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Abstract. Despite recent progress, satellite retrievals of an-
thropogenic SO2 still suffer from relatively low signal-to-
noise ratios. In this study, we demonstrate a new machine
learning data analysis method to improve the quality of
satellite SO2 products. In the absence of large ground-truth
datasets for SO2, we start from SO2 slant column densi-
ties (SCDs) retrieved from the Ozone Monitoring Instrument
(OMI) using a data-driven, physically based algorithm and
calculate the ratio between the SCD and the root mean square
(rms) of the fitting residuals for each pixel. To build the
training data, we select presumably clean pixels with small
SCD / rms ratios (SRRs) and set their target SCDs to zero.
For polluted pixels with relatively large SRRs, we set the
target to the original retrieved SCDs. We then train neural
networks (NNs) to reproduce the target SCDs using predic-
tors including SRRs for individual pixels, solar zenith, view-
ing zenith and phase angles, scene reflectivity, and O3 col-
umn amounts, as well as the monthly mean SRRs. For data
analysis, we employ two NNs: (1) one trained daily to pro-
duce analyzed SO2 SCDs for polluted pixels each day and
(2) the other trained once every month to produce analyzed
SCDs for less polluted pixels for the entire month. Test re-
sults for 2005 show that our method can significantly reduce
noise and artifacts over background regions. Over polluted
areas, the monthly mean NN-analyzed and original SCDs
generally agree to within ±15 %, indicating that our method
can retain SO2 signals in the original retrievals except for
large volcanic eruptions. This is further confirmed by run-

ning both the NN-analyzed and original SCDs through a top-
down emission algorithm to estimate the annual SO2 emis-
sions for∼ 500 anthropogenic sources, with the two datasets
yielding similar results. We also explore two alternative ap-
proaches to the NN-based analysis method. In one, we em-
ploy a simple linear interpolation model to analyze the orig-
inal SCD retrievals. In the other, we develop a PCA–NN
algorithm that uses OMI measured radiances, transformed
and dimension-reduced with a principal component analysis
(PCA) technique, as inputs to NNs for SO2 SCD retrievals.
While the linear model and the PCA–NN algorithm can re-
duce retrieval noise, they both underestimate SO2 over pol-
luted areas. Overall, the results presented here demonstrate
that our new data analysis method can significantly improve
the quality of existing OMI SO2 retrievals. The method can
potentially be adapted for other sensors and/or species and
enhance the value of satellite data in air quality research and
applications.

1 Introduction

Sulfur dioxide (SO2) and its oxidation product in the atmo-
sphere, sulfate aerosols, have significant impacts on air qual-
ity, visibility, ecosystems, and the weather and climate. For
over 2 decades, spaceborne hyperspectral ultraviolet (UV)
instruments (e.g., Eisinger and Burrows, 1998; Krotkov et
al., 2006; Nowlan et al., 2011; Theys et al., 2017) have been

Published by Copernicus Publications on behalf of the European Geosciences Union.



5498 C. Li et al.: Machine learning analysis of OMI SO2

providing global observations of anthropogenic SO2 sources
such as coal-fired power plants, metal smelters, and the oil
and gas industry (e.g., Fioletov et al., 2016; McLinden et
al., 2016; Zhang et al., 2019). More recently, the quality of
satellite SO2 data products has substantially improved thanks
to the development of data-driven retrieval techniques. In
particular, the algorithm based on principal component anal-
ysis (PCA) (Li et al., 2013, 2017a, 2020) and the covariance-
based retrieval algorithm (COBRA, Theys et al., 2021) have
helped to reduce the noise and artifacts of SO2 retrievals
from several sensors including the Ozone Monitoring Instru-
ment (OMI), Ozone Mapping and Profiler Suite (OMPS),
and TROPOspheric Monitoring Instrument (TROPOMI), en-
abling the detection and quantification of relatively small
point sources (e.g., Fioletov et al., 2015; Theys et al., 2021).

