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Abstract. In mixed-phase clouds, the variable mass ratio be-
tween liquid water and ice as well as the spatial distribution
within the cloud plays an important role in cloud lifetime,
precipitation processes, and the radiation budget. Data sets
of vertically pointing Doppler cloud radars and lidars pro-
vide insights into cloud properties at high temporal and spa-
tial resolution. Cloud radars are able to penetrate multiple
liquid layers and can potentially be used to expand the iden-
tification of cloud phase to the entire vertical column beyond
the lidar signal attenuation height, by exploiting morpholog-
ical features in cloud radar Doppler spectra that relate to the
existence of supercooled liquid. We present VOODOO (re-
Vealing supercOOled liquiD beyOnd lidar attenuatiOn), a re-
trieval based on deep convolutional neural networks (CNNs)
mapping radar Doppler spectra to the probability of the pres-
ence of cloud droplets (CD). The training of the CNN was
realized using the Cloudnet processing suite as supervisor.
Once trained, VOODOO yields the probability for CD di-
rectly at Cloudnet grid resolution. Long-term predictions
of 18 months in total from two mid-latitudinal locations,
i.e., Punta Arenas, Chile (53.1◦ S, 70.9◦W), in the South-
ern Hemisphere and Leipzig, Germany (51.3◦ N, 12.4◦ E), in
the Northern Hemisphere, are evaluated. Temporal and spa-
tial agreement in cloud-droplet-bearing pixels is found for
the Cloudnet classification to the VOODOO prediction. Two
suitable case studies were selected, where stratiform, multi-
layer, and deep mixed-phase clouds were observed. Perfor-
mance analysis of VOODOO via classification-evaluating
metrics reveals precision > 0.7, recall ≈ 0.7, and accuracy
≈ 0.8. Additionally, independent measurements of liquid wa-
ter path (LWP) retrieved by a collocated microwave radiome-

ter (MWR) are correlated to the adiabatic LWP, which is
estimated using the temporal and spatial locations of cloud
droplets from VOODOO and Cloudnet in connection with
a cloud parcel model. This comparison resulted in stronger
correlation for VOODOO (≈ 0.45) compared to Cloudnet
(≈ 0.22) and indicates the availability of VOODOO to iden-
tify CD beyond lidar attenuation. Furthermore, the long-term
statistics for 18 months of observations are presented, an-
alyzing the performance as a function of MWR–LWP and
confirming VOODOO’s ability to identify cloud droplets re-
liably for clouds with LWP> 100 g m−2. The influence of
turbulence on the predictive performance of VOODOO was
also analyzed and found to be minor. A synergy of the novel
approach VOODOO and Cloudnet would complement each
other perfectly and is planned to be incorporated into the
Cloudnet algorithm chain in the near future.

1 Introduction

In mixed-phase clouds, the variable mass ratio between liq-
uid water and ice as well as its spatial distribution within
the cloud plays an important role in cloud lifetime (Morri-
son et al., 2012), precipitation processes (Mülmenstädt et al.,
2015), climate feedbacks (Choi et al., 2014; Bjordal et al.,
2020), and the radiation budget (Sun and Shine, 1994; Shupe
et al., 2004; Turner, 2005). Modeling mixed-phase clouds
is challenging and requires the basic assumption of ther-
modynamic phase, i.e., ice, liquid, or mixed (Zhao et al.,
2012). Improving methods for cloud phase classification is
a first step towards minimizing the error of liquid water
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content (LWC) and particle size retrievals (Riihimaki et al.,
2016). Accurately observing the phase distribution within
mixed-phase clouds has historically been one of the major
challenges for the remote sensing community (Shupe et al.,
2008). Multisensor retrievals rely mostly on valid lidar sig-
nals (Shupe et al., 2005; Illingworth et al., 2007; de Boer
et al., 2009; Silber et al., 2020) in synergy with Doppler
cloud radar moments, limiting the liquid classification due
to lidar attenuation (Shupe et al., 2004; Sokol et al., 2018).
The lidar signal is strongly attenuated by liquid water layers
with optical depths τ ∼ 3–5 (Silber et al., 2020), hampering
the use of lidar-based hydrometeor target classification for
optically thick clouds. Radars are able to penetrate multiple
liquid layers and can thus be used to expand the identifica-
tion of cloud phase to the entire vertical column beyond the
lidar signal attenuation height, if morphological features in
cloud radar Doppler spectra can be related to the existence of
supercooled liquid droplets.

Several efforts have been made in the past to exploit these
features and derive the distribution of liquid in mixed-phase
clouds: continuous-wavelet transformations in combination
with fuzzy logic using fixed thresholds to identify liquid
peaks in simulated Doppler spectra have been employed by
Yu et al. (2014). Doppler spectra peak-finding algorithms like
PEAKO (Kalesse et al., 2019; a supervised learning method)
and peakTree (Radenz et al., 2019; a binary tree approach)
can be used to identify the number of radar Doppler spec-
tra peaks at each time–height step. In the next step, individ-
ual peaks can be related to liquid droplet existence based on
the sub-peak radar moment analysis as done in Radenz et al.
(2019). Silber et al. (2020) applied statistical tests to cumu-
lative distribution functions and probability density functions
of radar moments and temperature measurements by sound-
ings to discriminate liquid-bearing from pure-ice cloud lay-
ers. Kalogeras et al. (2021) presented another method that
used climatologically derived, per-phase probability distri-
butions to retrieve an ice–liquid partitioning via a per-pixel,
neighborhood-dependent algorithm. Also, deep learning ap-
proaches have been used in the past to derive a liquid mask
from lidar backscatter coefficient and depolarization pre-
dicted from Doppler radar spectra (Luke et al., 2010). Al-
though the applicability of machine learning to cloud radar
data has been demonstrated by Luke et al. (2008, 2010) and
Kalesse et al. (2019), its potential is far from being fully ex-
ploited. The aim is to develop a robust method which is able
to directly relate raw Doppler spectra information to the pres-
ence of liquid hydrometeors, without the need for complex
feature engineering and extraction.

The interest in machine learning and particularly deep
learning in the Earth system sciences has strongly increased
in the past few years (Maskey et al., 2020). Deep learning
techniques are a subset of machine learning, where deep arti-
ficial neural networks (ANNs) learn relationships from data.
These applications are particularly powerful due to their abil-
ity to perform part of the data pre-processing themselves.

Vogl et al. (2022) showed that ANNs can be used to predict
riming using ground-based zenith-pointing cloud radar vari-
ables radar reflectivity, spectrum width, and skewness. An
earlier approach from Luke et al. (2010) transfers the fea-
tures of Doppler spectra into particle backscatter and volume
depolarization of a high-spectral-resolution lidar (HSRL) us-
ing a multi-layer perceptron model and was further vali-
dated by Kalesse-Los et al. (2022) by applying the pre-
trained machine learning model to data from the Analysis
of the Composition of Clouds with Extended Polarization
Techniques (ACCEPT) campaign (Myagkov et al., 2016a;
Myagkov et al., 2016b). The methods mentioned above rely
mostly on fixed thresholds for radars (i.e., reflectivity, mean
Doppler velocity, spectrum width, skewness, spectrum edge
slopes) and lidars (i.e., attenuated backscatter and depolariza-
tion) and are only applicable for a small subset of cloud types
(Luke et al., 2008, 2010; Yu et al., 2014; Kalesse et al., 2019;
Silber et al., 2020). Nevertheless, in the study of Kalesse-Los
et al. (2022), the Luke et al. (2010) model displayed the abil-
ity to perform well on Doppler spectra recorded by a different
cloud radar in different atmospheric conditions.

In this study we build upon the idea of Luke et al. (2010)
and use a deep convolutional neural network (CNN) model
to directly predict a probability of the distribution of super-
cooled cloud droplets in mixed-phase clouds observed by
a vertically pointing Doppler cloud radar. Relevant spectral
signatures such as bi-modalities, spectral skewness, and tem-
poral evolution can be extracted by a deep CNN that relates
to the cloud phase by training in a supervised scheme, using
Cloudnet’s target classification as supervisor. As part of the
pan-European Aerosol, Clouds and Trace Gases Research In-
frastructure (ACTRIS), the Cloudnet processing suite (Illing-
worth et al., 2007; Tukiainen et al., 2020a) is tailored to pro-
cess observations and model data on the composition of the
atmosphere. The measurements and model data are brought
on a common grid, and the targets are classified as ice, liq-
uid, aerosol, and insects, among others. Here, the informa-
tion about the presence of liquid droplets is extracted from
the Cloudnet target classification and in a first step used
to train VOODOO. In the next step, Cloudnet data which
were not used for training are compared to the predictions
of VOODOO. Various binary classification metrics are used
to quantify performance, such as precision, recall, accuracy,
and F1 score. Further evaluation is done by correlating sev-
eral independent measurements such as liquid water path
(LWP) retrieved by microwave radiometer as suggested by
Luke et al. (2010) and Kalesse-Los et al. (2022).

