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Abstract. Floating lidar systems (FLSs) are widely used for
offshore wind site assessment, and their measurements show
good agreement when compared to trusted reference sources.
However, some influence of motion on mean wind speed data
from FLS has to be assumed but could not have been quan-
tified with experimental methods yet because the involved
uncertainties are larger than the expected impact of motion.
This study describes the motion-induced bias on horizon-
tal mean wind speed estimates from FLS with the help of
simulations of the lidar sampling pattern of a continuous-
wave (CW) velocity–azimuth display (VAD) scanning wind
lidar. Analytic modeling is used to validate the simulations.
It is found that the mean bias depends on amplitude and fre-
quency of motion, the angle between motion and wind direc-
tion, and wind speed and strength of wind shear. The simula-
tions are used to quantify the measurement deviation that is
caused by motion for the example of the Fugro SEAWATCH
Wind LiDAR Buoy (SWLB) carrying a ZX 300M profiling
wind lidar. The strongest bias of −0.67 % of the measure-
ment values was estimated for a test case with “strong” waves
aligned with the inflow wind direction. Under “normal” wave
conditions the bias is smaller. The reason for these low er-
rors lies in a fortunate combination of the frequencies of lidar
prism rotation and tilt motion.

1 Introduction

Commercially available profiling wind lidars are accurate
instruments for measuring mean wind speed and direction
onshore in non-complex terrain and offshore (Emeis et al.,
2007; Smith et al., 2006; Gottschall et al., 2012). Offshore, in

many cases lidars are mounted on floating platforms to avoid
the costs for the construction of expensive fixed platforms.
When uncorrected lidar measurements from such floating li-
dar systems (FLSs) are compared to values from fixed li-
dar systems of the same type, several effects can be ob-
served: first, wind direction estimates are influenced by the
heading of the FLS (Gottschall et al., 2014). Second, mea-
surements of second-order statistics (e.g., turbulence inten-
sity) are higher because the motion of the platform adds to
the measured wind speed variance (Kelberlau et al., 2020;
Gutiérrez-Antuñano et al., 2018; Désert et al., 2021). The
acquired measurements of the horizontal mean wind speed,
though, appear to be unbiased. In other words, the motion-
induced measurement error is so small that it lies well within
the overall uncertainty of experimental trial setups. A more
comprehensive understanding of the potential mean wind
speed measurement error is crucial for wind site assessment
due to the cubic relationship between wind speed and wind
turbine electricity production (Heier, 2014).

Commercial deployments of different types of FLS next
to meteorological masts demonstrate good agreement with
reference data (Stein et al., 2015; DNV GL, 2019). Linear
regression analyses according to the Carbon Trust Roadmap
(Carbon Trust, 2018) show slopes close to unity as well as
offsets around zero. Furthermore, classification trials of the
Fugro SEAWATCH Wind LiDAR Buoy (SWLB) showed no
significant sensitivity of its measurement error to environ-
mental variables such as wave height or buoy motion parame-
ters. This is also reported for the Fraunhofer IWES lidar buoy
(Wolken-Möhlmann and Gottschall, 2020). Gottschall et al.
(2017) point out that, in general, sensitivity studies show no
significant influence of wave conditions on the accuracy of
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wind speed measurements from FLS. But they add that the
motion-induced measurement error might be hidden by the
larger uncertainty of the reference instruments.

Several studies investigate the error of mean wind speed
measurements by FLS with computer simulations. An early
example of such a study is Wolken-Möhlmann et al. (2010).
They conclude that the motion-induced measurement error
on mean wind speeds is not negligible and depends on the
wave heights, and the error can lead to both over- and under-
estimation of 10 min averaged wind speeds. They also point
out that the error is caused by rotation rather than transla-
tion. Schlipf et al. (2012) present a different simplified sim-
ulation of lidar measurements under the influence of motion.
In that study the lidar is assumed to follow the wave sur-
face, and only 2 non-zero degrees of freedom (DoF) are con-
sidered, which leads to significant deviations from the be-
havior of real FLSs. The simulations performed by Bischoff
et al. (2015) emphasize the effect of wind shear in a non-
uniform flow field but are not realistic enough to quantify the
measurement error of real FLSs. The more recent study by
Salcedo-Bosch et al. (2021) gives a description of measure-
ment error caused by motion in all 6 degrees of freedom and
finds that it depends on the initial scan phase of the velocity-
azimuth display (VAD) scan. Unfortunately, they neither cal-
culate the error based on the assumption of randomly dis-
tributed initial scan phase angles nor include the effect of
wind shear in their model. Désert et al. (2021) consider the
bias on mean wind speeds in their investigation of the ef-
fects of motion on turbulence estimates with a Doppler beam
swinging wind lidar.

Mangat et al. (2014) show the influence of static tilt under
consideration of realistic wind shear conditions both theoret-
ically and experimentally. Rutherford et al. (2013) and Pitter
et al. (2014) extend the same assumptions to the motion of
FLSs but ignore the dynamic behavior of the lidar scanning
pattern entirely and therefore oversimplify the measurement
error computation of FLSs compared to fixed lidar systems of
the same type. Bischoff et al. (2022) present a floating lidar
simulator and use it to estimate mean wind speed deviations
caused by lidar motion during a sea trial. The results are then
compared to the measurement data.

A different approach to isolate the effect of motion in an
experiment is to mount a wind lidar on a motion platform
and compare the measurements to values from a closely col-
located fixed lidar system of the same type. Hellevang and
Reuder (2013) present their results for two different lidar
types (WindCube and ZephIR) and various motion cases.
The chosen motion patterns are unfortunately not typical for
FLSs, and the test duration of each case is so short that a
quantification of the motion-induced measurement error is
not possible. Tiana-Alsina et al. (2015) employ a ZephIR li-
dar in different scenarios but also only for short periods of
time, which makes statistically relevant assessments of the
small motion-induced error difficult. Also, Bischoff et al.

(2018) report difficulties that might be caused by the limited
amount of experimental data.

The study presented here analyzes and quantifies, theoret-
ically, the motion-induced error (i.e., bias) on FLS estimates
of 10 min mean wind velocity. Computer simulations were
used to imitate the measurement principle of a FLS carrying
a VAD scanning profiling wind lidar, taking as a reference the
ZX 300M by ZX lidars (Ledbury, United Kingdom). These
computer simulations are validated by means of an analytic
model. The bias was analyzed for measurements at different
elevations, under varying wind shear conditions, and for mul-
tiple motion states characterized by amplitude and frequency
of sinusoidal motion in all 6 degrees of freedom (DoF). The
bias is quantified for the SWLB by Fugro (Trondheim, Nor-
way) under “normal” and “strong” wave conditions.

Next, Sect. 2 presents how this lidar simulator works and
gives basic information about the SWLB. In Sect. 3, we de-
scribe how motion influences the reconstructed wind vectors
and resulting mean wind velocity estimates of FLSs with
and without consideration of wind shear. For the example
of the SWLB, we define realistic test cases in Sect. 4 and
present the resulting bias. In Sect. 5 we discuss the findings
of this study. Appendix A presents the equations of the ana-
lytic model and their mathematical derivation.

2 Materials and methods

2.1 Lidar simulator

For computations in this study we developed a lidar simulator
that works as follows. In a first step, a power-law wind profile
is calculated from a reference wind velocity at a reference
height and a wind shear coefficient according to

α =
log(U1/U0)

log(z1/z0)
, (1)

where U1 and U0 are the mean wind velocities at elevations
z1 and z0 above sea level.

Then a linear time vector is generated with a duration
of P = 10 s and a step size of 20 ms. For this time vec-
tor, motion data are generated based on sine functions with
given amplitude, frequency, and phase. The lidar line-of-
sight (LoS) data consist of a time, prism phase, and LoS ve-
locity vector. The time vector is identical to the time vector
of motion. The vector of lidar prism phase angles consists of
10 full revolutions from 0 to 2π , so that one revolution per
second is simulated. This corresponds to the lidar prism ro-
tation frequency of the ZX 300 lidar series. The prism phase
angles of the first beam of each revolution are evenly dis-
tributed between 0 and 2π . This simulates random first phase
angles. The real azimuth and zenith angle as well as the ac-
tual measurement elevation under the influence of motion are
calculated for each LoS beam from the prism phase angle,
the motion data, and the configured measurement elevation.
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For a complete description of the vector transformations re-
quired for this procedure, we refer to Sect. 2.2 of Kelberlau
et al. (2020). From this geometry information, the LoS veloc-
ities for each beam are generated by projecting the height-
dependent wind velocity vector onto a unit vector pointing
into the LoS direction. The resulting set of synthetic lidar
data is then used to reconstruct wind vectors. Each of them
is based on data of 50 samples representing 1 s scan time and
one full prism rotation. As described for example in Kelber-
lau and Mann (2019), the wind vector reconstruction works
by applying a least-squares fit to

vr = |Acos(θ −B)+C|, (2)

where the best fit parameters A, B, and C represent the wind
data according to

vhor = A/sin(φ), (3)
2= B ± 180◦, (4)
vver =±C/cos(φ), (5)

where vhor, vver, 2, θ , and φ are the horizontal wind
speed, vertical wind speed, wind direction, real azimuth, and
real zenith angle, respectively. The directional ambiguity of
±180◦ does not affect the horizontal wind speed vhor and
is therefore of no concern for the analysis of the motion-
induced measurement bias. Not only does the phase angle of
the first beam in each VAD scan cycle have a strong impact
on the reconstructed wind vector but also the phase offset
between lidar prism and sinusoidal motion is important. In
order to remove the dependence of the reconstructed mean
wind velocity on this phase offset, we run each test case 20
times, each time with a phase offset of 2π

