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Abstract. We introduce a new machine learning approach
to retrieve cloud optical thickness (COT) fields from visi-
ble passive imagery. In contrast to the heritage independent
pixel approximation (IPA), our convolutional neural network
(CNN) retrieval takes the spatial context of a pixel into ac-
count and thereby reduces artifacts arising from net horizon-
tal photon transfer, which is commonly known as indepen-
dent pixel (IP) bias. The CNN maps radiance fields acquired
by imaging radiometers at a single wavelength channel to
COT fields. It is trained with a low-complexity and therefore
fast U-Net architecture with which the mapping is imple-
mented as a segmentation problem with 36 COT classes. As
a training data set, we use a single radiance channel (600 nm)
generated from a 3D radiative transfer model using large
eddy simulations (LESs) from the Sulu Sea. We study the
CNN model under various conditions based on different per-
mutations of cloud aspect ratio and morphology, and we use
appropriate cloud morphology metrics to measure the per-
formance of the retrievals. Additionally, we test the general
applicability of the CNN on a new geographic location with
LES data from the equatorial Atlantic. Results indicate that
the CNN is broadly successful in overcoming the IP bias and
outperforms IPA retrievals across all morphologies. Over the
Atlantic, the CNN tends to overestimate the COT but shows
promise in regions with high cloud fractions and high optical
thicknesses, despite being outside the general training enve-
lope. This work is intended to be used as a baseline for future

implementations of the CNN that can enable generalization
to different regions, scales, wavelengths, and sun-sensor ge-
ometries with limited training.

1 Introduction

Cloud optical properties play an important role in determin-
ing the cloud radiative effect (CRE), surface energy budget,
and heating profiles. Cloud optical thickness (COT) is impor-
tant for the shortwave CRE. Accurately predicting the COT
will help to improve our understanding of the energy bud-
get. Currently, the most-used cloud optical properties are re-
trieved under the independent pixel approximation (Vardhan
et al., 1994), or IPA, which assumes clouds are homogeneous
within the pixel and is blind to the spatial context of adjacent
pixels.

1.1 Effects of cloud inhomogeneity

In the real world, clouds are inhomogeneous. Cloud spatial
inhomogeneity effects on atmospheric radiation and remote
sensing have been studied extensively for decades. To appre-
ciate that, one only needs to consider that the Stephens and
Tsay (1990) review paper on the once prominent cloud ab-
sorption anomaly was itself the synthesis of a body of work
starting in the 1960s. This anomaly is understood as the dis-
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crepancy between the absorption as calculated from in situ
cloud microphysics measurements and as inferred from mea-
sured shortwave net irradiances above and below a cloud
layer. Rawlins (1989) and others identified net horizontal
photon transport H as the potential cause. This term is an
important addition to the energy conservation of a layer with
a finite horizontal extent (domain size),

R+ T +A= 1+H, (1)

where R, T , and A are the irradiances that are reflected,
transmitted, and absorbed by the layer, normalized by the
incident irradiance (Marshak and Davis, 2005), whereas H
quantifies the net lateral exchange between the domain cap-
tured in the equation above and its surroundings. It can only
be neglected if clouds are horizontally homogeneous over a
sufficiently large domain. In practice, this condition is not
met very often, and yet one-dimensional radiative transfer
(1D-RT) makes precisely that assumption. The H term can
thus be regarded as the missing physics in 1D-RT, which
largely explains the lack of radiative closure between mea-
sured and calculated A, T , and R in earlier studies (Mar-
shak et al., 1999; Kassianov and Kogan, 2002; Schmidt et al.,
2010; Kindel et al., 2011; Ham et al., 2014; Song et al.,
2016).

Barker and Liu (1995), hereafter referred to as BL95,
first quantified the effect of horizontal photon transport on
COT retrievals with Landsat data. Interpreting their Landsat-
derived COT fields as truth, they calculated synthetic radi-
ance fields with a Monte Carlo 3D-RT model and subse-
quently retrieved COT from those, emulating the IPA re-
trieval process with realistic clouds. They found that the op-
tical thickness of optically thick clouds is underestimated,
whereas optically thin clouds appear thicker than they really
are. Because of horizontal photon transport, the “dark” pix-
els collectively brighten at the expense of the “bright” pixels.
The magnitude of such errors, quantified by retrieval perfor-
mance metrics introduced in Sect. 3.4, depends on cloud type
and morphology (horizontal distribution, geometric thick-
ness, and other parameters).

To some degree, radiance averaging in spatially coarse
pixels decreases the independent pixel (IP) bias because net
horizontal photon transport drops off with larger pixels. On
the other hand, radiance averaging also leads to the so-called
plane-parallel (PP) bias because the reflectance r is a con-
cave function of COT, and therefore r(〈COT〉)≥ 〈r(COT)〉.
In other words, reflectance as a function of the mean of the
optical thickness is always greater than or equal to the mean
of the reflectance of the optical thickness. The PP bias in-
creases with pixel size, while the IP bias decreases. To re-
duce the PP bias, Cahalan (1994) introduced the concept of
effective COT for marine stratocumulus clouds, which can
be parameterized as a function of 〈COT〉 and the standard
deviation of the logarithm of the COT. For stratocumulus
and some other boundary layer clouds, the optimum (i.e., the
minimum of IP and PP combined) occurs at a scale of about

1 km (Davis et al., 1997; Zinner and Mayer, 2006), which is
why currently operational cloud retrievals are performed at
this scale (e.g., Platnick et al., 2021).

In addition to net horizontal photon transport, there are
other mechanisms causing inhomogeneity biases in cloud re-
trievals, most notably shadowing, which is especially signif-
icant for low sun elevation and pronounced cloud-top vari-
ability, which leads to roughening of the retrieved COT
fields (Marshak et al., 2006; Iwabuchi, 2007) – as opposed
to smoothing that is caused by horizontal photon transport.
The retrieval of droplet effective radius (REF), which is re-
trieved along with COT in the bispectral technique by Naka-
jima and King (1990), is also affected by cloud inhomogene-
ity biases (Marshak et al., 2006; Zhang et al., 2012), as are
downstream parameters such as the liquid water path (LWP)
and the cloud droplet number concentration. The occurrence
of smoothing and roughening as manifested in power spec-
tra and autocorrelation functions varies by cloud type and
scale, imager wavelength, and solar zenith angle (SZA) (Ore-
opoulos et al., 2000). Iwabuchi and Hayasaka (2002) distin-
guished geometric inhomogeneity (morphology, thickness,
and cloud-top roughness), horizontal variance, resolution and
scaling (power spectrum exponent), and sun-sensor geom-
etry as the primary drivers of biases and retrieval noise of
IPA retrievals. Of these, Várnai and Davies (1999) specifi-
cally compared cloud-top and horizontal variability with the
tilted IPA (TIPA) and found that COT variations caused by
the variability of geometric thickness rather than by the ex-
tinction coefficient lead to greater reflectance biases, at least
for oblique geometries. They also quantified different sub-
mechanisms, such as upward and downward “trapping” and
“escape” of photons, and proposed treating them separately
in future correction schemes.

Figure 1 illustrates the magnitude of the problem for cu-
mulus clouds. Synthetic radiances obtained from an LES
cloud scene with a 3D-RT model (Sect. 2.2) emulate im-
agery observations. From those radiances, COT fields were
retrieved via IPA. For the clouds shown as an inset in Fig. 1a
as an example, the IPA retrieval (Fig. 1c) significantly under-
estimates the ground-truth COT (Fig. 1b) due to H and other
3D effects.

1.2 Statistical mitigation of cloud inhomogeneity effects

Tremendous effort has been made to mitigate the effects of
cloud inhomogeneity. Early mitigation efforts employed sta-
tistical approaches. For example, BL95 determined the slope
δ for the logarithmic relationship between the IPA-retrieved
COT τIPA and the true COT τtrue as

τIPA = τ
δ
true, (2)

where δ is parameterized as a function of the cloud geometric
thickness h for the specific cloud fields used:

δ = e−h/h0 for h < 1000m, (3)
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Figure 1. (a) Synthetic radiance field at 600 nm generated with EaR3T using LES for a nadir view (30◦ solar zenith angle, 0◦ solar azimuth
angle) that would be seen by a satellite imager at 705 km. The inset shown is a 6.4 km× 6.4 km sub-domain region. (b) True COT (ground
truth) for the sub-domain of 6.4 km× 6.4 km. (c) IPA retrieval for the sub-domain. The underestimation made by the IPA retrieval is visually
clear.

with h0 ≈ 2 km. The corrected COT can then be obtained
as τ

1/δ
IPA . Chambers et al. (1997) tabulated aspect-ratio-

dependent corrections in the form of

τIPA = τtrue(1− o− bv), (4)

where o= 0.01. . .0.05 and b = 0.15. . .0.25 are SZA-
dependent fit parameters, and the formula is inverted to un-
bias the COT. In this case, the aspect ratio v is derived from
satellite observations as the ratio of the cloud-top variability
to the horizontal e-folding distance of the COT autocorrela-
tion function. It is really a metric of cloud-top roughness but
serves as a proxy for the true aspect ratio. In contrast to the
BL95 formula, the Chambers et al. (1997) parameterization
only corrects for the underestimation of COT for large val-
ues, not for the overestimation at small COT.

Iwabuchi and Hayasaka (2002) introduced more complex
statistical parameterizations that account for sun-sensor ge-
ometry and cloud morphology among other factors, with the
main objective of correcting the first two moments of the
COT probability distribution function (PDF) (mean value
and variance, Iwabuchi, 2007). Marshak et al. (1998) de-
veloped a nonlocal IPA (NIPA) that considers pixel-to-pixel
interactions by adding a convolution kernel to the IPA that
reproduces the observed Landsat scale break and inverted
the approach for the recovery of the true COT power spec-
trum from observed radiance fields. To stabilize (de-noise or
smooth) this deconvolution process, they used spatial reg-
ularization. Zinner et al. (2006) applied a similar approach
to aircraft radiance observations of broken clouds but imple-
mented it as a step-wise sharpening algorithm, which adjusts
the point-spread function of the deconvolution kernel itera-
tively until the calculated radiance fields match the observa-
tions. Applied to synthetic observations, it not only recreates
the original power spectrum of the underlying LWP field, but
also reproduces the original PDF.

1.3 Cloud inhomogeneity mitigation using tomography
and neural networks

Another promising mitigation strategy for 3D cloud biases is
tomography (e.g., Forster et al., 2021) whereby multi-angle
radiance observations are inverted to retrieve not only cloud
boundaries (through stereo reconstruction or space carving),
but also the 3D distribution of parameters such as the liquid
water content (LWC) and REF. This is done by iteratively
adjusting the inputs to 3D-RT calculations until the output
is consistent with the observations – an approach that has
recently become tractable (Levis et al., 2020). Tomography
does not require training and comes with built-in closure be-
tween the observed and calculated radiance fields. However,
it requires multi-angle radiances and extensive RT calcula-
tions, which are computationally expensive.