The paper is structured as follows. Section 2 gives an
overview about the instrumentation and the data sets used
in the context of this work. In Sect. 3 the methodology of the
VOODOO retrieval is presented. Section 4 is divided into
the analysis of a case study and the statistical evaluation of
VOODOO by application to a total of 18 months of measure-
ment data from two different geographical locations. The pa-
per concludes with a summary and outlook in Sect. 5.
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2 Instrumentation and data set

This section introduces the instrumentation used to train and
validate the CNN performance. First, the data sources are
presented (Sect. 2.1), followed by a short description of the
two field experiments in Punta Arenas and Leipzig, including
specifics of the respective sites (Sect. 2.2).

2.1 Data source

Four data sources (see Table 1) are considered for the pre-
sented CNN retrieval: cloud radar Doppler spectra from a
vertically pointing radar, attenuated backscatter coefficient
βatt from a ceilometer, liquid water path (LWP) retrieved
from a microwave radiometer (MWR), and temperature, rel-
ative humidity, and pressure from numerical weather forecast
data from the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Doppler cloud radars record the distribution of reflectivity
in the Doppler velocity domain (vmin,vmax) continuously in
time and provide vertically resolved observations with excel-
lent sensitivity to small hydrometeors (Kollias et al., 2007).
Figure 1 shows hydrometeors creating peaks at distinct ter-
minal fall velocities in the Doppler radar spectra; the larger
and heavier they are, the faster they fall (assuming no vertical
air motion). The radar reflectivity factor Ze in the Rayleigh
scattering regime is sensitive to the sixth power of the diame-
ter, Ze ∼N ·D6, whereN is the number of hydrometeors for
diameter D. It follows that Ze is larger for small populations
of large hydrometeors such as ice crystals or drizzle and rain,
thus dominating the spectral signal by producing large peaks
at higher fall velocities. In contrast, cloud droplets exist in
the atmosphere with much larger N but much smaller D at
≈ 0 m s−1 terminal velocity, producing low-intensity peaks
in the Doppler spectra. The radar moments, i.e., reflectiv-
ity factor Ze, mean Doppler velocity vD, and spectral width
σw, and linear depolarization ratio (LDR) are computed from
the Doppler spectra. These radar moments are required for
Cloudnet processing and are usually sufficient to derive a
mask for precipitation and ice crystals (Illingworth et al.,
2007). However, these radar moments alone are not sufficient
in all situations to provide the necessary information content
to characterize liquid and mixed-phase clouds reliably.

The ceilometer provides high-resolution profiles of atten-
uated backscatter coefficient βatt at 1064 nm. The parameter
βatt is sensitive to the second power of the diameter, βatt ∼

N ·D2. It follows that βatt is larger for large populations
of small hydrometeors (cloud droplets). Small numbers of
larger ice crystals, drizzle, or raindrops return a much lower
signal. Due to its very high sensitivity to cloud droplets, βatt
is used in the Cloudnet processing to identify cloud droplets.

The MWR measures brightness temperature profiles over
a band of different frequencies. To derive the LWP and in-
tegrated water vapor (IWV), optimal estimation (Foth and
Pospichal, 2017) or artificial neural network retrievals (Yan

Figure 1. Time spectrogram from 1 August 2019 at 2400 m altitude
in Punta Arenas, Chile. The bi-modal Doppler spectra contain liquid
cloud droplets on the right-hand side of the spectrum (slow moving)
and ice crystals on the left side of the spectrum (faster moving).
Cloudnet classification result for this particular time-range slice is
“ice and supercooled liquid droplets” at −10 ◦C.

et al., 2020, or MWR manufacturer) are used. The LWP
is a measure for the amount of liquid water in the column
above the instrument and used for validation purposes in
the frame of this work. The MWR–LWP is correlated to the
LWP derived from VOODOO predictions using an adiabatic
cloud parcel model by Karstens et al. (1994), as illustrated in
Kalesse-Los et al. (2022).

Temperature, relative humidity, and pressure profiles,
taken from the European Centre for Medium-Range Weather
Forecasts (ECMWF) model, are used in combination with
MWR–LWP to derive atmospheric profiles of gaseous
and liquid attenuation for correction of the radar returns
used within the Cloudnet processing chain. The numerical
weather forecast data can be downloaded via the Cloudnet
data portal (https://cloudnet.fmi.fi, last access: 12 September
2022).

2.2 Data sets from Punta Arenas and Leipzig

This work is based on remote sensing measurements from
two different geographical locations, i.e., Punta Arenas,
Chile, and Leipzig, Germany. Selected key properties of the
two sites are summarized in Table 2. First, observations from
the long-term field experiment Dynamics, Aerosol, Cloud,
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Table 1. Specifications of instruments/models and measured/modeled quantities used in this study.

Data source
(reference)

Frequency ν,
wavelength λ

Measured/
retrieved quantity

Temporal
resolution

Vertical range Vertical
resolution

Doppler cloud radar
RPG-FMCW-94-DP
(Küchler et al., 2017)

ν = 94 GHz Spectral power S(vD)
Radar reflectivity factor Ze
Mean Doppler velocity vD
Spectrum width σw
Linear depolarization ratio
(LDR)

5 s 120–12 000 m 30–45 m

Microwave radiometer
RPG-HATPRO-G2 (Punta Arenas)
RPG-HATPRO-G5 (Leipzig)
(Rose et al., 2005)

ν = 22.24–31.4 GHz
ν = 51.0–58.0 GHz

Brightness temperatures
Liquid water path (LWP)

1 s Column integral

Ceilometer
Jenoptik CHM15kx (Punta Arenas)
Lufft CHM15k Nimbus (Leipzig)
(Heese et al., 2010)

λ= 1064 nm Attenuated backscatter
coefficient βatt

30 s 15–15 000 m 15 m

Weather model forecast
ECMWF
(Owens and Hewson, 2018)

Temperature T
Pressure P
Relative humidity (HUM)

3600 s 10–12 000 m 20–300 m

and Precipitation Observations in the Pristine Environment
of the Southern Ocean (DACAPO-PESO) in Punta Arenas,
Chile, are discussed, and second, observations from the roof
platform of the main building of the Leipzig Institute of Me-
teorology in Leipzig (LIM), Germany, are analyzed.

DACAPO-PESO focuses on the investigation of aerosol–
cloud dynamics and interactions in the atmosphere. A unique
data set has been gathered by synergistic retrievals with ac-
tive and passive remote sensors. Clean pristine marine air
masses dominate the aerosol conditions, due to almost con-
stant westerly winds (Schneider et al., 2003; Foth et al., 2019;
Jimenez et al., 2020; Floutsi et al., 2021; Radenz et al., 2021).
Additionally, gravity waves have been observed frequently
over Punta Arenas (Alexander et al., 2017; Silber et al.,
2020; Radenz et al., 2021). Due to orographic effects induced
by strong westerly winds moving over the Andes mountain
range, gravity waves are a general feature in the vicinity of
all landmasses in the middle and high latitudes of the South-
ern Hemisphere (Sato et al., 2012; Alexander et al., 2016).
The Leipzig Aerosol and Cloud Remote Observations Sys-
tem (LACROS) suite has been deployed by the Leibniz Insti-
tute for Tropospheric Research (TROPOS) from 27 Novem-
ber 2018 to 20 November 2021. LIM contributed a RPG-
FMCW94 Doppler cloud radar, operating from 27 November
2018 until 27 September 2019, to enhance the information
content of the DACAPO-PESO field campaign.

The second data set includes measurements recorded at the
roof platform of the main building of the Leipzig Institute of
Meteorology (LIM). The observations included in this work
were conducted from 17 December 2020 to 6 March 2022.
Leipzig is located in central Europe and is predominantly

influenced by continental air masses, anthropogenic pollu-
tion (Baars et al., 2016), and occasional mineral dust events
(Seifert et al., 2010). A more in-depth analysis of aerosol
contributions for both sites can be found in Radenz et al.
(2021).

