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Abstract. Environmental samples typically contain hundreds
or thousands of unique organic compounds, and even minor
components may provide valuable insight into their sources
and transformations. To understand atmospheric processes,
individual components are frequently identified and quan-
tified using gas chromatography–mass spectrometry. How-
ever, due to the complexity and frequently variable nature of
such data, data reduction is a significant bottleneck in anal-
ysis. Consequently, only a subset of known analytes is often
reported for a dataset, and large amounts of potentially use-
ful data are discarded. We present an automated approach of
cataloging and potentially identifying all analytes in a large
chromatographic dataset and demonstrate the utility of our
approach in an analysis of ambient aerosols. We use a cou-
pled factor analysis–decision tree approach to deconvolute
peaks and comprehensively catalog nearly all analytes in a
dataset. Positive matrix factorization (PMF) of small subsec-
tions of multiple chromatograms is applied to extract fac-
tors that represent chromatographic profiles and mass spec-
tra of potential analytes, in which peaks are detected. A de-
cision tree based on peak parameters (e.g., location, width,
and height), relative ratios of those parameters, peak shape,
noise, retention time, and mass spectrum is applied to discard
erroneous peaks and combine peaks determined to represent
the same analyte. With our approach, all analytes within the
small section of the chromatogram are cataloged, and the
process is repeated for overlapping sections across the chro-
matogram, generating a complete list of the retention times
and estimated mass spectra of all peaks in a dataset. We
validate this approach using samples of known compounds
and demonstrate the separation of poorly resolved peaks with
similar mass spectra and the resolution of peaks that appear

in only a fraction of chromatograms. As a case study, this
method is applied to a complex real-world dataset of the
composition of atmospheric particles, in which more than
1100 unique chromatographic peaks are resolved, and the
corresponding peak information along with mass spectra are
cataloged.

1 Introduction

Atmospheric samples are highly complex and often con-
tain multiple thousands of compounds (Goldstein and Gal-
bally, 2007) with a potentially wide range of physicochem-
ical properties and multiple isomers. Valuable information
relating to the sources and chemistry of atmospheric com-
ponents can be extracted from these compounds; however,
the complexity of the samples requires analytical techniques
to effectively separate those compounds. Gas chromatogra-
phy (GC), when combined with mass spectrometry (MS)
as a detection method, is one of the most widely used an-
alytical methods in chemical analysis due to high sensitiv-
ity, low limits of detection, and high chemical resolution
(Hübschmann, 2015). Though used frequently for analysis
of atmospheric samples, the complex nature of atmospheric
data yields substantial challenges, in particular co-elution of
many chromatographic peaks. In some cases, co-elution can
be so complex that resolution and integration of individual
components cannot be readily achieved, and data are treated
as an “unresolved complex mixture” (Zhang et al., 2014).
The resolution of GC can be expanded by coupling multiple
columns in series, and comprehensive two-dimensional gas
chromatography (GC×GC) can provide greater sensitivity
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and resolution of complex mixtures (Bertsch, 1999; Phillips
and Beens, 1999). This technique has yielded valuable in-
sights into atmospheric composition (Hamilton, 2010), but
the increased complexity of the instrumentation and more
stringent requirements for the mass spectrometer (e.g., time
resolution faster than∼ 50 Hz; Worton et al., 2012) have lim-
ited adoption of GC×GC. Furthermore, despite the higher
resolving power, co-elution of peaks still occurs (Potgieter
et al., 2016) when highly complex samples are analyzed, and
challenges remain in the data analysis. Therefore, it is conse-
quently common for analyses of environmental data to focus
on the resolution and quantification of only a subset of spe-
cific analytes of interest and leave a large fraction of data
unprocessed and unused.

“Traditional” processing of chromatographic data has re-
lied on manual inspection of data to locate analytes of inter-
est, followed by integration of peaks using an algorithmically
determined baseline. While software to perform these analy-
ses is readily available, this approach may require substantial
user interaction, which can be time- and resource-intensive
(Isaacman-VanWertz et al., 2017). Furthermore, the algo-
rithms implemented in these software programs show limited
capability in handling separation of co-eluted peaks, which
leads to suboptimal utilization of data (Johnsen et al., 2013)
and makes it difficult to extract clean mass spectra of ana-
lytes for accurate identification. These challenges often result
in discarding potentially valuable information, particularly
in large datasets that main contain hundreds or thousands
of chromatograms that need to be processed. As fast chro-
matography has improved and field-deployable gas chro-
matography has advanced in fields like atmospheric chem-
istry (Lerner et al., 2017; Zhao et al., 2013; Apel et al.,
2003; Goldan et al., 2004; Hornbrook et al., 2011), the
size and complexity of chromatographic datasets make man-
ual processing approaches unfeasible. Field instruments are
also more impacted by shifts in operating conditions that
may impact data reproducibility and peak co-elution due
to nonideal laboratory conditions (e.g., temperature fluctu-
ations). Efforts to tackle the analytical challenge of integrat-
ing complex environmental datasets have focused on im-
proved peak integration methods that use idealized math-
ematical peak shapes and defined mass spectra to resolve
and integrate even poorly resolved chromatographic peaks
(Blaško et al., 2009; Di Marco and Bombi, 2001; Isaacman-
Vanwertz et al., 2017; Jeansonne and Foley, 1991; Mydlová-
Memersheimerová et al., 2009; Naish and Hartwell, 1988).
However, these methods still require manual inspection of
the data to identify and catalog peaks of interest.

To facilitate peak identification in complex samples, ma-
trix decomposition methods have been proposed to resolve
complex co-eluting peaks. In a relatively simple form, the
covariance of ions with chromatographic time can resolve
representative mass spectra that rise and fall together as a
chromatographic peak. This approach has, for instance, been
implemented as the Automated Mass Spectral Deconvolution

& Identification System (AMDIS) (Zhang et al., 2006) and
is a useful tool for the identification of analytes within a sin-
gle chromatogram (Meyer et al., 2010). However, large chro-
matographic datasets present an opportunity to include an ad-
ditional dimension of resolution, as not all chromatograms
necessarily contain all the same analytes. As an example, a
peak that is unresolved from a neighboring peak in one chro-
matogram may not exist in another sample, which would al-
low identification of the neighbor, and the neighbor could
then be integrated more accurately in the first chromatogram
now that its spectrum and retention time (and potentially
peak shape) are defined.