Pixel context-aware algorithms have become a promising
approach for resolving cloud inhomogeneity effects when
retrieving cloud optical properties from radiance measure-
ments. Faure et al. (2002) implemented a mapping neural
network (MNN) for which the solution to the inverse prob-
lem is understood as mapping from radiance to COT not only
on the individual pixel basis (as in IPA), but also from neigh-
boring pixels. The transfer functions from neighboring pixels
are coefficients that are learned iteratively by the MNN with
training data. They can be understood as spatial filters. This
is similar to the idea of an averaging kernel from Marshak
et al. (1998), but more general and applied in the opposite
direction (from radiance fields to COT). Cornet et al. (2004)
applied this approach for the estimation of domain-averaged
COT and REF. Iwabuchi (2007) built on the idea of spatial
mapping but generalized it further to include other wave-
lengths. The filter coefficients are determined by regression
using least-square fitting based on synthetic training data. In-
stead of mapping directly to COT space, the observed radi-
ance fields are mapped to pseudo-IPA radiance fields from
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which 3D effects are removed and to which the standard IPA
technique can be applied to infer COT and other parameters.

Such pattern-driven image analysis proliferated with the
advent of deep learning, specifically convolutional neural
networks (CNNs, LeCun et al., 1989, LeCun et al., 1998).
In the last 2 decades, the increased use of GPUs (graph-
ics processing units) has enabled the efficient processing of
large training data sets for increasingly complex networks
(Krizhevsky et al., 2012). Therefore, it was only natural to
harness these techniques for 3D cloud remote sensing. Oka-
mura et al. (2017) presented the first CNN for multi-pixel
cloud reflectance retrievals for COT and REF that was trained
with LES-based synthetic data, followed by Masuda et al.
(2019), who developed a CNN retrieval of the slant COT
from ground-based observations by a radiometrically cali-
brated fish-eye lens camera (see Sect. 2). Sde-Chen et al.
(2021) combined the two worlds of CNNs and tomography
to reconstruct the 3D cloud extinction field using multi-view
satellite images. These algorithms demonstrated that a CNN
is capable of recovering the original cloud fields with higher
fidelity than previous techniques, albeit only after significant
training effort, sometimes involving days of training using
supercomputers.

Since the magnitude of 3D remote sensing biases depends
on cloud spatial characteristics, CNNs have the potential to
outperform their regression-based predecessors (Sect. 1.2).
In this work, we introduce a CNN that builds on previous
work (Masuda et al., 2019) but significantly reduces training
time through

1. reduced complexity of the architecture (Sect. 3.2) and

2. a deliberately minimal training data set that is still gen-
eral enough to make the trained CNN applicable to a
wide range of conditions, while outperforming the IPA
in terms of the retrieval performance metrics we intro-
duce in Sect. 3.4.

For the IPA-retrieved COT from Fig. 1c, we show the re-
trieval bias in Fig. 2, which is the difference between the re-
trieved COT and the ground-truth COT, and it is expressed as
a function of the ground-truth COT. Figure 2 also provides a
preview of the results of the CNN that we describe in more
detail later. The dependence of the bias on the ground truth
can be parameterized through linear regression. In this case,
the slope of the regression for the IPA retrieval is −0.79,
which reflects the significant underestimation of the COT
for the majority of the pixels from Fig. 1c. In contrast, the
CNN retrieval shows a much smaller bias with a slope of
−0.03, though the scatter is not reduced relative to the IPA.
More details on the definition of the various retrieval per-
formance parameters such as the slope and scatter are de-
scribed in Sect. 3.4. It is worth noting that the IPA retrieval
in Fig. 2 does appear to have a linear relationship with the
difference between the retrieved and true COT, which would
imply that it is indeed possible to parameterize this effect as a

Figure 2. A scatter plot comparing the COT retrieved by the IPA
method (blue scatter) and the CNN (red scatter) as a function of the
true COT. The dashed black line depicts the ideal retrieval having
a slope of 0. The solid blue and red lines are linear regression lines
fitted to the IPA and CNN retrievals, respectively.

3D correction. Furthermore, as we discuss in Sect. 1.2, there
have been approaches that have attempted to do so, includ-
ing Iwabuchi and Hayasaka (2002). However, the underlying
problem with such a method is that the parameters are fixed
and derived for very specific cloud fields using multivariate
fitting. By contrast, with our proposed CNN (and its future
iterations), the intention is to utilize the existing spatial con-
text in cloud imagery to learn the underlying features that can
then be generalized and applied to correct 3D radiative and
net horizontal photon transport effects.

In our paper, we use two LES data sets from distinct re-
gions of the globe as 3D-RT input (Sect. 2.2) to generate
synthetic radiance data that a satellite would observe at nadir.
We then train the model with 6.4 km× 6.4 km resolution ra-
diance images as the input and COT as the truth from the
first LES data set (shallow convection near the Philippines).
The LES data set we chose contains six distinct cloud mor-
phologies that correspond to a locally representative range
of aerosol and wind shear conditions. We validate the per-
formance of the CNN with unseen image pairs from the first
data set by assessing a number of retrieval performance pa-
rameters as a function of cloud field parameters such as mean
COT and cloud fraction (CF). Along the way, we test differ-
ent training data selection criteria that increase the capacity
of the trained network to generalize. Finally, we test the CNN
trained on data from the Philippines on the second data set
(closed- and open-cell shallow convection in the southeastern
Atlantic) to gauge its functional capacity under completely
different circumstances.

Section 2 describes the generation of the training and val-
idation data from the LES data, including the 3D-RT, fol-
lowed by the CNN architecture and methodology in Sect. 3.
Section 4 discusses the evaluation of the CNN under various
experiments and case studies in data conditioning and selec-
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tion. In Sect. 5, we discuss the main takeaway points from
our study and outline a path for the future.

2 Data generation

To train the CNN, we need input and true data. The input
data consist of radiance images, each at 600 nm wavelength.
For each input image, a ground-truth image of the same size
is used. In our case, the COT is used as the ground truth.
This true image goes through a series of processing steps ex-
plained in Sect. 2.3. To generate these data, we use two LES
models in two regions, coupled with radiance calculations
(Sect. 2.2).

2.1 Large eddy simulations

The two LES data sets were chosen from regions where
NASA aircraft field campaigns were conducted in the recent
past to allow for direct validation of CNN-based retrievals
with in situ microphysics and radiation measurements in fu-
ture studies. The first LES data set (Sect. 2.1.1) is based on
7SEAS (Southeast Asian Studies) ship-based observations in
the Sulu Sea area, which was also sampled during the 2019
NASA CAMP2Ex (Cloud, Aerosol and Monsoon Processes
Philippines Experiment) aircraft campaign. The second data
set (Sect. 2.1.2) was based on the 2017 Cloud–Aerosol–
Radiation Interactions and Forcing (CLARIFY) campaign in
synergy with the 2018 campaign of the NASA airborne OR-
ACLES (ObseRvations of Aerosols above CLouds and their
intEractionS) study (Redemann et al., 2021) that took place
in the southeastern Atlantic. Both data sets are dominated by
shallow convection but with different attributes.

For the Sulu Sea data set, Fig. 3 shows how wind shear
and aerosol loading affect cloud morphology. For conditions
with no wind shear, one can see a high level of organiza-
tion (hexagonal walls of convection), especially for the low
aerosol loading case shown in Fig. 3b and d. We selected six
of these open-cell convection cases and sampled 64×64 pixel
sub-domains spanning 6.4 km× 6.4 km from the COT fields
and the corresponding radiance fields as shown by the white
box in Fig. 3c. Figure 3e and f visualize the difference in the
radiance level between IPA and 3D radiance calculations, re-
spectively, for the highlighted sub-domain. Figure 3a shows
a scenario with vertical wind shear and high aerosol loading.
We used the native horizontal resolution of the simulations
(100 m) as the pixel size for the synthetic radiance simula-
tions – a scale where the IPA bias dominates over the PP bias
and can therefore be optimally studied here.

The six 48 km× 48 km scenes each generated 100
6.4 km× 6.4 km training image pairs. They were obtained by
clipping off 64-pixel stripes on all sides to avoid edge effects
from the cyclic boundary conditions in the LES and 3D-RT
and subsequently moving a 64× 64 pixel selector window
across the remaining domain with a horizontal and vertical

stride of 32 pixels. For CNN training, the original number
of samples is very low. Therefore, we augmented the native-
resolution training pairs by horizontally coarsening the fields
by a factor of 2 such that each original 100 m× 100 m cell
was assigned a spatial extent of 400 m× 400 m and then split
into four cells, leaving the vertical resolution of the fields
(40 m) intact. In addition to providing additional training
pairs after subsampling as described for the native-resolution
data, this coarsening procedure also effectively generates
horizontally smoother cloud fields while halving the cloud
aspect ratio (cloud height divided by cloud width) since we
only change the horizontal resolution. In other words, one
of the key drivers for 3D COT biases as described by BL95
and others is systematically changed in the training data to
introduce some training data diversity. A subsequent second
coarsening step introduces another level of coarsening, and
the aspect ratio has now been reduced by a factor of 4 from
the original. The three data sets, labeled 1× 1 (native reso-
lution), 2× 2, and 4× 4, are used separately (Sect. 4.1) to
examine the impact of the cloud aspect ratio on the retrieval
performance and together (Sect. 4.2) to assess the impact of
training sample number along with algorithm robustness and
accuracy for a physically more diverse data set. A more con-
solidated version of the three data sets is evaluated to de-
crease training time (Sect. 4.3).

The Atlantic data set (Sect. 2.1.2) encompasses both open-
cell and closed-cell convection, from which we sampled five
350×350 pixel scenes. These data were only used at the na-
tive resolution (100 m× 100 m× 40 m voxel size as the Sulu
Sea simulations); no data augmentation was necessary be-
cause the fields only served as validation. This is further ex-
plained in Sect. 4.4.