3 Methodology

This section introduces the machine learning methodology
used to derive a spatio-temporal liquid cloud droplet prob-
ability distribution directly from spectra of the vertically
pointing Doppler cloud radar. A CNN is trained on radar
Doppler spectra using the atmospheric target classification
retrieved by the Cloudnet algorithm (Illingworth et al., 2007;
Tukiainen et al., 2020a) as supervisor. An example is given
in Fig. 2. Firstly, the pre-processing of Doppler radar spectra
and sampling of features is presented in Sect. 3.1. Secondly,
Cloudnet processing is done to derive the hydrometeor tar-
get classification reference labels for the training data, ex-
plained in Sect. 3.2. Section 3.3 describes the machine learn-
ing model, followed by introducing the training and valida-
tion data sets in Sect. 3.4. Information about the training pro-
cess is given in Sect. 3.5. Post-processing steps are described
in Sect. 3.6, and validation metrics are presented in Sect. 3.7.

3.1 Pre-processing and feature sampling

Firstly, the raw radar Doppler spectra are pre-processed as
follows. The RPG-FMCW-94-DP radar operates with dif-
ferent settings, through a user-defined measurement defi-
nition file. Table 3 contains the instrument settings which
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Table 2. Overview on location, data availability, climate, aerosol load, and related studies for the data sets used. The altitudes are given above
mean sea level (a.s.l.).

Location Punta Arenas, Chile, 53.1◦ S, 70.9◦W Leipzig, Germany, 51.3◦ N, 12.4◦ E
Station altitude 9 m a.s.l. 125 m a.s.l.
Campaign name DACAPO-PESO LIM

Measurement period 301 d 488 d
Cloudnet availability 262 d 400 d

Climate Southern mid-latitudes Northern mid-latitudes
Typical aerosol load Marine, occasionally continental Continental background, occasionally dust
Related studies Kanitz et al. (2011) Ansmann et al. (2005)

Ohneiser et al. (2020) Seifert et al. (2010)
Bromwich et al. (2020) Bühl et al. (2013)
Jimenez et al. (2020) Bühl et al. (2016)
Floutsi et al. (2021) Radenz et al. (2021)
Radenz et al. (2021) Vogl et al. (2022)
Vogl et al. (2022)

Figure 2. Cloudnet target classification (a) and radar–lidar detection status (b) for 4 December 2021 in Leipzig, Germany.

were identical for both sites. By modulating the center fre-
quency (94 GHz) in ranges of 300–3600 kHz, the atmosphere
is sampled consecutively by three programs (chirps) collect-
ing Doppler radar spectra for the three ranges of operation
or chirp sequences (CSs) consecutively. Each CS has slightly
different range and Doppler velocity resolution, as well as
different Nyquist velocity vNyq, number of Doppler spec-
tra bins, frequency modulation ranges, and number averages
(coherently and non-coherently) for a single spectrum (see
Table 3).

The pre-processing steps listed below are split into general
pre-processing necessary to obtain the Cloudnet products and
spectral feature extraction.

– Received vertical and horizontal polarized signals are
summed, yielding the total back-scattered signal inten-
sity.

– Noise in the Doppler radar spectra is estimated and
removed via manufacturer software, which uses the
method of Hildebrand and Sekhon (1974). The cut-off

https://doi.org/10.5194/amt-15-5343-2022 Atmos. Meas. Tech., 15, 5343–5366, 2022



5348 W. Schimmel et al.: Identifying cloud droplets beyond lidar attenuation

Table 3. Specifications and program settings for the vertically pointing RPG-FMCW-94-DP Doppler cloud radar.

Attributes Chirp sequence (CS)

CS 1 CS 2 CS 3

Integration time (s) 0.52 1.77 2.71
Range interval (m) 100–1200 1200–7000 7000–12000
Range vertical resolution (m) 29.8 44.7 39.7
Nyquist velocity (m s−1) 9.0 6.3 4.7
Doppler velocity bins 256 256 128
Doppler velocity resolution (m s−1) 0.07 0.05 0.07
Averages per spectrum 23 54 124
Frequency modulation (kHz) 300–3600 600–3500 1969–3375

threshold for noise removal is set at mean noise power
plus 6 standard deviations of the noise power.

– The radar moments Ze, vD, σw, and LDR are estimated
from the spectra and stored as NetCDF files. Those files
are used as input for the Cloudnet processing.

– The Cloudnet target classification is derived (see
Sect. 3.2).

Spectral feature extraction is done by adjusting the radar
Doppler spectra for VOODOO processing.

– The presented method is designed for Doppler radar
spectra counting 256 Doppler velocity bins. If the num-
ber of Doppler velocity bins does not match 256,
nearest-neighbor interpolation is applied to meet the
number of 256 Doppler bins.

– Doppler bins which were removed from the Doppler
spectra by noise filtering are replaced by their range-
dependent sensitivity limit, also provided by the RPG
software.

– The radar Doppler spectra are then converted from lin-
ear units mm6 m−3 into units of dBZ via

SdBZ(vD)= 10 log10

(
Slin(vD)

)
,

vD ∈ [−vNyq,+vNyq] (1)

where S(vD) is the spectral power as a function of ve-
locity vD.

– The radar Doppler spectra are normalized by

Ŝ(vD)=
SdBZ(vD)− Smin

Smax− Smin
, (2)

where Smax = 20 dBZ and Smin =−50 dBZ are the
maximum and minimum expected values. S(vD) values
above and below this range are set to the corresponding
Smax and Smin, respectively.

– Successively recorded spectra Ns for each range gate
are combined to form a time spectrogram Ŝ(vD, t), with
t ∈ [ti−15, ti+15] s and ti being a time step on the tem-
poral domain of the Cloudnet products. Using the radar
settings from Table 3, i.e., 5 s temporal resolution, the
number of successively recorded spectra used isNs = 6.
The grid size of Cloudnet is used as target, i.e., 30 s tem-
poral resolution and range resolution between 30–45 m,
depending on the respective chirp.

– The corresponding labels are assigned: cloud droplets
present (i.e., Cloudnet classes: liquid and mixed-phase
clouds) and no cloud droplets present (i.e., Cloudnet
classes: ice, insects, drizzle, and rain). Finally, a list of
time spectrogramsX and their corresponding labels y is
generated.

Figure 1 shows an exemplary feature sample (time spectro-
gram), where a fast-falling population of large ice crystals is
visible as a peak at −3 m s−1and high spectral reflectivity of
up to−8 dBZ. The second peak at≈ 0 m s−1 indicates a pop-
ulation of supercooled liquid cloud droplets (T =−10 ◦C)
with reflectivity values up to −18 dBZ.

3.2 Cloudnet target classification as reference label

Supervised deep learning approaches require large numbers
of pairs of input (features) and output (labels) to learn from.
For this work, the Cloudnet target classification provided by
the Cloudnet processing toolbox (Tukiainen et al., 2020a) is
used to generate the reference label. In the first step radar
moments, (i.e., Ze, vD, σw, and LDR) are calculated from
the recorded Doppler radar spectra. Radar moments together
with ceilometer βatt, MWR–LWP, precipitation rate (from
Vaisala WXT536 compact weather station mounted to the
cloud radar), and meteorological data are processed using the
Cloudnet algorithm to derive an a priori hydrometeor target
classification. Cloudnet provides two bit masks, the category-
bit, containing information on the nature of the targets for
each data point (i.e., droplets present, is falling, insects) and
the quality-bit, which contains information on the instrument
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detection status (i.e., echo detected by radar, echo detected
by lidar). The combination of active bits yield the Cloud-
net target classification and detection status (see Fig. 2).
The Cloudnet liquid droplet detection investigates the shape
of the ceilometer attenuated backscatter coefficient profile
βatt and the attenuation height above the liquid layer base
(Tuononen et al., 2019). At an approximate optical thickness
of τ > 3 the lidar is completely attenuated such that hydrom-
eteor thermodynamic phase information above the attenua-
tion height is unreliable. The top panel of Fig. 2 displays such
attenuation effects in the mixed-phase layer within a convec-
tive system from 04:00 to 06:30 UTC. The lidar attenuation
height of 250 m is indicated by the detection status “Radar
uncorrected for liquid attenuation” in Fig. 2 (bottom). Thus,
the training data set is automatically selected by unifying all
data points where liquid cloud droplets are present (Cloudnet
liquid category bit) and where the detection status indicates
both good radar and lidar echoes. This technique avoids man-
ual labeling. By default, Cloudnet corrects the lidar-detected
liquid cloud depth using radar data, by extending a liquid
layer to cloud top if the detected cloud top by radar was less
than 500 m above the liquid layer base, even though no clear
sign of liquid is given due to the attenuation of the lidar sig-
nal. Here, to minimize the number of falsely classified liquid-
containing data points, this liquid extension to cloud top was
disabled.

