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Abstract. Thermodynamic profiles are often retrieved from
the multi-wavelength brightness temperature observations
made by microwave radiometers (MWRs) using regression
methods (linear, quadratic approaches), artificial intelligence
(neural networks), or physical iterative methods. Regression
and neural network methods are tuned to mean conditions
derived from a climatological dataset of thermodynamic pro-
files collected nearby. In contrast, physical iterative retrievals
use a radiative transfer model starting from a climatologi-
cally reasonable profile of temperature and water vapor, with
the model running iteratively until the derived brightness
temperatures match those observed by the MWR within a
specified uncertainty.

In this study, a physical iterative approach is used to re-
trieve temperature and humidity profiles from data collected
during XPIA (eXperimental Planetary boundary layer In-
strument Assessment), a field campaign held from March
to May 2015 at NOAA’s Boulder Atmospheric Observatory
(BAO) facility. During the campaign, several passive and ac-
tive remote sensing instruments as well as in situ platforms
were deployed and evaluated to determine their suitability for
the verification and validation of meteorological processes.
Among the deployed remote sensing instruments were a
multi-channel MWR as well as two radio acoustic sound-
ing systems (RASSs) associated with 915 and 449 MHz wind
profiling radars.

In this study the physical iterative approach is tested with
different observational inputs: first using data from surface
sensors and the MWR in different configurations and then
including data from the RASS in the retrieval with the MWR
data. These temperature retrievals are assessed against co-
located radiosonde profiles. Results show that the combina-
tion of the MWR and RASS observations in the retrieval al-
lows for a more accurate characterization of low-level tem-
perature inversions and that these retrieved temperature pro-
files match the radiosonde observations better than the tem-
perature profiles retrieved from only the MWR in the layer
between the surface and 3 km above ground level (a.g.l.).
Specifically, in this layer of the atmosphere, both root mean
square errors and standard deviations of the difference be-
tween radiosonde and retrievals that combine MWR and
RASS are improved by mostly 10 %–20 % compared to the
configuration that does not include RASS observations. Pear-
son correlation coefficients are also improved.

A comparison of the temperature physical retrievals to the
manufacturer-provided neural network retrievals is provided
in Appendix A.
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1 Introduction

Monitoring the state of the atmosphere for process under-
standing and for model verification and validation requires
observations from a variety of instruments, each one having
its set of advantages and disadvantages. Using several diverse
instruments allows one to monitor different aspects of the at-
mosphere, while combining them in an optimized synergetic
approach can improve the accuracy of the information avail-
able on the state of the atmosphere.

During the eXperimental Planetary boundary layer In-
strumentation Assessment (XPIA) campaign, an experiment
sponsored by the U.S. Department of Energy held at the
Boulder Atmospheric Observatory (BAO) in spring 2015,
several instruments were deployed (Lundquist et al., 2017)
with the goal of assessing their capability for measuring at-
mospheric boundary layer meteorological variables. XPIA
investigated novel measurement approaches and quantified
uncertainties associated with these measurement methods.
While the main interest of the XPIA campaign was on
wind and turbulence, measurements of other important at-
mospheric variables were also collected, including temper-
ature and humidity. Among the deployed instruments were
two identical microwave radiometers (MWRs) and two ra-
dio acoustic sounding systems (RASS), as well as radiosonde
launches.

MWRs are passive sensors, sensitive to atmospheric tem-
perature, humidity, and liquid water path (LWP), that allow
for a high temporal observation of the state of the atmo-
sphere, with some advantages and limitations. In order to
estimate profiles of temperature and humidity from the ob-
served brightness temperatures (T b), several methods could
be applied such as regressions, neural network retrievals,
or physical retrieval methodologies which can include addi-
tional information about the atmospheric state in the retrieval
process (e.g., Maahn et al., 2020). Microwave radiative trans-
fer models (e.g., Rosenkranz, 1998; Clough et al., 2005) are
commonly used to train statistical retrievals, or as forward
models used within physical retrieval methods. Advantages
of MWRs include their compact design, the relatively high
temporal resolution of the measurements (2–3 min), the pos-
sibility to observe the vertical structure of both temperature
and moisture through the lower part of the troposphere dur-
ing both clear and cloudy conditions, and their capability to
operate in a standalone mode. Disadvantages include limited
accuracy in the presence of rain, rather coarse vertical resolu-
tion, and the necessity to have a site-specific climatology for
retrievals. Other disadvantages include the challenges related
to performing accurate calibrations (Küchler et al., 2016, and
references within), radio frequency interference (RFI), and
the low accuracy on the retrieved LWP, especially for values
of LWP less than 20 g m−2 (Turner, 2007).

RASSs, in comparison, are active instruments that emit a
longitudinal acoustic wave upward, causing a local compres-
sion and rarefaction of the ambient air. These density vari-

ations are tracked by the Doppler radar associated with the
RASS, and the speed of the propagating sound wave is mea-
sured. The speed of sound is related to the virtual temperature
(T v) (North et al., 1973), and therefore, RASSs are used to
remotely measure vertical profiles of virtual temperature in
the boundary layer. Being an active instrument, the RASS is
in general more accurate than a passive instrument (Bianco
et al., 2017), but they also come with their own disadvan-
tages. The main limitations of RASS for temperature mea-
surements are the low temporal resolution (typically a 5 min
averaged RASS profile is measured once or twice per hour),
their limited altitude coverage, and the noise “pollution” that
impacts local communities. Adachi and Hashiguchi (2019)
have shown that RASS could use parametric speakers to
take advantage of their high directivity and very low side
lobes. Nevertheless, the maximum height reached by the
RASS is limited by sound attenuation, which is a function of
both radar frequency and atmospheric conditions (May and
Wilczak, 1993) such as temperature, humidity, and the ad-
vection of the propagating sound wave out of the radar’s field
of view. Therefore, data availability is usually limited to the
lowest several kilometers, depending on the frequency of the
radar. In addition, wintertime coverage is usually lower than
that in summer, due to increased attenuation of the acoustic
signal in cooler and drier environments.

To get a better picture of the state of the temperature
and moisture structure of the atmosphere, it makes sense to
try to combine the information obtained by both MWR and
RASS. Integration of different instruments has been and still
is a topic of ongoing scientific interest (Han and Westwa-
ter, 1995; Stankov et al., 1996; Bianco et al., 2005; Engelbart
et al., 2009; Cimini et al., 2020; Turner and Löhnert, 2021,
to name some). In this study, the focus is on the combination
of the MWR and RASS observations in the retrievals to im-
prove the accuracy of the temperature profiles in the lowest
3 km compared to physical retrieval approaches that do not
include the information from RASS measurements. Some
studies have used analyses from numerical weather predic-
tion (NWP) models as an additional constraint in these vari-
ational retrievals (e.g., Hewison, 2007; Cimini et al., 2006,
2011; Martinet et al., 2020); however, we have elected not to
include model data in this study because we wanted to eval-
uate the impact of the RASS profiles on the retrievals from a
purely observational perspective.