2.1.1 Sulu Sea data set

The simulation configurations were designed to investigate
aerosol–cloud interactions in trade cumulus cloud fields in
the Philippines areas as a pilot study for the CAMP2Ex field
program (Reid et al., 2022). The detailed model configu-
rations and scientific findings were reported by Yamaguchi
et al. (2019). The initial, environmental, and boundary con-
ditions were based on a ship measurement that took place
on 21 September in the Sulu Sea during the 7 Southeast
Asian Studies (7SEAS) campaign in 2012 (Reid et al., 2016).
In addition to 6-hourly data, the hourly ERA5 (Hersbach
et al., 2020) data were supplementary. A total of six simu-
lations were performed with and without vertical wind shear
with three different aerosol number concentrations – 35, 150,
and 230 mg−1 – for 60 h with a 48 km× 48 km domain and
two-moment bin microphysics scheme. These simulations
revealed that trade cumulus clouds organize so that they pro-
duce a similar amount of precipitation and cloud radiative
effect, which is consistent with a buffering of the aerosol ef-
fect as discussed by Stevens and Feingold (2009). Vertical
wind shear was found to impose two effects, which compen-
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Figure 3. (a)–(d) LES COT fields from the 7SEAS campaign in the Sulu Sea with and without wind shear and with low and high aerosol load-
ing (the maximum COT is capped at 4 to emphasize low-COT regions). Panels (e) and (f) show synthetic radiance calculations (red= 600 nm,
green= 500 nm, blue= 400 nm) with IPA and 3D, shown for the 6.4 km× 6.4 km sub-domain (white box) in (c). All observations are of a
hypothetical satellite imager at an altitude of 705 km with a solar zenith angle of 30◦ (with nadir viewing angle) and a solar azimuth angle
of 0◦.

sate for one another; the wind shear enhances clustering of
clouds, which tends to protect clouds from being evaporated,
while it tilts the clouds, which enhances evaporation.

2.1.2 Atlantic data set

The Atlantic data set is the output of a Lagrangian LES
(Kazil et al., 2021, simulation B1). The simulation cov-
ers two daytime periods and simulates the transition from
an overcast closed-cell stratocumulus cloud deck to a bro-
ken, open-cell cloud deck in a pocket of open cells (POC)
sampled during the Cloud–Aerosol–Radiation Interactions
and Forcing (CLARIFY) campaign (Abel et al., 2020; Hay-
wood et al., 2021). The closed-cell cloud deck at the start
of the simulation is depicted in Fig. 4a, while Fig. 4b, c,
and d illustrate the transition to an open-cell morphol-
ogy. Figure 4e visualizes the 3D radiance calculations for
the highlighted 6.4 km× 6.4 km sub-domain. The LES was
driven by the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis meteorology (ERA5). Its
76.8 km× 76.8 km domain follows the trajectory of the
boundary layer flow, determined with the Hybrid Single Par-
ticle Lagrangian Integrated Trajectory Model (HYSPLIT,
Stein et al., 2015). On the first day of the simulation, the
stratocumulus cloud deck is in the overcast, closed-cell state,
with a cloud fraction near unity and negligible surface pre-
cipitation. An increase in rain water path towards the evening
leads to sustained precipitation over the course of the night,

accompanied by the transition to the open-cell stratocumu-
lus state, which persists during the second day. The simula-
tion was evaluated with satellite (Spinning Enhanced Visible
and Infrared Imager, SEVIRI) and CLARIFY aircraft in situ
data. It reproduces the evolution of observed stratocumulus
cloud morphology, COT, and REF over the two-day period
of the cloud state transition from closed to open cells, and it
captures its timing as seen in the satellite imagery. Cloud mi-
crophysics were represented with a two-moment bin scheme,
which reproduces the in situ cloud microphysical properties
reasonably well. A biomass burning layer that was present
in the free troposphere resulted in negligible entrainment of
biomass burning aerosol into the boundary layer, in agree-
ment with the CLARIFY in situ measurements. Further de-
tails on the simulation, its setup, and the results are given by
Kazil et al. (2021).

2.2 Radiance calculations

Both sets of LES calculations contain the 3D distributions of
cloud water mixing ratio (ql), REF, water vapor mixing ratio
(qv), temperature (T ), pressure (p), and other meteorological
variables. From those 3D fields, the LWC is calculated as

LWC= ql ∗ ρair, (5)
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Figure 4. (a)–(d) Lagrangian LES COT fields (600 nm) from the Atlantic taken during the CLARIFY campaign simulating a closed-cell
stratocumulus cloud deck transitioning to a broken open-cell cloud deck over a 78 km× 78 km domain. (e) 3D synthetic radiance calculations
(red= 600 nm) shown for the 6.4 km× 6.4 km highlighted white box sub-domain in (c).

where ρair is the density of the ambient air, and the extinction
coefficient is obtained as

βext =
3 ·Qext ·LWC

4 · ρl ·REF
, (6)

where ρl is the density of liquid water and Qext is the ex-
tinction efficiency, approximated as 2 in the geometric optics
regime. Furthermore, the single-scattering albedo is set to 1
because all calculations are done in the visible where cloud
drop absorption is negligible. In this exploratory study, the
scattering by cloud drops is represented by a simple Henyey–
Greenstein (HG) phase function with an asymmetry param-
eter of 0.85. For our purposes, it is convenient to use this
fixed phase function as a proxy for the real phase function, in
part because our CNN does not retrieve REF. However, the
true REF distribution along with the associated Mie phase
function variability are expected to introduce additional ra-
diance variance, which will need to be considered in future
real-world CNN applications.

The radiance calculations were performed for the native-
resolution three-dimensional βext, as well as for the hori-
zontally coarsened fields (Sect. 2.1), using the Education
and Research 3D Radiative Transfer Toolbox (EaR3T, Chen
et al., 2022) for a wavelength of 600 nm. EaR3T provides
high-level interfaces in the Python programming language
that automate the process of running 3D-RT for measured
or modeled cloud and aerosol fields. It builds on using pub-
licly available 3D radiative transfer models (RTMs) includ-
ing MCARaTS (Iwabuchi, 2006), SHDOM (Evans, 1998),
and MYSTIC (Mayer, 2009) as 3D radiative solvers. In this
study, we used MCARaTS as the solver. The calculated ra-
diances serve as synthetic radiance observations of a hypo-

thetical satellite imager at an orbital altitude of 705 km with
a viewing zenith angle of 0◦ (nadir) for an SZA of 30◦ and
solar azimuth angle (SAA) of 0◦. The corresponding cloud
fields were represented by the vertically integrated βext, i.e.,
the column COT from the LES as ground truth for the CNN.

Additional input parameters for the 3D-RT calculations in-
clude the incident solar spectral irradiance (Coddington et al.,
2008) and a spectrally flat surface albedo of 0.03 with a Lam-
bertian reflectance. Similar to the simplified representation
of the cloud drop scattering, the surface reflectance assump-
tions are only meant to be a proxy for more complex condi-
tions in the real world. The optical properties of 1D atmo-
spheric components were obtained based on the US standard
atmospheric profile from Anderson et al. (1986) that con-
tains a vertical distribution of atmospheric gases (e.g., CO2,
O2, H2O). We used the correlated-k absorption approach in-
troduced by Coddington et al. (2008), which was optimized
for a moderate spectral resolution radiometer. The molecular
scattering optical thickness of the atmosphere is calculated
based on the algorithm developed by Bodhaine et al. (1999).
For each simulation, three runs were performed with 2×109

photons each, which allows one to estimate photon (statisti-
cal) noise along with the mean radiance fields. Following the
calculations, 64× 64 pixel COT and radiance training pairs
are subsampled from the larger generator field.

2.3 Pre-processing

Before the LES-generated COT images are used as ground
truth, a series of pre-processing steps are performed. A clear
distinction between our approach and the one proposed by
Masuda et al. (2019) is that we treat COT retrieval as a seg-
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mentation problem instead of regression. By using segmen-
tation, we reduce the problem to a classification task, the ob-
jective of which is to classify a pixel into a class. Such an ap-
proach aims for accuracy over a finiteN set of values instead
of a continuous distribution. TheN discrete classes represent
bins over the range of COT values. By binning the true COT
image, a discrete mask is obtained. To create this COT mask,
we apply a lookup table to the COT image. If a pixel lies in
a COT bin interval, the pixel is assigned a numerical value
(or a class) corresponding to that COT bin. For instance, if
the COT of a pixel is less than 0.1, it is assigned to class 0. If
the COT lies in the interval [0.1,0.2), it is assigned to class
1 and so on for a total of N classes. Since the bins are non-
overlapping intervals, a pixel can only belong to one COT
class. We note that by binning the COT, some precision is
lost, but the reduction in complexity of our model via the
U-Net architecture (and therefore faster training) makes up
for it.

After binning, each 480×480 scene is divided into 64×64
patches or sub-domains using a stride of 32 pixels in both the
horizontal and vertical directions to increase the number of
samples. We also crop out the edge pixels from a scene before
dividing into sub-domains. Therefore, a 480×480 scene can
generate between 600 and 1200 samples each of size 64×64
pixels depending on how many edge pixels are cropped out.
Before these data are fed to train the network, we “one-hot
encode” the images. One-hot encoding can be viewed as a
mapping technique whereby a pixel is mapped from an inte-
ger value to a binary (0 or 1) class. The mapping is 1 if the
pixel belongs to the class and 0 otherwise. The COT mask
becomes three-dimensional with the depth channel being the
class; i.e., it goes from dimensions of 64×64 to 64×64×N .
If a pixel belongs to class 3, the depth-wise array of size N
would be (0, 0, 0, 1, 0, 0, 0, 0,... 0) with N − 1 zeros. In our
case, we set N to 36. Figure 5 illustrates this, with Fig. 5a
showing a discretized mask of the true COT (obtained from
LES) with a 48 km× 48 km resolution. A white box high-
lights a 6.4 km× 6.4 km sub-domain that is extracted. This
sub-domain, shown in Fig. 5b, is then translated to a 3D
image with binary masks stacked along the channel depth
axis using one-hot encoding. The resulting encoded image
is shown in Fig. 5c. No pre-processing is performed on the
input radiance images. Hereafter, we refer to the 480× 480
(48 km× 48 km resolution) images generated by the LES as
“scenes”.

3 Architecture and methodology

3.1 Machine learning terminology

The CNN is responsible for learning features and patterns
that can fit the nonlinear relationship between the radiance
and the COT. When a radiance image is fed to the model,
it gets passed through various layers, undergoing nonlinear

transformations and changes to size and dimension, until af-
ter the final layer when it is compared with the ground-truth
COT to compute the cost or error. This section will detail
the inner workings of the CNN including its setup. But first,
we will discuss some of the nomenclature that will be used
throughout the rest of the paper.