3.3 Architecture of the machine learning model

The following section introduces the machine learning model
used to relate Doppler spectra morphologies to the presence
of liquid cloud droplets. The output of VOODOO is a prob-
ability distribution over a discrete set of two classes, i.e.,
“cloud droplets present” and “other targets”. The machine
learning approach utilizes ideas from computer vision by
means of image classification via a CNN (LeCun et al., 1989;
Krizhevsky et al., 2012). These methods learn the complex
structure in large data sets by using optimization strategies
such as gradient descent variants (Ruder, 2016) in combi-
nation with backpropagation (Kelley, 1960; Hecht-Nielsen,
1989) for optimizing the internal parameters. The aim is to
find a set of parameters that minimizes the error for predic-
tions.

A CNN classifier, implemented in PyTorch (Paszke et al.,
2019), is trained on cloud radar Doppler spectra morpholo-
gies to relate to the availability of liquid cloud droplets. Fig-
ure 3 shows the architecture of the VOODOO retrieval algo-
rithm, which is split into a feature extraction segment con-
sisting of multiple convolutional layers and a classification
segment consisting of two fully connected layers. Informa-
tion such as signal intensity, shape, temporal evolution, loca-
tion of peaks, and other morphological features of Doppler
spectra can be extracted by convolution layers. CNNs (Le-
Cun et al., 1989; Goodfellow et al., 2013; LeCun et al., 2015;
Goodfellow et al., 2016) are a specialized kind of neural net-

work for processing data that has a known, grid-like topology
like a 2D grid of data points, i.e., the time spectrogram. Us-
ing the terminology of Goodfellow et al. (2016, p. 330), each
of the convolution layers in Fig. 3 are comprised of multiple
stages: stride convolution (affine transformation) and detec-
tor stage (non-linear activation function). The 2D convolu-
tion operation extracts local features by convolving trainable
2D filters (kernels) with the input, along the velocity–time
axis (x–y axis). During the convolution operation the kernels
are shifted by two data points along the velocity axis (x axis),
called stride (Springenberg et al., 2014), to merge semanti-
cally similar features into one, hence reducing the size of the
previous layer by a factor of 2 in each layer. Additionally,
the third convolutional layer shifts the feature map by two
data points along the time axis (y axis). As the number of
extractable features increases from 16 to 256 per layer, the
spatial dimension decreases from (256, 6) to (8, 3); thus the
precise location of features gets less relevant in deeper layers.
The last convolutional layer is followed by two fully con-
nected layers which compute non-linear input–output map-
pings from the extracted 2D features. To add non-linearity
to the CNN model, the linear transformation (matrix–vector
product) in each layer is applied to a non-linear activation
function. The exponential linear unit (ELU) used for all hid-
den layers is a smooth continuous function and easy to dif-
ferentiate. ELU is defined as follows:

ELU(x)=
{
x, x ≥ 0,
α(exp(x)− 1), otherwise (3)

with default α = 1.0 and x ∈ [−1,1]. The softmax function
in the last layer provides a probability for the prediction of
the discrete set of two classes.

L= softmax(zj )= exp(zj )/
2∑
k=1

exp(zk), j = 1,2 (4)

Finally, the threshold p∗ controls the classification into cloud
droplets present (CD) if L > p∗ and cloud droplets not
present (noCD) if L≤ p∗. This parameter p∗ can be man-
ually adjusted by the user or computed automatically by
receiver operating characteristics, i.e., ROC-curve analysis
(Zou et al., 2007). Note that the output of the network should
not be interpreted as a probability density function, which
represents a notion of confidence. Instead it is a pseudo prob-
ability or likelihood for each class. For better readability the
term “pseudo” is omitted subsequently.

3.4 Training and validation set

The presented machine leaning technique is trained on 10 %
of DACAPO-PESO (Punta Arenas) data measured by the
RPG-FMCW-94-DP Doppler cloud radar. While larger train-
ing sets usually increase the performance in deep learning
models, no major advantages could be observed, when more
than 10 % of the available data set was used for training. The
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Figure 3. Illustration of the CNN architecture. The time spectrogram serves as input to the VOODOO model. Five feature extraction layers
follow the input layer performing strided-convolution operations. While the number of features which can be extracted increases from 16 to
256, the size of the feature maps shrinks from 128 by 6 to 8 by 3 pixels. The feature extraction is followed by two fully connected layers with
8 · 3 · 256= 6144 and 256 nodes. The output is a vector with two elements, with |y| = 1.

remaining 90 % of data from Punta Arenas and 100 % of data
obtained in Leipzig are used to validate the predictive perfor-
mance. For Leipzig, a list of 50 d was removed from the en-
tire data set, by filtering out days with clear sky only, the sole
presence of very thin clouds with LWP below 20 g m−2, pre-
cipitation lasting all day, artifacts in the radar spectra from a
nearby construction crane, and ceilometer observations that
are fully attenuated below 200 m. Isolated data points (speck-
les) are removed from the data set. Finally, the outer three
data points along the edge of each observed cloud were omit-
ted from the training and validation data set, to reduce the
effects of partial beam filling (radar sample volume partially
filled with atmospheric targets).

3.5 Training process

During training, VOODOO is fed by a time spectrogram and
outputs a vector of scores, one for each category. An objec-
tive function measures the error (or loss) between the output
and the desired target. Via a modified stochastic gradient de-
scent, the categorical cross-entropy loss function

J =−
∑
j

yj logqj , j = 1,2, (5)

is minimized, where qj = softmax(zj ) ∈ [0,1] and q0+q1 =

1 is the predicted pseudo-probability for class j , and yj ∈
{0,1}, where y0+y1 = 1, represents the one-hot-encoded la-
bels (see Sect. 3.1). One-hot encoding is used to convert the
categorical data (labels) to numerical data required by ma-
chine learning algorithms. To reduce the loss function J ,
the internal hyperparameters (kernels and fully connected
layer weights) are adjusted by applying the adaptive mo-
ment estimation (Adam) optimization method (Kingma and
Ba, 2017), which uses a stochastic gradient-based optimiza-

tion approach. Gradient descent (Ruder, 2016) in combi-
nation with backpropagation (Kelley, 1960; Hecht-Nielsen,
1989) adjusts the hyperparameters iteratively to minimize
J . Processing was done on a GPU workstation using four
NVIDIA RTX 8000 instruments. Training 10 epochs takes
approximately 15 min. However, the optimization plateaus
already after three epochs. The term epoch refers to one cycle
through the full training data set and can also be considered
the iteration of optimization.

3.6 Post-processing

In the last step, the raw VOODOO predictions L (Eq. 4) are
assigned to the original coordinates in the spatio-temporal
domain and convolved with the two-dimensional Gaussian
filter

G(x,y)=
1

2πσ 2 exp
(
−
x2
+ y2

2σ 2

)
, (6)

where x and y correspond to the time and range indices, re-
spectively, and σ = 1, to generate more coherent structures.
After classification into no cloud droplets present and cloud
droplets present using the p∗ threshold (see Sect. 3.3), all
data points with mean Doppler velocity below −3 m s−1 are
re-classified as no cloud droplets present. This value gives
a good compromise between physically reasonable (drizzle
and rain correspond to faster-falling hydrometeors) and the
influence of gravity waves, the latter being omni-present in
Punta Arenas (Radenz et al., 2021).

3.7 Performance validation

This section lists common measures for validation of the pre-
dictive performance of VOODOO. In the following, “CD”
refers to cloud droplets present samples (i.e., the positive
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class) and “noCD” to cloud droplets not present samples (i.e.,
the negative class). The confusion matrix C(p∗) summarizes
all counts of the correct and misclassified data samples for
each class. This two-by-two matrix consists of the numbers
of correctly identified CD (true positives, TP, hits) and noCD
(true negative, TN) samples on the main diagonal of the ma-
trix, as well as falsely classified noCD (false positive, FP,
false alarm) and CD (false negative, FN, misses) samples on
the off-diagonal, i.e.,

C(p∗)=
(

TP FP
FN TN

)
. (7)

The value of p∗, i.e., the probability threshold necessary for
classification as CD (see Sect. 3.3), is adjustable and con-
trols the ratio of false positive and false negative predictions.
Increasing p∗ increases the number of false negatives and de-
creases the number of false positives. Vice versa is true, if p∗

is decreased. The thresholds were selected manually after in-
vestigating the ROC curve (Zou et al., 2007), yielding good
balance between misses (FN) and false alarms (FP). The list-
ing below gives the performance scores used to evaluate the
retrieval, similar to Kalesse-Los et al. (2022).

1. Precision or positive predictive value (PPV) is a real
value between 0 and 1, where 1 is the perfect score.

Precision=
TP

TP+FP
, (8)

i.e., the fraction of how many predictions where cor-
rectly classified as CD (i.e., TP) and the sum of TP and
predictions falsely classified as CD (i.e., FP). In the con-
text of this work, it measures the amount of CD overes-
timation.