20 from the previous
run. A total of 10 s of scan time with 10 different first phase
angles times 20 different phase offsets of motion will lead to
200 reconstructed wind vectors. The average of all 200 val-
ues is a good approximation of the correct bias because in a
real lidar application, the first phase angle of the lidar prism
will be independent of the phase of motion, and each of them
occurs with equal probability. The mean bias (MB) is then
calculated by

MB=
1
N

∑N
n=1vhor,n

U
− 1, (6)

where N = 200 is the total number of wind speed values vhor
and U is the reference wind velocity.

2.2 SEAWATCH Wind LiDAR Buoy

The SWLB by Fugro is a discus-shaped FLS with a diam-
eter of 2.8 m and a mass of 2200 kg. It carries a ZX 300M
VAD scanning continuous-wave profiling wind lidar with its
lidar window height approximately 1.8 m above the water
line. The SWLB has been deployed for commercial projects

Figure 1. Fugro SEAWATCH Wind LiDAR Buoy.

around the world. Most of the collected data are used for off-
shore wind site assessments where the SWLB measures pa-
rameters like mean wind speeds and directions, wave con-
ditions, water current speeds, and atmospheric parameters
like temperature and humidity. Measurement campaigns usu-
ally last around 12 months for capturing seasonal effects.
The SWLB is rated Stage 3 according to the Carbon Trust
Roadmap for the Commercial Acceptance of Floating Li-
DAR Technology (Carbon Trust, 2018), which implies that
at least two different SWLB units were classified against at
least two different meteorological masts, and several other
validation trials against trusted reference sources were suc-
cessfully conducted. A picture of the SWLB is shown in
Fig. 1.

3 Lidar measurements under the influence of motion

3.1 Lidar motion in 6 degrees of freedom

Motion is the single characteristic that differentiates a float-
ing from a fixed lidar system at the same location. That
means systematic measurement deviations of a FLS in com-
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parison to a fixed lidar system must be caused by its motion.
We assume that this motion is restricted in two ways. First,
the translational motion has to be limited to displacement
around a fixed point. This assumption is true for FLSs that
are anchored to the seabed but violated for ship-based lidar
systems. Ship-based lidar systems are therefore not covered
in this study. The second assumption is that the amplitude
of tilt motion of the FLS never exceeds the value at which
a lidar beam is horizontal. That means for the investigated
lidar system with a half-cone opening angle of 30◦, the tilt
amplitude must not exceed 60◦.

The rotating prism of the lidar system serves as point of
reference for the definition of 6 motion DoF. We define them
as follows.

– Surge is horizontal motion in the mean wind direction.

– Sway is horizontal motion perpendicular to mean wind
direction.

– Heave is vertical motion.

– Roll is tilt motion around surge axis (tilt leaning perpen-
dicular to wind direction).

– Pitch is tilt motion around the sway axis (tilt leaning in
the wind direction).

– Yaw is rotation around the vertical axis (heading).

Motion which is not aligned with the wind direction or per-
pendicular to it can be decomposed into a linear combination
of its surge–roll and sway–pitch components of motion. The
definition of aligning the surge direction with the wind direc-
tion in combination with the omnidirectional VAD scanning
pattern of the lidar makes it therefore possible to disregard
the wind direction as a parameter in this study.

3.2 Pitch motion with no wind shear

3.2.1 Low-frequency pitch motion

Tilt motion, i.e., inclination of the FLS from the zenith,
should be looked at separately for the pitch and roll DoF.
First, we will analyze the effect of pitch motion, i.e., rota-
tion of the FLS around a horizontal axis perpendicular to the
inflow wind direction.

The influence of static pitch that could be caused by steady
forces as from tidal current, steady wind load, or asymmetric
mass distribution on the floating platform is comparably easy
to estimate. The effect of tilting a buoy in horizontal flow is
identical to the effect of keeping the FLS upright in tilted
flow. In this situation some of the horizontal component of
the wind is interpreted as vertical inflow component. In ac-
cordance with the tilted measurement cone depicted in blue
in Fig. 2, the error caused by a static pitch angle ϕs is

1us = cosϕs− 1. (7)

Figure 2. Measurement cone under influence of static or slowly
changing pitch angle of A= 20◦ with maximum positive (blue),
zero (red), and maximum negative elongation (yellow). Only up-
and downwind beams are depicted as lines; for other beams fo-
cus locations are given by dot markers along a measurement circle.
Nominal measurement elevation is shown (black dashed line).

Assuming that the static tilt angle ϕs will be less than a few
degrees under normal operating conditions, the resulting ef-
fect of static pitch on horizontal mean wind speed measure-
ments is low.

Larger pitch amplitudes are caused by water waves that
lead to dynamic rotation of a FLS around its horizontal axes.
For dynamic pitch, both the amplitude of motion A and its
frequency fp relative to the VAD scanning frequency fs
are important (fs = 1 Hz in the case of the frequently used
ZX 300M).

For pitch fluctuations that occur with a very low frequency
fp� fs, the pitch angle is nearly constant during the period
of each entire scanning cycle (1 s) and the lidar measure-
ment cone can be assumed frozen. A visualization is shown
in Fig. 2. The pitch angle alternates slowly over the course
of many scan cycles between +A (blue) and −A (yellow).
In these situations the lidar unit will measure too low hor-
izontal velocities because according to Eq. (7) 1u < 0 for
ϕ 6= 0. The measurement bias can be estimated by integrat-
ing Eq. (7) over half a cycle of: ϕs = Asinx

1u=
1
π

π∫
0

cos(Asinx)dx− 1. (8)

This equation can be calculated using

1u= J0(A)− 1, (9)

where J0(A) is the Bessel function of the first kind and A is
the amplitude of the harmonic pitch oscillation. The solutions
for three different pitch amplitudes A= 5◦, 10◦, and 15◦ are
visible in Fig. 6 for nearly static tilt (fp→ 0Hz).
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Figure 3. Measurement cone under the influence of pitch motion with oscillation frequency fp = fs = 1 Hz and amplitude A= 10◦. Colors
represent different phase shifts between lidar prism angle and pitch motion. Only up- and downwind beams are depicted. The nominal
measurement elevation is shown (black dashed line).

3.2.2 Resonance frequency pitch motion

The situation is different for pitch motion that fluctuates with
a frequency fp close to fs. If fp = fs the scanning “cone”
for one prism rotation is no longer cone-shaped. If, for ex-
ample, the lidar beam pointing in the upwind direction (i.e.,
the direction from where the wind blows) is pitched towards
the horizon, the lidar beam pointing in the opposite down-
wind direction 0.5 s later will also be pitched towards the
horizon. It is equally likely that these two particular beams
are pitched towards the zenith or point into their unpitched
direction. These three cases are visualized in Fig. 3 in blue,
yellow, and red, respectively.

Figure 4 shows plots of the most important geometrical
information for these three cases. Which of them occurs de-
pends on the phase offset between the prism angle (i.e., the
lidar phase angle) and the pitch angle. The phase offset be-
tween the cases with tilt towards the horizon (blue), no tilt
(red), and tilt towards the zenith (yellow) is 90◦ each. Plot
(a) in Fig. 4 shows that if for example the beam pointing into
the upwind direction (blue, prism angle= 0◦) is pitched by
−10◦, the opposing beam in the downwind direction (blue,
prism angle= 180◦) is pitched by +10◦. Plot (b) shows that
in this case the zenith angle, i.e., the angle between the verti-
cal and the beam direction, is 40◦ (blue, prism angle= 0◦ and
180◦). This is the unpitched zenith angle plus 1 amplitude
(the half-cone opening angle φ = 30◦ plus 10◦). Only for
the beams pointing perpendicular to the wind direction (blue,

prism angle= 90◦ and 270◦) does the zenith angle equal the
half-cone opening angle. Plot (c) shows how the measure-
ment elevation, which in this example is set to 100 m, is in-
fluenced by the varying zenith angles. Zenith angles of more
than the half-cone opening angle lead to measurements at
less than 100 m above ground. In this example no wind shear
is assumed, and therefore the measurement elevation has no
influence on the LoS velocity estimates that are shown in
the polar plot (d). The figure-of-eight that corresponds to a
fixed lidar measuring the reference wind speed is included as
a dashed black line. It can be seen that the figures of eight
representing a FLS under the influence of pitch motion in
sync with the prism frequency vary substantially depending
on the phase shift between motion and lidar prism angle. As
expected, the wind speed estimates are significantly larger if
the beams pointing in the up- and downwind directions have
a larger zenith angle (blue) than when their zenith angle is
reduced by the pitch motion (yellow). But even in the case
of zero pitch for the up- and downwind beams (red), the re-
constructed wind vectors are slightly increased (and the wind
direction estimate is erroneous).