Several multidimensional covariance or factorization ap-
proaches have been developed to identify peaks across multi-
ple chromatograms. One such approach is PARAFAC, a gen-
eralization of bilinear principal component analysis (PCA)
to high-order arrays (Hubert et al., 2012) in which a data
array consisting of multiple chromatograms is decomposed
into loadings and scores representing chromatographic pro-
files and mass spectra that can be more efficiently integrated.
With a relatively high signal-to-noise ratio and the proper
number of components, a unique solution that consists of
true mass spectra of analytes can be found (Skov and Bro,
2008). PARAFAC2 was further developed to perform simi-
lar decomposition but with more robust handling of poten-
tial retention time shifts by not requiring all samples to have
nearly identical time profiles, as PARAFAC requires (Zhang
et al., 2014). Similarly, positive matrix factorization (PMF),
a matrix decomposition method based on a weighted least
squares fit (Paatero and Tapper, 1994), has been applied to
deconvolve chromatographic data (Zhang et al., 2014). Un-
like PCA, the result matrices, scores, and loadings of PMF
are constrained to be non-negative, which reflects the char-
acteristics of environmental data more accurately (Paatero,
1997). Another major difference is that, in contrast to PCA,
the factors obtained by PMF are not constrained to be or-
thogonal, are determined independently, and do not form a
hierarchy in which each successive factor captures less vari-
ance. These advantages make PMF well-suited to describe
environmental data, and PMF has become a preferred matrix
size reduction technique, particularly in the field of atmo-
spheric chemistry (Ulbrich et al., 2009). Prior applications to
chromatographic data have instead focused on either the res-
olution and integration of major components (Amigo et al.,
2010; Hoggard and Synovec, 2007) or the extraction of aver-
age mass spectra and chromatographic profiles that provide
binned information on broad classes of compounds (Zhang
et al., 2014). However, this approach has some limitations, as
minor components may provide unique information regard-
ing the sources or chemical transformations of a sample.

This study presents an automated approach of cataloging
and potentially identifying all analytes in a complex chro-
matographic dataset. By coupling PMF, an established fac-
tor analysis technique, with a decision tree, the approach de-
scribed here deconvolutes complex chromatograms into a list
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of all or nearly all unique analytes and their associated mass
spectra. This technique complements the new generation of
tools described above developed to improve the efficiency
and accuracy of integrating a list of known chromatographic
peaks.

2 Methods

Our approach to cataloging all analytes in a set of chro-
matograms consists of two major processes. The first pro-
cess is PMF analysis, and the second is a decision tree used
to filter, sort, and catalog PMF outputs into a list of analytes.
We first provide an overview of the PMF algorithm before
describing the overall cataloging approach. In this work, the
term “analyte” is used to refer to a chromatographic peak
(e.g., a chromatographic “feature”) with a unique mass spec-
trum and retention time whether it has a known definitive
identification or not, following the usage of this term in other
studies (Amigo et al., 2010; Grace et al., 2019; Isaacman-
VanWertz et al., 2017, 2021; Li et al., 2022).

2.1 Positive matrix factorization

Positive matrix factorization is a bilinear model that approx-
imates an observed data matrix, X, by finding the weighted
least squares solutions for a set of factors that can describe
the dataset (Paatero and Tapper, 1994). In the case of chro-
matographic data, the data form a matrix in which rows rep-
resent the average mass spectra of each averaging time pe-
riod (typically 1–5 Hz) and columns are the time series of
each mass spectral mass-to-charge ratio (m/z). The model is
represented as

X=GF+E, (1)

where X is the data matrix, E is the residual matrix, and
G and F are the score and loading matrices, respectively.
The chromatographic data matrix is thus described by a set
of factors, each of which has an average mass spectrum (the
loading) and a time-dependent score that represents the chro-
matographic profile. The elements of both G and F matrices
are constrained to be non-negative and are therefore expected
to more accurately represent real-world data than PCA or
other PCA-based matrix decomposition methods.

The number of factors is prescribed a priori by the user,
which represents a major source of uncertainty and subjec-
tive interpretation in typical PMF applications. In contrast
to other PMF applications, the primary goal in this work is
not to optimally describe the complete dataset, but rather to
increase the number of factors to a point at which even mi-
nor components are extracted as separate factors, even at the
risk of overfitting the data (which will be rectified by a sub-
sequent decision tree). With this approach, any existing an-
alytes with a significant level of signal should be identified
as separate analytes, regardless of whether such an analyte is

a compound present in the sample or is a contaminant. As-
signing too many factors (e.g., greater than the number of
compounds in the sample) in the model can cause “factor
splitting”, a phenomenon in which a factor that might carry
real-world meaning or interpretation is divided into multi-
ple factors that cannot be readily interpreted (Hoggard and
Synovec, 2007). In the context of this work, splitting would
result in the separation of an analyte into multiple different
chromatographic peaks that all represent the same analyte.
We address this case using the decision tree presented below
and therefore do not rely on existing metrics for evaluating
the optimality of the factor solution (e.g., the ratio of error in
the solution to expected error, Q/Qexp).

In this study the PMF Evaluation Tool, PET version 3.04
(Ulbrich et al., 2009), software package in Igor Pro 8 (Wave-
Metrics, Inc.) was used to run the PMF2 (Paatero and Hopke,
2009) algorithm on the dataset and obtain PMF outputs.
Chromatograms were analyzed using the freely available
TERN software package within the same programming en-
vironment (Isaacman-VanWertz et al., 2017).