Despite these progresses, satellite remote sensing of an-
thropogenic SO2 remains challenging. The signal of an-
thropogenic SO2 is relatively weak compared with volcanic
sources. With an atmospheric lifetime of ∼ 1 d (e.g., Lee et
al., 2011), SO2 emitted from human activities is also more
concentrated in the boundary layer, where the sensitivity of
satellite instruments is limited by the low surface albedo,
strong Rayleigh scattering, and interferences from O3 ab-
sorption in the UV (e.g., Krotkov et al., 2008). As a result,
the noise in satellite SO2 retrievals is relatively large even
for data-driven algorithms. For example, the standard devi-
ation (1σ noise) of OMI PCA SO2 slant column densities
(SCDs) over the remote Pacific is ∼ 0.2–0.3 DU (Dobson
unit, 1 DU= 2.69× 1016 molecules cm−2, Li et al., 2020),
which is far greater than the typical SCDs retrieved outside
the most polluted areas (e.g., Persian Gulf, eastern China,
and Norilsk, Russia). The retrieval noise can be reduced
by spatially and temporally averaging the data (Krotkov et
al., 2008). However, relatively small but noticeable artifacts
still exist in monthly or annual mean OMI SO2 (e.g., nega-
tive values over arid and semi-arid areas), indicating system-
atic biases that cannot be averaged out. While there was little
drift in the mean OMI SO2 SCDs over remote regions from
2005 to 2019, the retrieval noise grew by ∼ 10 % during the
same period (Li et al., 2020), presumably due to instrument
degradation. With the recent large decreases in SO2 emis-
sions and signals in many regions (e.g., Krotkov et al., 2016;
Li et al., 2017b), the increase in retrieval noise makes the
analyses and applications of satellite SO2 data even more
challenging, especially for long-term monitoring. It is thus
imperative to further enhance the quality of satellite SO2 data
products.

In recent years, machine learning has emerged as a pow-
erful tool in satellite remote sensing of atmospheric compo-
sition. Capable of incorporating large, diverse datasets and
modeling complex, nonlinear functions, techniques such as
neural networks (NNs) and random forests (RFs) have been
utilized to solve various problems. For instance, a number
of studies trained NN or RF models to infer surface concen-
trations of pollutants from satellite observations, including

particulate matter (e.g., Huang et al., 2021; Liu et al., 2019;
Zheng et al., 2021), NO2 (e.g., Chan et al., 2021), and SO2
(e.g., Zhang et al. 2022). NNs have also been used to speed
up radiative transfer calculations (e.g., Castellanos and da
Silva, 2019; Nanda et al., 2019) and to retrieve O3 profiles
(e.g., Müller et al., 2003; Xu et al., 2017) and total columns
(Müller et al., 2004), isoprene amounts (Wells et al., 2020),
and aerosol layer height (Chimot et al., 2017). For SO2, De
Santis et al. (2021) demonstrated an NN retrieval algorithm
using the operational TROPOMI product for training in their
case study of Mt. Etna. Piscini et al. (2014) attempted NN-
based SO2 and volcanic ash retrievals using thermal infrared
measurements from MODIS (the Moderate Resolution Imag-
ing Spectroradiometer). Hedelt et al. (2019) also developed
near-real-time volcanic SO2 height retrievals using the full-
physics inverse learning machine (FP-ILM) method, a tech-
nique later adapted for OMI by Fedkin et al. (2021). While
these studies have demonstrated the potential of machine
learning for SO2 retrievals, they all focus on volcanic SO2.
To our knowledge, so far there have been no published stud-
ies demonstrating the use of machine learning techniques for
anthropogenic SO2 retrievals.

A major obstacle in developing machine learning re-
trieval algorithms for anthropogenic SO2 is the lack of high-
quality, ground-truth training data. As mentioned above, ex-
isting satellite SO2 products provide global coverage, but the
signal-to-noise ratios are typically small for anthropogenic
sources. Ground air quality monitors generally offer good
data quality and long-term measurements, but they do not
represent the entire atmospheric column. Aircraft measure-
ments and surface-based remote sensing instruments (e.g.,
MAX-DOAS) have been used to evaluate satellite retrievals,
but they are quite sparse. The FP-ILM method circumvents
this data availability issue by using a large set of model-
simulated synthetic radiance spectra in training. However,
the models may not fully represent the various geophysical
processes and instrument characteristics that affect satellite
measurements. This can lead to substantial errors, and FP-
ILM retrievals of volcanic SO2 height are currently limited
to satellite pixels with sizable SO2 amounts (> 20 DU).

Here, we introduce a new data analysis method to further
improve the quality of satellite-retrieved SO2. In the absence
of sufficient ground-truth data, we compile our training data
by analyzing existing OMI SO2 SCD retrievals and the as-
sociated fitting errors, assuming that retrievals with greater
SCDs and smaller fitting errors can be trusted more than
those with smaller SCDs and larger errors. This allows us
to train NNs to reduce noise and artifacts in the original
retrievals while retaining SO2 signals over major emission
source areas. The rest of the paper is organized as follows:
Sect. 2 describes our methodology and setups for NN train-
ing. Section 3 provides some example results. This is fol-
lowed by a more detailed discussion on the NN-analyzed
SCDs in Sect. 4 and conclusions in Sect. 5.
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2 Data and methodology

The flowchart in Fig. 1a presents an overview of our data
analysis method. We start from existing OMI PCA SO2
retrievals (Sect. 2.1) and calculate the ratio between the
SCD and the root mean square (rms) of the fitting resid-
uals (SCD / rms ratio, SRR) for each pixel, as well as the
statistics of the SRRs for the entire month. This provides
input to a data classification scheme (Fig. 1b, Sect. 2.2)
that assigns OMI pixels from each day into different groups
(“clean”, “polluted”, “in between”, and “high SRR”). The
pixels within each group are then either processed with one
of the two neural networks (pre-trained NN1 for clean and
in-between pixels, daily trained NN2 for polluted pixels;
Fig. 1c, Sect. 2.3) or retain their original retrieved SCDs (for
high-SRR pixels). In the end, the OMI pixels from different
groups are merged into the final analyzed SCD dataset.