These three example cases were chosen because they are
particularly intuitive to understand. All other possible phase
offsets between lidar prism and motion must also be con-
sidered. Figure 5 shows the relative measurement error of
reconstructed wind vectors as a function of the phase offset
(black dots). The three example cases are marked by verti-
cal lines in yellow, red, and blue, respectively. Since each
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Figure 4. Beam geometry of VAD scanning wind lidar under in-
fluence of pitch motion with oscillation frequency fp = fs = 1 Hz
and amplitude A= 10◦. The panels show (a) instantaneous pitch
angles, (b) zenith angles, (c) measurement elevations, and (d) cor-
responding figures of eight. Colors represent different phase shifts
between lidar prism angle and pitch motion corresponding to the
colors in Fig. 3. The figure of eight for fixed lidar is also shown
(black dashed).The nominal measurement elevation is 100 m.

phase offset is equally likely to occur, the expected bias for
the mean wind speed is the average of all possible instanta-
neous measurement errors (black horizontal line). This ex-
pected bias is 1.5 %. That means a FLS pitching in sync with
the lidar prism frequency will overestimate the mean wind
speed when no wind shear is present (and scalar averaging
is used). The histogram in the lower part of the figure shows
that the largest negative errors are larger (<−0.3) than the
largest positive errors (< 0.3). But this effect is overcompen-
sated for by large positive errors being more frequent than
large negative errors. For clarity, the histogram is based on
10 000 evenly distributed phase offset angles. A more de-
tailed analysis would explain that the frequency-dependent
positive bias seen here is entirely caused by the transversal
component of the reconstructed wind vectors. Vector aver-
aging of the wind vectors would eliminate its impact on the
mean wind speed, but scalar averaging, which is applied here,
is affected.

3.2.3 Pitch motion with arbitrary frequency

In a real-world application, dynamic tilt of a FLS occurs nei-
ther with very low frequency (fp� fs) nor with exactly the
lidar prism frequency (fp = fs). The motion-induced error
must therefore be determined as a function of the frequency
of motion. To achieve this, we configured the simulator to es-
timate the motion-induced bias for three different pitch am-
plitudes (5, 10, and 15◦) and for a range of motion frequen-

Figure 5. (a) Relative motion-induced measurement error caused3
by pitch motion with oscillation frequency fp = fs = 1Hz and am-
plitude A= 10◦ as a function of phase offset between lidar prism
angle and motion (dot markers). Colored vertical lines mark three
particular cases as in Figs. 3–4. Small non-zero bias marked by
dashed horizontal line. (b) Histogram showing the distribution of
positive and negative wind speed errors.

cies (0–2 Hz). Figure 6 shows the results of these computa-
tions.

It can be seen that as predicted in Eq. (9) the bias for mo-
tion with very low frequency is negative, and as shown in
Fig. 5 the bias at 1 Hz is positive. The largest positive bi-
ases are found at fp = 1 Hz. Overall, the magnitude of the
measurement bias depends strongly on the amplitude of pitch
motion. It is important to point out that in the transition from
negative errors at low frequencies to positive errors at higher
frequencies, there is one frequency close to 0.4 Hz at which
the bias is zero. This frequency of zero bias is independent
of the motion amplitude. The second frequency of zero bias
at around 1.6 Hz is of no practical relevance as such high
tilt frequencies do not occur for current FLS (see Sect. 4.1).
The tilt motion frequency of a FLS is type specific and deter-
mined by its mass and hydrodynamic properties. From this
visualization it is understood that for a scalar-averaging FLS
with a half-cone opening angle of 30◦ and a prism frequency
of 1 Hz in the absence of wind shear the tilt frequency should
be close to 0.4 Hz in order to minimize its bias on mean wind
speed estimates.

The overestimation of mean wind speed around fp = 1 Hz
is caused by the use of scalar averaging for estimating the
mean wind speed. The positive bias and strong frequency de-
pendence disappear if vector averaging of the reconstructed
wind vectors is applied. This can be explained by the influ-
ence of the lateral wind speed component, which increases
the value of scalar averages of horizontal mean wind speed
but averages out to zero for vector averages. Anyway, we rec-

Atmos. Meas. Tech., 15, 5323–5341, 2022 https://doi.org/10.5194/amt-15-5323-2022



F. Kelberlau and J. Mann: Quantification of motion-induced measurement error on FLSs 5329

Figure 6. Mean bias caused by pitch (solid) and yaw (dashed) mo-
tion as a function of oscillation frequency fp for three arbitrary am-
plitudes of motion A= 5, 10, and 15◦ in the absence of wind shear.

ommend using scalar averaging because of its near-zero error
at tilt frequencies around 0.4 Hz, which is independent of the
amplitude of motion. Scalar averaging is also the standard
procedure applied by the ZX 300M lidar internally.

In Appendix A we present an analytic model for the cal-
culation of the motion-induced error on mean wind speed es-
timates from a FLS. Results from this analytic solution are
included in Fig. 6. The purpose of comparing both meth-
ods is to validate the simulation results. Overall, the results
from both methods agree well. However, for pitch motion
at higher frequencies (> 1.4 Hz) the results differ. While the
analytic solutions converge towards J0(A)−1 the simulation
results do not. This deviation can be traced back to Eq. (A8)
in which we allow signed LoS velocities, while in the simula-
tor only absolute values of LoS velocities are processed (as in
the ZX 300 lidar). At high frequencies of motion where the
largest deviations from the ideal figure of eight occur, this
difference has its strongest impact. At lower tilt frequencies
some deviation is seen for high amplitudes of motion. This
can be explained by the approximation of A by means of the
second-order Taylor’s expansion (see Eqs. A12–A13). Ex-
panding A to a higher order would probably eliminate these
small deviations due to approximation. The otherwise close
agreement between the results of simulation and model sup-
port the assumptions that the simulator works well and that it
can be used to predict measurements from FLS.

3.3 Roll motion with no wind shear

Roll motion of a FLS in the absence of wind shear is equiv-
alent to rotating a uniform wind field around an axis parallel
to the wind direction. It is therefore intuitive that in the ab-
sence of wind shear, FLS motion in the roll direction has zero

influence on the measurement accuracy. It is not further de-
scribed here but will become relevant in Sect. 3.6 where it is
described in combination with a sheared wind field.

3.4 Yaw motion

Figure 6 shows the motion-induced error on estimates of hor-
izontal mean wind speed caused by yaw motion, i.e., rotation
of the FLS around the vertical axis. It can be seen that the
error is zero for slow motion. This is an important finding
because the restoring forces for yaw motion of a FLS are
usually low, which leads to low resulting motion frequen-
cies. We will therefore disregard the effect of yawing in the
following.

3.5 Pitch motion under the influence of wind shear

The calculations presented above in Fig. 6 are based on con-
stant wind velocities at all elevations. However, real mea-
surements are usually influenced by a non-zero vertical wind
speed gradient, i.e., wind shear (Elkinton et al., 2006). Thus,
in the following, the influence of wind shear is included by
introducing power-law wind profiles that are characterized
by the wind shear coefficient according to Eq. (1).

Figure 7 shows the motion-induced measurement error on
10 min averages of horizontal wind velocity, i.e., the mean
bias MB, for 15 different wind shear coefficients between
0 and 0.15. Overall, the inclusion of wind shear leads to a
reduction of lidar-estimated mean wind speed. The stronger
the wind shear, the stronger this effect. This is explained by
the scanning geometry. According to

cos(30◦+ϕ)+ cos(30◦−ϕ)
2cos(30◦)

< 0 (10)

the average measurement elevation is reduced when the pitch
angle ϕ is centered around zero. This can also be seen in
Fig. 4b and c. The reduction of measurement elevation for
increased zenith angles is stronger than the increase in mea-
surement elevation for decreased zenith angles. The on av-
erage reduced measurement elevations due to the effect of
pitching lead to reduced mean wind speed estimates in the
presence of wind shear profiles, with lower wind speeds
at lower elevations. The analytic model presented in Ap-
pendix A contains a solution for pitch and shear (Sect. A3).
Its results are plotted in Fig. 7 as dashed lines.