2. Negative predictive value (NPV) is a real value between
0 and 1, where 1 is the perfect score.

NPV=
TN

TN+FN
, (9)

i.e., the fraction of how many noCD predictions where
correctly classified as such (i.e., TN) and the sum of TN
and predictions falsely classified as noCD (i.e., FN). In
the context of this work, it measures the number of cor-
rectly identified noCD samples.

3. The recall or true positive rate (TPR) is a real value be-
tween 0 and 1, where 1 is the perfect score.

recall=
TP

TP+FN
, (10)

i.e., the fraction of TP and the sum of TP and liquid-
containing pixels, which were falsely classified as noCD
(i.e., FN). In the context of this work, recall measures
the amount of CD underestimation. The closer recall
gets to 1, the less likely it is missing an actual CD.

4. Selectivity or true negative rate (TNR) is a real value
between 0 and 1, where 1 is the perfect score.

Selectivity=
TN

TN+FP
, (11)

i.e., the fraction of TN and the sum of TN and noCD
samples, which were falsely classified as CD (i.e., FP).
As selectivity approaches 1, the number of false alarms
(FP) approaches 0.

5. Accuracy is a real value between 0 and 1, where 1 is the
perfect score.

Accuracy=
TP+TN

TP+TN+FP+FN
, (12)

i.e., the fraction of all correct predicted CD pixels and
the sum of all samples. In the context of this work it
measures the overall fraction of correct versus incorrect
predictions, e.g., accuracy = 0.75 if the retrieval cor-
rectly classifies three out of four input samples.

6. The correlation coefficient r2
LLT is the correlation be-

tween MWR–LWP and retrieved liquid layer thickness
(LLT), where LLT is the geometric extent of all liquid
layers above the instrument, i.e., the geometrical depth
of the retrieved liquid mask introduced by Luke et al.
(2010). All time series were smoothed with a box win-
dow of 10 min.

7. The correlation coefficient r2
LWP is the correlation be-

tween MWR–LWP and retrieved adiabatic liquid water
path LWPad: the MWR–LWP time series is correlated
with the retrieved adiabatic LWP time series LWPad,
computed from the spatio-temporal CD mask, temper-
ature, and pressure profiles from ECMWF using an adi-
abatic cloud parcel model introduced by Karstens et al.
(1994) for better physical interpretation. All time series
were smoothed with a box window of 10 min.

8. The influence of LWP and atmospheric turbulence on
the performance scores is investigated using the MWR
and an estimation of the rate at which turbulence
kinetic energy is transferred from larger eddies into
smaller ones and eventually dissolves into thermal en-
ergy, called eddy dissipation rate εDR. The derivation of
the method estimating the εDR from Cloudnet horizon-
tal and vertical wind speeds and radar mean Doppler
velocity was introduced by Borque et al. (2016). The
computation is done by an implementation developed
by Griesche et al. (2020).

9. Appendix B shows similarities in the distribution of pre-
dictions and the ground truth via the probability density
function (PDF) of TP, FP, FN, TN, CD, and noCD. The
distributions of six variables from radar and lidar obser-
vations (Ze, vD, βatt, εDR, LDR, T ) are investigated.
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4 Results and discussion

In this section, the predictive performance of the presented
retrieval is investigated. First, in Sects. 4.1 and A, detailed
analyses of two case studies from Punta Arenas and Leipzig
are presented. Secondly, statistics for the entire 18-month-
long data set are presented in Sect. 4.2. Table 4 shows an
overview of achieved performance scores and correlation co-
efficients for both case studies and statistics.

4.1 Case study Punta Arenas

Figure 4 shows the observations from 1 August 2019 in Punta
Arenas from a radar and lidar perspective. From 01:30 to
04:00 UTC, a mid-level stratiform cloud is present, which
begins to form light precipitation about 30 min after obser-
vation onset. High βatt (Fig. 4d) indicates a liquid cloud top
at about −15 ◦C in 3 km altitude, producing low amounts
of small precipitating ice particles indicated by low βatt <

10−7 m−1 sr−1 below the liquid layer. After 05:00 UTC, a
multi-layer mixed-phase cloud was observed, indicated by
high βatt (Fig. 4d), with liquid cloud base heights (LCBHs) of
1.3 and 2.8 km. From 06:00 UTC, the upper LCBH dropped
to 2 km and then started to rise again. At 07:15 UTC the liq-
uid layer continued to increase in altitude from 2.0–2.6 km
at 08:45 UTC. During this time the reflectivity values rang-
ing between −27 and +10 dBZ between 2.0–2.4 km altitude
indicate a population of larger ice particles. Several smaller
liquid-dominated clouds were observed by the ceilometer
around 04:45 UTC at 4.7 km with temperatures T <−25 ◦C,
and after 05:30 UTC at 1.2 km (T <−5 ◦C), and 08:30 UTC
at 0.5 km height (T < 0 ◦C), where only some data points ex-
ceed the minimum detection capabilities of the cloud radar.

Figure 5a shows the output of VOODOO with threshold
p∗ = 0.4 (see Table 4), which provides a good compromise
between FP and FN predictions. Light gray cells (L≤ 0.4)
indicate noCD volumes and L > 0.4 CD bearing, respec-
tively. A visual comparison between bands of high βatt in
Fig. 4d and predicted CD in Fig. 5a show good temporal
and spatial agreement, as indicated by the cloud base plotted
as red dots. Figure 5b shows a visual reference of CD false
alarms marked by FP and CD misses marked by FN. With an
accuracy= 0.890, almost 9 of 10 data points were correctly
classified. An individual look at precision= 0.86 shows a
false alarm rate (FAR= 1− precision) of only 14 %, while
a recall= 0.65 was achieved. Visible in Fig. 5b are TP (light
blue) and TN (light gray), where the VOODOO predictions
match the Cloudnet classification. In contrast, larger clusters
of FN data points (yellow) occur mostly at liquid cloud base
(02:00–04:00 UTC, at 2.7 km) and in thin pure liquid clouds
(05:00–06:00 UTC at 1.3 km), thus reducing the recall value.
Those FN predictions, which are responsible for the devia-
tion of the recall from 1, are expected due to the lower sen-
sitivity of the radar to liquid droplets compared to the lidar.
Another cause of the FN predictions could be that liquid-

only clouds or cloud volumes with low numbers of liquid
droplets produce fewer Doppler spectra features, e.g., single
peaks with low intensity or below noise floor or by superim-
posing the liquid peak on the much larger ice peak, which
makes the features of the liquid peak disappear (i.e., non-
separable from the ice). On the other hand, smaller clusters
of FP predictions (red) occur below the ceilometer cloud base
height (CBH). Those misclassifications are possibly caused
by a higher spectrum width likely due to atmospheric turbu-
lence. At the same time it should be noted that also Cloud-
net’s classification cannot be perfect even though it is used
as ground truth here. This limits the achievable maximum of
the quality metrics used in this study.

Note that there are approximately twice as many valid
noCD than CD samples available in both data sets. This im-
balance of the validation set makes the interpretation of per-
formance metrics more difficult. Therefore, performance of
VOODOO is validated on multiple binary classification met-
rics and independent observations from MWR. The LLT and
LWPad (calculated according to Karstens et al., 1994) both
correlate remarkably well with the measured MWR–LWP
(see Fig. 6), reaching values for LLT (0.79) and LWP (0.78).
In contrast, Cloudnet achieves significantly lower correlation
coefficients with respect to LLT (0.37) and LWP (0.49). The
geometric extent of liquid water layers retrieved with Cloud-
net is only meaningful for optically thin and single-layer
mixed-phase clouds, since the attenuated ceilometer signal
(i.e., 06:00–08:00 UTC) cannot cover the complete liquid CD
distribution in the atmosphere beyond lidar attenuation, thus
underestimating the thickness of deep liquid-containing lay-
ers (see: black line in Fig. 6a).