This paper is organized as follows: Sect. 2 summarizes the
experimental dataset; Sect. 3 introduces the principles of the
physical retrieval approaches used to obtain vertical profiles
of the desired variables; Sect. 4 produces statistical analysis
of the comparison between the different retrieval approaches
and radiosonde measurement; finally, conclusions are pre-
sented in Sect. 5.
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2 XPIA dataset

The data used in our analysis were collected during the XPIA
experiment, held in spring 2015 (March–May) at NOAA’s
BAO site, in Erie, Colorado (40.0451◦ N, 105.0057◦W, ele-
vation 1584 m.s.l.). XPIA was the last experiment conducted
at this facility, as after almost 40 years of operations the
BAO 300 m tower was demolished at the end of 2016 (Wolfe
and Lataitis, 2018). XPIA was designed to assess the capa-
bility of different remote sensing instruments for quantify-
ing boundary layer structure and was a preliminary study as
many of these same instruments were later deployed, among
other campaigns, for the second Wind Forecast Improvement
Project WFIP2 (Shaw et al., 2019; Wilczak et al., 2019),
which investigated flows in complex terrain for wind en-
ergy applications, where they were for example used to study
cold air pools (Adler et al., 2021) and gap flow character-
istics (Neiman et al., 2019; Banta et al., 2020). The list of
the deployed instruments included active and passive remote-
sensing devices and in situ instruments mounted on the BAO
tower. Data collected during XPIA are publicly available
at https://a2e.energy.gov/projects/xpia (last access: 20 Jan-
uary 2022). A detailed description of the XPIA experiment
can be found in Lundquist et al. (2017), while a specific look
at the accuracy of the instruments used in this study can be
found in Bianco et al. (2017).

2.1 MWR measurements

Two identical MWRs (Radiometrics MP-3000A) managed
by NOAA (MWR-NOAA) and by the University of Colorado
(MWR-CU) were deployed next to each other at the visi-
tor center ∼ 600 m south of the BAO tower (see Lundquist
et al., 2017, for a detailed map of the study area). Prior to
the experiment, both MWRs were thoroughly serviced (sen-
sor cleaning, radome replacement, etc.) and calibrated using
an external liquid nitrogen target and an internal ambient
target. MWRs are passive devices which record the natural
microwave emission in the water vapor and oxygen absorp-
tion bands from the atmosphere, providing measurements of
the brightness temperatures. Both MWRs have 35 channels
spanning a range of frequencies, with 21 channels in the
lower (22–30 GHz) K-band frequency band, of which 8 chan-
nels were used during XPIA (22.234, 22.5, 23.034, 23.834,
25, 26.234, 28, and 30 GHz) and 14 channels in the higher
(51–59 GHz) V-band frequency band, all of which were used
in XPIA (51.248, 51.76, 52.28, 52.804, 53.336, 53.848, 54.4,
54.94, 55.5, 56.02, 56.66, 57.288, 57.964, and 58.8 GHz).
Frequencies in the K-band are more sensitive to water vapor
and cloud liquid water, while frequencies in the V-band are
sensitive to atmospheric temperature due to the absorption
of atmospheric oxygen (Cadeddu et al., 2013). V-band fre-
quencies or channels can also be divided into two categories:
the opaque channels, 56.66 GHz and higher, that are more
informative in the layer of the atmosphere from the surface

to ∼ 1 km a.g.l., and the transparent channels, 51–56 GHz,
that are more informative above 1 km a.g.l. Both MWRs ob-
served at the zenith and at 15 and 165◦ elevation angles in
the north–south plane (referred to as oblique elevation scans
and used as their average hereafter; note zenith views have
a 90◦ elevation angle). However, when MWRs are deployed
in locations with unobstructed views, oblique scans can be
performed down to 5◦ elevation angles and may provide bet-
ter temperature profile accuracy in the lowest 0–1 or even
0–2 km a.g.l. layers (Crewell and Löhnert, 2007).

In addition, each MWR was provided with a separate sur-
face sensor to measure pressure, temperature, and relative hu-
midity at the installation level that was ∼ 2.5 m a.g.l.. Verti-
cal profiles of temperature (T ), water vapor density (WVD),
and relative humidity (RH) were retrieved in real time during
XPIA every 2–3 min using a neural network (NN) approach
provided by the manufacturer of the radiometer (Solheim et
al., 1998a, b; Ware et al., 2003). Although the physical re-
trieval configurations used in this study do not exactly match
the NN retrieval configurations, a comparison of both physi-
cal and neural network retrievals to the radiosonde tempera-
ture data is presented in Appendix A.

Both MWRs nominally operated from 9 March to
7 May 2015, although the MWR-NOAA was unavailable
between 5–27 April 2015. For the overlapping dates, tem-
perature profiles retrieved from the two MWRs showed very
good agreement with less than 0.5 ◦C bias and 0.994 corre-
lation (Bianco et al., 2017). For this reason, and because the
MWR-CU was available for a longer time period, only the
MWR-CU (hereafter simply called MWR) is used.

2.2 WPR–RASS measurements

Two NOAA wind profiling radars (WPRs), operating at fre-
quencies of 915 and 449 MHz, were deployed at the visitor
center (same location as the MWR) during XPIA. These sys-
tems are primarily designed to measure the vertical profile
of the horizontal wind vector, but co-located RASSs also en-
able the observation of profiles of virtual temperature in the
lower atmosphere, with different resolutions and height cov-
erage depending on the WPR. Thus, the RASS associated
with the 915 MHz WPR (hereafter referred to as RASS 915)
measured virtual temperature from 120 to 1618 m with a
vertical resolution of 62 m, and the 449 MHz RASS (here-
after referred to as RASS 449) sampled the boundary layer
from 217 to 2001 m with a vertical resolution of 105 m.
The maximum height reached by the RASS is a function of
both radar frequency and atmospheric conditions (May and
Wilczak, 1993) and is usually lower for RASS 915 data, as
will be shown later in the analysis.

The RASS data were processed using a radio frequency in-
terference (RFI) removal algorithm (performed on the RASS
spectra), a consensus algorithm (Strauch et al., 1984) per-
formed on the moment data using a 60 % consensus thresh-
old, a Weber–Wuertz outlier removal algorithm (Weber et
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al., 1993) performed on the consensus averages, and a RASS
range-correction algorithm (Görsdorf and Lehmann, 2000)
using an average relative humidity setting of 50 % deter-
mined from the available observations.

2.3 BAO data

The BAO 300 m tower was built in 1977 to study the plan-
etary boundary layer (Kaimal and Gaynor, 1983). During
XPIA, measurements were collected at the surface (2 m) and
at six higher levels (50, 100, 150, 200, 250, and 300 m a.g.l.).
Each tower level was equipped with two sonic anemometers
on orthogonal booms and one sensor based on a Sensiron
SHT75 solid-state sensor to measure temperature and rela-
tive humidity with a time resolution of 1 s, and averaged over
5 min. The more accurate temperature and water vapor obser-
vations (Horst et al., 2016) at the BAO tower 2 m a.g.l. level
are used in the physical retrieval in place of the less accurate
MWR surface sensor.