2.1 Analysis of OMI SO2 data

To demonstrate our methodology, we use data from OMI,
a Dutch–Finnish UV–visible spectrometer that has been fly-
ing on the National Aeronautics and Space Administration
(NASA) Aura spacecraft in a Sun synchronous orbit since
2004 (Levelt et al., 2018). OMI measures backscattered so-
lar radiation between 270 and 500 nm in the local afternoon
(local Equator crossing time: ∼ 13:45) at a relatively high
spatial (13× 24 km2 at nadir) and spectral (∼ 0.5 nm) reso-
lution. We focus on the year 2005, when all cross-track posi-
tions (rows) of OMI’s two-dimensional detectors were taking
nominal measurements, providing daily global coverage.

For SO2 data, we use SCDs retrieved from the NASA
version 2 OMI standard SO2 algorithm based on the PCA
spectral fitting technique. The algorithm has been described
in detail elsewhere (Li et al., 2020) and is only briefly
introduced here. The algorithm uses OMI-measured Sun-
normalized Earthshine radiances within the spectral range of
310.5–340 nm and processes each row of individual OMI or-
bits separately. The ∼ 1600 OMI pixels from a given row in
a given orbit are first filtered to exclude those with large solar
zenith angles (SZA> 75◦) or potentially strong SO2 signals
(e.g., volcanic plumes by examining the ozone residuals at
313 and 314 nm as well as 314 and 315 nm wavelength pairs;
see Li et al., 2017a, for details). Next, the spectra of the re-
maining pixels are analyzed utilizing a PCA technique to ex-
tract spectral features (principal components, PCs). The lead-
ing PCs that account for the most spectral variances are typ-
ically associated with geophysical (e.g., O3 absorption and
rotational Raman scattering, RRS) or instrumental (e.g., dark
current, wavelength shift) factors that interfere with SO2 re-
trievals. For each pixel, up to 30 leading PCs, along with the
SO2 cross sections, are fit to the measured radiances to esti-
mate the SO2 SCD while minimizing the interferences. This
multi-step (data filtering, PCA, and spectral fitting) proce-
dure is iterated a few times. To avoid collinearity in fitting,

the PCs are also examined to exclude those potentially con-
taining SO2 spectral signatures. For this study, the standard
algorithm has been modified to use the new collection 4 OMI
level 1B (L1B) radiance and irradiance data instead of the
collection 3 data for the current standard OMI SO2 product.
No obvious differences were found between the SCDs re-
trieved from the two collections. In addition, the rms of the
fitting residuals (i.e., the differences between the measured
and the fit-normalized radiance spectra) for each pixel has
been added to the output.

In order to compare the SO2 signal vs. the fitting error,
we calculate the SCD / rms ratio (SRR) for each pixel. The
pixel-level SRRs are also gridded into monthly mean (SRRm)
at 0.25◦× 0.25◦ resolution (Fig. 2). At middle and low lat-
itudes, the overall spatial distribution of SRRm (Fig. 2b) is
quite similar to that of the monthly mean SCDs (Fig. 2a). On
the other hand, the bias in SRRm is smaller at high latitudes
due to generally greater fitting errors at larger SZAs, allow-
ing us to better distinguish polluted areas from background
regions. In the following steps (Sect. 2.2 and 2.3), SRRm is
utilized as an indicator of the likelihood of an OMI SO2 re-
trieval over a certain area to represent a positive SO2 value.
For each day of the month, we also calculate the mean and
standard deviation of SRRs for 3◦ latitude bands using all
pixels within each band after removing outliers (SRRs out-
side ±5σ from the mean). The monthly medians of the daily
mean (SRR) and standard deviation (σSRR) are then taken
from each latitude band as inputs to the OMI pixel classifica-
tion scheme (Sect. 2.2).