3.6 Roll motion under the influence of wind shear

Roll motion influences the elevation of the lidar beams point-
ing transversal to the inflow wind direction. Since the av-
erage elevation is reduced according to Eq. (10), we expect
some decrease in measured mean wind speed in sheared wind
fields. Figure 8 shows that the effect is independent of the
motion frequency. The bias caused by roll motion is signif-
icantly lower than the effect of pitch motion. Obviously, as
in the case of pitch motion, the error caused by roll motion
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Figure 7. (a) Mean bias caused by pitch motion as function of os-
cillation frequency fp for amplitude of motion A= 10◦ without
(black) and with (color) consideration of wind shear characterized
by shear coefficients α = 0.01 (blue) to 0.15 (red). Results from
simulation (solid) and analytic solution (dashed). (b) Enlarged vi-
sualization of plot above for 0.35≤ fp ≤ 0.38.

is larger for larger wind shear coefficients. The analytic so-
lution presented in Sect. A4 leads to the same results as the
simulation.

3.7 Measurement elevation

The configuration of measurement heights of the VAD scan-
ning profiling wind lidar influences at which focus distances
from the lidar unit a FLS takes measurements. This deter-
mines the elevations above sea level at which the radial wind
velocities are sampled. Tilt motion modifies the measure-
ment elevations as shown in Fig. 4c. If the vertical gradient of
horizontal mean wind speed is zero (i.e., no wind shear), the
varying elevation itself has no effect on the LoS velocities.
However, in a sheared wind speed profile with usually higher
wind speeds at higher elevations, the changes in elevation
have an influence on the mean wind speed results as shown in
Figs. 7 and 8. In this study, we assume power-law wind shear
profiles. For such shear profiles it is defined that a change in
vertical elevation from z0 to z1 by the factor kz = z1

z0
leads to

a change in horizontal mean wind speed from U0 to U1 by a
factor kU = kαz . That means that the relative wind speed error
caused by variations in the measurement elevations is inde-
pendent of the initial elevation z0. It is therefore correct that
the lidar simulator computes identical relative wind speed er-
rors for all measurement heights. For wind shear profiles that
follow the power law, the measurement error is independent
of the measurement elevation. This would not be the case for
other shear profiles.

Figure 8. (a) Mean bias caused by roll motion as function of oscilla-
tion frequency fp for amplitude of motion A= 10◦ without (black)
and with consideration of wind shear characterized by shear coef-
ficients α = 0.01 (blue) to 0.15 (red). (b) Enlarged visualization of
plot above for 0.35≤ fp ≤ 0.38.

3.8 Translational motions

Translational motion in surge, sway, and heave directions in-
fluences the lidar line-of-sight velocities as the motion vector
is superimposed on the wind vector. Figure 9 shows the effect
of sinusoidal oscillations in surge, sway, and heave motion
with a very low frequency in (a), (b), and (c), respectively,
and with motion frequency equal to the lidar prism rotation
frequency in (d), (e), and (f). The upper subplots show the
relative wind speed error as a function of the phase angle
offset between motion and lidar prism. The sum of all pos-
sible relative wind speed error values constitutes the mean
bias (MB) according to Eq. (6). MB is shown as a horizontal
dashed line, and its value is written in the plots. Four of the
phase offsets are marked by colored vertical lines. For these
phase offsets the corresponding figures of eight are shown in
the lower subplots. These figures of eight are polar plots of
the line-of-sight velocities as functions of the lidar prism an-
gle. For comparison, the shape of the figure of eight of the
real wind vector without motion is shown as dashed black
lines.

3.8.1 Low-frequency translational motions

Figure 9a shows surge motion that occurs with a very low
frequency� fs, where fs is the prism rotation frequency. It
can be seen that motion into the wind direction leads to an
increase in measured wind speed (purple), while motion di-
rected in the opposite direction leads to a reduction in mea-
sured wind speed (red). The corresponding figures of eight
vary in size depending on the phase offset. Basically, for
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Figure 9. Relative motion-induced measurement error caused by motion in 3 translational degrees of freedom (top to bottom) with very low
oscillation frequency (a, b, c) and oscillation in resonance with the lidar prism (fp = fs = 1Hz) (d, e, f). Figures of eight are given for four
phase offset angles marked by colors. U = 8.5 m s−1 and v̂ = 1.88 m s−1 (κ = 0.22). Dashed black figures of eight correspond to fixed lidar
measurements for comparison. Mean bias (MB) marked by dashed horizontal lines.

translational motion with very low oscillation frequency the
lidar-estimated wind velocity vector is superimposed on the
reference wind vector. For surge motion the variations aver-
age out and MB= 0. Also, in the case of heave motion with a
low oscillation frequency (see Fig. 9c) the mean bias of hor-
izontal mean wind speed is zero because the resulting fluctu-
ations of the vertical component of the lidar-estimated wind
vectors do not influence the horizontal wind speed. Only in
sway direction do slow oscillations lead to a positive mea-

surement bias of the horizontal mean wind speed. Sway mo-
tion corresponds to a sideways component that is added to
the wind blowing in the surge direction. This can be seen in
Fig. 9b where the figures of eight are rotated and slightly en-
larged. If vector averaging were applied, the motion-induced
transversal wind velocity component would average out, but
since we defined MB based on scalar averaging of the hori-
zontal wind speed, we are left with a positive bias.
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3.8.2 Resonance frequency translational motions

For motion that occurs with a higher frequency the situa-
tion is different. If the frequency of translational motion is
equal to fs, the lidar can no longer attribute the velocity com-
ponents correctly. In Fig. 9d this is shown for the case of
surge motion that occurs in resonance with the lidar prism
frequency. The horizontal wind vector component is unaf-
fected by the horizontal motion in wind direction when the
frequency of motion equals fs. Instead, the motion leads to
fluctuations of the vertical component of the reconstructed
wind vector that does not influence MB. The purple figure
of eight plot visualizes the situation in which the lidar beam
that points in the upwind direction samples the wind in the
same moment when the lidar is moving into the wind direc-
tion with its maximum velocity. The radial velocity for the
0◦ azimuth angle is therefore increased (purple) compared to
the fixed reference lidar (black, dashed). Half a second later,
the lidar beam is pointing in the downwind direction. At the
same time the orientation of the fluctuating surge motion in
resonance has changed. Now, the lidar is moving away from
the wind direction with its maximum velocity. The radial
velocity for the 180◦ azimuth angle is therefore decreased.
The resulting figure of eight corresponds to a reconstructed
wind vector with the correct horizontal wind speed and a
nonzero vertical component. For other phase offsets (yellow
and blue) the interpretation of the figures of eight is differ-
ent, but all of them lead to nearly zero error of the horizontal
wind speed estimate. Sway motion in resonance with the li-
dar prism leads to deviations from the figure of eight of a
stationary lidar, but also here the horizontal wind speed com-
ponent is unaffected by the motion (see Fig. 9e). For heave
motion in resonance this is different. Figure 9f demonstrates
that vertical heave motion that occurs with the prism rota-
tion frequency leads to fluctuations of the horizontal com-
ponents of the reconstructed wind vectors. As in the case
of pitch motion in resonance, these fluctuations do not av-
erage to zero but lead to a positive mean bias that is caused
by the lateral contribution to the scalar averaged mean wind
speed. A different visualization and description of the effects
of translational motion on VAD scanning wind lidar is given
in Sect. 2.3.1 of Kelberlau et al. (2020).

3.8.3 Translational motions with arbitrary frequency

As shown above, non-zero mean bias is caused by sway mo-
tion with low oscillation frequency and by heave motion that
occurs in resonance with the lidar prism rotation. The mag-
nitude of the bias depends on the velocity of motion rela-
tive to the mean wind velocity. We therefore introduce κ = v̂

U
where v̂ is the peak velocity of the harmonic oscillation. Fig-
ure 10 shows the frequency dependence of MB for the ex-
ample of κ = 0.22. Solid curves are the simulation results,
and dashed curves show the corresponding analytic solutions
derived in Sect. A5 of the Appendix. There is a good match

Figure 10. Mean bias as function of frequency of motion for trans-
lational degrees of freedom. Solid lines are results from the FLS
simulator, and dashed lines are the analytical solution presented in
Sect. A5. κ = 0.22, as in Fig. 9.

between both, and the only significant deviation is visible for
heave at high frequencies. As for pitch motion described in
Sect. 3.2.3, these deviations can be explained by allowing
signed LoS velocities in the analytical model and using only
absolute values of LoS velocities in the simulator (and the
ZX300 lidar).

The results show that below approximately 0.34 Hz, sway
motion is the dominant contributor to MB. Above this value
heave motion is more important for the resulting bias. The
magnitude of MB scales with κ2; e.g., doubling the ampli-
tude (and therewith v̂) of motion while keeping the wind
speed constant quadruples MB. As for the rotational degrees
of freedom, motion in different directions can be estimated
as a linear combination of the involved DoF.

