR are shown in Fig. 13. The height
distribution of the cloud bottom and cloud top boundaries de-
tected by the two instruments is almost the same from 06:00
to 09:00 CST (the cloud bottom boundary is approximately
3 km, and the cloud top boundary is approximately 4.1 km).
A drizzle fell from 09:00 to 10:45 CST, and the lidar ob-
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Figure 12. THI of echo signal of the lidar and MMCR on 10 March, 2021. (a) SNR of Pnew_sf, (b) Pnew_sp of the 1064 nm signal, (c) cloud
information detection results, (d) reflectivity factor without quality control, and (e) reflectivity factor with quality control (black dotted line
indicates rainfall time).

Figure 13. Cloud boundary detected by the lidar and MMCR on 10 March 2021.

tained an effective cloud bottom boundary. The boundary of
the high-level convective cloud at∼ 8 km and the deep cloud
layer from 10:45 CST to the end of the observation period
can only be detected by MMCR.

From the differences in the height distribution of the cloud
boundaries reached by the two devices in the above three
different situations, it can be seen that when a single layer

of stratiform clouds appears in the sky, the heights of the
cloud bottom boundary detected by the MMCR and lidar are
approximately the same. When there are multilayer clouds,
MMCR and lidar have good consistency in the detection
results of the cloud bottom boundary height of the low-
level cloud; however, the energy of the lidar beam attenu-
ates significantly in the low-level cloud, resulting in an in-
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ability to fully obtain the effective bottom boundary of low-
level clouds and the height boundary of high-level clouds.
In this case, the MMCR can obtain more complete height
information for the multilayer cloud boundary. Usually, the
closer rainfall is, the deeper the cloud layer develops and the
more severely the beam of the lidar will be attenuated, and
more cloud information cannot be obtained. In other words,
MMCR still has the ability to penetrate the cloud layer and
detect complete cloud information. Therefore, the joint ob-
servation of lidar and MMCR can comprehensively identify
and detect cloud boundary conditions in detail. The differ-
ence between the cloud boundaries detected by the two may
also be due to the different scattering mechanisms of cloud
particles to millimetre-wave electromagnetic waves and laser
beams or the difference in the methods used by the two de-
vices to determine the cloud boundary; thus, there are some
differences in the cloud boundary height results.

4.2 Analysis of cloud boundary distribution
characteristics in Xi’an

To further analyse the changes in the height distribution of
cloud boundaries in Xi’an, we plan to use MMCR and lidar
data for cloud boundary analysis. Accordingly, it is neces-
sary to analyse the correlation of the cloud bottom boundary
height detected by the two devices. We randomly selected
80 h of data in the joint observation period (to avoid the rain-
fall period) and calculated the cloud boundary detection re-
sults of lidar and MMCR according to the data processing
methods in Sect. 3.1 and 3.2. As shown in Fig. 14, when
the quality control of the MMCR is performed, the correla-
tion between the detected cloud boundary and lidar detec-
tion result increases from 0.627 (in Fig. 14a) to 0.803 (in
Fig. 14b). Moreover, under the premise that the difference in
cloud boundaries caused by the different detection principles
and algorithms of the two devices cannot be avoided, we can
use the cloud boundary data detected by MMCR to replace
the missing lidar data.

From the above three cloud observation cases, it can be
seen that MMCR has more advantages than lidar in de-
tecting cloud top boundaries. Therefore, when calculating
the cloud boundary height distribution characteristics over
Xi’an, we only counted the cloud top boundary height de-
tected by the MMCR and considered it as the actual cloud top
boundary. From December 2020 to November 2021, MMCR
and lidar stored 302 d (7248 h) and 126 d (872.5 h) of ob-
servational data, respectively. During the 12-month observa-
tion period, the maximum detection altitude of the MMCR
changed. From December 2020 to June 2021, the maximum
detection range of MMCR is 12.6 km, and the maximum de-
tection height is changed to 18 km. The total observation
hours of MMCR and lidar for each month are shown in
Fig. 15. The hours of lidar, MMCR, and simultaneous mea-
surements are 872.5 h. In this study, the four seasons were
defined as follows: spring from March to May (MAM), sum-

mer from June to August (JJA), autumn from September to
November (SON), and winter from December to February
(DJF).

Table 3 establishes the rules for recording effective cloud
bottom information in the observation process using MMCR
and lidar under different conditions to improve the detection
accuracy of the cloud bottom boundary.

This study defines “cloud occurrence frequency” as the ra-
tio of cloud occurrence times to total detection times dur-
ing the analysed period. The total sample size is N , and the
sample size of cloud boundaries appearing at different height
levels (altitude range from 1.5 to 12 km is divided into 50
levels) is ni . The seasonal distribution characteristics of the
cloud boundary height are calculated according to Eq. (8),

ycloud =
ni

N
(ni ∈N, i = 1. . .50). (8)

Figure 16 shows the vertical frequency distribution of the
cloud boundary seasonally from December 2020 to Novem-
ber 2021. For the vertical distribution of cloud base, the first
narrow peak is the boundary layer clouds (≤ 1.5 km), the sec-
ond peak is 2.5–3.5 km, and the third peak has a big range
in vertical height, which is 4.7–10 km in spring. Figure 16b
shows that the cloud bottom height in summer is mainly dis-
tributed at 3–9.5 km, indicating that middle and high clouds
may be dominant. The distribution of cloud bottom is bi-
modal, the first peak is the boundary layer cloud peak, and
the second peak is located at 2.7–3.7 and 3.6–8.3 km in au-
tumn and winter, respectively. The variation in cloud top with
seasons shows a bimodal distribution, and spring and sum-
mer have a similar trend of cloud top boundary height distri-
bution. The frequency of the cloud top boundary above 10 km
was the highest, and the frequency below 2 km was the low-
est in summer. The distribution characteristics of cloud top
height in autumn and winter indicate that the frequency of
low clouds is higher than that in the other two seasons. This
is consistent with the results of Zhao et al. (2014) for the
SGP site and Xie et al. (2017) for the SACOL site. Although
there were some differences in the cloud boundary frequency
distribution at some heights, the overall change trend was
roughly the same.