2.4 Radiosonde measurements

Between 9 March and 7 May 2015, while the MWR was op-
erational, radiosondes were launched by the National Center
for Atmospheric Research (NCAR) assisted by several stu-
dents from the University of Colorado over three selected
periods, one each in March, April, and May. All radiosondes
were Vaisala model RS92. There were a total of 59 launches,
mostly four times per day, around 14:00, 18:00, 22:00, and
02:00 UTC (08:00, 12:00, 16:00, and 20:00 local standard
time, LST). The first 35 launches, between 9–19 March, were
done from the visitor center, while 11 launches between 15–
22 April, and 13 launches between 1–4 May were done from
the water tank site, ∼ 1000 m away from the visitor center
(see Lundquist et al., 2017, for a detailed map of the study
area). The radiosonde measurements included temperature,
dew point temperature, and relative humidity to altitudes usu-
ally higher than 10 km a.g.l., with measurements every few
seconds. As a first step, for additional verification, the ra-
diosonde data from the 59 launches taken between 9 March
and 4 May 2015 were compared to the BAO tower mea-
surements, up to 300 m a.g.l.. These observed datasets match
very well, with a correlation coefficient of 0.99 and a stan-
dard deviation of ∼ 0.7 ◦C. However, one radiosonde pro-
file showed a large bias (>5 ◦C) against all seven levels of
BAO temperature measurements and all available T v mea-
surements from the RASS 915 (eight measurements up to
600 m a.g.l.) and from the RASS 449 (nine measurements up
to 1100 m a.g.l.); therefore this particular radiosonde profile
was excluded from the statistical analysis. Moreover, while
accurate RASS data can be collected during rain, MWR data
could be potentially deteriorated due to water deposition on
the radome. Therefore, six profiles (three for 13 March and
one each on 1, 3, and 4 May) were eliminated from the sta-

tistical evaluation. These restrictions lowered the number of
total radiosonde launches used in this study to 52.

3 Physical retrievals

One way to combine the active and passive instruments
would be to use the RASS observations up to their maximum
available height and stitch them with the profiles obtained
from a physical iterative method using MWR data. To do
this, the moisture contribution to the RASS virtual tempera-
tures could be removed by using either the relative humidity
measured by the MWR or by a climatology of the moisture
term. However, merging these different profiles could result
in artificial jumps at the connecting heights.

Alternatively, a physical retrieval (PR) iterative approach
can be used to retrieve vertical profiles of thermodynamic
properties from the MWR and RASS observations in a syn-
ergistic manner (e.g., Maahn et al., 2020; Turner and Löhn-
ert, 2021). In this case, an optimal estimation-based physical
retrieval is initialized with a climatologically reasonable pro-
file of temperature and water vapor and is iteratively repeated
until the computed brightness temperatures match those ob-
served by the MWR within the uncertainty of the observed
brightness temperatures and the RASS virtual temperatures
within their uncertainties (Rodgers, 2000; Turner and Löhn-
ert, 2014; Cimini et al., 2018; Maahn et al., 2020).

3.1 Iterative retrieval technique

For this study, the PR uses the TROPoe retrieval algorithm
(formerly AERIoe; Turner and Löhnert, 2014; Turner and
Blumberg, 2019; Turner and Löhnert, 2021). This algorithm
is able to use radiance data from microwave radiometers, in-
frared spectrometers, and other observations as input. The
microwave radiative transfer model, MonoRTM (Clough et
al., 2005), serves as the forward model, which is fully func-
tional for the microwave region and was intensively evalu-
ated previously on MWR measurements (Payne et al., 2008;
2011).

We start with the state vector Xa = [T , Q, LWP]T, where
superscript T denotes transpose, and vectors and matrices are
shown in bold. T (K) and Q (g kg−1) are temperature and
water vapor mixing ratio profiles at 55 vertical levels from
the surface up to 17 km, with the distance between the levels
increasing geometrically with height. LWP is the liquid water
path in g m−2 that measures the integrated content of liquid
water in the entire vertical column above the MWR and is
a scalar. For this study, Xa has dimensions equal to 111× 1
(two vectors T and Q with 55 levels each, and LWP). The
retrieval framework of Turner and Blumberg (2019) is used,
but only using MWR data (no spectral infrared). Here, we
demonstrate the extension of the retrieval to include RASS
profiles of T v and the resulting impact this has on the re-
trieved temperature profiles and information content.
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The observation vector Y includes temperature and water
vapor mixing ratio measured at the surface in situ and spec-
tral T b measured by the MWR. The MonoRTM model F is
used as the forward model from the current state vector X
and is then compared to the observation vector Y , iterating
until the difference between F (X) and Y is small within a
specified uncertainty (Eq. 1).

Xn+1 =Xn+ (S−1
a +KTS−1

ε K)−1KTS−1
ε [Y −F (Xn)

+K(Xn−Xa)] (1)

with

Xa =

 T

Q

LWP


Sa =

 σ 2
T T σ 2

TQ 0
σ 2
QT σ 2

QQ 0
0 0 σ 2

LWP


Kij =

∂ F i

∂ Xj
,

where i and j in the Kij definition mark channel and vertical
level, respectively. The superscripts T and −1 in Eq. (1) indi-
cate the transpose and inverse matrices, respectively. The ob-
servation vector Y and the covariance matrix of the observed
data, Sε, depending on the configuration used, are equal to
the following.

Y 1 =

 Tsfc
Qsfc
T bzenith


Sε1 =

 σ 2
Tsfc

0 0
0 σ 2

Qsfc
0

0 0 σ 2
T bzenith



Y 2 =

 Tsfc
Qsfc
T bzenith+oblique


Sε2 =

 σ 2
Tsfc

0 0
0 σ 2

Qsfc
0

0 0 σ 2
T bzenith+oblique



Y 3 =


Tsfc
Qsfc
T bzenith+oblique
T vRASS915



Sε3 =


σ 2
Tsfc

0 0 0
0 σ 2

Qsfc
0 0

0 0 σ 2
T bzenith+oblique

0
0 0 0 σ 2

T vRASS915



Y 4 =


Tsfc
Qsfc
T bzenith+oblique
T vRASS449



Sε4 =


σ 2
Tsfc

0 0 0
0 σ 2

Qsfc
0 0

0 0 σ 2
T bzenith+oblique

0
0 0 0 σ 2

T vRASS449


Note that the 2 m surface-level observations of temperature
and water vapor mixing ratio (Tsfc and Qsfc, respectively)
are included as part of the observation vector Y , and thus the
uncertainties (0.5 K for temperature and less than 0.4 g kg−1

for mixing ratio) in these observations are included in Sε.
The mean state vector of the climatological estimates, or a

“prior” vectorXa , is a key component in the optimal estima-
tion framework, and it is the first guess of the state vector X,
X1, in Eq. (1). It provides a constraint on the ill-posed inver-
sion problem. The prior is calculated independently for each
month of the year from climatological sounding profiles (us-
ing 10 years of data) in the Denver area. The covariance ma-
trix, Sa , of the “prior” vector includes not only temperature
or water vapor variances but also the covariances between
them. Using around 3000 radiosondes launched by the NWS
in Denver, each radiosonde profile is interpolated to the ver-
tical levels used in the retrieval, after which the covariance of
temperature and temperature, temperature and humidity, and
humidity and humidity is computed for different levels. LWP
is arbitrarily assigned in Xa , with large values chosen for its
uncertainty in Sa , so that it does not impact (constrain) the
retrieval. Presently, the assumed uncertainty in LWP in the
prior is assigned to 200 g m−2 in the TROPoe configuration
file.