2.2 Description of analyte cataloging method

2.2.1 Batch process of positive matrix factorization

An overview of the complete process is shown in Fig. 1. Mul-
tiple chromatograms representing time-varying mass spec-
tra are stacked to yield a three-dimensional data array
(I × J ×K), where I and J constitute a chromatogram (elu-
tion profile×mass spectra) and K is the number of samples
(Amigo et al., 2010). Each chromatogram is first aligned to
the same retention time basis by using a small number of
known compounds or introduced standards in each sample to
define known retention times.

Strictly speaking, this preprocessing is not necessary for
factor analysis. However, interpretation of the outcome of
data reduction techniques such as PARAFAC(2) and PMF
can be unreliable when chromatograms are used directly as
input (Eilers, 2004; Van Nederkassel et al., 2006), as it may
be difficult or impossible to determine if unaligned peaks
in each chromatogram represent the same analyte. Chro-
matogram alignment may occur through manual adjustment
by users or may be automated using any of multiple solutions
(Eilers, 2004; Kassidas et al., 1998; Nielsen et al., 1998) to
align chromatograms in the preprocessing of data with rel-
atively little user input. Implementation of some alignment
(manual or automated) is necessary in preprocessing, but the
cataloging approach described here is independent of the de-
tails of any such approach (a manual approach is used in this
work), so details are not included. To achieve high chemical
resolution and identify minor constituents, PMF is not per-
formed on the full matrix, but rather on subsectioned “slices”
that represent short periods of the chromatogram. As sam-
ples of environmental data can be highly complex and het-
erogenous, successively applying PMF to small portions of
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Figure 1. Flowchart of analysis process including an overview of the developed decision tree implemented in this study. Chromatograms and
subsections are labeled as C and S, respectively.

the elution time is significantly more effective than extract-
ing factors from the full range of the elution time data (Zhang
et al., 2014). Each slice is comprised of the same period of
elution time from each sample chromatogram. Though re-
tention times of chromatograms have been globally aligned,
some small shifts in retention time may still exist at the
timescale of a slice; consequently, a secondary “fine-scale”
retention time correction is applied to each sample within
the slice to yield a unified time basis (typically the reten-
tion time of one of the chromatograms). A form of correla-
tion optimized warping (COW) (Nielsen et al., 1998) is used,
in which the retention time offset is determined that maxi-
mizes the correlation of the maximum number of single ion
chromatograms (SIC) within the slice. This approach is ex-
pected to work so long as a dominant fraction of peaks is
present in all chromatograms but does not require all peaks
to be present. This fine-scale retention time adjustment is
not strictly necessary for the application of PMF; without
it, the same analytes will generally be found in the chro-
matograms. However, minimizing retention time differences

between chromatograms is very useful for the subsequent
decision tree to determine whether peaks in different chro-
matograms represent the same analyte, as opposed different
analytes with highly similar retention times and mass spectra
(e.g., isomers).

For each slice of the three-dimensional data array, the di-
mensionality is reduced by concatenating samples such that
the first row of the two-dimensional matrix of one chro-
matogram is positioned after the last row of the matrix of
another chromatogram. The resulting two-dimensional slice
matrix represents repeating periods of elution time. PMF is
then applied to this concatenated slice matrix, yielding a set
of factors that represent the elution profiles of mass spectra
that covary (i.e., chromatographic peaks of analytes). For the
reasons discussed above, tens of factors are used in the PMF
solution, which is higher than used in most other more com-
mon PMF applications (Ulbrich et al., 2009). This number of
factors is on the order of the length of the slice divided by
the typical peak width (i.e., one or two factors per resolvable
peak), but a more detailed discussion of optimizing the num-
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Figure 2. Detailed workflow of the decision tree. Steps involved in cataloging individual analytes are displayed in green.

ber of factors is presented in the “Results and discussion”
section. Each resulting PMF factor from the slice consists
of the chromatographic profiles of a given mass spectrum in
each chromatogram (an example is shown in Fig. S2 in the
Supplement). Factor data are stored for subsequent process-
ing, and PMF is performed iteratively through slices until
the entire range of chromatographic time is covered. Each
slice overlaps in part with the slices before and after to cap-
ture potential peaks that may be cut off at the edges of each
slice; overlap must equal or exceed the typical width of a
chromatographic peak to ensure this outcome. The full set of
PMF results for all slices is compiled and addressed through
a decision tree, as shown broadly in Fig. 1 and addressed in
more detail below.

The optimal number or length of slices is expected to be
data-dependent and is expected to control the number of
factors needed to fully deconvolute the data. Shorter slices
can likely be analyzed with fewer factors but require more
slices to analyze the full chromatogram, making estimation
of computational time somewhat complex. In this work we
use slices of 5–15 s and PMF solutions with up to 35 factors,
then discuss trade-offs in the results. We demonstrate in this
work that the decision tree described below addresses poten-
tial factor splitting caused by high factor solutions, so there is
little disadvantage to increasing the number of factors other
than the additional required computational time. In contrast,
decreasing the number of factors can result in the detection
of fewer analytes. Consequently, it is necessarily a decision

of the user of this method to balance a potential decrease in
data extraction against computational resources.

2.2.2 Decision tree

A detailed description of steps involved in the decision tree
is presented in Fig. 2. Steps are described in detail below, but
the overall approach proceeds as follows.

1. Peaks are detected in each PMF factor and cataloged by
quantitative parameters describing their idealized math-
ematical form.

2. Spurious peaks are removed by several filters to elimi-
nate noise.

3. Peaks in each factor are sorted into potential analytes
based on retention times.

4. Potential analytes are sorted and combined into a cata-
log of unique analytes by comparing retention times and
mass spectra.