4 Quantifying the motion-induced measurement error
of the SEAWATCH Wind LiDAR Buoy

Section 3 shows that the motion-induced measurement bias
depends on frequency and amplitude of tilt motion, as well
as the wind shear coefficient. In order to quantify the mea-
surement error for a real FLS application, we will determine
realistic values for these three significant parameters in the
following. The SWLB is used in this study as an example of
a frequently used commercial FLS.

4.1 Tilt frequency

An important driver of motion-induced measurement errors
of FLS is tilt motion projected onto the mean wind direction
(i.e., here pitch motion). It was found that the frequency with
which pitch motion occurs influences the measurement bias.
Luckily, the tilt frequency of the SWLB is restricted to a nar-
row band. Tilt motion is dominated by oscillations with the
natural frequency of the submerged hull that is determined by
its mass and shape. The Fourier transformation of a tilt signal
reveals this natural tilt frequency. Figure 11 shows the single-
sided power spectrum of IMU-measured tilt motion data of
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Figure 11. (a) Single-sided power spectrum of buoy tilt motion
based on IMU measurement data from a SEAWATCH Wind Li-
DAR Buoy (blue) with bin-averaged spectral values (red). Verti-
cal dashed line marking the spectral peak at 0.365 Hz. (b) Excerpt
of motion data in time domain with vertical dashed lines marking
2.74 s (0.365 Hz) long intervals.

SWLB unit 056 in the period from 14:00 until 16:00 UTC on
12 November 2021 close to the town of Titran off the coast
of Frøya, Norway. The measurement data presented here are
tilt in one of the buoy’s local coordinate system axes. For
an axis-symmetric FLS like the SWLB, the dominating tilt
frequency is identical for pitch, roll, and their combination.
It is therefore unnecessary to rotate the coordinate system
of the motion data into a particular direction for this analy-
sis. The red curve in the figure shows binned averages of the
spectral values. The frequency bins have a width of 0.01 Hz
each. It can be seen that the spectrum has its maximum at
0.365 Hz, which corresponds to an approximately 2.74 s tilt
period. The bottom plot shows an excerpt of the underlying
time series of tilt signal data. The vertical lines are spaced by
2.74 s. The plot is an example of the fairly harmonic shape
of the tilt oscillations that are characteristic for the SWLB
FLS type independent of varying amplitudes of motion. We
will therefore set 0.365 Hz as the standard frequency for tilt
motion of the SWLB.

4.2 Tilt amplitudes

The amplitude of tilt motion of a FLS depends on the prevail-
ing sea state. For very calm seas little dynamic tilt motion is
expected. By contrast, strong waves will lead to large excita-
tion of the floating platform. The significant wave height is
a well-suited parameter to describe the roughness of the sea.
Significant wave height as measured by the SWLB is the av-
erage wave height, from trough to crest, of the highest third
of waves within an interval of approximately 17 min (Sver-
drup and Munk, 1947).

Figure 12. (a) Histogram of significant wave heights experienced
during an offshore trial of the SWLB at East Anglia One met mast
from March through July 2016. Mean and 90th percentile signifi-
cant wave height listed in the plot. (b) Scatter plot of mean tilt am-
plitude and significant wave height (blue) including mean tilt am-
plitude binned by significant wave heights (red). Vertical solid and
dashed lines mark the normal and strong wave cases, respectively.

For determining realistic test conditions, we analyzed
measurement data from three long-term measurement cam-
paigns in the North Sea and chose an approximately 4-
month-long deployment from 12 March until 6 July 2016
at the East Anglia One meteorological mast (UK), which
showed the highest mean of significant wave heights of four
considered trials. Figure 12 shows a histogram of the ob-
served wave heights. The mean of all significant wave heights
is approximately 1.1 m, and the 90th percentile is found at ap-
proximately 2.0 m. We will consider these wave heights the
normal and the strong wave cases, respectively.

For a specific FLS type the significant wave height has to
be transferred to a correlated amplitude of tilt motion to be
able to calculate the motion-induced measurement error. This
was done in the lower plot of Fig. 12. The blue scatter shows
data pairs of significant wave height and mean tilt amplitude
of the SWLB. While the significant wave height is estimated
once every 10 min by the FLS’s internal data processing, the
mean tilt amplitude is calculated for this study. The mean tilt
amplitude is defined here as the average of the local maxima
of the tilt time series. Here, tilt refers to the quadratic sum
of the rotation angles around both horizontal axes. The red
curve shows the bin-averaged relationship between signifi-
cant wave height and mean tilt amplitude. It can be seen that
tilt amplitudes of approximately 10 and 12.5◦ are expected
from the normal and strong wave cases of 1.1 and 2.0 m, re-
spectively. These tilt amplitudes can occur in any direction
with regard to the mean wind direction, and the relation be-
tween wind and wave direction is site-specific. In the follow-
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Figure 13. Scatter plot of wind shear exponent over significant wave
height (blue) and wind shear exponent binned by significant wave
height (red).

ing we will allocate the tilt amplitudes entirely to the pitch
and roll DoF. If the quantification of the motion-induced er-
ror should have been performed for a certain deployment in-
stead of a general test case, the tilt motion could have been
projected onto the mean wind vector, and tilt in pitch and roll
directions could have been handled separately.

4.3 Wind shear

Usually mean wind velocities increase with vertical dis-
tance from the ground due to decreasing influence of surface
roughness (Elkinton et al., 2006). The wind shear exponent
α is calculated according to Eq. (1) from the mast-measured
horizontal mean wind speeds at 80 and 103 m above sea
level.

Figure 13 is based on the same measurement data from
East Anglia One that we used to determine the correlation
between wave height and tilt amplitude. It shows how the
significant wave height is correlated with the wind shear ex-
ponent. A trend can be seen towards stronger wind shear ex-
ponents for higher waves, likely because higher waves con-
stitute a rougher surface for the boundary layer. According
to the binned averages shown in red in the figure, we set the
wind shear exponent for normal waves to α = 0.08 and for
strong waves to α = 0.13.

4.4 Translational motions

Translational motion of the lidar on the SWLB has two in-
dependent sources. The first source is rigid body motion re-
sulting from tilt motion. The center of rotation for pitch and
roll motion lies approximately 1.3 m vertically below the li-
dar prism. Thus, whenever the FLS exerts pitch and roll mo-
tions, translational motions also occur, mostly in surge and

sway directions. This rigid body motion occurs with the same
frequency as the tilt motion that is causing it. The second
source of translational movement stems from wave motion.
The SWLB is considered a waverider buoy, and we assume
that it follows the water surface in the waves. While this
is a good approximation for heave motion, the assumption
is crude for horizontal translation. For calculating the mean
bias of the SWLB in a realistic operational state, we define
circular motion with amplitudes of A= 0.55 and 1.00 m cor-
responding to half of the significant wave heights determined
in Fig. 12a for normal and strong wave cases, respectively.
From the experimental dataset used before, we learn that
such normal and strong waves typically occur with periods
of T = 4.4 and 5.0 s (0.23 and 0.20 Hz). Such waves are in
the dataset associated with wind speeds around U = 8.5 and
13.0 m s−1, respectively. With

v̂ = A
2π
T

(11)

we can calculate κ = 0.092 and 0.097 for the normal and
strong wave cases.

4.5 Results

Table 1 summarizes the conditions that are representative for
the SWLB under normal and strong wave conditions. From
rotational motion we expect the largest MB values if tilt mo-
tion occurs in the pitch direction, i.e., in the wind direction.
For translational motion though, we know that sway motion,
i.e., motion transversal to the wind, is more important than
motion in the surge direction. Because we do not know which
of the two types of motion is dominant, we will include two
orientations as test cases: first, tilt in the pitch direction along
with circular wave motion in the surge direction and, second,
tilt in the roll direction along with circular wave motion in
the sway direction. Both combinations are computed for the
normal and the strong wave cases, so that a total of four test
cases are defined. The MB results for these four test cases are
listed in Table 2. In addition to the total mean bias that con-
siders all effects of motion, some partial results are also pre-
sented. They consist of MB caused by rotational motion only,
rotational motion in combination with resulting rigid body
motion (RBM), and translational motion only. Pitch motion
leads to the highest absolute MB values, especially for the
larger amplitudes associated with strong waves (−0.76 %).
Roll motion impacts the measurement accuracy several times
less (−0.17 %). Adding the effect of RBM caused by the
distance between the center of rotation and the lidar prism
has a very small effect on the results. Only for the case of
sway motion resulting from tilt in the roll direction does
the effect of RBM lead to a noticeable increase in MB and
thereby reduce the absolute measurement bias. As shown in
Sect. 3.8, translational motion leads to overestimation of the
lidar-derived mean wind speed of up to 0.26 % for the case
of strong waves in the sway direction. The total mean biases

Atmos. Meas. Tech., 15, 5323–5341, 2022 https://doi.org/10.5194/amt-15-5323-2022



F. Kelberlau and J. Mann: Quantification of motion-induced measurement error on FLSs 5335

consist of a negative contribution from rotation and a positive
contribution of translation. The largest absolute mean bias is
found for strong waves aligned with the mean wind direction
(−0.67 %). Most of this negative deviation is caused by pitch
motion. The largest positive bias is found for normal waves
perpendicular to the wind direction (0.20 %). This positive
bias is dominated by the effect of translational motion.