Four configurations are chosen for the observational vec-
tor Y (Y 1, Y 2, Y 3, and Y 4). In each of these, the surface
observations are obtained by the 2 m BAO in situ measure-
ments of temperature and humidity. The MWR provides T b
measurements from 22 channels from the zenith scan for the
zenith-only configuration (Y 1), while when using the zenith
plus oblique T b inputs (Y 2, Y 3, and Y 4) the same 22 chan-
nels were used from the zenith scans together with only the
four opaque channels (56.66, 57.288, 57.964, and 58.8 GHz)
from the oblique scans. Using additional measurements from
the co-located radar systems with RASS, the observational
vector is further expanded with either RASS 915 (Y 3) or
RASS 449 (Y 4) virtual temperature observations. The co-
variance matrix of the observed data, Sε, depends on the cho-
sen Y i as seen in the matrix Sεi (with i = 1 : 4) descriptions,
with increasing dimensions from Y 1 to Y 2 and additional
increasing dimensions to Y 3 or Y 4 through the multi-level
measurements of the RASS (Turner and Blumberg, 2019).
Table 1 summarizes the observational information included
in these four different configurations of the PR.
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Table 1. Four PR configurations corresponding to the four observational Y i vectors in Eq. (1).

Tsfc Qsfc T b zenith T b oblique T v RASS915 T v RASS449

Y 1 =MWRz × × ×

Y 2 =MWRzo × × × ×

Y 3 =MWRzo915 × × × × ×

Y 4 =MWRzo449 × × × × ×

The uncertainty in the MWR T b observations was set to
the standard deviation from a detrended time-series analy-
sis for each channel during cloud-free periods. The method
to detect those cloud-free periods is described in detail in
Sect. 3.2. The derived uncertainties ranged from 0.3 to 0.4 K
in the 22 to 30 GHz channels and 0.4 to 0.8 K in the 52 to
60 GHz channels. We assumed that there was no correlated
error between the different MWR channels.

For the RASS, co-located RASS and radiosonde profiles
were compared, and the standard deviation of the differences
in T v was determined as a function of the radar’s signal-to-
noise ratio (SNR). This relationship resulted in uncertainties
that ranged from 0.8 at high SNR values to 1.5 K at low SNR
values. Again, we assumed that there was no correlated error
between different RASS heights. Following these assump-
tions, the covariance matrix Sε is diagonal.

The Jacobian matrix, K, is computed using finite differ-
ences by perturbing the elements of X and rerunning the
forward model. It has dimensions m× 111, where m is the
length of the vector Y i ; therefore its dimension increases cor-
respondingly with the inclusion of more observational data.
K makes the “connection” between the state vector and the
observational data and should be calculated at every iteration.

3.2 Bias correction of MWR observations using
radiosondes or climatology

Observational errors propagate through retrieval into the de-
rived profiles (i.e., the bias of the observed data will con-
tribute to a bias in the retrievals). For that, retrieval uncer-
tainties in Eq. (1) from Y = Y 1 or Y 2 derive only from un-
certainties in surface and MWR data, while retrieval uncer-
tainties from Y = Y 3 or Y 4 come from uncertainties in the
surface, MWR, and RASS measurements.

The bias of the retrieval depends on both the absolute ac-
curacy of the forward model and on any observational sys-
tematic offset, of which the systematic error in the MWR ob-
servations could potentially be reduced through application
of an MWR T b bias-correction procedure. In this study, two
different approaches were used for the bias correction: the
first is based on a comparison to the radiosondes, while the
second uses climatological profiles. The first method could
be used for a field campaign where occasional co-located ra-
diosonde launches are taken, while the second would be used
for deployments without any supporting radiosonde observa-
tions.

For both approaches, the first step is to identify clear-sky
periods during which the bias can be estimated (to elimi-
nate uncertainties associated with clouds), and subsequently
the bias can be removed from the observed MWR T bs. One
method to identify clear-sky times is to use a time series of
T b observations in the 30 GHz liquid-water-sensitive chan-
nel of the MWR.

The standard deviation of the MWR T b in the 30 GHz
channel is calculated over a time frame of 1 h centered at the
radiosonde launch time. The data from the zenith scan and
the averaged oblique scans are reviewed separately. Liquid-
cloud-free periods were identified by cases where the tem-
poral standard deviation was small (<0.4 K), and more than
35 radiosonde profiles were classified as being launched in
clear skies. The usage of the standard deviation from the time
series from the oblique scans, with the same 0.4 K restriction,
reduces the number of the clear-sky radiosonde profiles to 18.
For those chosen 18 radiosonde profiles, the T b is calculated
from radiosonde temperature profiles through MonoRTM at
each of the MWR channels. The mean difference between
these calculated radiosonde T bs and measured MWR T bs
forms the T b bias with which the MWR T b data can be cor-
rected. This bias-correction method will be referred to as “ra-
diosonde BC”.

While this radiosonde BC method can be employed for
the XPIA dataset, for other campaigns this approach would
not be possible if co-located radiosonde observations were
not available. For this situation, an alternative method for
correcting the MWR T b biases is presented. There are of-
ten spectral features in the observed minus computed bright-
ness temperature residuals that could not be explained by any
physically realistic atmospheric profiles and can only result
because of a calibration error in the observations. This al-
ternative bias-correction method is aimed purely to remove
this unphysical spectral signature. In this method, to choose
clear-sky periods, the 30 GHz channel MWR T b data are
used on a daily basis. The standard deviation of the MWR
T b is calculated as the average of standard deviations in a
1 h sliding window through all data points of a day. Four
clear-sky days were identified using a threshold of 0.4 K
on the standard deviation: 10 and 30 March and 13 and
29 April 2015. The T b bias is then computed for each of the
22 channels as the averaged difference between the observed
T b from the MWR zenith observations and the forward-
model-calculated T b values at zenith using the TROPoe-
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Figure 1. T b biases derived from the radiosonde BC method (and
TROPoe BC method) in all 22 MWR channels of the zenith scan in
red (and in black) and in the four opaque channels of the oblique
scans in blue (and in green).

retrieved profiles (Y 1) of those selected clear-sky days. This
method identified spectral calibration errors in the MWR ob-
servations that could not be explained by physically realistic
atmospheric profiles. This bias-correction technique, which
accounts for those unphysical spectral calibration features,
will be referred to as “TROPoe BC”.

Figure 1 shows the T b biases found for all 22 MWR chan-
nels from both bias-correction approaches. The biases calcu-
lated with the radiosonde BC scheme are shown for all chan-
nels used in our analysis: 22 channels of the zenith scan, in
red, and four V-band opaque channels of the oblique scans,
in blue. The black and green triangles represent the biases
calculated using the TROPoe BC approach for zenith and
for zenith+oblique scans, respectively. All biases are pre-
sented with associated uncertainties (error bars representing
the standard deviation over all radiosondes for radiosonde
BC and mean observation T b vector uncertainties for 4 cho-
sen clear-sky days for TROPoe BC).

The biases from the two bias-correction schemes are
within the uncertainties of each other for most of the chan-
nels except at the higher frequencies in the V-band. Biases
in the most opaque channels are significantly affected by the
accuracy of the boundary layer temperature profiles. When
TROPoe BC is used, a monthly average prior temperature
profile is used in the PR and thus differences between this
prior profile and the actual temperature profile can result in
a spectral bias in the more opaque MWR channels. On the
contrary, the radiosonde BC uses a direct measurement of the
temperature profile (from the radiosonde), and thus is more
accurate. It is also important to note that, in both approaches,
the biases in the opaque channels for zenith and for oblique
scans (for radiosonde BC these are red and blue, respectively,
and for the TROPoe BC these are black and green, respec-
tively) are very similar to each other. This supports the as-
sumption that the true bias is nearly independent of the scene,

or that the sensitivity to the scene (e.g., zenith or off-zenith)
is small.