Peak detection and fitting. Within a factor, peaks are de-
tected by using first and second derivatives to find local min-
ima and maxima. All found peaks are then simultaneously
fit to mathematically idealized forms; we assume a Gaus-
sian curve as the ideal chromatographic peak shape (Ander-
son et al., 1970), though experimental peaks are often per-
turbed from the ideal shape by instrumental factors and a
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certain level of mixing of signals is introduced (Isaacman-
VanWertz et al., 2017). Implementation of this approach was
performed using built-in packages within the Igor Pro 8 pro-
gramming environment (specifically, Multipeak fitting 2). A
more complex approach could include modified peak shapes
(e.g., convolution with an exponential; Isaacman-VanWertz
et al., 2017), which would likely enable more accurate char-
acterization of the parameters describing a peak. However,
in this work the goal is to catalog all peaks by their approx-
imate parameters as opposed to perfectly integrating them,
so increasing the complexity of peak fitting by incorporating
refined peak shapes has not been implemented. Implemen-
tation of an exponentially modified Gaussian (EMG) proce-
dure as a peak fitting model has been inspected on the sam-
ples containing deuterated tetradecane presented in Fig. 4
and discussed in Fig. S7. Optimal peak shapes could be used
in subsequent processing for accurate integration of data.
The outcome of this peak fitting is a set of peaks present
within each factor chromatographic profile (example shown
in Fig. S3), including their known retention times within each
chromatogram and their retention times relative to peaks in
all the other chromatograms (i.e., retention times both un-
corrected and corrected to a unified time basis). Not all fac-
tor chromatographic profiles necessarily contain any peaks at
all, with noise or background factors frequently returned (as
seen in the example shown in Fig. S2). The parameters that
quantitatively describe the peak (location, width, and height)
are stored alongside corresponding time profiles and mass
spectra from the PMF. The location of a peak (i.e., retention
time) is the mean of the Gaussian curve, and the width of a
peak is described using the standard deviation of the curve.
The uncertainties in these three parameters determined by the
fit are also stored. Alternate descriptors of width such as full
(or half) width at half-maximum, FWHM (or HWHM), may
be more appropriate if other peak shapes are considered, but
all of these descriptors can be mathematically related for a
Gaussian curve, so any descriptor is useful in this case. We
discuss the implications of this choice in the discussion of
analyte sorting. By performing peak detection and initial fit-
ting on all factors within the slice, an index of all potential
peaks is generated within the region of the chromatogram.
These peaks are then validated and cataloged into analytes in
subsequent steps by a decision tree.

Peak filtering. Once all potential peaks are indexed, spuri-
ous potential peaks are eliminated. The automated peak de-
tection and fitting algorithm may find peaks in factors that
do not qualitatively appear to contain any chromatographic
peaks or may imply that the inclusion of a negative peak im-
proves the fit (Anderson et al., 1970). Filtering thresholds are
introduced to remove these peaks. Specifically, peaks with
negative parameters and/or an estimated error greater than
the corresponding parameter (i.e., width) are considered to be
a result of a bad fit and thereby rejected. In addition, peaks
with a weak signal (peak height / baseline signal < 10) are
removed. Furthermore, because true chromatographic peaks

are expected to have peak widths that can be reasonably well-
defined (i.e., the range of possible widths in a dataset may
be variable but is generally not very broad), outliers of peak
widths are identified using Tukey’s fences method (Tukey,
1977) with a conservative range for reasonable peak width.
The range is defined as

[Q1− k(Q3−Q1),Q3+ k(Q3−Q1)], (2)

whereQ1 andQ3 are lower and upper quartiles of the sorted
peak width, respectively, and k = 3. Peaks with widths out-
side this range are rejected; i.e., those with widths outside
the interquartile range by more than 3 times the magnitude
of the interquartile range. Finally, a small number of peaks
whose parameters are near both the upper boundary of the
peak width and the lower boundary of the peak height to base
ratio (i.e., low abundance, broad peaks, those with a height-
to-width ratio of, empirically, ∼ 10 000) are rejected as they
indicate either poor fitting of the peaks or a fitting of noise.

Peak sorting. Ideally, using the optimal number of factors
will result in each factor representing one chemical com-
pound, but in practice more than one analyte may be detected
within a given factor. This may be due to the true presence
of multiple analytes within the slice that have mass spectra
too similar to deconvolve (e.g., branched alkane isomers),
or it may be due to an error introduced during peak detec-
tion or fitting. Peaks in a given factor by definition share a
mass spectrum, so those that are chromatographically sep-
arated by less than a critical retention time difference (i.e.,
have nearly the same retention time) are assumed to repre-
sent the same analyte. Selection of a critical retention time
difference is somewhat dependent on the goals of the user
but is inherently related to peak widths. A conservative esti-
mate of a critical width is several times the standard deviation
(e.g., FWHM= 2.355σ ), which would ensure that only peaks
that are truly chromatographically resolved are regarded as
unique. However, in many cases, isomers may not be well-
resolved but nevertheless represent unique analytes, which
may be apparent in small changes in ion ratios or signal in-
tensities across chromatograms. In these cases, a more ag-
gressive (i.e., smaller) approach to critical retention time dif-
ferences may be appropriate, which might include HWHM
(∼ 1.18σ ) or, most aggressively, peaks that are separated by
only one or two data points (i.e., a peak in a different time pe-
riod of instrument acquisition). Setting this parameter more
aggressively increases the possibility of positive errors, as
discussed in Sect. 2.4.

When peaks with the same mass spectrum (i.e., from the
same factor) closer together than critical peak width are
found in the same chromatogram, they are assumed to be
the product of factor and/or peak splitting and are combined.
Peaks that meet these criteria across multiple chromatograms
(i.e., found within one factor at the same relative reten-
tion time) are assumed to represent the same unique analyte
across each chromatogram. Peaks within a factor that are sep-
arated by more than a peak width are considered unique an-
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alytes. This process sorts the peak catalog to yield a list of
all potentially unique analytes across all factors, with some
factors containing multiple analytes (all with the same mass
spectrum) and some factors containing no analytes. Poten-
tial analytes each have an associated retention time and mass
spectrum, as well as a known peak height and width in each
chromatogram in which it was found.