CNNs, at their core, are feature extractors. In our case,
the goal is to learn the underlying low-dimensional and high-
dimensional spatial features in the radiance imagery that,
when optimized, make up a mapping function to retrieve the
COT. In order to extract these features, CNNs employ spa-
tial convolution. Each convolution operation works by mov-
ing a sliding window or “kernel” over the input to produce
a convolved output or “feature map”. Every time the kernel
is varied, the features it extracts also vary. A kernel is sim-
ply a 2D matrix that stores the coefficients or “weights” to be
convolved with the input. To put this mathematically, let the
weight coefficients in the 2D kernel be represented by w. If
the kernel size is K×K (meaning w is a K×K matrix) and
is convolving over an input image x of size M×M , then the
convolution operation, in its simplest form, can be written as

zu,v = w · xu,v +B =

K−1∑
i=0

K−1∑
j=0

wi,j xu−i,v−j +B, (7)

where B is a bias value. Biases are constants that are used
to offset the output of the convolution to help reduce the
variance and provide flexibility to the network. Convolution
computes the dot product over each pixel of the input over a
K×K window, offset by a bias value to obtain a single value
of the 2D feature map matrix, represented here as zu,v . The
kernel then slides over the input in a horizontal or vertical di-
rection and repeats the operation in Eq. (7) until all the input
pixels have undergone convolution. In doing so, the convolu-
tion builds and fills out the 2D feature map. The weight co-
efficients w can therefore be viewed as operators on input x
extracting a feature map z. Once the features z are extracted,
they now need to be used and combined to arrive at the map-
ping to the desired output (in our case, COT). Since the map-
ping from radiance to COT space is nonlinear, an activation
function f (commonly used in other ML models as well) is
applied element-wise to the 2D feature matrix z. The activa-
tion function helps the CNN learn complex patterns by only
activating certain features that are most helpful in approxi-
mating the mapping to COT. The resulting output is termed
an “activation map”. Following Eq. (7), this activation map
is given as

y = f (z)= f (w∗x+B). (8)

We note that throughout the rest of this paper, we use the
terms activation map and feature map interchangeably. Com-
mon activation functions include the sigmoid and tanh func-
tions. For our proposed CNN, we use a type of activation
function called ReLU or rectified linear unit that only acti-
vates those features that are positive. As mentioned earlier,
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Figure 5. One-hot encoding translates a 2D discrete COT mask to a 3D image with N binary masks. (a) A 48 km× 48 km discrete COT
mask. The white box highlighted is a 6.4 km× 6.4 km sub-domain, which is shown in (b). Panel (c) shows the one-hot-encoded COT that
has the dimensions 64× 64×N ; a pixel viewed depth-wise (along the channel axis) would have N classes of COT. Each layer represents
a bin interval of the range of COT. For instance, the white pixels in the top layer have COT< 0.1. Similarly, in the second layer, the white
pixels are those whose COT lies in the interval [0.1,0.2). The final layer’s white pixels have COT> 100. In our case, N = 36.

f is applied element-wise to the 2D feature matrix z and can
be written as

f (z)=max (0,z). (9)

The features that a kernel extracts could be as simple as
a horizontal or vertical gradient or more complex and high-
dimensional. When a number of kernels are stacked channel-
wise, they are called “filters”. The major advantage of using
a CNN is that we do not need to know the weight coeffi-
cients of these kernels or filters beforehand; it learns these
values through optimization over time. This period during
which the CNN learns how to best set the weights that will
result in the lowest error in its estimation of COT is termed
“training”. Background on the learning process is detailed in
Appendix A. Additionally, we normalize the output of con-
volution to a fixed mean and variance using a normalization
layer as is customary in machine learning (ML). This is done
before or after the activation function is applied and helps the
model to converge faster because it constrains the value range
of the features, thereby stabilizing the learning process.

3.2 Architecture

Our CNN can be explained in two aspects: (1) the architec-
ture and (2) the training. The architecture is derived from
an existing U-Net design (Ronneberger et al., 2015). Fig-
ure 6 shows a schematic of the architecture. We opted for
a U-Net style architecture for three main reasons: (1) the
model complexity is lower than other architectures, which
thereby increases computational speed during both training
and evaluation (inference); (2) the use of concatenation lay-
ers that link features learned by different stages helps the
model learn new features without increasing layer depth; and

(3) the U-Net has been proven to be a state-of-the-art model
for segmentation problems, especially in the medical field
(Litjens et al., 2017). The U-Net architecture in Fig. 6 can
be broadly thought of as having two distinct halves in the U
shape: a contracting branch on the left that can be viewed
as an “encoder” and an expanding branch on the right that
can be viewed as a “decoder”. The encoder progressively re-
duces or “contracts” the spatial dimensions while increasing
the feature dimension. This is because the objective of the en-
coder is to translate the features of the radiance imagery into
a low-resolution, high-dimensional representation of the ra-
diance (at the bottom of the U shape). This representation is
the result of learning the patterns of cloudy and non-cloudy
regions at multiple scales. The decoder, on the other hand,
does the opposite by building the spatial dimensions back up
to the target size while reducing along the feature dimension.
It projects the low-resolution features learned by the encoder
back to the pixel space to classify and segment each pixel
into a COT bin.

3.2.1 Contracting path

The contracting path (the encoder) is composed of a series
of convolutional blocks separated by pooling layers. Each
convolutional block has two sequential identical sets of a
2D convolution layer, normalization layer, and an activation
layer in that order (convolution→ normalization→ activa-
tion → convolution → normalization → activation). With
each passing convolution layer, the aim is to learn a set of
distinctive features of the radiance imagery that can help the
model approximate a mapping function from the radiance to
the COT. Since each convolution covers multiple neighbor-
ing pixels at a time, the CNN can gather an understanding
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Figure 6. Architecture of the proposed model based on U-Net (Ronneberger et al., 2015). The radiance images of size 64× 64 are fed
through an input layer (shown in yellow on the left). The blue rectangular blocks depict convolutional layers. The number of filters for each
convolutional layer is listed above each block (64, 128, 256,...). The blue arrows depict two sequential operations – the ReLU activation
and batch normalization. Red arrows are max-pooling layers that downsample the previous layer by half. The gray arrows represent the
concatenation operation whereby a source feature map from the contracting path (encoder) on the left is concatenated to a feature map from
the expanding path (decoder) on the right (shown as dashed blue lines). The green arrows represent upsampling via bilinear interpolation and
transposed convolution. The turquoise arrow is the final 2D convolutional layer that translates the previous layer to the requisite number of
output COT bins, in this case 36. The yellow rectangle on the right is the final output layer that is activated by the softmax function to obtain
36 probabilities for each of the 36 COT bins.

of the different distributions of radiance at different regions.
The resulting outputs from each convolution, i.e., the feature
maps, are fed forward as the input to the subsequent layer so
that none of the features are learned in isolation. As we dis-
cussed earlier, since the goal of the encoder is to learn a low-
resolution, high-dimensional representation of the radiance,
the horizontal and vertical dimensions are decreased after
each convolutional block through downsampling, while the
number of features is increased by using more convolutional
filters. The downsampling operation in the encoder is accom-
plished through a layer called the max-pooling layer. Using
the output of the convolutional block, max-pooling drops half
the pixels and retains only the sharp pixels. In terms of di-
mensions, the model takes in an input whose dimensions are
64× 64× 1 (a single 600 nm radiance channel image of size
64× 64 spanning 6.4 km× 6.4 km), while the output of the
encoder at the bottom of the U shape produces a feature map
of size 4×4×1024. More details about each individual layer
in the encoder are provided in Appendix B.

3.2.2 Expanding path

The expanding path (the decoder) is the right half of the
architecture. It is composed of a series of decoding stages
and the same convolutional blocks from the contracting path.
Each decoder stage enlarges or upsamples the spatial di-

mensions by a factor of 2 using bilinear interpolation. For
instance, after the end of the contracting path at the bot-
tom of the U shape, the dimensions of the feature map are
4× 4× 1024. After we upsample, the new dimensions be-
come 8×8×1024. However, interpolation is not intrinsically
learnable because it does not rely on an adaptable kernel
that updates during training. To add a learnable element to
upsampling, an operation called “transposed convolution” is
applied after interpolation. It performs the inverse of a stan-
dard spatial convolution operation to broadcast the interpo-
lated output to a feature map containing half the number of
feature maps compared to the interpolation step. Transposed
convolution is further explained in Appendix C. A core con-
tribution of the U-Net architecture proposed by Ronneberger
et al. (2015) was the use of concatenation (depicted as gray
arrows in Fig. 6). This concatenation operation between lay-
ers (often referred to as “skip connections” in machine learn-
ing literature) helps to add extra information to the upsam-
pling stage from the encoder side. It also works to reinforce
some of the features learned from the original radiance im-
agery that may have been lost during downsampling. We then
pass the concatenated feature maps through a spatial convo-
lution block whose configuration is the same as the ones used
in the encoder. We repeat this interpolation, transposed con-
volution, concatenation, and spatial convolution process until
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we reach the desired spatial size of 64×64. Once the original
resolution is reached, a final convolutional layer with 36 fil-
ters (36 corresponds to the number of classes or COT bins) is
applied, resulting in an output of 64× 64× 36. At this point,
the output would give us the raw mapping function to retrieve
the COT. However, as we discussed in Sect. 2.3, the ground-
truth COT is actually not the raw COT generated from the
LES. Instead, it is a one-hot-encoded COT of dimensions
64×64×36 with each of the 36 values being binary (0 or 1).
Therefore, we need to apply a transformation to the output
of the final layer to translate it to a multinomial probabil-
ity distribution across the same 36 COT bins as the ground
truth. To obtain this distribution, we use the so-called soft-
max function (see Appendix C). It works by taking the 36
raw values of each output pixel as input and normalizing it
into a PDF containing 36 probabilities proportional to the ex-
ponential of the raw values, as shown in Eq. (C1). Because
we use discrete bins of COT rather than continuous COT, our
approach solves a segmentation problem, rather than a re-
gression problem, in the nomenclature of computer science.
This distinction means that our CNN is simpler, smaller, and
trains faster than previous architectures (e.g., Masuda et al.,
2019, a regression approach). Details about each layer, acti-
vation functions (including the softmax function), and hyper-
parameters are explained in Appendix C.