The bias-correction methods were applied by removing
the corresponding calculated biases from the MWR T b ob-
servations before the retrievals were performed. Later in
Sect. 4, differences in the retrieved temperature profiles will
be shown when using the two bias-correction approaches.
These differences will be more evident in the temperature
profiles exhibiting near-ground temperature inversions.

However, the final goal of this study is not to assess the
sensitivity to different bias-correction approaches but to ver-
ify that the inclusion of RASS observations does improve
retrieved temperature profiles, independently of the bias-
correction method used.

3.3 Analysis of physical retrieval characteristics

The retrieved profiles of the four different PR configura-
tions presented in Table 1 (MWRz, MWRzo, MWRzo915,
MWRzo449) were compared to the radiosonde profiles. To
compare radiosonde observations against the PR profiles, all
radiosonde profiles were interpolated vertically to the same
PR heights, and PR profiles were averaged in the time win-
dow between 15 min before and 15 min after each radiosonde
launch. Since the radiosonde ascends quite quickly in the
lowest kilometers of the atmosphere (∼ 15–20 min to reach
5 km), the 30 min temporal window is estimated to be rep-
resentative of the same volume of the atmosphere measured
by the radiosonde. BAO tower temperature and mixing ratio
data at the seven available levels were used as an additional
validation dataset, without any vertical interpolation, aver-
aged in the time window between 15 min before and 15 min
after each radiosonde launch.

As an example of the different temperature retrievals and
their relative performance, data obtained on 17 March 2015
at 22:00 UTC are presented in Fig. 2. Temperature profiles
up to 2 km a.g.l. retrieved from the four PR configurations
(MWRz, MWRzo, MWRzo915, MWRzo449, using the ra-
diosonde BC) are compared to the radiosonde data in red
and to the BAO measurements in blue squares. Note that
all four of the PRs match the BAO observations reason-
ably well near the ground. The MWRz and MWRzo pro-
files are very smooth and depart quite substantially from the
radiosonde measurements and are unable to reproduce the
more detailed structure of the atmospheric temperature pro-
file measured by the radiosonde, while the MWRzo449 pro-
file (in light blue) demonstrates a better agreement with both
the radiosonde and BAO measurements (blue squares). The
MWRzo915 profile (in magenta) also tries to follow the ele-
vated temperature inversion observed by the radiosonde, suc-
cessful only in the lower part of the atmosphere (below 1 km
a.g.l.) where RASS 915 measurements are available. This be-
havior will also be addressed in the following section and in
the statistical analysis presented later in the paper.
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Figure 2. Temperature profiles obtained by the four PR configura-
tions, after applying the radiosonde BC to the MWR T bs: MWRz in
gray, MWRzo in black, MWRzo915 in magenta, and MWRzo449
in light blue. These retrievals are compared to radiosonde mea-
surements, in red, and BAO tower observations, as blue squares.
The heights with available RASS virtual temperature measurements
(RASS 915 in magenta and RASS 449 in light blue) are marked by
the asterisks on the right y axis.

An asset of TROPoe is that several characteristics of
the PRs can be obtained from two matrices, the averaging
kernel, Akernel, and the posterior covariance matrix, Sop
(Masiello et al., 2012; Turner and Löhnert, 2014, Turner and
Bloomberg, 2019), calculated as

Akernel= B−1KT S−1
ε K (2)

and

Sop = B−1, (3)

where

B= S−1
a +KT S−1

ε K.

All matrices, Akernel, Sop, and B, have dimensions 111×
111 in our configuration. While the top left corner of the
Akernel matrix (1 : 55, 1 : 55) is devoted to temperature,
called ATkernel in the text, the next (56 : 110, 56 : 110) el-
ements are devoted to the water vapor mixing ratio, called
AQKernel.

The Akernel provides useful information about the cal-
culated retrievals, such as vertical resolution and degrees of
freedom for signal at each level. The rows of the Akernel
provide the smoothing functions (Rodgers, 2000) that could
be applied to the radiosonde profiles (Eq. 4) to minimize the
vertical representativeness error in the comparison between

the various retrievals and the radiosonde profiles due to very
different vertical resolutions of these profiles (Turner and
Löhnert, 2014).

Smoothed radiosonde observed profiles can be computed
using the averaging kernel as

Xsmoothedradiosonde = Akernel(Xradiosonde−Xa)+Xa . (4)

The Akernel in Eq. (2) depends on the retrieval parameters
(e.g., which datasets are used in the Y vector, the values as-
sumed in the observation covariance matrix Sε, and the sen-
sitivity of the forward model), so for our four PR configu-
rations it is possible to calculate four different kernels from
Eq. (2).

For each of the four Akernels, a smoothed radiosonde
profile can be computed for each radiosonde profile using
Eq. (4). In the presence of temperature inversions or other
particular structures in the atmosphere, these smoothed pro-
files can be quite different from each other and also from
the original unsmoothed radiosonde profile. Consequently,
while comparison of the retrievals to the relative Akernel-
smoothed radiosonde profiles can be used to minimize the
vertical representativeness effects due to the different vertical
resolutions of these profiles, we note that a statistical com-
parison between the four configurations of the observational
vector would not be fair if each of their retrieved profiles
is compared to a different Akernel-smoothed radiosonde
profile. Therefore, in the statistical analysis presented later
in the paper (Sect. 4.2), mean bias, root-mean-square error
(RMSE), and Pearson correlation coefficients will be com-
puted between the various TROPoe retrieval configurations
and the unsmoothed radiosonde profiles, just interpolated to
the same vertical levels of the retrieved profiles.

The ATkernel can help understand the differences in the
retrieved temperature profiles obtained by the configura-
tions using additional RASS data, shown in the example of
Fig. 2. Figure 3a includes the temperature profiles of the ra-
diosonde (unsmoothed and ATkernel’s smoothed) and PRs
of MWRzo and MWRzo449 for the same example as in
Fig. 2. Due to the inclusion of RASS measurements, the
ATkernel-smoothed radiosonde profile of the MWRzo449
configuration (dashed light blue line) is closer to the original
radiosonde data (in red) compared to the black dashed pro-
file of the MWRzo’s ATkernel-smoothed radiosonde profile.
Additionally, the rows of the ATkernel provide a measure
of the retrieval smoothing as a function of altitude, so the
full width at half maximum (FWHM) of each ATkernel row
estimates the vertical resolution of the retrieved solution at
each vertical level (Maddy and Barnet, 2008; Merrelli and
Turner, 2012). Plots of this vertical resolution as a function
of the height for the MWRzo PR and for the MWRzo449 PR
are included in Fig. 3b. This plot shows that the additional
observations from the RASS 449 significantly improve the
vertical resolution of the retrievals.

The posterior covariance matrix, Sop, provides a measure
of the uncertainty of the retrievals while the square root of
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Figure 3. (a) Observed temperature profiles from radiosonde in red, from ATkernel-smoothed radiosonde, AT_MWRzo in dashed black,
and AT_MWRzo449 in dashed light blue; PRs from MWRzo PR in solid black, and from MWRzo449 PR in solid light blue. (b) Vertical
resolution (VRES) as a function of the height for the MWRzo PR (black) and for the MWRzo449 PR (light blue). (c, d) 3× 3 km (37×
37 levels) Sop matrices, converted to correlation matrices, for the MWRzo PR (c) and for the MWRzo449 PR (d). Dashed lines on plots
(b–d) mark 2 km a.g.l. Hatched area on panel (d) marks the RASS measurement heights.

the diagonal of this matrix is used to specify the 1σ errors in
the profiles of temperature or mixing ratio. Also, Sop shows
the level-to-level dependency of the retrievals and in an ideal
case should have all non-diagonal elements equal to zero.
Converted to a correlation matrix, it is possible to visualize
these dependencies, as presented in Fig. 3c, d. The use of
additional RASS data (MWRzo449 Sop, Fig. 3d) reduces the
off-diagonal covariances, therefore substantially decreasing
the correlations in those areas compared to the MWRzo Sop
(Fig. 3c).