It is theoretically also possible that multiple analytes are
present in a factor not because they have similar spectra, but
because the number of factors is substantially lower than the
number of analytes present, so PMF yields some approxi-
mate convolution of analytes. However, in practice, this is-
sue is largely avoided by using a large number of factors.
Furthermore, the approach to combining peaks with similar
retention times and spectra within a chromatogram may cap-
ture a small number of isomers that share a mass spectrum,
are rarely resolved, and covary between samples, (e.g., m-
and p-xylene). This limitation is likely inherent to the ap-
proach, as their resolution by an automated peak detection
algorithm would require an assumption of peak shape, which
would limit its application to complex data. Isomers such as
these represent an example of the potential impact of a user-
specified critical retention time difference, as an aggressive
value (e.g., one or two data points) may separate these ana-
lytes if there is at least some separation by retention time and
some variability in ratios between samples that may be de-
tected by the PMF, while a more conservative approach (e.g.,
FWHM) is unlikely to separate poorly resolved isomers.

Analyte sorting. PMF followed by peak fitting, peak detec-
tion, and peak sorting is performed for all slices, generating
a list of potential analytes across the full chromatographic
range. Because these potential analytes were generated by
examining peaks within each factor, this process does not
account for the possibility that PMF factor splitting gener-
ates multiple factors containing the same analyte with slight
variations in their mass spectra due to instrument drifts, for
example. To address the issue of factor splitting, all the po-
tential analytes are intercompared to remove and combine
possible repeats. Mass spectra (i.e., the mass spectrum of the
factor in which they were found) are compared by cosine
similarity:

ε =
M1 ·M2

||M1|| ||M2||
, (3)

where M1 and M2 are normalized mass spectra of two po-
tential analytes being compared to determine whether they
represent the same analyte. This is the preferred approach of
commonly used mass spectral libraries and search programs
(Stein, 2014). Two identical mass spectra will have ε= 1.
Values of 0.8 and higher are generally considered to indicate
two mass spectra that may represent the same analyte (Stein,
1994; Worton et al., 2017).

Analytes with mass spectral cosine similarity values, ε ≥
0.8, are compared by their retention times. In cases in which
the difference is greater than the median width – in other

words, if the peaks are considered sufficiently distant to each
other – they are cataloged as two unique analytes. Analytes
with matching mass spectra and retention time differences
below the critical threshold are considered to be the same
compound detected by two different factors or are two ana-
lytes that cannot be resolved by the instrument either chro-
matographically or by their mass spectra. When found within
one slice, analytes are combined by summing peak heights
and weighted averaging of their defining parameters (width,
mass spectra, etc.). In overlapping sections between slices,
any repeat analytes (i.e., found in both slices with matching
retention times and spectra) are simply filtered out. Again,
the selection of the critical retention time difference exerts
some control on the opposing tendencies of this approach
to either consider peaks unique (potentially leaving multiple
peaks representing the same analyte) or combine peaks (po-
tentially binning multiple analytes). In this step, any poten-
tial analytes being compared must exhibit at least some dif-
ference in mass spectrum and sample variability, since they
were separated by the PMF, so a more aggressive critical re-
tention time difference is likely warranted here.

The outcome of this analyte sorting process is a catalog
of unique analytes with associated retention times and mass
spectra, including information about their widths and heights
in each chromatogram used in the analysis. Examples of an-
alytes found are provided in Figs. S4 and S5, which are dis-
cussed in more detail in the “Results and discussion” section
below. This catalog of analytes is the end goal of the present
work but could be used as a template for subsequent analy-
ses or as a dataset to be matched against existing libraries or
authentic standards for identification (Worton et al., 2017).

2.3 Sample datasets

The method developed is tested using two GC-MS datasets:
a laboratory-generated dataset of known standards and a
dataset of ambient aerosol samples. Both datasets were col-
lected using a semi-volatile thermal desorption aerosol gas
chromatograph (SV-TAG). This instrument has been de-
scribed elsewhere in detail (Isaacman et al., 2014; Williams
et al., 2006; Zhao et al., 2013). In brief, a sample is collected
on a passivated metal fiber filter housed in a temperature-
controlled cell, either by introducing a liquid standard or
pulling through sampling ambient air. The cell is then ther-
mally desorbed with a programmed temperature ramp (25 to
315 ◦C over 8 min), and analytes are transferred to a GC col-
umn ramped from 50 to 310 ◦C. GC eluent is then analyzed
by electron ionization mass spectrometry (Agilent Technolo-
gies). The two datasets differ in their column ramp rate and
dimensions. Laboratory data were collected with an MTX-5
column (15 m× 0.25 mm× 0.25 µm, Restek) at a ramp rate
of 12.5 ◦Cmin−1. Ambient data were collected with an Rtx-
5Sil MS column (20 m× 0.18 mm× 0.18 µm, Restek) at a
ramp rate of 23.6 ◦Cmin−1.
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For analysis of known standards, liquid standards were in-
jected into the sample collection cell through the automated
liquid injection system of the TAG (Isaacman et al., 2011).
Standards included 10 ng of n-alkanes (C8–C40 diluted from
500 µgmL−1, supplied by AccuStandard) and 15 ng of select
perdeuterated n-alkanes: C14, C15, C16, C20, C24, and C26
(diluted from stock mixtures made of pure compounds, sup-
plied by C/D/N Isotopes approximately 2 ,years prior to use).

Collection of ambient air data took place near Manaus,
Brazil as part of the GoAmazon2014/5 campaign (Mar-
tin et al., 2016). Details of sampling and the SV-TAG in-
strument used to collect this dataset have been previously
published (Isaacman-VanWertz et al., 2016). The data pre-
sented in this work were collected during the wet season in
February and March 2014. Samples of atmospheric parti-
cles and semi-volatile gases were collected during the first
22 min of every hour. During desorption of the collection
cell, analytes were derivatized by introducing N -methyl-N -
trimethylsilyltrifluoroacetamide (MSTFA) into the desorp-
tion flow; this method silylates all hydroxyl groups, im-
proving transfer through the GC column (Isaacman et al.,
2014). Approximately 100 compounds have been previously
resolved and cataloged in this dataset (Isaacman-VanWertz
et al., 2016), only a small fraction of which were identified
as compounds with known molecular structures and identi-
ties.