3.3 Loss function: focal loss

The loss function serves an important role in optimizing a
machine learning algorithm. It is the method by which the
model learns to minimize the difference between the ground
truth and its prediction made through learned parameters.
Mean squared error and mean absolute error are commonly
used as loss functions in regression-based approaches. In our
case, due to the use of segmentation and classification, we
rely on a cross-entropy-based loss called focal loss (Lin et al.,
2017). But, before discussing focal loss, we introduce cross-
entropy loss. Also called log loss, cross-entropy measures
the difference between the estimated probability and the true
probability. Cross-entropy (CE) is given by

CE=−
∑
i∈I

∑
c∈C

pi,c · log(p̂i,c), (10)

where I is the set of all pixels, C is the set of all classes, pi,c
is the true probability of pixel i belonging to class c, and p̂i,c
is the estimated probability of pixel i belonging to class c.
We recall from Sect. 2.3 that since we use one-hot encoding
for the ground-truth COT and we know that a pixel can only
belong to one class, the true probability is binary. In other
words, a pixel either belongs to a class (COT bin) or it does
not. This can be written mathematically as

pi,c =

{
1, when pixel i belongs to class c

0, otherwise
. (11)

Since the softmax activation in the final layer generates a nor-
malized PDF, the sum taken over the estimated probabilities
of each class is always 1.∑
c∈C

p̂i,c = 1 (12)

Cross-entropy works well with binary and multi-class tar-
gets. However, cross-entropy fails to deal with class imbal-
ance. This is because all contributions from all classes are
summed together equally using only the truth and estimated
probabilities without a weighting factor that can change the
importance of a particular class. In our case, the imbalance
between the cloudy pixels and non-cloudy pixels is partic-
ularly high, with the latter sometimes occupying more than
80 % of the image. If we were to use cross-entropy as our loss
function, any large errors in the estimation of the cloudy pix-
els would get overwhelmed or averaged out by high volumes
of low errors for the non-cloudy pixels, therefore driving the
cost misleadingly low. That would lead the model to interpret
wrongly that it is learning all the classes equally well when
in fact it might not be. To counteract this, we use focal loss,
a variant of cross-entropy designed specifically to be used in
problems involving a class imbalance in the data set. Focal
loss (FL), adapted from Lin et al. (2017), is given by

FL=−
∑
i∈I

∑
c∈C

αt (1− p̂i,c)γ ·pi,c · log(p̂i,c). (13)

Focal loss uses a “modulating factor” (1− p̂i,c)γ to address
the issue of imbalance in cross-entropy loss by up-weighting
misclassified examples (classes that do not have high prob-
abilities) and down-weighting well-classified ones (classes
that have high probabilities). γ is called the “focal parame-
ter” and acts as a smoothing factor by exponentially scaling
the importance of a class. It is usually set to 1 or 2 (if set
to 0, focal loss becomes cross-entropy loss). To demonstrate
the effect of focal loss, let us consider an example. Let us
say the model is learning a particular class “well”; i.e., the
estimated probability is high, say p̂i,c = 0.9, and the corre-
sponding ground-truth probability pi,c is 1. And let us set the
focal parameter γ to 2. Then the modulating factor would
produce (1− p̂i,c)γ = (1− 0.9)2 = 0.01. This means that the
loss contribution by that class is scaled down by a factor of
100 when using focal loss instead of cross-entropy loss. By
down-weighting the clear-sky pixel contribution, we can fo-
cus on improving the retrieval of cloudy pixels. In addition,
the αt term serves as an adaptable weighting factor. We make
the weighting factor dependent on the true binary COT pixel
probability pi,c:

αt = αpi,c+ (1−α)(1−pi,c)

=

{
α, when pixel i belongs to class c

1−α, otherwise
, (14)

and we set α to 0.25 as recommended by Lin et al. (2017). It
is worth noting that focal loss up-weights any class yielding
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low probabilities rather than the frequency of occurrence of
that class, making it more robust to any class imbalance. This
ensures that the model relies on what it has learned so far
using the modulating factor to scale and correct itself.

3.4 Retrieval performance quantification

To quantify the retrieval errors, we use the pixel-centric rela-
tive root mean squared error (RMSE) or R:

R =

√√√√ 1
nx · ny

nx∑
i=1

ny∑
j=1

(
τret(i,j)− τtrue(i,j)

τtrue(i,j)

)2

× 100%, (15)

where τtrue and τret denote ground truth and the retrieval, and
nx and ny define the size of the analyzed sub-domain. In
most of our examples, since we use a 64× 64 COT image
spanning 6.4 km× 6.4 km, nx = 64 and ny = 64. The mean
(square) deviation of the pixel-level retrieval from the truth is
quantified relative to the pixel-level ground truth in percent-
age. RMSE is a quantification of the scatter that we discussed
earlier in the context of Fig. 2. For the case in Fig. 2, the rel-
ative RMSE (R) of the IPA retrieval is 60.8 %.

Instead of pixel-centric metrics, one can also focus on the
domain-wide retrieval performance based on the linear re-
gression between the ground truth and the difference between
the retrieval and the ground truth,

τret− τtrue = a · τtrue+ b. (16)

Typically, a < 0 and b > 0. A slope a = 0 and an inter-
cept b = 0 would indicate a perfect retrieval in terms of the
sub-domain as a whole. Unlike R, which also encompasses
pixel-level retrieval noise, slope and intercept only capture
the average deviation of τret from τtrue as a function of the
ground truth itself. As we noted earlier, our proposed CNN
significantly reduces the bias characterized by the slope a
metric. However, it does not necessarily show the same ex-
tent of improvement over the IPA for the scatter (variance)
characterized by R. This is expected as we do not directly
optimize the CNN for the R metric. In addition to the re-
trieval performance metrics introduced here, alternate met-
rics can be defined in terms of the two-stream transmittance
as a function of COT, “log” COT, or the power spectrum of
COT. Note that BL95 used slope and offset in log COT space
and determined the slope as a function of cloud geometric
thickness to introduce the first 3D COT corrections known in
the literature.

For the case shown in Fig. 2, for the IPA retrieval (blue
scatter), the linear regression slope (with the true COT sub-
tracted from the retrieved COT) a is −0.79, and the inter-
cept b is 0.15. The neutral COT, −b/a (0.19 in this case),
is the optical thickness value above which COT is under-
estimated and below which it is overestimated. For our ex-
ample in Fig. 2, the IPA retrieval assigns a COT of 10 to a
true COT of 40, whereas a COT of 2 is retrieved as being

closer to 4. Such large retrieval biases on the pixel level are
much less pronounced in domain-averaged cloud properties.
Equation (18) shows how the domain-average bias δτ can
be quantified. Using the linear regression slope and intercept
from Eq. (16), we can use the true COT to obtain pixel-level
bias δτ(i,j), as shown in Eq. (17). Then, we add the pixel-
level biases and take the average over the sub-domain, which
yields the domain-average bias δτ . One could also obtain δτ
by directly using the slope, intercept, and mean of the true
COT over the sub-domain, as shown in Eq. (18).

δτ(i,j)= a · τtrue(i,j)+ b (17)

δτ =
1

nx · ny

nx∑
i=1

ny∑
j=1

δτ(i,j)= a

·

(
1

nx · ny

nx∑
i=1

ny∑
j=1

τtrue(i,j)

)
+ b (18)

However, the domain-average bias does not completely
disappear even for larger domain sizes; this makes it a sig-
nificant factor for global assessments of the shortwave sur-
face cloud radiative effect (e.g., Kato et al., 2018), which
are based on cloud transmittance calculations with imagery
products as input. For the case in Fig. 2, the δτ is−0.65, with
the negative sign implying an underestimation.

3.5 Training

During training, the CNN learns from the training set, at-
tempting to learn a nonlinear mapping function between ra-
diance and COT. At the same time as training, the CNN is
also confronted with formerly unseen data that are reserved
for “validation”. As is common practice in machine learning,
we split the data set into 80 % training and 20 % validation
data. The training and validation process is repeated until the
cost no longer improves, at which point we declare the model
to have “converged”.

To train all our CNNs, we use a type of optimization al-
gorithm called mini-batch gradient descent whereby we di-
vide our training set into K “mini-batches”, each containing
a fixed subset of the training examples. The network only
sees one mini-batch of images at a time and calculates the
error and mean gradient over that mini-batch. The error is
back-propagated and the parameters (weights and biases) are
updated before the next mini-batch is fed. Once all the K
mini-batches of images have been seen by the network in
both forward and backward propagation directions, the net-
work is said to have completed one epoch. Over a number of
epochs, the CNN learns to optimize for the loss function and
the error no longer decreases over time, at which point we de-
clare the model to have converged. More information about
the learning and training process is detailed in Appendix A.
To prevent overfitting, we stop training early when there is no
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significant improvement in the validation loss after a certain
time. We pay special attention to the validation loss by using
it as the monitored metric because it is a good indication of
model generalization, which is our overall goal. Additionally,
we use a decaying learning rate to reduce the learning rate
whenever learning stagnates or plateaus. We save the model
weights only when there is an improvement from the previ-
ous best validation loss. L1 regularization is applied to all
the convolutional layers to stabilize and improve learning by
penalizing drastic weight changes.

3.6 Post-processing

After the model is trained, the model needs to predict the
COT using images of radiance. However, using the model
weights that were saved during training, when a radiance im-
age of size 64× 64 pixels is fed, the CNN does not actually
output a COT image of the same size. Rather, it estimates
a probability distribution function (PDF), with each pixel i
having 36 probability values p̂i,c corresponding to each class
or COT bin c. We need to translate the PDF to an image in
COT space where we can evaluate the actual performance of
the model. To accomplish this step, we use a weighted sum
approach. For a pixel, we use the 36-value PDF estimated by
the CNN and compute a product of each probability value
with a COT bin interval average value dc. The dc value is an
element of an array d that spans 36 classes that is obtained
using the average values of each COT bin interval used dur-
ing the pre-processing step. For example, during the binning
process, any COT values between 35 and 40 would be binned
as class 27. The estimated probability value for each pixel at
class 27 (p̂i,27) would be weighted with d̄27 = 37.5, which
is the average COT value of 35 and 40. This product is then
summed and repeated for each pixel PDF, resulting in a two-
dimensional COT image of size 64× 64. The predicted or
retrieved COT for a pixel, denoted by τreti , can be written as

τreti =
∑
c∈C

dc · p̂i,c. (19)

4 Evaluation and results

With the setup explained above, we evaluate how the model
behaves when trained on different permutations of cloud
morphology and aspect ratio. This allows us to observe how
the CNN reacts to different situations, thereby providing an
indication of its strengths and weaknesses. We use the met-
rics detailed in Sect. 3.4 to assess the performance of the
CNN and compare it with the IPA retrieval. We express the
performances of the CNN models and IPA as a function of
three cloud metrics – cloud fraction (CF) percentage, mean
cloud optical thickness (COT), and cloud variability (CV). To
calculate these cloud metrics on the abscissa for each figure
in this section, we only consider pixels whose COT is at least
0.1. This is done because in our binning method, we treat

Table 1. Data used to train each of the models for Sect. 4.1. Each
model is trained on a distinct aspect ratio to evaluate its influence
individually.