To understand the level-to-level correlations among the
four different retrieval configurations in Table 1, the Sop ma-
trices were averaged over all radiosonde events and converted
to correlation matrices (Fig. 4). A clearly visible narrowing
of the spread around the main diagonal and correlation re-
duction in the off-diagonal elements results by adding ad-
ditional observations, from MWR zenith only (Fig. 4a), to
MWR zenith-oblique (Fig. 4b), to the larger impact obtained
by the usage of the RASS 915 (Fig. 4c), concluding with the
RASS 449 (Fig. 4d) data. The mean retrieval uncertainty pro-
file for each of the PR configurations is presented in Fig. 4e.
The uncertainty of the MWRzo449 retrieval up to 1 km a.g.l.
is around 0.5 ◦C while the other retrievals have higher uncer-
tainties of up to 1 ◦C. The higher accuracy of the MWRzo449
retrievals is because that configuration has more observa-
tional information compared to the other retrieval configu-
rations.

Other statistically important features to analyze in the PRs,
besides their uncertainty, are the vertical resolution already
introduced in the example of Fig. 3b and the degree of free-
dom for signal (DFS). These two features, derived from the
Akernels of each PR configuration, averaged over all ra-
diosonde events, are shown in Fig. 4f and g. The vertical
resolution (Fig. 4f) shows the width of the atmosphere layer

used for each retrieval height, computed as the full width at
half maximum value of the averaging kernel. The cumula-
tive DFS profile (Fig. 4g) is a measure of the number of in-
dependent pieces of information in the observations below
the specified height. For example, at the 1 km a.g.l. level the
vertical resolution of MWRzo449 is 0.5 km (i.e., informa-
tion from ±0.5 km around the retrieval height is considered
in the retrieval), while all other retrievals use the information
from more than ±1.5 km. Also, the DFS, as a cumulative
measure, shows an increase in pieces of information from
MWRz to MWRzo for the whole profile and from MWRzo
to MWRzo915 and to MWRzo449 above ∼ 0.2 km where
RASS data are available. The DFS of MWRzo915 is higher
compared to the DFS of MWRzo449 in the 0.2–0.5 km a.g.l.
layer because RASS 915 data have denser measurements
there. It is also important to note that there is no additional
information added to any of the retrievals above 2 km a.g.l.;
i.e., the slope of the cumulative DFS profiles are equal. De-
spite that, the statistical analysis of the PRs up to 3 km a.g.l.,
shown in Sect. 4, will prove that the retrieval improvements
obtained by including the RASS are found even above the
height of the RASS measurement availability.

The improvements from MWRz (in gray) to MWRzo
(in black), to MWRzo915 (in magenta), and finally to
MWRzo449 (in light blue) are visible in all three panels
(Fig. 4e–g), whereas MWRzo449 has the lowest 1σ uncer-
tainty and highest DFS compared to the other PRs, particu-
larly below 2 km a.g.l., where RASS 449 measurements are
available. Finally, it is interesting that below 200 m a.g.l. the
MWRzo915 has slightly smaller lowest 1σ uncertainty and
vertical resolution relative to the MWRzo449, as could be
expected due to the first available height of the RASS 915
being lower (120 m a.g.l.) than the first available height for
the RASS 449 (217 m a.g.l.) and due to the finer vertical res-
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Figure 4. (a–d) The mean Sops, displayed as correlation matrices, for (a) MWRz, (b) MWRzo, (c) MWRzo915, and (d) MWRzo449,
averaged over all radiosonde events. The hatched area in panels (c) and (d) marks the RASS maximum measurement heights. (e) One-sigma
uncertainty derived from the posterior covariance matrix in ◦C, (f) vertical resolution (VRES) in kilometers, and (g) cumulative degree
of freedom (DFS) as a function of height for temperature, averaged over all radiosonde events (MWRz is in gray, MWRzo is in black,
MWRzo915 is in magenta, and MWRzo449 is in light blue). Dashed lines mark 2 km a.g.l. in all panels.

olution of the 915 MHz RASS. This suggests that, if addi-
tional observations were available in the lowest several hun-
dred meters of the atmosphere where RASS measurements
are not available, improvements might be even better closer
to the surface, where temperature inversions, if present, are
sometimes difficult to retrieve correctly.

4 Results

4.1 Statistical analysis of physical retrievals up to 3 km
a.g.l.

Several cases were found during XPIA when the temperature
profile exhibited inversions, with the lowest happening in the
surface layer. Figure 5 shows one of the most complex cases,
with several temperature inversions visible in the tempera-
ture profile from the radiosonde (red line), in the temperature
measurements from the BAO tower (blue squares), and in the
virtual temperature measured by the RASS 449 (light blue
triangles). Note that the virtual temperature profile is in close
agreement with the temperature measured by radiosonde.

Figure 5 also illustrates the difference in the temperature
profiles, especially between 0–300 m a.g.l., for the two dif-
ferent bias-correction schemes, which show noticeable dif-
ferences in the biases of the opaque channels (especially im-
portant for the near-ground retrievals) presented in Fig. 1. As
expected, the radiosonde BC method yielded a retrieved pro-

file closer to the radiosonde temperature profile than when
using TROPoe BC, for which the inversion in the tempera-
ture profile close to the surface is too accentuated (particu-
larly the black, magenta, and cyan lines, all of which used
oblique scan data).

The relative statistical behavior (Pearson correlation,
RMSE, and bias) of the PRs for both temperature and mix-
ing ratio against radiosondes is shown in Fig. 6, using both
bias-correction approaches. PRs obtained after applying the
radiosonde BC (Fig. 6a) present overall smaller RMSE and
bias (the latter almost equal to zero up to 3 km a.g.l.) and
slightly higher correlations compared to the statistics of the
PRs obtained after applying the TROPoe BC (Fig. 6b). This
could be expected since for the comparison in Fig. 6a a
subset of the radiosondes was already used for the T b bias
correction. Also, the different retrievals show a narrower
distribution for the panels in Fig. 6a. Nevertheless, the re-
sults obtained when applying either bias-correction meth-
ods (in Fig. 6a, b) consistently show the improvement ob-
tained when the RASS observations are used, with relatively
smaller bias and RMSE in the 3 km layer a.g.l. The correla-
tion is mainly improved above 1 km, when RASS observa-
tions are included.

Besides temperature profiles, the PRs also provide water
vapor mixing ratio profiles. It is understandable that the dif-
ferent configurations of PRs are not noticeably different from
each other in relation to moisture, because the T v observa-
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Figure 5. As in Fig. 2 but for 18 March 2015 at 02:00 UTC. The RASS 449 virtual temperature is included as light blue triangles. Panels (a)
shows the PRs obtained after applying the radiosonde BC, and (b) shows the PRs obtained after applying the TROPoe BC on the MWR T bs.