2.4 Method validation

The analyte cataloging method is investigated using real-
world GC-MS data collected on known calibrants and un-
der field conditions, as described below. Two major failure
modes are examined: (1) negative errors in the form of un-
cataloged analytes due to underfitting and (2) positive errors
in the form of false analytes identified due to factor splitting
or overfitting. The former can theoretically be addressed in
large part by increasing the number of factors, but this ap-
proach increases the potential for the latter. To examine this
interplay and the ability of the decision tree to compensate
for potential positive errors, we examine sections of chro-
matograms containing known n-alkanes and perdeuterated
isotopologues. These samples are analyzed with a varying
number of factors to understand the ability of the method to
identify major and minor components, address factor split-
ting caused by high numbers of factors, and examine the
potential impacts of the critical retention time difference.
Slices of four chromatograms of a 5–15 s window containing
known analytes are investigated under a range of method pa-
rameters. Application to complex field data provides an ad-
ditional test for negative errors by challenging the method
with data that have been previously catalogued by an expert
operator, as well as providing insight into the power of the
proposed method.

To validate the method, below we discuss the results of
three specific tests. In the first test (Sect. 3.1), we investigate

the potential for positive errors by using high-factor PMF so-
lutions to generate the catalog of peaks used by the decision
tree. In the second test (Sect. 3.2), we investigate the potential
for negative errors by examining the deconvolution of poorly
resolved analytes with similar mass spectra. In the third test
(Sect. 3.3), we investigate the utility of the method in real-
world data by applying the method to a complex environ-
mental sample and examine the potential for negative errors
by comparing the analyte catalog to a previously published
analysis (Isaacman-VanWertz et al., 2016).

3 Results and discussion

3.1 Effects of increasing factors

The proposed cataloging method was applied to a 15 s chro-
matographic window that included the peak known to rep-
resent injected perdeuterated tetradecane (C14D30), with the
number of PMF factors ranging from 1 to 20 (Fig. 3). In a
1-factor solution, one analyte was found, representing the
known compound (Fig. 3a). The number of analytes found
increased as more factors were used, with the injected com-
pound always found and minor analytes found in higher-
factor solutions as discussed below. The critical retention
time difference used in this analysis was relatively aggressive
(median HWHM, which equals 0.7 s in these data) in order
to examine the capability of the method to find unique peaks;
the effects of this selection are discussed below. The relation-
ship between the number of analytes found and the number
of factors is nonlinear, approaching an apparent plateau. This
plateauing behavior for analytes is in contrast to growth in the
number of peaks found, which continues to increase linearly
with the number of factors. An ever-growing number of ana-
lytes is physically improbable given the relative simplicity of
the data, and these peaks likely represent factor splitting. The
decision tree addresses this issue by rejecting and combining
these found peaks, eventually yielding six unique and distinct
analytes that remain relatively stable across solutions.

This result agrees with the trend in the percent of the total
signal that is not described by the found analytes, i.e., the per-
cent residual calculated as the sum of the absolute difference
between the total ion chromatogram and the reconstructed
signal curve at each point in time relative to the sum of to-
tal ion signal. With increasing factors, the percent residual
first drops from approximately 17 % with one factor down
to less than 10 % with a few factors. Though identifying the
main injected compound and describing 83 % of the mea-
sured data is independently quite compelling, the 9-factor so-
lution (Fig. 3b) suggests that the measured data can be better
described by increasing the number of factors. Though these
analytes appear to represent splitting of the chromatographic
peak, we demonstrate in the following section that these data
represent real analytes that might be overlooked by a man-
ual operator. The three to four major analytes are therefore
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Figure 3. Analysis results of n-alkane mixture with four chromatograms and a 15 s time window containing perdeuterated tetradecane over
a range of factors (1–20). Total ion signal and the reconstructed total signal of (a) 1-factor, (b) 9-factor, and (c) 19-factor solutions are
displayed above. The number of analytes identified and the calculated percent residual over a varying number of factors are displayed at the
bottom (d) in blue and red, respectively. Error bars represent the standard error of percent residual values from all chromatograms.

cataloged with only a few factors, and the same major ana-
lytes are cataloged in a 9-factor solution as a 19-factor solu-
tion (Fig. 3c). Subsequent increases in the number of factors,
from 4 to 20, yield little additional information to describe
the measured data, detecting only a small number of low-
abundance peaks. Overall, these results demonstrate that the
approach can identify minor components, while increasing
the number of factors beyond the minimum necessary nei-
ther provides additional information nor impedes the method
(other than the additional computational resources used).

3.2 Deconvolution of poorly resolved analytes

Analysis of perdeuterated tetradecane discussed above indi-
cates that most of the signal can be described by three an-
alytes and while a few additional analytes may be present,
their inclusion does little to describe the overall signal. These
three analytes are those shown in Fig. 3b and c as poorly re-
solved peaks, and they are commonly identified in all factor
solutions that found three or more analytes (i.e., 4-factor so-
lutions and higher). The presence of three analytes under this
peak is curious, as the known sample was comprised of only
perdeuterated tetradecane (C14D30). However, we demon-
strate here that these data can be described as two isotopo-

logues, C14D29H and C14D28H2 (Fig. 4), which are not unex-
pected in isotopically labeled standards mixed into methanol,
in particular those that were purchased several years prior as
is the case here.