5 Discussion and conclusions

Computer simulations that imitate the spatio-temporal sam-
pling pattern of a VAD scanning FLS are performed to quan-
tify the motion-induced error on estimates of horizontal mean
wind speed. The simulation results are validated against
numerical modeling of the same motion conditions. When
mean wind speeds are estimated from scalar averaging, the
rotational frequency of the lidar prism is an important pa-
rameter. It is set to 1 Hz, which corresponds to the VAD scan
frequency of the ZX 300M lidar type by ZX Lidars, UK, that
is frequently used on current FLSs. It is shown that also the
angle between the orientation of motion and inflow wind di-
rection is important. We defined tilt motion in the wind di-
rection as pitch motion and tilt motion perpendicular to the
wind direction as roll motion.

For pitch motion, the measurement error is dependent on
amplitude and frequency of motion. It is shown that FLSs
that oscillate with very low tilt frequencies close to 0 Hz
underestimate wind speeds, while tilt frequencies close to
a maximum at 1 Hz lead to overestimated horizontal wind
speeds. Close to 0.4 Hz the measurement bias is approxi-
mately zero if no wind shear is assumed. The presence of
positive wind shear, i.e., higher wind speeds at higher eleva-
tions, leads to a reduction of the FLS estimates of mean wind
speed. For the roll DoF, the motion-induced mean bias is zero
in the absence of wind shear. With wind shear it is negative,
and its magnitude depends on tilt amplitude and wind shear
coefficient. We estimated the error caused by yaw motion to
be negligible because its frequency is low for usual FLSs.

In addition to the measurement error caused by rotational
motion, the effect of translational motion must also be con-
sidered. We defined surge and sway to be translational mo-
tion in the wind direction and perpendicular to it, respec-
tively. Surge motion has no significant influence on the mean
bias of FLSs, but sway and heave motion increase the mean
bias. The magnitude of influence of translational motion de-
pends on its oscillation frequency relative to the lidar prism
frequency as well as its peak velocity relative to the wind
speed. Periodic heave motion increases the mean wind speed
estimates the most when it occurs in sync with the lidar prism
frequency, and the impact of sway motion is the strongest
when its oscillation frequency is very low.

With the aim of quantifying the motion-induced error for
a real FLS, we used experimental data from a Fugro SEA-
WATCH Wind LiDAR Buoy to determine test cases (see

Sect. 4). The cases of normal and strong wind and wave con-
ditions were defined based on one particular deployment on
the North Sea where normal and strong conditions represent
the median and 90th percentile of significant wave heights.
The hydrodymamic properties of the SWLB lead to a domi-
nant tilt frequency of 0.365 Hz, which turns out to be fortu-
nate for mean wind speed measurements with the ZX 300M
used on the buoy as it is close to around 0.4 Hz where the bias
introduced by pitch motion is zero. The resulting measure-
ment biases for the normal and strong test cases are−0.24 %
and −0.67 %, respectively, if wind and wave directions are
aligned. If wind and waves occur with perpendicular direc-
tions, the respective mean bias values are 0.20 % and 0.10 %.
These biases are smaller than typical uncertainties of around
2 % that are usually found when FLSs are validated against
meteorological masts. It is therefore difficult to confirm the
simulation results during field campaigns. Analyses of clas-
sification trials according to Annex L of the IEC 61400-12-1
standard however have shown that the sensitivity of measure-
ment error of the SWLB to motion and sea-state parameters
is insignificant (reference on request). The simulations pre-
sented here give a complete explanation for why the motion-
induced error is so small.

In this study we investigated the mean measurement er-
ror or systematic bias that motion introduces into FLS mea-
surements according to Eq. (6). This systematic mean bias
appears to be the most important error parameter because it
has the potential to influence the slopes of linear regression
lines as used when, e.g., the assessment procedures described
in the Carbon Trust Roadmap (Carbon Trust, 2018) are fol-
lowed. It would have been possible for particular test cases
based on data from the simulations to also analyze the ran-
dom error caused by motion, i.e., the variance of the devi-
ations between FLS estimates of 10 min mean wind speed
and the true values. But we did not do it because the random
error is strongly dependent on the number of reconstructed
wind vectors per averaging interval. For CW wind lidars like
the ZX 300 series, the number of reconstructed wind vectors
per interval depends on the number of configured measure-
ment elevations as well as the amount of filtered data due to
adverse atmospheric conditions. In addition, in practical ap-
plications, the random error visible as scatter on regression
plots also depends on the distance between the FLS and ref-
erence instrument and the overall uncertainty of the FLS and
reference instrument.

The ZX 300 wind lidar with current firmware performs
VAD scans with a prism frequency of one rotation per sec-
ond. Wind vectors are reconstructed based on line-of-sight
data from one prism rotation. This study confirms results
from field experiments that show that the measurement ac-
curacy of FLSs carrying a ZX 300 lidar is comparable to the
performance of fixed lidar systems if the frequency of tilt mo-
tion is reasonably close to 0.4 Hz. For floating platforms with
significantly different hydrodynamic properties that lead to
different rotational frequencies and amplitudes, the expected
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Table 1. Summary of two test cases representing typical offshore conditions.

Tilt Tilt Shear Wave Wind
Case frequency amplitude coefficient frequency Amplitude speed

Normal waves 0.365 Hz 10.0◦ 0.08 0.23 Hz 0.55 m 8.5 m s−1

Strong waves 0.365 Hz 12.5◦ 0.13 0.20 Hz 1.00 m 13.0 m s−1

Table 2. Summary of test results from simulation of mean bias (MB) introduced by motion of FLS.

Case Orientation MBrotation MBrotation&RBM MBtranslation MBtotal

Normal waves Pitch/surge −0.36 % −0.36 % 0.07 % −0.24 %
Strong waves Pitch/surge −0.76 % −0.76 % 0.06 % −0.67 %
Normal waves Roll/sway −0.07 % 0.00 % 0.25 % 0.20 %
Strong waves Roll/sway −0.17 % −0.12 % 0.26 % 0.10 %

measurement error can be approximated from Figs. 7, 8, and
10. For lidar types with a different scanning strategy, sim-
ilar simulations would need to be performed to determine
the systematic measurement deviation. The choice of averag-
ing, i.e., scalar or vector averaging of the reconstructed wind
vectors, is of utmost importance for the quantification of the
mean bias. All results in this paper are based on scalar aver-
aging to imitate the processing of the ZX 300 lidar. If vec-
tor averaging had been chosen instead, the mean bias values
would have been independent of the frequency of motion and
always negative. Translational motion would in this case not
lead to any mean bias.

A useful continuation of this study would be to quantify
the motion-induced measurement error for a real FLS mea-
surement campaign. This can be done easily by replacing the
generic periodic oscillations used as simulator input in this
study by time series of measurement data for motion in all 6
DoF. The modeled wind shear profiles have to be replaced by
the measured vertical profiles of mean wind speeds and di-
rections. The resulting mean bias values can then be used to
achieve compensation for the effect of motion on mean wind
speed estimates. Like all other motion-compensation meth-
ods, the performance of this approach will be hard to assess
because its effect is small compared to the uncertainties in a
test setup.

Having confirmed that the systematic motion-induced bias
on current FLS is low, it remains to be investigated in how far
lidar motion influences lidar internal data processing routines
with regard to data filtering and cloud detection. These could
add a different dimension of uncertainty caused by motion.