Figure 6. Pearson correlation, RMSE, and mean bias for temperature profiles of MWRz in gray, MWRzo in black, MWRzo915 in magenta,
and MWRzo449 in light blue for the radiosonde BC bias-correction method in (a) and TROPoe BC method in (b).

tions from the RASS are dominated by the ambient temper-
ature (not moisture), and thus have little impact on the water
vapor retrievals. We found that the AQKernel values are al-
most identical for all four PR configurations (not shown). De-
tailed statistical evaluation of the PR mixing ratio profiles is
presented in Fig. 7, also averaged over all radiosonde events,
and shows very similar correlations, RMSEs, and biases for
all PRs, implying that the impact of including RASS obser-
vations in the retrieval is minimal on this variable. Finally, it
is noted that Fig. 7 shows the mixing ratio of the data from
TROPoe BC. The radiosonde BC mixing ratio results are al-
most identical.

4.2 Statistics for the profiles least close to the
climatology

Physical retrievals use climatological data as a constraint in
the retrieval. Statistically, the averaged profiles of both tem-
perature and moisture variables are very close to the climato-
logical averages. However, the most interesting and difficult
profiles to retrieve are the cases furthest from climatology

Figure 7. Same as the panels in Fig. 6b, but for mixing ratio, when
using the TROPoe BC method on the MWR T bs.

https://doi.org/10.5194/amt-15-521-2022 Atmos. Meas. Tech., 15, 521–537, 2022



532 I. V. Djalalova et al.: Improving thermodynamic profile retrievals from microwave radiometers

(Löhnert and Maier, 2012). To check the behavior of the re-
trieved data in such “extreme” cases, the RMSE was first cal-
culated for each radiosonde profile relative to the prior pro-
files for 37 vertical levels from the surface up to 3 km a.g.l.,
and then the 15 cases with the largest 0–3 km layer averaged
RMSEs compared to the prior were selected.

Figure 8 shows the temperature statistical analysis for the
entire radiosonde dataset (solid boxes) and for the 15 events
far from the climatological mean (hatched boxes) for bias,
RMSE, standard deviation of the differences between re-
trievals and radiosonde data, and Pearson correlation, calcu-
lated as the weighted averaged over the 37 vertical heights
up to 3 km a.g.l.1.

Differences in the statistics when using the entire ra-
diosonde dataset or the 15 extreme profiles are noticeable
for all statistical estimators. The PRs that include RASS ob-
servations show better performance compared to the strictly
MWR-only PR profiles (i.e., MWRz and MWRzo) for al-
most all statistical comparisons. This improvement is larger
for the PRs using the TROPoe BC (Fig. 8b) compared to
the PRs using the radiosonde BC (Fig. 8a). Three statisti-
cal estimators, RMSE, standard deviation, and Pearson cor-
relation, show overall better values for the 15 extreme cases
compared to the whole radiosonde dataset, for all PR con-
figurations and both BC approaches. This is due to the fact
that for this dataset the monthly averaged radiosonde pro-
files (for March and May particularly) depart quite substan-
tially from the monthly prior profiles. For example, the aver-
aged radiosonde profile in March is warmer by ∼ 7 ◦C com-
pared to the March prior (and in May by ∼ 5 ◦C) in the first
3 km a.g.l.. Consequently, the extreme cases (mostly found in
March) have the warmest radiosonde temperature profiles but
are overall closer to the monthly averaged radiosonde pro-
files.

Table 2 includes the same data as in Fig. 8 but as a percent-
age of the improvement, compared to the MWRz retrievals.

The results presented in Table 2 show improvements in
all statistical estimations when including RASS observa-
tions, with improvements in RMSE between 10 % and 20 %,
demonstrating the positive impact derived by the inclusion
of the active measurements, regardless of the bias-correction
method used, but larger for the TROPoe BC data because
there is more room for improvement when this BC method
is used. Improvements in the Pearson correlation coefficients
are small because correlation, determined during XPIA by
the overall temperature structure with height and diurnal cy-
cle, is already good, leaving little room for improvement.

1The vertical grid used in the PRs is not uniform, with more fre-
quent levels closer to the surface. If a simple average of the data
from all levels is used, the near-surface layer will be weighted more
compared to the upper levels of the retrievals. To avoid this, a ver-
tical average over the lowest 3 km a.g.l. is performed using weights
at each vertical level determined by the distance between the levels.

4.3 Virtual temperature profile statistics

Using the physical retrieval outputs, “retrieved virtual tem-
perature profiles” can also be calculated. In this section the
direct comparison of these retrieved virtual temperature pro-
files and RASS virtual temperature profiles to the original
radiosonde is shown. With this comparison we want to show
how the biases of the retrieved profiles relate to the original
RASS T v biases.

Figure 9 shows T v retrieved profile biases compared to the
original radiosonde data. These T v profiles and RASS 915
and RASS 449 T v bias data are interpolated onto a regular
vertical grid, going from 200 m to 1.6 km with a 100 m reso-
lution, for easy comparison.

While RASS 449 data are available at almost all heights
up to 1.6 km, the RASS 915 data availability decreases con-
siderably with height, decreasing to 50 % availability around
800 m a.g.l.. The PRs that include RASS data, MWRzo915
and MWRzo449 are also marked with additional black lines
at the heights with at least 50 % of relative RASS data avail-
ability. In agreement with Fig. 6a, this figure clearly shows
the superiority of the MWRzo449 and MWRzo915 (in the
layer with >50 % RASS data availability) compared to the
MWRz and MWRzo configurations, which do not include
RASS data. For MWRzo449, RASS 449 data were almost
always available; therefore it is easy to identify a similar-
ity between the T v bias profiles of the RASS 449 and the
PRs including it. Thus, for the MWRzo449 the T v bias is
more uniform through the heights compared to all other PRs
that do not include RASS data. Moreover, it is noted that
a roughly constant offset between the MWRzo449 T v and
RASS 449 T v biases profiles, with their averaged difference
equal to ∼ 0.08 ◦C (when the radiosonde BC is used), and to
∼ 0.32 ◦C (when the TROPoe BC is used, not shown), over
the ∼ 1.3 km (0.3–1.6 km) atmospheric layer where more
than 50 % of the RASS 449 measurements are available, uni-
formly distributed through the heights. The inclusion of the
RASS into the PRs does reduce the values of the biases in the
retrievals even below the values of the RASS biases, because
of the combined information from RASS and MWR.

5 Conclusions

In this study, data collected during the XPIA field campaign
were used to test different configurations of a physical itera-
tive retrieval (PR) approach in the determination of tempera-
ture and humidity profiles from data collected by microwave
radiometers, surface sensors, and RASS measurements. The
accuracy of several PR configurations was tested: two con-
figurations made use only of surface observations and MWR
observed brightness temperature (zenith only, MWRz; zenith
plus oblique, MWRzo), while two others included the active
virtual temperature profile observations available from co-
located RASS (one, RASS 915, associated with a 915 MHz
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Figure 8. From top to bottom: biases (retrievals minus radiosonde), RMSEs, standard deviations of the difference between retrievals and
radiosonde, and Pearson correlations for the four PR configurations, averaged from the surface to 3 km a.g.l., over all radiosonde data (solid
boxes), and over the 15 extreme cases (hatched boxes). The data in panel (a) use radiosonde BC and in (b) TROPoe BC on the MWR T bs.

Table 2. Retrieval improvements for different RASS/MWR configurations as a percentage compared to MWRz.