The total ion chromatographic peak appears to be normally
distributed with minimal skew, but the analyte cataloging
method we develop here finds three analytes with slight shifts
in retention time and differences in mass spectra. One analyte
is deconvolved using only a 2-factor solution (Fig. 4a), and
the third is found in higher-factor solutions (Fig. 4c). Reten-
tion times are shifted later, as expected for replacement of a
deuterium with a hydrogen, and projection of this trend for-
ward (i.e., replacement of all deuterium with hydrogen) pre-
dicts a retention time roughly that of non-labeled tetradecane
as expected. Similarly, the fragmentation patterns are highly
similar, but there are some significant differences in their in-
tensities. This is clearest in the fragmentation patterns at their
molecular weight, with C14D30, C14D29H, and C14D28H2
having a substantial signal at m/z 228, 227, and 226, re-
spectively. At lower m/z, all compounds have a large signal
on mass m/z 66 and differences of 16 (CD2), but isotopo-
logues also have a higher signal at masses shifted by 1 or
2 amu (e.g., higher m/z 65 for C14D29H). The separation of
isotopologues presents one of the most difficult challenges
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Figure 4. Analysis of deuterated tetradecane. Total ion chromatogram and the reconstructed chromatographic profile of each analyte found
in a (a) 2-factor solution and (c) 9-factor solution are displayed. Measured mass spectra at the corresponding location of each analyte found
in a (b) 2-factor solution and (d) 9-factor solution are overlaid and displayed with a magnified view of their molecular weight peaks.

for separation methods like chromatography (Valleix et al.,
2006; Filer, 1999) due to the tendency of isotopologues with
a relatively smaller signal to be completely embedded in the
peak of their counterpart and their similar spectral signals
(Amigo et al., 2010). Figure 4 demonstrates these issues and
the ability of the method to overcome them.

It is a clear possibility that the deconvolution of these three
analytes is a case of positive error – that these found analytes
are an error within the method as opposed to real analytes.
To test for that possibility, we performed the same analysis
on non-labeled tetradecane and found all signal reasonably
described by a single analyte with no co-eluting analytes as
expected (Fig. S6). This result supports the conclusion that
the additional peaks found for deuterated alkanes are not arti-
facts due to the high-factor solutions but rather represent true
co-eluting peaks that demonstrate the ability to find difficult-
to-resolve analytes.

Separation of these isotopologues presents an opportunity
to examine the impact of the critical retention time difference
and the impact of assumed Gaussian peak shapes on this sep-
aration. Though exhibiting interpretable differences in their
higher-molecular-weight ions, the heavy fragmentation of
alkanes yields mass spectra that are not sufficiently differ-
ent to be separated by the cosine similarity threshold (i.e.,

comparisons between all three isotopologues have ε ≥ 0.8),
despite sufficient differences to be separated into different
factors in the PMF. Consequently, resolution of these peaks
relies on separation by retention time in the analyte sorting
step. Separation between each peak is roughly 0.75 s in re-
tention time, while median peak width in the dataset (σ ) is
0.6 s, peak widths of these analytes are roughly on the order
of 0.7 s, and a mass spectrum is collected every 0.3 s. Peaks
are consequently separated by more than two data points and
more than the median HWHM of the dataset (0.71 s), but not
by more than the HWHM of these specific peaks (0.82 s) or
by more than the median FWHM of the dataset (1.4 s). In
other words, only more aggressive screening methods (i.e.,
using σ or median HWHM as the critical retention time dif-
ference) would separate these isotopologues. This approach
also increases the chance of chromatographic artifacts being
cataloged as real analytes (positive error), but a more con-
servative approach increases the possibility of overlooking
poorly resolved and similar analytes such as these (negative
error). Ultimately, it is up to the user to decide the optimal
critical retention time difference.

The effect of a non-Gaussian peak shape was also exam-
ined. Because peak detection relies on derivatives to iden-
tify potential peaks based on inflection points in the data, the
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Figure 5. Analysis of GoAmazon data using four chromatograms across the full 450 s chromatogram (200–650 s). 10 s slices were used
with 2 s overlap. The total ion chromatogram and reconstructed signal of each analyte are displayed in black and light red, respectively. The
magnified view of a 10 s window (347–457 s) is presented at the top right corner to display successful separation of co-eluted peaks. Blue
stars indicate the analytes that were identified in a previously published manual analysis of these data.

number of peaks found is agnostic toward peak shape; in-
stead, peak shape primarily impacts peak widths. Using an
exponentially modified Gaussian peak shape in the analy-
sis of isotopologues does not substantially change the result
(Fig. S7). With this peak shape, isotopologues remain sep-
arated using more aggressive critical retention time differ-
ences (median HWHM or more than two data points) but are
combined by more conservative thresholds. This result is of
course limited to the shown case, in which a Gaussian curve
reasonably describes the observed data. Datasets containing
highly non-Gaussian peak shapes may be more impacted and
should be examined closely for the potential impact of peak
tailing on positive errors.

3.3 Cataloging analytes in real-world data

To evaluate the proposed method in a real-world application,
we apply it across the full chromatographic range for data
representing the gas- and particle-phase composition of at-
mospheric samples. The goal of this analysis is to both pro-
vide an estimate of the number of analytes found in repre-
sentative atmospheric samples and evaluate the ability of the
cataloging approach to identify analytes known to exist in
a complex, real-world dataset. Doing so requires user deci-
sions on the optimal parameters (e.g., number of factors, slice
length). Figure 3 demonstrates the tendency of the method
to find increasing numbers of analytes with increasing fac-
tors until reaching a certain threshold. It is reasonable to ex-
pect that the maximum number of analytes found in each
slice is also a function of slice size (i.e., length of the chro-
matographic window). As slice length increases, the number
of slices decreases (roughly linearly scaling computational
time) and the number of necessary factors increases (roughly

exponentially scaling computational time, Fig. S9). Because
the decision tree is effective at mitigating positive errors, the
results of the methods (i.e., the catalog of analytes) are not
strongly impacted by optimization decisions, which instead
primarily impact efficiency (i.e., minimizing computational
time). For the real-world data tested here, the maximum num-
ber of analytes observed in each slice roughly approaches a
plateau when the number of factors used is 2–3 times the
length of each slice (in seconds) (Fig. S8). Due to the balance
between factor number and length, it is generally somewhat
more efficient to use lower-factor solutions for a larger num-
ber of shorter slices, but computational time is not substan-
tially different across different sets of parameters that meet
the necessary number of factors per slice length (Fig. S10).
For these data, we use a 25-factor PMF on 10 s slices with
2 s overlap between slices (based on a typical peak width of
1–2 s).