Figure 17a shows the monthly variation frequency distri-
bution of clouds. The months with the largest and smallest
cloud occurrence frequencies are August and February, re-
spectively. Almost more than 34 % of the clouds appear in
the form of single-layer clouds every month. Compared with
January, February, November, and December, the frequen-
cies of double-layer clouds, triple-layer clouds, and more
clouds in other months are higher. To show the relative
change trend of cloud cover, we calculated the total cloud
cover of each month by using the total cloud cover at each
time stored by the MMCR. It was found that the maximum
cloud cover was in April. Therefore, the total cover of April
was set to 1, and the normalized cloud cover distribution of
12 months was obtained, as shown in Fig. 17b. It can be seen
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Figure 14. Correlation between lidar and MMCR cloud bottom. (a) Without quality control and (b) with quality control.

Figure 15. Monthly observation hours of lidar and MMCR.

Table 3. Cloud bottom height recording guideline.

Detection
equipment

Observation Detection conditions Record cloud bottom
boundary

Both the lidar
and MMCR

Case 1 Geometrical thin cloud: the lidar detects bottom;
MMCR did not detect the cloud bottom

Results of the lidar

Case 2 Drizzle: the lidar detects bottom; bottom of
MMCR is invalid

Results of the lidar

Case 3 Both the lidar and MMCR detect cloud bottom Record the lower value of
the cloud bottom boundary

MMCR Case 4 MMCR detected cloud bottom Results of MMCR

Case 5 Drizzle: bottom of MMCR is invalid No results are recorded

from the distribution of cloud cover in every month that the
cloud cover is high in summer and the least in winter, indi-
cating that warm atmospheric conditions are more conducive
to the formation and development of clouds.

Figure 18 shows the frequency distribution of cloud
boundaries observed over Xi’an from December 2020 to
November 2021. Frequency of the cloud bottom boundary
below the vertical height of 1.5 km is the highest, the fre-

quency within the height range of 3.06 and 3.6 km is approx-
imately 0.4 %, and the frequency above 8 km is less than
0.2 %. The frequency of the cloud top boundary at verti-
cal heights has a bimodal distribution, and the first narrow
peak is located at 1.0–3.1 km, and the second peak lies at
6.4–10.5 km. Combined with the changing characteristics of
cloud layers, it can be seen that during observation in Xi’an
the frequency of clouds below 3.5 km is the largest, and the
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Figure 16. Frequency distribution of cloud boundaries during (a) spring, (b) summer, (c) autumn, and (d) winter from December 2020 to
November 2021 at Xi’an Jinghe National Meteorological Station.

Figure 17. Monthly variation in cloud frequency distribution and cloud cover from December 2020 to November 2021: (a) monthly variation
in the frequency of the number of cloud layers. (b) Monthly variation in cloud cover.
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Figure 18. Frequency distribution of cloud boundaries at vertical
heights at Xi’an Jinghe National Meteorological Station from De-
cember 2020 to November 2021.

frequency of high-level ice clouds or cirrus clouds above
8 km is small, which may be due to the limited detection sen-
sitivity of MMCR at the top of high-level clouds where the
particle sizes are very small.

5 Conclusions

Based on the observation data of lidar, a new algorithm is
proposed which can effectively extract cloud signals. Com-
pared with the previous method of identifying cloud bottom
and cloud top from echo signals, the new method mainly ob-
tains effective cloud signals through suppressing noise sig-
nals and enhancing effective signals to realize cloud bound-
aries. The algorithm has two main characteristics: (1) in the
signal preprocessing, wavelet transform is used for the orig-
inal signal to avoid the defect of effective information loss
caused by improper selection of smooth window, and (2) the
SNR of the signal is considered.

The cloud signals in Doppler spectra are effectively ex-
tracted by analysing the noise level, SNRmin, and the contin-
uous spectral points of Doppler spectra. The data quality con-
trol conditions for MMCR (reflectivity factor <−20 dBZ,
spectrum width> 0.3 m s−1, and radial velocity< 0.2 m s−1)
were established by analysing the characteristic of the inter-
ference of floating debris signals. By analysing the correla-
tion of cloud bottom height between MMCR and lidar, the
cloud bottom height detection by MMCR with data quality
control has a good agreement with lidar (the correlation co-
efficient is 0.803). Therefore, quality control is an important
factor to improve signal accuracy of MMCR.

In this study, combined with the respective advantages of
MMCR and lidar in cloud detection, the cloud cover and
distribution of cloud boundary characteristics are analysed
based on the observation data in Xi’an from December 2020
to November 2021.The result reveals that more than 34 % of
the clouds appear in the form of a single layer every month.
The cloud cover was lowest in spring and highest in summer.

The seasonal variation in cloud boundary height showed that
the distribution characteristics of cloud boundaries in spring
and summer were similar, and the frequency of high-level
clouds in the range of 8–10 km was greater than in autumn
and winter. The stratiform clouds appearing below 3.5 km
in autumn have the highest frequency, and high-level ice
clouds or cirrus clouds above 8 km in winter are less likely
to appear. The findings can provide a preliminary analysis of
cloud boundary changes in Xi’an. If there are huge amounts
of simultaneous observation data of the lidar and MMCR, the
comprehensive statistics and analysis of cloud macro and mi-
cro parameters in Xi’an can be realized, which can provide
better support for the study of climate change characteristics
in Xi’an.
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