Appendix A: Analytic modeling of buoy mean bias

For the analytic approach we assume that the line-of-sight
velocities vr(θ

′) are given as a continuous function of the
nominal azimuth angle θ ′, which is a sound assumption given
that the lidar performs 50 measurements per round. The hori-

zontal wind vector U l = (Ul,Vl) is calculated from the these
line-of-sight velocities according to Eqs. (2) and (3) by

Ul sinφ = B =
1
π

2π∫
0

vr cosθ ′dθ ′, (A1)

Vl sinφ = C =
1
π

2π∫
0

vr sinθ ′dθ ′, (A2)

where φ is the half-opening angle and the argument θ ′ of vr is
understood. In this theoretical model we assume that the lidar
is capable of measuring the sign as well as the magnitude of
the line-of-sight wind speed. This assumption explains many
of the small differences between theory and simulation seen
in Figs. 6, 7, and 10. We now assume without loss of gener-
ality that the wind is aligned with first axis U = (U,0). Then
C/B is small and the length of the lidar estimated wind vec-
tor is

|U l| =
B

sinφ

√
1+

(
C

B

)2

≈
1

sinφ

(
B +

1
2
C2

B

)
. (A3)

A1 Pitch only

The pitch angle ϕ is defined as a harmonic variation as a
function of time:

ϕ = Acos(ωϕ(t − t0)), (A4)

where A is the amplitude, ωϕ is oscillation frequency, and t0
is arbitrary initial time. The beam direction of a fixed lidar is

n=

sinφ cos(ωt −φ0)

sinφ sin(ωt −φ0)

cosφ

 , (A5)
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where the cyclic frequency is typically 1 Hz, so ω ≈ 2π s−1.
The phase φ0 is random and may in some cases somewhat
surprisingly influence the results. The actual beam direction
is obtained as the dot product between n and the rotation
matrix M , which is given by

M =

 cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

 (A6)

The beam direction of the floating lidar is thus Mn so the
line-of-sight velocity is

vr = U ·Mn

= U
[
sinφ cos(ωt −φ0)cos(Acos

(
ωϕ(t − t0)

)
)

+cosφ sin
(
Acos

(
ωϕ(t − t0)

))
)
]
, (A7)

or, if we define χ = ωϕ/ω, θ ′ = ωt−φ0 and a random initial
phase φr = ωϕ t0, it can be written as

vr = U
[
sinφ cosθ ′ cos

(
Acos

(
χ(θ ′+φ0)−φr

))
+cosφ sin(Acos(χ(θ ′+φ0)−φr))

]
, (A8)

The ensemble average of B is obtained by averaging over all
random phases φr:

〈B〉 =
1

2π2

2π∫∫
0

vr cosθ ′dθ ′dφr. (A9)

Inserting vr from Eq. (A8) and interchanging the order of
integration, one gets irrespective of the value of φ0 (so we do
not need to average over that phase)

〈B〉 =
U

π

2π∫
0

sinφcos2θ ′J0(A)dθ ′

= U sinφ J0(A), (A10)

where J0(A) is the Bessel function of the first kind. This
means that the average wind component in the mean wind
direction can be estimated as

U =
〈B〉

sinφ J0(A)
(A11)

and where the bias correction J0(A) depends on the ampli-
tude A but not the non-dimensional frequency χ .

Equation (A3) says that the random variations in the trans-
verse wind speed contribute to the average of the length of the
horizontal wind vector. The average ofC is zero, but the vari-
ations around zero have to be calculated. The average of C2

is calculated by multiplying the right-hand side of Eq. (A2)
with itself, substituting θ ′→ θ ′′ in one of the integrals and
converting the product into a double integral. In this calcu-
lation it is necessary to include the random initial phase φ0,

and we have to average over both φr and φ0 to get

〈
C2
〉
=

1
4π4

∫ 2π∫
0

∫ ∫
vr(θ

′)vr(θ
′′)sinθ ′ sinθ ′′dθ ′dθ ′′dφrdφ0

=
U2

4π4

∫ 2π∫
0

∫ ∫ [
sinφ cosθ ′ cos

(
Acos

(
χ(θ ′+φ0)−φr

))
+cosφ sin

(
Acos

(
χ(θ ′+φ0)−φr

))]
×
[
sinφ cosθ ′′ cos

(
Acos

(
χ(θ ′′+φ0)−φr

))
+cosφ sin

(
Acos

(
χ(θ ′′+φ0)−φr

))]
× sinθ ′ sinθ ′′dθ ′dθ ′′dφrdφ0.

(A12)

The idea now is to assume A is small so that the trigono-
metric functions containing A can be approximated by its
second-order Taylor series as cosx ≈ 1+x2/2 and sinx ≈ x.
It can be shown that using this expansion the only term left
after expanding the product between the two parentheses in
Eq. (A12) is the product between the sin(A. . .) terms. Retain-
ing terms of second order in A, one gets

〈
C2
〉
=
U2

4π4

∫ 2π∫
0

∫ ∫
A2cos2φ cos

(
χ
(
θ ′+φ0

)
−φr

)
cos

(
χ(θ ′′+φ0)−φr

)
sinθ ′ sinθ ′′dφrdφ0dθ ′dθ ′′,

(A13)

where we have also changed the order of integration. It is
convenient to make the following change of variables: θ̇ =
θ ′+φ0 and θ̈ = θ ′′+φ0. Thereby Eq. (A13) becomes

〈
C2
〉
=
A2U2cos2φ

4π4

∫ 2π∫
0

∫ ∫
cos

(
χθ̇ −φr

)
cos

(
χθ̈ −φr

)
sin
(
(θ̇ −φ0

)
sin
(
(θ̈ −φ0

)
dφrdφ0dθ̇dθ̈ .

(A14)

Now the integration over φr and φ0 can be done separately
over the two first and the two last terms in the integrand,
which results in

〈
C2
〉
=
A2U2cos2φ

4π2

2π∫
0

∫
cos

(
χ
(
θ̇ − θ̈

))
cos

(
θ̇ − θ̈

)
dθ̇dθ̈

=
A2U2cos2φ

π2
(1+χ2)sin2(πχ)

(1−χ2)2
. (A15)

See also discussion after Eq. (A33). Averaging Eq. (A3),

〈|U l|〉 ≈
1

sinφ

(
〈B〉+

1
2

〈
C2〉
〈B〉

)
, (A16)
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and substituting Eq. (A10) for the average of B and
Eq. (A15) for the average of C2 in this equation, we finally
get

〈|U l|〉 ≈ U

[
J0(A)+

A2

J0(A)

cot2φ
2π2

(1+χ2)sin2(πχ)

(1−χ2)2

]
. (A17)

Figure 6 shows plots for pitch motion with three different
amplitudes A.

A2 Yaw only

The impact of harmonic yaw oscillations on the mean wind
speed can be calculated in almost exactly the same way. Here
the rotation matrix (A6) will become

M =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 , (A18)

and the only modification to vr in Eq. (A8) will be that in the
second term cosφ will be changed to sinφ sinθ ′. Following
the same steps as in Sect. A1, one arrives to

〈|U l|〉 ≈ U[
J0(A)+

A2

J0(A)

1
π2

(
3χ4
− 12χ2

+ 32
)

sin2(πχ)

8(χ3− 4χ)2

]
. (A19)

Figure 6 also shows plots for yaw motion with three different
amplitudes A.

A3 Pitch and shear

If the wind is not constant with height, our results might
change. Here we assume that the wind profile can be de-
scribed by a power-law profile with an exponent α (see
Eq. 1). It is well known that the curvature of the wind pro-
file is important for the bias when averaging over a range of
heights. However, here it turns out that the curvature is of
small importance relative to the gradient. Anyway, we ex-
pand the wind profile to the second order

U(z)≈ U0

(
1+α

1z

z0
+
α(α− 1)

2

(
1z

z0

)2
)

(A20)

in order to see this small dependence on the second order in
1z/z0. Using Eqs. (A5) and (A6), the relative height differ-
ence becomes

1z

z0
=
(Mn)3

n3
− 1= cos

(
Acos

(
χθ ′−ϕr

))
− cosθ ′ sin

(
Acos

(
χθ ′−ϕr

))
tanφ− 1 (A21)

utilizing the notation of Eq. (A8). We now substitute
Eq. (A20) into Eq. (A9) and expand all terms and then in-
tegrate with respect to ϕr, and then with respect to θ ′. The

result is

〈B〉

sinφ
= U0

(
J0(A)−α [J0(A)− J0(2A)]

+
α(α− 1)

32

[
J0(A)(20+ 3tan2φ)− 32J0(2A)

+3J0(3A)(4− tan2φ)
])
, (A22)

and the term with α(α− 1) is typically insignificant rela-
tive to the term with α, corresponding to the influence of the
second and first derivatives of the wind profile, respectively.
When α = 0 we are left with the result of Eq. (A10). When
α = 1, that is U ∝ z, the last term vanishes and 〈B〉/sinφ =
U0J0(2A).

We now need to see if C is affected by shear. If A is small,
then the relative height difference can be written as

1z

z0
≈−A tanφ cosθ ′ cos

(
χθ ′−ϕr

)
−
A2

2
cos2 (χθ ′−ϕr

)
, (A23)

applying the same argumentation that led from Eq. (A12) to
Eq. (A13). Using this it can be shown that the shear-induced
terms are third order in A and are therefore dropped. The
final result is thus Eq. (A16) using Eq. (A15) for

〈
C2〉 and

Eq. (A22) for 〈B〉. Plots of the resulting bias for pitch motion
with A= 10◦ and α = 0. . .0.15 are presented in Fig. 7.