To illustrate the performance of VOODOO better, two
range spectrograms, βatt, and CD pseudo-probability plots
are shown in Fig. 7. In Fig. 7a, a bi-modal distribution is
observed at altitudes between 2.6–2.9 km along with high
ceilometer βatt ≈ 10−4 m−1 sr−1, indicating a population of
liquid droplets near cloud top and matching the prediction of
VOODOO with Cloudnet. Below 2.6 km, smaller ice crystals
are falling out of the mixed-phase cloud top, which are melt-
ing and form drizzle drops at approximately 1 km altitude.
Figure 7b shows the range spectrogram at 06:45:00 UTC.
Cloud top is detected at 4.3 km, showing a mono-modal
distribution at Doppler velocities of −1.5 to −0.5 m s−1.
At 3.3 km altitude, the spectrum width suddenly increases
rapidly, showing a skewed distribution with vD between
−1.0 and 0.0 m s−1. As the altitude decreases, the spectrum
splits into a clearly separable bi-modal distribution at alti-
tudes below 3.0 km, indicating a CD population at 0 m s−1

Doppler velocity. The ceilometer shows a peak with high
βatt ≈ 10−4 m−1 sr−1 at 2.2 km, matching the location of the
bi-modality in the Doppler spectrum at the liquid layer base.
Beyond an altitude of 2.4 km, the ceilometer is getting com-
pletely attenuated, such that Cloudnet’s liquid droplet re-
trieval is not reliable anymore. In contrast, VOODOO is
able to predict the entire range of the liquid layer from base
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Table 4. Binary classification performance metrics and correlation coefficients with respect to MWR–LWP and adiabatic LWP from cloud
liquid mask. Two case studies and the statistics from Punta Arenas and Leipzig are shown. The abbreviations C and S refer to case studies
and statistics for the full data set, respectively.

p∗ Precision NPV Recall Selectivity Accuracy r2
LLT r2

LWP
VOODOO/Cloudnet VOODOO/Cloudnet

Punta Arenas C 0.4 0.86 0.90 0.65 0.96 0.89 0.79/0.37 0.78/0.49
Leipzig C 0.3 0.91 0.67 0.32 0.98 0.70 0.80/0.48 0.76/0.47
Punta Arenas S 0.4 0.60 0.75 0.20 0.96 0.77 0.48/0.20 0.45/0.18
Leipzig S 0.3 0.64 0.75 0.31 0.96 0.73 0.50/0.24 0.48/0.22

Figure 4. Case study of 1 August 2019 in Punta Arenas, Chile. (a) Radar reflectivity factor Ze, (b) radar mean Doppler velocity vD, (c) radar
spectrum width σw , and (d) ceilometer attenuated backscatter βatt. Dashed lines depict the isotherm lines from ECMWF temperature profiles.
The green horizontal line at y axis= 0 indicates no rain was measured at ground. Solid vertical lines mark locations of the range spectrograms,
shown in Fig. 7.

(2.1 km) to top (3.1 km). Below, only one peak with increas-
ing vD is visible in the spectrogram, which indicates that
the larger ice crystals at higher Doppler velocities evaporate
while precipitating out of the mixed-phase layer. A second
case based on observations in Leipzig, Germany, is presented
in Appendix A.

4.2 Statistical analysis of the performance of
VOODOO

The statistical analysis is carried out by applying VOODOO
to 18 months of observations from the two different geo-
graphical sites, excluding −10 % training data from Punta
Arenas. This section discusses the ability of VOODOO to
infer the presence of CD from Doppler radar spectrum fea-
tures for a large data set spanning 1.5 years, which has not
been done in previous studies. The Punta Arenas data set
(PA) contains 220 d of observations (23 million data points),

https://doi.org/10.5194/amt-15-5343-2022 Atmos. Meas. Tech., 15, 5343–5366, 2022



5354 W. Schimmel et al.: Identifying cloud droplets beyond lidar attenuation

Figure 5. Probability of the presence of cloud droplets for case study of 1 August 2019 in Punta Arenas, Chile. (a) VOODOO output:
probability for CD. (b) VOODOO prediction status. Dashed lines depict the isotherm lines from ECMWF temperature profiles. Red dots in
(a) indicate the first ceilometer CBH. The green horizontal line at y axis= 0 indicates no rain was measured at ground. Solid vertical lines
mark locations of the range spectrograms, shown in Fig. 7.

Figure 6. Comparison of liquid water path (LWP) and liquid layer thickness (LLT) for the case study of 1 August 2019 in Punta Arenas,
Chile. LWP (left y axis, solid lines) and LLT (right y axis, dashed lines). The thin blue line corresponds to original MWR–LWP time
resolution and thick lines to 10 min smoothed data.

while the data from Leipzig (LE) count 342 d (30 million
data points). Figure 8 shows the total numbers of validatable
(lidar available) and non-validatable (no lidar available) data
points. The numbers of negative samples TN+FP and noCD
(i.e., ice, drizzle, or rain) are by far the most represented
classes. The ratio of TN+FP to TP+FN (i.e., the ratio of
validatable ice to liquid samples) is approximately 5 : 1 (PA)
and 3 : 1 (LE), whereas the ratio of noCD to CD (i.e., the ra-
tio of non-validatable ice and liquid samples) is 22 : 1 (PA)
and 9 : 1 (LE). Our new approach predicts additional +50 %
CD for PA and +100 % for LE beyond the lidar attenuation
height. Note that the distribution is very sensitive to the p∗

threshold introduced in Sect. 3.3.
Thresholds of p∗ for PA and LE are listed in Table 4. Two

individual values for p∗ were chosen, to keep the false posi-
tive rate (FPR= 1− selectivity) below 5 % and maximize the
number of correct predictions (TP and TN) while minimizing
false predictions (FP and FN). The last two lines of Table 4

summarize the results found for the statistical evaluation, cal-
culated with the sum of all valid classification results. The r2

columns represent the mean correlation coefficient over the
entire data set.

First, the performance is analyzed by means of relative fre-
quencies of occurrence for a specific score (i.e., precision,
recall) as a function of MWR–LWP. This gives an impres-
sion of how well VOODOO is able to reproduce the clas-
sification results provided by Cloudnet. The first column of
Fig. 9 shows that the precision values have a clustering close
to 1 over the whole LWP range. Nevertheless, the mean pre-
cision is 0.60 (PA) and 0.64 (LE). From this it follows that
VOODOO is able to accurately relate cloud radar Doppler
spectra features to CD presence, independently of LWP. The
third columns of Fig. 9 show that the majority of occur-
rences of the recall are below values of 0.3. With increas-
ing LWP, the recall score improves but generally stays quite
low. More in-depth analysis of the prediction data reveals that
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Figure 7. Range spectrogram (left panel), attenuated backscatter coefficient (right panel, solid black line, bottom x ticks), and CD probability
(right panel, solid blue line, top x ticks) profiles of 1 August 2019 in Punta Arenas, Chile. The dashed blue line highlights the decision
threshold p∗ for the presence of cloud droplets. Panels (a) and (b) are samples for two different points in time (see black vertical lines in
Figs. 4 and 5). The range spectrograms show bi-modal distributions (a) at 2.6–2.9 km and (b) at 2.1–2.9 km, coinciding in altitudes with the
large peaks in the attenuated backscatter profile and matching the peaks in the predictions. The black line in the right subplot of (b) displays
the attenuation of the ceilometer by total signal loss in the signal above 2.2 km altitude, while VOODOO is able to relate the bi-modal
signature (left panel) to the presence of droplets above 2.2 km, as can be seen by the matching peak with the CD probability (blue line).

Figure 8. Distribution of predicted lidar-validatable (TN, FN, TP,
FP) and non-lidar-validatable (noCD, CD) data points.

the majority of missed CD samples (FN), which reduce the
recall score, are found close to correctly identified CD sam-
ples (TP). Low recall is obtained for the uncertainty range
of the MWR–LWP (LWP< 25 g m−2), where clouds contain
almost no liquid water and the noCD samples predominate
10 to 1 over CD samples. The best scores are achieved for

LWP> 100 g m−2. A visual reference is given by the two
case studies in Figs. 5 and A2. These FNs are caused by the
lower sensitivity of the radar to smaller populations of liquid
cloud droplets or smaller sizes of cloud droplets compared
to the ceilometer. In particular thin (supercooled) liquid-only
clouds observed frequently over PA cause lower recall scores
for this site. However, the linear increase in recall score with
larger LWP values is more prominent in LE compared to PA,
mostly due to the lower p∗ threshold. The accuracy values
are 0.73 (LE) and 0.77 (PA). The accuracy scores (Fig. 9 col-
umn five) show most values are above 0.75, meaning three
out of four samples were correctly classified, independent of
LWP. Note that the LWP range below 50 g m−2 contains the
largest absolute number of occurrences in the histogram.

The second statistical evaluation is carried out by an-
alyzing the correlation coefficient r2

LWP between retrieved
MWR–LWP and LWPad for each day of observation. Fig-
ure 10 shows the relative frequency of occurrence as a func-
tion of r2

LWP values. Both sites display similar r2
LWP distri-

butions, with the CNN-based LWPad having stronger cor-
relations with the MWR–LWP than Cloudnet-based LWPad.
Median r2

LWP values µ for Cloudnet are 0.17 (PA) and 0.25
(LE), whereas VOODOO is able to improve the correlation
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Figure 9. Histograms of frequency of occurrence for each performance score as a function of LWP. The upper row shows Punta Arenas from
27 November 2018–29 September 2019, and the lower row shows Leipzig from 16 December 2020–6 March 2022. For all scores, a value of
1 represents the perfect score.