Model A Model B Model C

Number of scenes 6 24 96
Coarsening factor N/A 2× 2 4× 4

pixels whose COT is less than 0.1 as clear-sky and the rest
as cloudy pixels. Cloud fraction percentage is the percentage
of cloudy pixels in the image. The cloud optical thickness
shown in the figures of this section depicts the mean COT
taken across the cloudy pixels. Cloud variability is the ratio
of the standard deviation of cloudy pixels to the cloud frac-
tion. In the figures that compare the scatter performances of
CNN and IPA retrievals in this section, each dot represents
a binned measurement obtained by taking the mean of the
performance metric (relative RMSE percentage or slope ap-
propriately) over a number of samples to infer the overall
trend in performance. Bin sizes are finer in the lower ends of
each cloud metric as there is a greater number of samples in
these regions. We also use histograms for a particular cloud
metric performance which takes into account all samples and
not just the binned ones.

4.1 Variability of aspect ratio

In this subsection, the goal is to evaluate the impact and influ-
ence of aspect ratio on the CNN (and its different variants).
The three CNN models A, B, and C are trained on the data
that have been coarsened by factors of 1×1, 2×2, and 4×4
(Table 1). All three CNN models and the IPA method are
tested on a data set consisting of samples with 1× 1, 2× 2,
and 4×4 coarsening factors. None of the samples in this test
set have been seen before by any of the CNN models during
training. This allows us to evaluate if a particular model does
better on a particular aspect ratio, thereby giving us insight
into the ability of the CNN to generalize.

The first three columns from the left in Fig. 7 show the
performance of the three CNN models and the IPA when
measured against different cloud metrics (on the abscissa),
as well as relative RMSE percentage R and slope (both on
the ordinate).

The histograms in the rightmost column show how much
the IPA underestimates (in terms of the slope) and con-
tains errors (in terms of R) for samples that have COT< 25.
Among the CNN models, model A, trained on just the 1× 1
coarsening factor data (original aspect ratio), has the highest
error R against all values of cloud fraction but does signifi-
cantly better against variability and optical thickness. Model
C, trained on the 4× 4 coarsening factor data (quarter of the
original aspect ratio), works better than model B, trained on
the 2× 2 coarsening factor data (half the original aspect ra-
tio), when evaluated as a function of cloud fraction. How-
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Figure 7. Comparison of models A, B, and C (red, orange, and blue lines, respectively) with IPA or 1D retrieval (shown in teal) obtained by
methods described in Table 1. Model A is trained on scenes that have no coarsening factors applied (1×1), B is trained on scenes coarsened
by a factor of 2×2, and C is trained on scenes coarsened by a factor of 4×4. The dashed black line depicts the ideal retrieval. All models are
being evaluated against a pool of unseen images with 1× 1, 2× 2, and 4× 4 coarsening factors. The rightmost column shows the histogram
samples that have COT < 25.

ever, model B performs better when measuring against mean
COT and variability. Model C has differing performances
when being evaluated against mean COT and variability. In
the second column, as the COT increases, R decreases and
the slope grows closer to the ideal 0. In the third column, as
the cloud variability increases, model C gets progressively
worse in terms of both R and slope. But, the histogram in the
rightmost column shows that for COT< 25, model C is the
best-performing model because the mode of the R percent-
age is closest to 0 % and the ,mode of the slope is close to 0
(although model B is very close as well).

All three CNN models perform better than the IPA in this
case study. But, among themselves, none of the CNN models
seem ideally suited for all scenarios of cloud fraction, optical
thickness and variability. It could therefore be inferred that a
combination of data from different aspect ratios would pro-
vide homogeneity with respect to cloud parameters as well
as a wider range of spatial scales for the CNN.

4.2 Variability of cloud morphology

The goal of this study is to evaluate the importance of diver-
sity in varied cloud generator fields and if a model trained
on a limited number of such fields can generalize to unseen
data. We also test if a model trained on multiple fields loses
accuracy over individual fields by trading for generalization.
All models and the IPA method are evaluated on a holdout
scene that has not been seen by any of the CNN models dur-
ing training.

Model A is trained on samples from a single LES cloud
generator field at a 4×4 coarsening factor. Model B is trained

Table 2. Data used to train each of the models for Sect. 4.2. Model A
learns from a single cloud generator scene, whereas model B learns
from five generator fields.

Model A Model B

Number of scenes 1 5
Coarsening factor 4× 4 4× 4

on samples from five different cloud generator fields. From
Fig. 8, it is once again clear that both the CNN models, A
and B, outperform the IPA retrieval consistently across all
metrics. There is a clear distinction between CNN and IPA
performances. In the leftmost column, the IPA retrieval is the
most error-prone in terms of the relative RMSE percentage
across all cloud fractions and underestimates the true COT by
more than a 50 % margin in terms of slope. The same is re-
flected in the second column where the IPA either gets worse
with increasing COT or remains off the ideal slope by a sig-
nificant margin. The slope of the IPA retrieval drops off sig-
nificantly, with higher cloud variability in the third column,
while R grows worse as well. With the two CNN models,
model A, trained on a single scene, performs comparatively
well over large portions of cloud fraction, variability, and op-
tical thickness but struggles with low-COT, low-CF regions
and certain sections of CV in which it both underestimates
and overestimates. This could be inferred as the inability of
model A to generalize to any images that were not similar
to the envelope of the original training scene because a sin-
gle scene would not contain enough variability or diversity.
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Figure 8. Comparison of two CNN models, A and B (shown in red and blue, respectively), with IPA or 1D retrieval (shown in teal) obtained
by methods described in Table 2. Model A is trained on only one scene (coarsened by a factor of 4× 4), whereas model B is trained on five
scenes (also coarsened to a factor of 4× 4). All three are evaluated on samples from a holdout scene (with shear). The dashed black line
depicts the ideal retrieval.

On the other hand, model B, trained on five scenes, is far
more stable and consistent across all three cloud metrics vs.
both slope and R. In other words, model B does not lose ac-
curacy in return for better generalization. The histogram on
the top right shows how the IPA is highly error-prone, with
most samples having a higher R percentage than either of
the CNN models. This is also captured in the bottom right
slope histogram with a significant shift toward lower slopes.
CNN model A and model B perform comparatively well in
both histograms, with the latter slightly edging out in terms
of better R performance. Therefore, the impact of using mul-
tiple cloud generator fields is quantifiably higher and more
useful for the model as it gains a more generalizable inter-
pretation of the data.

4.3 Training on a sampled data set

In this section, using knowledge gained from the previous
two case studies, we build a new training data set based
on the LES data from the Sulu Sea (Sect. 2.1.1). Now that
we know the advantages of using multiple cloud generator
scenes and coarsening, we develop a data set that combines
the two. However, training a model just by combining all
three coarsening factors from all six scenes will be ineffi-
cient. This is because of the numeric imbalance, whereby the
highest coarsening factor produces about 16 times the num-
ber of samples produced by the lowest coarsening factor. To
overcome this imbalance and data bias, we use a gridded ap-
proach to select a representative sample from a selected re-
gion and therefore limit the total number of samples but re-
tain the importance in terms of the contribution to statistical
diversity. We employ a sample selection technique that ran-

Figure 9. A distribution of the standard deviation of reflectance
(Refstd) vs. the mean of reflectance (Refmean) for the gridded and
sampled data set. Each red scatter dot represents a 64× 64 re-
flectance image belonging to the consolidated gridded and sampled
data set consisting of the 1× 1, 2× 2, and 4× 4 coarsening factor
data pools.

domly selects data samples from three data pools of differing
coarsening factors of 1×1, 2×2, and 4×4 at grid boxes de-
fined by the standard deviation of the reflectance Refstd and
the mean of the reflectance Refmean. We use these two met-
rics because Refmean captures the mean brightness in the data
set, while Refstd represents the general inhomogeneity in the
data. The steps are described below.
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1. Calculate Refstd vs. Refmean for the total of 24 000 sam-
ples coming from all three domains. Of those samples,
about 1200 come from the 1× 1 domain, 5000 come
from the 2× 2 domain, and nearly 19 000 come from
the 4× 4 domain.

2. Divide the Refstd vs. Refmean distribution into grid
boxes, with each grid box corresponding to ranges of
deviation and mean.

3. Randomly select data samples within each grid box
from the three data pools.

One aspect to note is that because the total number of sam-
ples in each data pool differs, samples are more likely to be
selected from the pool that contains a higher number of data
points. As a workaround, to achieve a uniform probability in
selection for the three data pools, we weighted the random
selection in step 3 based on the total number of samples of
the data pool (higher total number gets lower weights). The
sample selection was performed for each grid box based on
a given number of sample selections per box defined by the
user. If the given number exceeds the total number of sam-
ples within the grid box, all the data samples in the grid box
will be selected. The resulting data set has 548 samples from
the 1×1 domain, 1522 from the 2×2 subset, and 3180 from
4× 4, all of which are chosen with selected randomizations.
Figure 9 shows the distribution of Refstd vs. Refmean for the
resulting sampled data set. While this data set is not com-
pletely balanced despite having a more uniform Refstd vs.
Refmean distribution, it is representative of the diversity in
the data. The hypothesis is that a CNN trained on this data
set can retain accuracy over individual cloud fields and also
generalize to unseen data even better than the models seen in
Sects. 4.1 and 4.2.

Figure 10 shows the distribution of the sampled data set
across (a) cloud fraction, (b) cloud optical thickness, and
(c) cloud variability. We show this figure to illustrate how
balancing the data set using Refstd vs. Refmean affects the
other metrics.

In Fig. 10a, we see that the cloud fraction is relatively well
represented by the sampled data set, although it is not ideal.
More than 90 % of the data are in the CF< 50 % region. Fig-
ure 10b shows a much higher level of imbalance, with half of
the samples having mean COT≤ 3.8. Figure 10c shows the
highest degree of disparity, with 90 % of the samples having
CV≤ 1.2. This will mean that the model will not be exposed
to much diversity in variability, but the fact remains that this
data set is still representative of the brightness and inhomo-
geneity distribution.

Figure 11 shows the performance of the CNN and 1D re-
trievals. The CNN, trained on the gridded and/or sampled
data set consisting of images from 1× 1, 2× 2, and 4× 4
coarsening factors from all six generator fields, outperforms
the IPA retrieval across all cloud metrics against slope and
error R. While the IPA underestimates low-CF images with

slopes close to−0.5, the CNN was significantly closer to the
ideal retrieval. We use scatter points to depict certain samples
in the higher ranges of the cloud parameters as there are too
few of such samples, which would sway the solid line plot
unfairly. For the histograms in the rightmost column, con-
sisting of samples that have cloud fraction < 35 %, the CNN
is much less error-prone and performs well over all 64× 64
sub-domains. Therefore, a uniform and representative mix
of images (in terms of parameter space) from different do-
mains yields better performance. Ultimately, this shows that
the reduction in data set size does not negatively affect the
performance and, quite the contrary, can improve it, as long
as it is done strategically. This experiment reinforces one of
the objectives of our work, which is to demonstrate different
training methods to identify optimal approaches.