0–3 km a.g.l. All events 15 events least close to the prior

Radiosonde bias correction

MWRz MWRzo MWRzo MWRzo MWRz MWRzo MWRzo MWRzo
RASS915 RASS449 RASS915 RASS449

RMSE 0 % 5 % 11 % 13 % 0 % 7 % 10 % 3 %
STTD 0 % 4 % 10 % 12 % 0 % 8 % 14 % 17 %
CORR 0 % 0.1 % 0.3 % 0.3 % 0 % 0.1 % 0.2 % 0.3 %

TROPoe bias correction

RMSE 0 % 10 % 25 % 32 % 0 % 15 % 15 % 21 %
STTD 0 % 9 % 18 % 16 % 0 % 14 % 16 % 20 %
CORR 0 % 0.4 % 0.9 % 0.7 % 0 % 0.3 % 0.4 % 0.4 %

and the other, RASS 449, associated with a 449 MHz wind
profiling radar). Radiosonde launches were used for verifica-
tion of the retrieved profiles. In Appendix A, the performance
of MWRz and MWRzo retrieved profiles and neural network
retrieved profiles against the radiosondes was evaluated.

To remove any observational systematic error in the MWR
T b observations, two bias-correction procedures were tested.
The first one takes advantage of the many radiosondes
launched during XPIA, and the second one uses profiles.
As expected, the radiosonde bias-correction method gives re-
trieved profiles closer to the radiosonde temperature profiles
than when using the climatologically based method. Never-
theless, our results show that regardless of the bias-correction
method used, the inclusion of the observations from the ac-
tive RASS instruments in the PR approach improves the
accuracy of the temperature profiles by around 10 %–20 %
compared to the PR configuration using only surface obser-
vations and MWR observed brightness temperature from the

zenith scan. Of the PR configurations tested, generally better
statistical agreement is found with the radiosonde observa-
tions when the RASS 449 is used together with the surface
observations and brightness temperature from the zenith and
averaged oblique MWR observations.

The Akernel and the posterior covariance matrices for
temperature are used to derive the one-sigma uncertainty,
vertical resolution, and cumulative degree of freedom as a
function of height for the different PRs and the level-to-level
correlated uncertainty of the retrievals. Results show that the
inclusion of the active instruments improves all of the above-
mentioned variables in the 0–3 km layer, including at heights
between 2–3 km that are above the maximum RASS height.
Thus, the positive impact of the RASS observations extends
into the atmosphere above the height of measurements them-
selves.

Furthermore, 15 cases when temperature profiles from the
radiosonde observations were the furthest away from the
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Figure 9. Bias of virtual temperature for all PR configurations com-
pared to the original radiosonde measurements. A zero bias is de-
noted by the red line. RASS data biases are marked by asterisks and
by additional circles for the RASS data with more than 50 % avail-
ability, according to the availability bar charts on the left. All PR
profiles are derived after applying the radiosonde BC method.

mean climatological average were selected, and the statis-
tical comparison was reproduced over this subset of cases.
These are the cases usually the most difficult to retrieve and
the most important to forecast; therefore, it is essential to im-
prove the retrievals in these situations. Even for this subset
of selected cases the inclusion of active sensor observations
in the PRs is found to be beneficial.

Finally, the impact of the inclusion of RASS measure-
ments on the retrieved humidity profiles was considered, but
the inclusion of RASS observations did not produce signifi-
cantly better results, compared to the configurations that do
not include them. This was not a surprise as RASS measures
virtual temperature, effectively adding very little extra infor-
mation to the water vapor retrieval. In this case a better op-
tion would be to consider adding other active remote sensors
such as water vapor differential absorption lidars (DIALs) to
the PRs. Turner and Löhnert (2021) showed that including
the partial profile of water vapor observed by the DIAL sub-
stantially increases the information content in the combined
water vapor retrievals. Consequently, to improve both tem-
perature and humidity retrievals a synergy between MWR,
RASS, and DIAL systems would likely be necessary.

Figure A1. Pearson correlation, RMSE, and mean bias for tem-
perature profiles for MWRz in gray (and purple) and MWRzo in
black (and maroon) when the radiosonde BC (and the TROPoe BC)
method is applied. TROPoe temperature retrievals without any bias
correction are shown for MWRz in dashed purple and for MWRzo
in dashed maroon. Included in this figure are the NN temperature
profiles, from the zenith scan (in beige) and from the averaged
oblique scans (in green).

Appendix A

The neural network (NN) retrievals developed by the ven-
dor explicitly for XPIA use a training dataset based on a
5-year climatology of profiles from radiosondes launched at
the Denver International Airport,∼ 56 km southeast from the
XPIA site. NN-based MWR vertical retrieval profiles were
obtained using the zenith or an average of two oblique ele-
vation scans, 15 and 165◦ (not including the zenith), all with
58 levels extending from the surface up to 10 km, with a nom-
inal vertical grid depending on the height (every 50 m from
the surface to 500 m, every 100 m from 500 m to 2 km, and
every 250 m from 2 to 10 km, a.g.l.).

Figure A1 shows composite NN vertical profiles of tem-
perature (separately for the zenith and averaged obliques)
calculated for radiosonde launch times and the correspond-
ing PR profiles already introduced in Fig. 6a, b with addi-
tional TROPoe retrievals without any bias correction. For a
proper comparison, only MWRz and MWRzo profiles are
used, without including RASS measurements. It has to be
noted that since the “NN oblique” retrieval provided by the
manufacturer of the radiometer does not include the zenith,
this configuration cannot be considered exactly equivalent to
the MWRzo PR.
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Another difference to point out is that, while the MWR
T b data have been bias-corrected before being used in the
PR configurations, as discussed in Sect. 3.2, the NN re-
trievals use the uncorrected T b, since it was non-trivial to
reprocess those retrievals. For additional comparison we in-
cluded TROPoe retrievals that use uncorrected T bs. Martinet
et al. (2015) showed that when it is possible to bias-correct
the MWR T b before applying the NN retrieval technique,
the NN retrievals are not impacted below 1 km a.g.l., but a
clear improvement of NN retrievals in terms of RMSE and
bias is observed between 1 and 3 km altitude. As is visible
in Fig. A1, this is the layer of the atmosphere where the NN
profiles (beige and green lines) have larger bias and RMSE,
compared to the PR profiles.

When the radiosonde BC method is used, the MWRz and
MWRzo PRs (gray and black lines) present better statistics
through the entire profiles shown in Fig. A1, with larger val-
ues of the correlation coefficient and smaller values of RMSE
and bias. The oblique-only NN profiles (in green) show com-
parable statistics to the PRs employing the radiosonde BC
method up to 1 km a.g.l., with degraded performances above
this height. Above 1 km a.g.l., the zenith NN profiles (in
beige) do better than the oblique NN in terms of RMSE and
bias. When the TROPoe BC method is used, the MWRz and
MWRzo PRs (purple and maroon lines) perform better than
the NN profiles only in terms of RMSE and bias, and only
between 1.5 and 3 km a.g.l. The PRs without any T b bias cor-
rection (dashed lines in Fig. A1) clearly indicate that the BC
is useful and needed, showing very noticeable degradation in
all three statistical measures above 3 km and larger RMSE
and bias in 0.5–1.5 km a.g.l. compared to the TROPoe BC
method.

The better performance obtained by the MWRz and
MWRzo PRs that use the radiosonde BC approach demon-
strates the importance of having an accurate and reliable
method for bias-correcting the MWR.
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