Figure 10. Relative frequency of occurrence for correlation coefficients of MWR–LWP and LWPad. (a) Punta Arenas from 27 November
2018–29 September 2019 and (b) Leipzig from 16 December 2020–6 March 2022. Median µ of r2

LWP given in the legend.

Atmos. Meas. Tech., 15, 5343–5366, 2022 https://doi.org/10.5194/amt-15-5343-2022



W. Schimmel et al.: Identifying cloud droplets beyond lidar attenuation 5357

of the LWP to 0.50 (PA) and 0.55 (LE). Despite the limits of
this validation method, this shows that VOODOO is able to
approximate the values of the MWR–LWP better compared
to Cloudnet because it detects cloud droplets beyond the li-
dar attenuation. Thus, VOODOO’s improved liquid detection
(amount and location) can potentially improve higher-level
retrieval products such as liquid water content. Note that the
method of Karstens et al. (1994) uses the adiabatic assump-
tion to calculate the liquid water path in combination with the
liquid water mask (time–height mask for droplets presence)
and ECMWF weather model data (temperature, air pressure,
and specific humidity). Since the adiabatic assumption is not
suitable in all cloud situations and the model data are subject
to uncertainties, the idea was to compare only the correlation
of both time series (MWR-LWP vs. LWPad of Cloudnet vs.
LWPad of VOODOO). Therefore, we decided not to compare
absolute values.

To evaluate the impact of turbulence on the VOODOO
predictions, the relative frequency of performance scores as
a function of turbulence eddy dissipation rate εDR within a
range of (−9,0) in units of log10 ([m2 s−3]) is displayed in
Fig. 11. Note that the majority of data points (> 95 %) range
between values of −7< log10(εDR) <−1. The precision for
PA and LE both shows most occurrences near a score of
1. However, the frequency of NPV scores near 1 decreases
slightly as εDR increases, which can be caused by reducing
the number of TNs or the increase in FN samples. Since re-
call performance improves slightly as the εDR increases, it
follows that the number of FNs is reduced; thus most sample
volumes containing no cloud droplets show low εDR. The ac-
curacy score is mostly influenced by TN values; thus it fol-
lows the trend of the NPV. The selectivity scores, for both
PA and LE, show a very narrow distribution near the perfect
score 1. We can conclude that the influence of turbulence on
the predictive performance of VOODOO is minor.

5 Summary and outlook

The supervised machine learning retrieval VOODOO is pre-
sented, which predicts the presence of cloud droplets from
cloud radar Doppler spectra. Time spectrograms are pro-
cessed by VOODOO, to directly predict a probability of
the presence or absence of cloud droplets. The model is
trained on long-term ground-based remote sensing obser-
vations from Punta Arenas in Chile. The a priori ground
truth is given by the Cloudnet algorithm, which is a multi-
instrument retrieval that processes radar, ceilometer, MWR,
and ECMWF forecast model data into higher-level products
(e.g., the atmospheric target classification). The performance
is validated in detail on two case studies from different ge-
ographical locations, i.e., Punta Arenas, Chile, and Leipzig,
Germany, located in the mid-latitudes of the Southern Hemi-
sphere and Northern Hemisphere, respectively. This is done
to test whether the trained CNN is also applicable for very

different orographic conditions and aerosol loads influencing
the occurrence of liquid-containing clouds and their proper-
ties over both sites. In addition to the case studies, for the
first time, long-term observations of both sites are used to
investigate the retrieval’s robustness to new data.

The case study shows the ability of VOODOO to extract
features from radar Doppler spectra and infer the presence of
CD for the desired type of mixed-phase clouds. Due to the
limitation of pixel-by-pixel comparison, instrument, and re-
trieval uncertainties, the design of the study does not allow a
perfect score of 1. Nevertheless, for the long-term observa-
tions, VOODOO achieves good precision (> 0.60) and ac-
curacy (> 0.73), confirmed indirectly by a strong correlation
between MWR–LWP and LWPad (> 0.45) compared to the
correlation with LWPad of Cloudnet (< 0.22). Due to lower
sensitivity of cloud radar to small liquid droplets compared to
lidar, the recall score is only< 0.2. Overall, more FN predic-
tions than FP predictions are responsible for this, with FNs
occurring more frequently at the lowest range gates of liq-
uid or mixed layers, or in thin and pure liquid layers (warm
or supercooled) with low LWP. Overall, VOODOO performs
best for (multi-layer) stratiform, deep mixed-phase cloud sit-
uations with LWP> 100 g m−2, where the number of liquid
layers and the liquid layer depth often extend far more than
previously assumed.

In conclusion, VOODOO performs best for (multi-
layer) stratiform, deep mixed-phase cloud situations with
LWP> 100 g m−2. From this analysis we learn that both
Cloudnet and VOODOO have their strengths and weak-
nesses. Clearly, Cloudnet’s lidar-based approach has an
advantage in detecting thin liquid water layers, whereas
VOODOO’s radar approach can be used primarily to reveal
hidden liquid water layers beyond lidar attenuation. Radar
observations during strong precipitation (Cloudnet rain flag
active), where no meaningful LWP can be retrieved from
MWR observations, suffer strongly from liquid attenuation,
and thus features in cloud radar Doppler spectra are less reli-
able (not shown). The thin (supercooled) liquid-only clouds
show less pronounced spectral features and thus are more
similar to single ice crystal peaks in the Doppler spectra and
are, as a result, often misclassified.

It has been demonstrated that the VOODOO method could
be a powerful addition to the existing Cloudnet target classi-
fication, making the detection of liquid layers beyond com-
plete lidar attenuation possible. Additional validation meth-
ods are needed to better quantify the performance. These
methods could include the comparisons of space-borne re-
mote sensing observations with predictions to add cloud-top
liquid-containing data points to the validation data set or air-
borne in situ measurements for hydrometeor target classifi-
cations and radiation measurements with radiative closure
studies (Barrientos Velasco et al., 2020). Note that all three
mentioned ideas introduce their own uncertainties.

The ability to detect liquid beyond lidar attenuation is a
major step in the field of Doppler spectrum-based analy-
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Figure 11. Histograms of frequency of occurrence for each performance score as a function of εDR. The upper row shows Punta Arenas from
27 November 2018–29 September 2019, and the lower row shows Leipzig from 16 December 2020–6 March 2022. For all scores, a value of
1 represents the perfect score.

sis of vertically pointing ground-based radar observations.
The described spectrum-based hydrometeor phase partition
methodology can be regarded as a modular component ap-
plicable to Doppler cloud radar spectra. A synergy of the
novel VOODOO and Cloudnet approaches would comple-
ment each other perfectly and is planned to be incorporated
into the Cloudnet algorithm in the near future.

Note that the outlined technique has been tailored to an
RPG-FMCW-94-DP cloud radar; other radars, ground-based
or even space-borne (if Doppler spectra are available), may
alter the quality of predictions. Therefore caution is advised
in the generalization of the procedure to other Doppler radar
systems. Still, the same architecture can simply be retrained
on the radar Doppler spectra from another cloud radar, if a
sufficiently large training data set is available.

Appendix A: Case study Leipzig

To test whether VOODOO can be transferred to another lo-
cation without re-training as suggested in Kalesse-Los et al.
(2022), another example case is illustrated. Figure A1 shows

observations for the second case study, which evaluates capa-
bilities on validation data from Leipzig, Germany. Between
14:00 and 19:00 UTC on 30 December 2020, a multi-layer
stratiform cloud situation was observed with cloud top at
1.2–1.5 km (T ≈−4 ◦C) for the first layer and 2.5–2.7 km
(T ≈−14 ◦C) for the second cloud layer. Both layers with
cloud-top temperatures below 0 ◦C contain supercooled liq-
uid water, clearly visible between 1.0–1.5 km altitude (high
values of βatt; see Fig. A1d).

Based on the ceilometer observations, the first cloud base
of a shallow low-level supercooled liquid cloud (12:30–
14:00 UTC at 1.2 km) is at 1 km (indicated by red dots in
Fig. A2a), which is 200 m below the predicted LCBH. The
base of the low-level supercooled liquid cloud increases af-
ter 14:00 UTC when a second mixed-phase cloud (14:00–
19:00 UTC) is observed with predicted liquid cloud top at
2.5 km. Further, smaller clouds at altitudes between 3.0–
3.5 km and cloud-top temperatures of −20 ◦C are predicted
to be cloud droplet bearing. These higher liquid-containing
layers that are predicted by VOODOO are sporadically ob-
served by the ceilometer, when it is able to penetrate the
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Figure A1. Case study of 30 December 2020 in Leipzig, Germany. (a) Radar reflectivity factor Ze, (b) radar mean Doppler velocity vD,
(c) radar spectrum width σw , and (d) ceilometer attenuated backscatter βatt. Dashed lines depict the isotherm lines from ECMWF temperature
profiles. The green horizontal line at y axis= 0 indicates no rain was measured at ground. Solid vertical lines mark locations of the range
spectrograms, shown in Fig. A4.

lower liquid layer at about 2.2–2.4 km and 3.5 km altitude.
This refers to the TP data points in Fig. A2b.