Figure 12 shows a panel of images with a scatter plot
to compare the retrievals by IPA and the CNN for an un-
seen radiance image from the Sulu Sea. The scatter plot in
Fig. 12e shows how the IPA underestimates for medium to
high COTs, while the CNN remains relatively close to the
ideal retrieval.

4.4 Testing the model on a new geographic region

Here, we present the results of the model trained on the grid-
ded and sampled data set from the previous study (Sect. 4.3)
when applied to a completely new geographic location, in
this case the southeastern Atlantic. The purpose of this ap-
plication is to observe whether the model is capable of gen-
eralizing to highly dissimilar data from a region with vastly
different cloud morphologies. This is an important step to
ensure that the CNN is not restricted to its training enve-
lope and has learned the right features that can be applied
more broadly. We also examine and identify the strengths
and weaknesses of such an application with respect to cloud
parameters.

Looking at only the abscissa ranges in Fig. 13, we can
see that this is a vastly different data set. The cloud frac-
tion percentage in the samples is high, especially compared
to the training data from the Sulu Sea. The cloud variability
in the data set is on the other extreme end, with most sam-
ples having very low variations. When the CNN (trained on
the gridded data set) is evaluated on this completely different
cloud morphology, the results vary in two major ways. First,
it marginally underperforms compared to the IPA in terms of
R. The IPA is better across the top panel – the CNN has a
higher R for cloud fractions < 75 % and for cloud variability
< 25. The top right histogram shows as much, even for cloud
fractions over 80 % for which the IPA has a very low error.
This is not surprising because the IPA is expected to do well
in areas with high CF.

On the other hand, the slope paints a contrasting picture.
Both the IPA and CNN perform underwhelmingly over low-
COT and low-CF regions for which they underestimate and
overestimate, respectively, but the CNN edges the IPA for CF
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Figure 10. Histograms showing the distribution of the sampled data set used for training in terms of (a) cloud fraction, (b) cloud optical
thickness, and (c) cloud variability. Despite being sampled using a gridding approach of Refstd vs. Refmean, the balance is not necessarily
reflected in these histograms. Particularly with the COT distribution seen in (b), we see that the median COT is only 3.8 %, and 90 % of the
samples have COT≤ 13.5. The same imbalance is seen in (c), with a median cloud variability of only 0.4, and 1.2 is the 90th percentile point.

Figure 11. Comparison of CNN (shown in red) and IPA or 1D retrieval (shown in teal) obtained by methods described in Sect. 4.3. The CNN
is trained on the gridded and sampled data set consisting of images from 1×1, 2×2, and 4×4 coarsening factor domains, and it is evaluated
on a mix of unseen samples from all three domains. The dashed black line depicts the ideal retrieval.

> 80 % as shown in the histogram. This is significant because
it tells us that the CNN, which has not seen any data similar
to the high CFs seen here, can perform satisfactorily although
not ideally. A model trained on a small and imbalanced data
set is still capable of producing good results through the right
training approaches.

In Fig. 14, we show a panel of images with a scatter plot
to visualize the actual retrievals from the IPA method and the
CNN. We use a radiance image from the Atlantic as the input,
and the scatter plot in Fig. 14 illustrates how the IPA, despite
being better in many regions in the Atlantic, remains erro-
neous by underestimating high COTs. The CNN has a high
variance but performs better than the IPA for most COTs.

5 Summary and discussion

In this paper, we introduced a U-Net-based, CNN architec-
ture to infer COT fields from shortwave radiance as observed
by satellite or aircraft imagers. Unlike the heritage IPA that
is used almost exclusively in current operational algorithms,
the CNN takes the spatial context of a given pixel into ac-
count to reduce or mitigate retrieval biases arising from net
horizontal transport (also known as 3D effects). This ex-
ploratory study, preceded by Okamura et al. (2017) and Ma-
suda et al. (2019), is built on synthetic data at a fixed spa-
tial resolution. Cloud fields from LES output were fed into
3D-RT calculations to simulate what an imager with a 100 m
pixel size would measure and paired with the corresponding
optical thickness ground truth from the LES to train the net-
work.
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Figure 12. (a) An image of the 64× 64 (6.4 km× 6.4 km) radiance channel (600 nm) taken from the Sulu Sea (Sect. 2.1.1) but not shown
to the CNN during training. (b) The corresponding 64× 64 COT. (c) COT as retrieved by the IPA method of the image in (a). (d) COT as
retrieved by the CNN trained using methods explained in Sect. 4.3. (e) A scatter plot that compares the IPA and CNN retrievals, with the
former underestimating for large COTs.

Figure 13. Comparison of CNN (shown in red) and IPA or 1D retrieval (shown in teal) when being evaluated on a new geographic region
(Atlantic, Sect. 2.1.2). The CNN is trained on the gridded and/or sampled data set consisting of images from 1×1, 2×2, and 4×4 coarsening
factor domains. The dashed black line depicts the ideal retrieval.

The intent of this line of research is to work towards fu-
ture real-world applications of CNNs by minimizing training
time while ensuring high-fidelity retrievals, even when the
analyzed cloud scenes deviate from the original training en-
velope.

These goals were approached in two ways: (a) through
the U-Net architecture itself, which has only moderate depth
(number of layers) and therefore requires less processing
time for radiance–optical thickness training pairs than more
complex networks, and (b) by strategically limiting the
amount of training data. To accomplish this, we used only six
LES-generated scenes associated with varying aerosol condi-
tions and wind shear, spanning a limited range of cloud mor-
phologies. From these scenes, we sampled 6.4 km× 6.4 km
mini-domains as training pairs (radiance and true COT) and
tested the performance of the CNN on unseen data for differ-
ent training data constellations.

The first experiment (Sect. 4.1) explored the impact of the
scale and degree of homogeneity by horizontally spreading

the original LES fields by factors of 2 and 4. This spatial
coarsening procedure homogenizes the cloud fields while al-
tering the aspect ratio of individual clouds at the same time.
By design, the U-Net considers net horizontal photon trans-
port not just at the native spatial resolution of the training
data, but also at a cascade of spatially aggregated versions
of those data, as shown in the lower levels of the architec-
ture (Fig. 6). CNNs that were trained on the original, 2× 2,
and 4× 4 coarsened data all outperformed the IPA when ap-
plied to unseen data from a combination of scale levels. The
retrieval fidelity was quantified via performance parameters,
such as the “slope” as defined above, as a function of cloud
metrics such as cloud fraction and cloud optical thickness for
each analyzed 6.4 km× 6.4 km mini-domain. From this ex-
periment, we found that changing aspect ratios did not signif-
icantly alter the physics to the detriment of retrieval fidelity,
despite the findings of BL95. However, we must note that
there are several points of difference between the BL95 study
and ours. Most notably, BL95 used 2D Landsat imagery with

Atmos. Meas. Tech., 15, 5181–5205, 2022 https://doi.org/10.5194/amt-15-5181-2022



V. Nataraja et al.: Cloud retrieval using a CNN 5199

Figure 14. (a) An image of the 64× 64 (6.4 km× 6.4 km) radiance channel (600 nm) taken from the Atlantic (Sect. 2.1.2) to test the CNN’s
ability to generalize to new geographical regions. (b) The corresponding 64× 64 COT. (c) COT as retrieved by the IPA method of the image
in (a). (d) COT as retrieved by the CNN trained using methods explained in Sect. 4.3. (e) A scatter plot that compares the IPA and CNN
retrievals, with the former underestimating for large COTs.

mostly stratocumulus cloud fields, while we use 3D LES
with isolated cumulus clouds. It should also be noted that
the BL95 paper varies cloud geometric thickness to change
the aspect ratio, while we vary the horizontal resolution and
keep other dimensions constant. Therefore, we cannot con-
clusively say that the aspect ratio was the sole direct cause of
this discrepancy in the IPA retrieval performance.

In the next experiment (Sect. 4.2), we explored the im-
pact of cloud morphology on retrieval fidelity by train-
ing a CNN on a single cloud morphology and found that
more diversity with respect to morphology does not neg-
atively affect the performance of the retrieval. That is be-
cause the single-morphology CNN, applied to unseen data
with that same morphology, did not perform better than its
multi-morphology counterpart. On the contrary, the diversely
trained CNN proved more robust, especially in certain sub-
ranges of some cloud metrics (for example, for small cloud
fractions).

Therefore, the performance of single-scale and single-
morphology CNNs on unseen training data of their own kind
was not better than diversely trained CNNs. Since the lat-
ter turned out to be more robust, this suggested that diverse
training data should be systematically combined in an opti-
mal CNN. To keep the training sample number low, we devel-
oped a balancing approach to sub-select image pairs accord-
ing to their location in a two-dimensional parameter space
spanned by radiance mean and standard deviation, which can
be regarded as proxies for mean COT and inhomogeneity, re-
spectively. This diversely trained, balanced CNN (Sect. 4.3)
performs best compared to all the versions tested in the other
experiments. The general conclusion is that strategically se-
lected training data can lead to higher retrieval fidelity than
sample-rich training data without or with improper balance
with respect to parameter space. The combined parameter
space as shown in Fig. 9 could be called the general “training
envelope” of the balanced CNN.

It is important to note that even the diversely trained, bal-
anced CNN is only diverse within the confines of the origi-
nal six generator scenes. This narrow choice had been made
consciously to test the limits to which training data and thus
training time could be minimized. In reality, however, cloud

scenes can fall well outside the training envelope – not nec-
essarily in terms of our simple two-dimensional parameter
space of radiance mean and standard deviation, but in terms
of a plethora of morphology parameters such as cloud-to-
cloud distance, cloud fraction, vertical distribution, and ge-
ometric tilt, not to mention sun-sensor geometry. One way
to assess the robustness of the CNN in this regard would be
to use LES data from the same set, but at a different time
step and therefore a different stage of cloud evolution. We in-
stead chose to use LES data from an entirely different region
and cloud type, and we tested the performance of the CNN
trained with data specific to the Sulu Sea with unseen data
from the southeastern Atlantic. Overall, the CNN and the IPA
performed about equally well in this case; the slightly bet-
ter performance of the IPA in terms of RMSE was balanced
out by the slightly better performance of the CNN in terms
of slope. This alone is surprising. Since the IPA is based on
physics that do not entail any learning, one would have ex-
pected it to outperform the pattern-based CNN when encoun-
tering a previously unseen cloud scene with a completely
different morphology. Even more surprisingly, the CNN out-
performed the IPA in terms of slope, especially for the stra-
tocumulus subset of the unseen data (cloud fraction larger
than 80 %), even though this was a cloud morphology that
the CNN had never seen during the training. This cloud type
in particular should have been the strength of the IPA because
it is less inhomogeneous than open-cell convection. For the
scattered cloud scenes associated with open-cell convection,
the IPA underestimated COT by about as much as the CNN
overestimated it (slopes of −0.8 and 0.8, respectively), and
the bias increases with cloud variability as one would expect.