A sample of four chromatograms within the retention time
window 200–650 s was analyzed by this approach (Fig. 5),
constituting 56 slices. These chromatograms were selected
from the complete dataset based on their similar sampling
times, minimizing differences in instrument operating condi-
tions (retention time, mass spectrometer tuning) over time.
We recognize that the variance obtained by a larger sam-
ple size may increase the amount of information extracted,
but this would significantly increase the computational ex-
pense. In essence, the optimization of sample size is depen-
dent on sample-to-sample variability and processing capabil-
ity. In this work, we use a sample of four chromatograms
to demonstrate the effectiveness of this approach; optimiza-
tion of sample size is dataset-dependent and will be explored
in future work. From this sample of chromatograms, a to-
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tal of 1169 analytes were identified, with a computational
time of 290 min. This analysis uses a moderately aggressive
critical retention time difference (1.4σ ), but the number of
analytes found is slightly reduced by more conservative ap-
proaches (e.g., only 20 % lower using the much more con-
servative FWHM, Table S1). In contrast, a previously pub-
lished analysis of this dataset focused on only ∼ 100 com-
pounds cataloged by manual inspection, though additional
compounds are observed to exist in the dataset that were
not a focus in this previous analysis. We note that a major
advantage of the proposed approach is not only the larger
number of analytes cataloged (with significantly less man-
ual interaction), but also that each of these analytes has a
well-defined mass spectrum that can be used for identifica-
tion or comparison to existing mass spectral libraries. We
probe the present analysis for negative errors by comparing
the analyte catalog against analytes identified in the previ-
ously published analysis. The analyte catalog in this work
was found to detect every peak in the dataset with a known
identification, including introduced isotopically labeled in-
ternal standards, analytes identified by authentic standards,
and tracer compounds of interest for known atmospheric pro-
cesses such as oxidation products of naturally emitted gases
and emissions from biomass burning. For example, the iden-
tified peaks observed in the inset of Fig. 5 at 350 and 356 s
are the known, highly studied oxidation products of isoprene,
2-methylthreitol and 2-methylerythritol (Claeys et al., 2004;
Surratt et al., 2010; Wang et al., 2005), while the peak co-
eluting earlier at 350 s is the α-pinene oxidation product pinic
acid. The mass spectra were also compared to the NIST li-
brary, and only 96 (∼ 8 %) of the cataloged analytes had mass
spectral matches in the library that were in the “good” or “ex-
cellent” range (Stein, 2008) (Fig. S11). Previous work has
shown that matches below these thresholds indicate that the
found spectra do not represent the unknown analyte (Wor-
ton et al., 2017), suggesting that 90 % of analytes in these
samples do not exist in the mass spectral library. These re-
sults demonstrate the utility of the proposed approach to de-
tect and identify known analytes of interest and to catalog
hundreds of unknown analytes by their retention time and
mass spectra. Significant work remains to be done to identify
the unknown compounds in the atmosphere. However, many
tracers commonly used by the community started out as com-
ponents with unknown structure or origin. For example, C5
alkene triols that are commonly measured as isoprene oxi-
dation tracers required significant dedicated effort to iden-
tify (Wang et al., 2005). Previous work has also been done
wherein correlation with known tracers was used to iden-
tify the likely sources of unknown compounds (Isaacman-
VanWertz et al., 2016), and in some cases, this information
was used to quantitatively attribute sources of aerosol (Zhang
et al., 2018). Therefore, despite the lack of current identifi-
cation, we believe it is useful to integrate and investigate all
analytes and examine the data as a whole.

4 Conclusions

In this work, we describe and evaluate a method to catalog
analytes in a set of chromatograms representing complex en-
vironmental data. Analysis of known standards demonstrates
high skill at finding minor analytes even when poorly re-
solved, with no strong tendency to find spurious analytes that
are not actually present. This approach will consequently be
valuable for the automated processing of complex chromato-
graphic data and will enable new information to be extracted
that might otherwise be ignored or discarded by conventional
approaches due to technical difficulties or limited resources.
Analysis of real-world data cataloged more than 1000 an-
alytes with little or no human interaction. Three major fu-
ture developments would further enhance this approach: im-
proved retention time correction without human interaction
(e.g., by parametric optimized warping; Eilers, 2004), incor-
poration of modified peak shapes (e.g., exponentially modi-
fied Gaussian) as a peak fitting model, and algorithmic op-
timization of decisions around the length of each slice, the
number of factors, and the number of chromatograms. How-
ever, even without these advancements, the required levels
of operator interaction are limited, and the proposed method
has the potential to substantially improve and expand data
analyses of both new and previously collected data.

Code availability. The code used in this study is being im-
plemented as an automated analyte detection module into
TERN, the latest version of which is publicly available
at https://doi.org/10.5281/zenodo.6940761 (Isaacman-VanWertz et
al., 2022), including access to the source code. The specific imple-
mentation of PMF used in this work is the PMF Evaluation Tool
(PET) 3.04 as described in Sect. 2.1, which is commercially avail-
able, though the module could be modified to incorporate other pub-
licly available PMF tools (e.g., US EPA PMF 5.0).

Data availability. Calibrated time series for analytes with defini-
tive identifications are publicly available through the Depart-
ment of Energy Atmospheric Radiation Monitoring data archive,
which can be found at https://iop.archive.arm.gov/arm-iop/2014/
mao/goamazon/T3/goldstein-svtag/ (last access: 13 August 2022;
DOE ARM, 2022). Access to the data requires an account with
DOE, which is available to any user, and sign up can be done at
the following link: https://adc.arm.gov/armuserreg/#/new (last ac-
cess: 19 August 2022). The raw chromatograms of these data are
available upon request by contacting the corresponding author.
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