For this case study, only very few FPs at 17:45 UTC (at
0.75 km) and 18:30 UTC (at 2.2 km) were predicted (see
Fig. A2b), resulting in a high precision for this case of 0.91.
Predicted FN data points, approximately at CBH detected by
the ceilometer (see Fig. A2b, yellow pixel), result in a recall
score of 0.32. This effect is caused by cloud edge filtering
and lower radar sensitivity to liquid cloud droplets (i.e., the
ceilometer being able to detect smaller numbers of CD and
smaller CD). VOODOO achieves a high accuracy of 0.70.
Further, VOODOO displays a much better agreement with
temporal evolution of LLT and LWP compared to MWR–
LWP (see Fig. A3), achieving larger r2

LLT and r2
LWP of 0.80

and 0.76 compared to the values for Cloudnet (0.48 and 0.47;
see Table 4).

Figure A4 displays the range spectrogram, attenuated
backscatter coefficient, and probability profiles for two time
steps, indicated by vertical black lines in Figs. A1 and
A2. The liquid contribution to the bi-modal radar returns is
clearly visible in Fig. A4a at cloud top between 1.1–1.4 km.
Below 1.1 km, the bi-modal peak merges into one peak, re-
sulting in a mono-modal distribution. In the transition above

1.1 km VOODOO could infer the presence cloud droplets,
while the more sensitive ceilometer could detect the liquid
cloud base one range gate below. In contrast, below liquid
cloud base all noCD predictions were classified correctly by
VOODOO. After 14:00 UTC a multi-layer cloud situation is
observed and investigated through the second range spec-
trogram (Fig. A4b). At cloud top (2.5 km altitude and T =
−12 ◦C) the spectrum shows a skewed distribution with high
σw and vD at approximately 0 m s−1. VOODOO predicts the
probability for CD> 0.3. At 1.0–1.5 km (T =−5 ◦C) an-
other liquid bearing layer is revealed by VOODOO, indi-
cated by the bi-modal distribution, where the liquid contri-
bution shifts from 0 to 1 m s−1 within a 500 m range, indicat-
ing an updraft at liquid layer top. In both profiles, VOODOO
demonstrated the capability to infer the presence of CD also
for regions with higher spectrum width, even without clearly
separated spectral features (i.e., bi-modalities).

Appendix B: Probability density functions

A detailed discussion of the PDFs of differ-
ent variables is listed below, given the nota-
tion f ba , with a ∈ {Ze,vD,βatt,εDR,LDR,T } and
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Figure A2. Probability of the presence of cloud droplets for the case study of 30 December 2020 in Leipzig, Germany. (a) VOODOO output:
probability of cloud droplets present. (b) VOODOO prediction status. Dashed lines depict the isotherm lines from ECMWF temperature
profiles. Red dots in (a) indicate the first ceilometer CBH. The green horizontal line at y axis= 0 indicates no rain was measured at ground.
Solid vertical lines mark locations of the range spectrograms, shown in Fig. A4.

Figure A3. Comparison of liquid water path (LWP) and liquid layer thickness (LLT) for the case study of 30 December 2020 in Leipzig,
Germany. LWP (left y axis, solid lines) and LLT (right y axis, dashed lines). The thin blue line corresponds to original MWR–LWP time
resolution and thick lines to 10 min smoothed data.

b ∈ {TP,FP,FN,TN,CD,noCD} used to distinguish in-
dividual distributions for the two Figs. B1 and B2.

a. Radar reflectivity factor Ze in units of dBZ.
f TP
Ze

shows two distinct peaks at −30 dBZ for both PA
and LE (i.e., liquid-only clouds) and a second peak at
−10 dBZ for PA and −7 dBZ for LE (i.e., mixed-phase
clouds). f TN

Ze
shows a single peak centered at approx.

−23 dBZ for both PA and LE with large variance. f FP
Ze

for the PA data shows two separable peaks centered at
−28 dBZ (lower amplitude) and −2 dBZ (larger ampli-
tude). However, the two peaks in f FP

Ze
for LE data are

at−26 dBZ (liquid-dominated mixed-phase clouds) and
−7 dBZ (ice-dominated mixed-phase volumes). f FN

Ze
shows a slightly skewed distribution for both PA and
LE with peaks at −36 dBZ (LE) and −27 dBZ (PA), in-
dicating that most volumes with cloud droplets which
were not correctly predicted by VOODOO have low
reflectivity. Nevertheless, the LE data have a much

more positively skewed (mode<median<mean) dis-
tribution, containing a potential second peak within
[−18,−12] dBZ. f CD

Ze
for PA shows two peaks at −22

and −5 dBZ, where the latter one is likely associated
with ice or drizzle that is misclassified as CD. f noCD

Ze
show positive skewed distributions for both sites, cen-
tered at −18 dBZ for PA and −20 dBZ for LE.

b. Radar mean Doppler velocity vD in units of m s−1.
fvD shows similar morphologies (e.g., center values in
[−1,0], mono-modal) for all classes and both sites. Due
to the orographically induced gravity waves at PA, the
distributions show larger variance, where the peak in
f TP
vD

is located closer to 0 m s−1.

c. log10 of lidar attenuated backscatter coefficient βatt in
units of log10 (m−1 sr−1). f TP

βatt
and f FN

βatt
distributions

match very well for both LE and PA, showing negative
skewness with peaks between −4.7 and −4.4, respec-
tively. Most f TN

βatt
values correspond to low βatt values
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Figure A4. Range spectrogram (left panel), attenuated backscatter coefficient (right panel, solid black line, bottom x ticks), and CD probabil-
ity (right panel, solid blue line, top x ticks) profiles of 30 December 2020 in Leipzig, Germany. The dashed blue line highlights the decision
threshold p∗ for the presence of cloud droplets. Panels (a) and (b) are samples for two different points in time (see black vertical lines in
Figs. A1 and A2). The left panel shows bi-modal distributions (a) at 1.1–1.3 km and (b) at 0.8– 1.4 km, coinciding in altitudes with the large
peaks in the attenuated backscatter profile and matching the peaks in the predictions. More liquid is found by VOODOO in (b) at cloud top
(2.3–2.7 km) with enhanced spectrum width and centered near 0 m s−1.

Figure B1. Probability density functions (PDFs) for different variables obtained in Punta Arenas, Chile.

(expected for ice crystals), were PA data show a peak at
−7, which is noticeably lower than the f TN

βatt
peak for

LE data at −5.2. f FP
βatt

values show distributions with
peaks between [−5.0,−5.5], where potentially larger
numbers of small ice crystals were observed. Note that
f CD
βatt

and f noCD
βatt

refer to lidar observations beyond thin

liquid layers. Those data points are influenced by atten-
uation effects from liquid layers in lower altitudes and
thus were excluded from analysis.

d. log10 of eddy dissipation rate εDR in units of m2 s−3.
f TP
εDR

is centered at −3.5 and f TN
εDR

at −4.5 for both PA
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Figure B2. Probability density functions (PDFs) for different variables obtained in Leipzig, Germany.

and LE. However, the peak in the noCD distribution
shows the maxima at approx. −5.5. Assuming that liq-
uid bearing layers are usually more turbulent than pre-
cipitating ice crystals (Luke et al., 2010), a peak at lower
values in f noCD

εDR
predictions is expected. f FP

εDR
shows its

peak at large values of−3.8, matching the peak of f FP
εDR

.
f CD
εDR

and f FN
εDR

present a good fit. Overall, LE shows
higher turbulence values than PA.

e. Radar linear depolarization ratio (LDR) in units of
dB. The LDR distribution for PA fLDR shows two
distinct peaks at −30 (spherical particles) and −20
(columns) and three peaks at −30 (spherical), −20 to
−15 (columns), and −5 (insects embedded in clouds)
for LE.

f. model temperature T in units of ◦C.
The distributions of values in C (Eq. 7) and CD
show single peaks centered between −10 and 0. f noCD

T

spreads over a larger T range of [−60,20] that is indica-
tive of regions where ice particles (noCD) are detected
for T < 0 and drizzle or rain at T > 0.
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Clouds and Trace Gases (ACTRIS) and are available
from the ACTRIS Data Centre using the following link:
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