The Atlantic data set represents a limiting case in which
the superior performance of the CNN trained with the Sulu
Sea data has dropped to a level similar to or worse than the
IPA reference retrieval (except for the stratocumulus subset).
At this point, a regionally specific training based on a locally
initialized LES with a similar CNN architecture would be-
come necessary. In this paper, we stopped short of retraining
the CNN for another region. A related paper from Wolf et al.
(2022) does train the CNN for a different region and applies
it to real-world observations from satellite imagery and flux
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radiometers at the surface and on aircraft. In addition, Chen
et al. (2022) explore a CNN with aircraft imagery data from
the Philippines region.

Aside from regional and cloud-type-driven differences in
cloud morphology, there are other factors that limit the im-
mediate applicability of CNNs for operational retrievals. The
most significant challenge is domain size. As described by
Song et al. (2016), net horizontal photon transport in the visi-
ble is mostly driven by COT contrasts, regardless of the phys-
ical distance over which they occur (an exception is the near-
UV wavelength range in which scattering by air molecules
plays a role). As such, 3D effects do not stop at the domain
boundary, and the CNN will lose its accuracy if the most im-
portant spatial inhomogeneities occur over scales larger than
6.4 km. It is possible to train with larger domains, but this
increases the complexity and training time of the CNN. To
solve this problem, one could train a CNN with a flexible,
cascading hierarchy of domain sizes. The U-Net architecture
is ideally suited to generalize the approach in this fashion.

Future work needs to explore this avenue, while also ac-
counting for the relatively coarse pixel resolutions in typical
imager radiance data (often around 1 km). At these scales,
many cumulus clouds are not resolved (Koren et al., 2008),
but they have a collective radiative effect that must not be
ignored. For such sub-resolution clouds, the CNN runs into
the same limitations as its 1D counterpart, the IPA. Here, the
spectral signature of net horizontal transport between spa-
tially inhomogeneous cloud elements could come to the res-
cue. This inhomogeneity-induced parameter is detectable in
spectral radiances, regardless of the scale at which clouds oc-
cur, and it might become another input parameter (Schmidt
et al., 2016) to a future CNN architecture that could retrieve
pixel-level cloud fraction and COT.

CNNs will always be limited by the availability of realis-
tic training data. Since it may be impractical to provide re-
gionally specific LES-based training data everywhere on the
globe, it will be necessary to use CNNs that are trained on
data from one region as proxies for others, as long as cer-
tain cloud morphology parameters are comparable. In a fu-
ture paper (Chen et al., 2022), we show that radiance closure
(the consistency between radiances as measured by an im-
ager and as calculated based on a CNN or IPA retrieval) is
an appropriate tool to assess retrieval performance in the ab-
sence of ground-truth validation data.

To generate regionally specific training and validation data
for the CNN, cloud tomography (Levis et al., 2020) might
be an alternative or addition to LES, at least for some cloud
types. In this approach, 3D cloud fields are reconstructed
from multi-angle radiance observations as available from
some satellite radiometers without any training. This is be-
cause LES and tomography-generated training data have the
additional advantage of providing the vertical distribution of
the cloud extinction. Since our simple CNN only retrieves
2D COT fields without consideration of the cloud-top geom-

etry, it is important to keep track of biases associated with
this simplification.

Finally, additional spectral channels, especially in the
shortwave infrared, would provide access to geophysical pa-
rameters well beyond COT – for example thermodynamic
phase, drop size, and parameters of aerosol residing be-
tween clouds, facilitating and improving joint quantifica-
tion of cloud–aerosol radiative effects from satellite imagery,
even for complex or inhomogeneous scenes. This research,
along with its practical applications, is only just beginning.

Appendix A: The learning process for CNNs

Learning occurs through a process called “back propaga-
tion”, which is short for backward propagation of error. The
model estimates features during forward propagation from
left to right in Fig. 6 and Fig. A1, and using a loss function,
the error between the “learned” estimation of the COT and
the ground-truth COT is calculated. During backward prop-
agation from right to left, this error is then propagated back-
wards through all the layers, and the gradient of the loss func-
tion with respect to the weight of each layer is computed us-
ing the chain rule from differential calculus. This is one of the
major reasons machine learning algorithms often consume
large amounts of time. CNNs often have millions of learn-
able parameters, i.e., the weights and biases, and computing
the gradient for each is a time-consuming task. In essence,
the gradients inform the network of how much the weights
and biases need to be varied. This is because the gradient
with respect to each weight and bias is simply subtracted
from the previous weight and bias value. This is called the
update step. This entire process of forward propagation, error
computation, backward propagation, and parameter update is
repeated until the model converges to a global minimum.

We train the model using the Adam optimizer (Kingma
and Ba, 2014). The Adam optimizer is an extension of the
commonly used gradient descent algorithm that is used to
train machine learning algorithms. In a regular stochastic
gradient descent algorithm, a single constant learning rate is
used across all the weights in the model throughout training.
The Adam optimizer, which stands for Adaptive Moment Es-
timation, uses a slightly different approach to gradients. It
calculates a moving average of the mean (the first moment)
of the gradients and a moving average of the squared gradi-
ents (the second moment). It uses two adjustable parameters
β1 and β2 to control the rates at which these averages decay
over time. From the Kingma and Ba (2014) paper, we can
glean that this algorithm has numerous advantages, most no-
tably that it has no memory requirements and is appropriate
for noisy gradients. This optimization algorithm has come to
be popular and is used as the default optimization for numer-
ous ML problems. We initialize the optimizer with a learning
rate of 0.001 but using a decaying learning rate scheduler so
it can reduce the rate when the loss does not improve.
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Figure A1. Schematic representation of the model training approach. C is the cost that needs to be optimized, w refers to the weights of
a neuron, and b is the bias. The final layer of the CNN is cast to probability space using a softmax activation function, and the estimated
probability at the end is compared with the true probability (that of the true COT) using a cost function which computes a cost. The cost or
error is then back-propagated through the network backwards during which the weights and biases are updated. This process is repeated for
different batches of images until the loss is minimized when the model is said to have converged.

Appendix B: Encoder (contracting path)

The first convolutional block ingests an input radiance image
of size 64× 64 and produces 64 feature maps. These feature
maps are the result of 64 filters convolving over the input
radiance imagery to extract its features. We use a stride of
1× 1 for all 2D convolution operations. Each filter produces
a single 2D feature map of size 64× 64 as we perform 2D
convolution. Thus, 64 filters yield 64 2D feature maps. These
resulting 64 2D feature maps are stacked channel-wise (the
dimensions then become 64× 64× 64) and fed to the next
2D convolutional layer to extract more features. Each subse-
quent convolutional block doubles the number of filters (and
therefore the number of features) until we reach 1024 filters
in a bid to gather enough features about the underlying data
that can then translate to predicting COT for unseen radiance
imagery. In the encoder, all filters use a 3× 3 kernel and the
convolution uses a stride of 1× 1. The batch normalization
layer precedes the activation and helps stabilize the training
by applying a transformation to the feature maps to maintain
the mean around 0 and the standard deviation around 1. All
convolution layers in the encoder are activated by the ReLU
activation given in Eq. (8) after normalization. Additionally,
we pad the convolution operation with zeros each time to re-
tain usable resolutions. We employ a max-pooling layer be-
tween convolutional blocks for two reasons – (1) to reduce
the number of dimensions in the feature maps by downsam-
pling along the spatial dimensions, which reduces the com-
putation in the network, and (2) to extract the sharpest fea-
tures while dropping noisy ones. We use a pooling size of
2× 2 and a stride of 2× 2 to ensure that the spatial dimen-
sions get halved.

Appendix C: Decoder (expanding path)

The decoder is in charge of using the low-resolution repre-
sentations of the radiance imagery generated by the encoder
to build it back to its target size through upsampling. The
upsampling operation is done by bilinear interpolation in the
decoder. The spatial dimensions get doubled each time this
operation is performed. Immediately after interpolation, we
apply a transposed convolutional layer with a 2× 2 kernel
and a 1× 1 stride and also pad the operation. Transposed
convolution (Dumoulin and Visin, 2016) works by switching
the forward and backward passes of a traditional convolution
and is used when going from a lower-dimensional space to
a higher-dimensional space while maintaining a connectiv-
ity pattern between the two. We use a 2× 2 kernel with a
single stride and padding to ensure the output dimensions re-
main the same as the input. As noted by Dumoulin and Visin
(2016), it is possible to replace transposed convolution with
a regular spatial convolution step, but that would require ad-
ditional padding, thereby reducing the implementation effi-
ciency. To map the latent space of the contracting path’s out-
put to a data distribution, it is necessary to upsample at the
lowest spatial dimension to the appropriate size of the ground
truth and output. The obvious way to scale up to the output
dimensions is to use upsampling layers that use interpolation
(e.g., bilinear, nearest neighbors). However, interpolation is
not “learnable”as it is not dependent on a kernel. Therefore,
to have the model learn optimal ways of upsampling, we
rely on a subsequent transposed convolution layer following
upsampling. The representation generated by the transposed
convolution layer is then channel-wise concatenated with the
corresponding feature map having the same spatial dimen-
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sion from the encoder side. A convolution block then learns
new features and obtains a new representation. This convolu-
tion block is also useful to prevent so-called “checkerboard
effects” that result when transposed convolution is used in
isolation (Odena et al., 2016). The transposed convolution is
again activated by the ReLU function after batch normaliza-
tion. These operations are repeated until the spatial resolution
reaches 64× 64.

As stated earlier, since this is a segmentation approach, we
need to translate the output to probabilities with each pixel
having a probability distribution across the 36 COT classes.
In other words, the network needs to tell us how likely a pixel
is to belong to a COT bin. We accomplish this probability
translation by applying a softmax function to the output. This
function can be written as

f (zi)=
ezi∑N−1
j=0 e

zj
, (C1)

where f (zi) is a function acting on a value or class i in a
feature map vector z, which containsN such values (classes).
In our case, N is 36.

Code and data availability. The code developed for this work is
publicly available at https://doi.org/10.5281/zenodo.7055057
(Nataraja, 2022b). The radiance and cloud optical thick-
ness data were generated using EaR3T based on six
LES scenes from the Sulu Sea and are available at
https://doi.org/10.5281/zenodo.7008103 (Nataraja et al., 2022).
The trained model weights for the CNN discussed in Sect. 4.3
are available at https://doi.org/10.5281/zenodo.7013101 (Nataraja,
2022a).
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