A4 Roll and shear

In a yaw-only situation, the shear will not change the line-of-
sight velocity because the measurement height remains con-
stant. Neither will the roll motion in a constant wind profile
alter the line-of-sight velocity because roll will not change
the along-wind component of the beam unit vector. There-
fore we investigate the impact of shear combined with roll.
The rotation matrix corresponding to roll motion is

M =

1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

 , (A24)

where ϕ is still given by Eq. (A4) but ϕ now means the roll
angle. Since this matrix does not change the first component
of the pointing vector n, it is only the change in measurement
height that will alter vr. In parallel with Eq. (A21) we can
now calculate the relative height change of the focus position.

1z

z
=
(Mn)3

n3
− 1= cos

(
Acos

(
χθ ′−ϕr

))
− sinθ ′ sin

(
Acos

(
χθ ′−ϕr

))
tanφ− 1 (A25)
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Just using up to the first order in the expansion of the wind
profile Eq. (A20), the average of B becomes

〈B〉 =
1

2π2

2π∫
0

∫
vr cosθ ′dϕrdθ ′

=
U0 sinφ

2π2

2π∫∫
0

(
1+α

1z

z

)
dϕrcos2θ ′dθ ′. (A26)

Now we substitute the relative height difference Eq. (A25)
and integrate first over ϕr and then over θ ′ to get

〈B〉 =
U0 sinφ
π

2π∫
0

(1+α(J0(A)− 1))cos2θ ′dθ ′

= U0 sinφ (1+α(J0(A)− 1)) . (A27)

Taking into account the curvature of the wind profile, i.e., the
second-order term in Eq. (A20), does not change the re-
sult significantly. That means the already small correction is
changed by less than 10 %. For completeness we give the ex-
pression

〈B〉 = U0 sinφ
[

1+α(J0(A)− 1)+

α(α− 1)
2

(
1− 2J0(A)+

1+ J0(2A)
2

+
1− J0(2A)

8
tan2φ

)]
. (A28)

To complete the analysis of the impact of roll and shear on
the average lidar speed, we need to calculate

〈
C2〉, according

to Eq. (A16). Following the discussion after Eq. (A24) and
expanding 1z/z to its first-order Taylor series, the line-of-
sight velocity becomes

vr = U ·Mn= U(z)sinφ cosθ ′

≈ U0

(
1+α

1z

z

)
sinφ cosθ ′. (A29)

Using this and Eq. (A12),
〈
C2〉 can be written as

〈
C2
〉
=
U2

0 sin2φ

2π3

2π∫ ∫ ∫
0

(
1+α

1z′

z

)(
1+α

1z′′

z

)
dφr cosθ ′ cosθ ′′ sinθ ′ sinθ ′′dθ ′dθ ′′. (A30)

Here the primes and double primes on 1z correspond to
primed or double primed θ values in Eq. (A25), and for sim-
plicity we assume φ0 = 0. We again use the expansion of the
trigonometric functions in Eq. (A25) assuming A is small, so

1z′

z
≈
A2

2
cos(χθ ′−ϕr)−Asinθ ′ tanφ cos(χθ ′−ϕr). (A31)

Expanding the two parentheses inside the triple integral in
Eq. (A30) gives four terms. The first three are independent
of θ ′ and θ ′′ when integrated over ϕr, and thus, the integrals
over θ ′ and θ ′′ of those terms are null. We are left with

〈
C2
〉
=
α2U2

0 sin2φ

2π3

2π∫ ∫ ∫
0

1z′

z

1z′′

z
dφr cosθ ′ cosθ ′′

sinθ ′ sinθ ′′dθ ′dθ ′′. (A32)

We now substitute Eq. (A31) into Eq. (A32) and retain only
terms of up to second order in A. The resulting expression is

〈
C2
〉
=
α2A2U2

0 sin2φtan2φ

2π3

2π∫ ∫ ∫
0

cos(χθ ′−ϕr)cos

(χθ ′′−ϕr)dφr cosθ ′ cosθ ′′sin2θ ′sin2θ ′′dθ ′dθ ′′.
(A33)

Because of the general identity
∫ 2π

0 cos(a− t)cos(b− t)dt =
π cos(a−b), the integral over ϕr of the two first cosine terms
in the above equation is π cos(χ(θ ′−θ ′′)) so the final expres-
sion becomes

〈
C2
〉
=
α2A2U2

0 sin2φtan2φ

2π2

2π∫∫
0

cos(χ(θ ′− θ ′′))cosθ ′

cosθ ′′sin2θ ′sin2θ ′′dθ ′dθ ′′

=
α2A2U2

0 sin2φtan2φ

2π2
16χ2sin2(πχ)

(χ2− 1)(χ2− 9)
.

(A34)

The final bias depends, according to Eq. (A15), on both 〈B〉
and

〈
C2〉. However, the term involving

〈
C2〉 is second order

in α in contrast to the bias due to 〈B〉, which is first order in
α; see Eq. (A27). Since the relevant values of α are small,
typically around one-seventh or less, and the other terms en-
tering into the expression for

〈
C2〉 in Eq. (A34) are also lim-

ited in magnitude for relevant parameters,
〈
C2〉 can be safely

ignored, and the final expression for the mean speed bias due
to roll and shear is

〈|U l|〉 ≈
〈B〉

sinφ
= U0 (1+α(J0(A)− 1)) , (A35)

where we have used Eq. (A27). Plots of the resulting bias for
roll motion with A= 10◦ and α = 0. . .0.15 are presented in
Fig. 8.

A5 Translational motions

For translational motions, the line-of-sight speed is in the
case of no shear, which is the only case considered in this
section vr = (U + v) ·n, where the mean wind speed is U =
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(U,0,0), and the translational motion is v = v̂ cos(ωt (t−t0))
with the amplitude given by

v̂ = v̂×

 (1,0,0) surge
(0,1,0) sway
(0,0,1) heave

(A36)

for the motion in the three spatial directions. The unit vector
of the beam direction n is still given by Eq. (A5). Substituting
ωt −φ0 with θ ′ and χ ≡ ωt/ω, the line-of-sight velocity can
be written as

vr = U sinφ cosθ ′+ v̂ cos(χ(θ ′+φ0)−φr)

(
sinφ cosθ ′
sinφ sinθ ′

cosφ

)
,

(A37)

where the three terms in the vector correspond to the surge,
sway, and heave motions, respectively. Using the definitions
of B (Eq. A1) and C (Eq. A2) and taking the average by
integrating over φr, it is easily seen that the bias on both B
and C is zero. So if one did vector averaging there would be
no bias due to translational motions. However, since vector
averaging is the current standard, we have to use Eq. (A16)
and calculate

〈
C2〉, which is also equal to the bias:

〈
C2
〉
=

〈
1
π2

2π∫∫
0

vr(θ
′)vr(θ

′′)sinθ ′ sinθ ′′dθ ′dθ ′′
〉

(A38)

where 〈〉 means averaging over φ0 and φr. Doing the same
substitutions that led to Eq. (A14) and integrating over φr,
one gets〈
C2
〉
=

v̂2

4π4

∫ ∫ ∫ ∫
cos(χθ̇ −φr)cos(χθ̈ −φr)sin2φ cos(θ̇ −φ0)cos(θ̈ −φ0)sin(θ̇ −φ0)sin(θ̈ −φ0)

sin2φsin2(θ̇ −φ0)sin2(θ̈ −φ0)

cos2φ sin(θ̇ −φ0)sin(θ̈ −φ0)


dθ̇dθ̈dφ0dφr

=
v̂2

4π3

∫ ∫ ∫
cos(χ(θ̇ − θ̈ ))sin2φ cos(θ̇ −φ0)cos(θ̈ −φ0)sin(θ̇ −φ0)sin(θ̈ −φ0)

sin2φ sin2(θ̇ −φ0)sin2(θ̈ −φ0)

cos2φ sin(θ̇ −φ0)sin(θ̈ −φ0)


dθ̇dθ̈dφ0.

(A39)

where all integrals are from 0 to 2π . Now we do the integra-
tion over φ0.〈
C2
〉
=

v̂2

2π2

∫ ∫
cos(χ(θ̇ − θ̈ )) sin2φ 1

8 cos(2(θ̇ − θ̈ ))
sin2φ 1

8 (2+ cos(2(θ̇ − θ̈ )))
cos2φ 1

2 cos(θ̇ − θ̈ )

dθ̇dθ̈ (A40)

After performing the double integral over θ̇ and θ̈ we finally
arrive at

〈
C2
〉
=

v̂2

2π2 sin2(πχ)


sin2φ

4+χ2

2(4−χ2)2

sin2φ
32−12χ2

+3χ4

2χ2(4−χ2)2

cos2φ
2(1+χ2)

(1−χ2)2

 . (A41)

The resulting biases for the 3 translational DoF are presented
in Fig. 10.
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