2.2 Classification of OMI pixels

The purpose of the pixel classification scheme (Fig. 1b) is
to compile a training dataset by selecting pixels in two cat-
egories: (1) the first for clean pixels in which the retrieved
SCDs are relatively small while the fitting errors are rela-
tively large (i.e., negative or small positive SRRs) so that
they can be considered largely SO2-free and (2) the second in
which the retrieved SCDs are large while the fitting errors are
relatively small (i.e., large SRRs). In this category for pol-
luted pixels, the retrieved SCDs are assumed to be close to
the truth. There are two additional categories. The third is for
pixels that fall between the clean and polluted categories. For
these pixels, an unambiguous classification cannot be made
and they are excluded from the training dataset. The fourth
category (high SRR) is for pixels that have very large SRRs
(> 300). Such pixels are few but are also excluded from the
training, as they tend to have a disproportionally large influ-
ence on the trained NNs.

In addition to the SRRs of individual OMI pixels, the
classification scheme also takes into account the location
(latitude–longitude) of the pixels, as well as the general per-
formance of the PCA algorithm for the latitude bands in
which they are located. A pixel with a specific SCD / rms
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Figure 1. (a) Flowchart of the SO2 analysis method. (b) Scheme for classification of OMI pixels as “clean”, “polluted”, “in between”, and
“high SRR”. (c) Setups of the neural networks for SO2 SCD analysis.

ratio of SRRi is considered to be polluted if

SRRi > SRR+ a1σSRR . (1)

The pixel would be considered to be clean if

SRRi < SRR+ a2σSRR , (2)

where SRR and σSRR are the monthly medians of the daily
mean and standard deviation of SRRs for the corresponding
latitude band, respectively. a1 and a2 are scaling factors (see
Fig. 1b for values) that have been adjusted through trial and
error in order to (1) minimize the artifacts in NN-analyzed
SCDs over background areas and (2) maximize the retained
original SO2 signals over polluted areas. Both factors depend
on the location of the pixels and the monthly mean SRRs
(SRRm). As shown in Fig. 1b, a1 and a2 are large if the pixel
is located in an area with a small SRRm (< 3). In this case,
the area is generally unpolluted and the likelihood of a pixel

containing a positive SO2 value is low. Thus, more pixels
are classified as clean. On the other hand, for polluted ar-
eas with large SRRm (> 5), both a1 and a2 are kept small
so that more pixels would be classified as polluted. For areas
that are moderately polluted (i.e., 3< SRRm < 5), a1 and a2
are linearly interpolated based on the SRRm. One may also
notice that a1 and a2 are smaller for low (30◦ S–30◦ N) and
middle (30–60◦ S and 30–60◦ N) latitudes than for high lat-
itudes. This helps to reduce the positive bias in the original
SCDs near the northern edge of the domain (Fig. 2a). We also
tested a simple classification scheme with constant a1 and a2
everywhere, and we found that it produces relatively large
positive biases over high latitudes and negative biases over
low-latitude source areas compared with the more compli-
cated scheme described above. It should also be pointed out
that the areas affected by the South Atlantic anomaly (SAA)
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Figure 2. (a) Monthly mean OMI SO2 SCDs for March 2005 showing enhanced SO2 signals over major anthropogenic source areas (e.g.,
China, the eastern US, India, and South America) as well as degassing volcanoes. Note the positive bias at northern high latitudes. (b) Monthly
mean SCD / rms ratio (SRR) from the same sample of OMI pixels as in panel (a). The SRR map also shows major SO2 sources but has
reduced bias at high latitudes compared with the SCD map.

are not subject to classification and are excluded from the
training dataset.

Using the classification scheme, one can also develop a
simple method to reduce retrieval artifacts by assuming that
clean pixels should have zero SCDs, while polluted pixels
should retain their original SCDs, and by estimating SCDs
for pixels that fall in between through a linear interpolation
(between zero and the original SCDs). As will be demon-
strated in Sect. 4.4, such an approach produces negative bi-
ases over polluted areas. It is thus advantageous to employ
the more complex NN-based method for the present study.

2.3 Training of neural networks

For training data, we use the OMI pixels identified as ei-
ther clean or polluted by the classification scheme. For a
typical day, approximately ∼ 800000 out of ∼ 1 million

OMI pixels are classified as clean and ∼ 10000 (∼ 1 %) as
polluted. Given the scarcity of ground-truth SO2 data, we
set the training target (SCDtarget) to zero for the clean pix-
els and to the original SCDs for the polluted pixels. Note
that unlike the PCA spectral fitting algorithm, data from all
60 rows are pooled together in the training so that a rela-
tively large sample of polluted pixels is available. We also
include several candidate predicators in the training data, in-
cluding SCD / rms ratios for the individual pixels (SRRi), the
monthly mean SCD / rms ratios (SRRm) where the pixels are
located, the cosines of solar zenith angles (SZA, θ0), view-
ing zenith angles (θ ), and phase angles (φ), the O3 column
amounts from the OMI total O3 product (OMTO3, Bhar-
tia, 2005), and the scene reflectivity (R) at 354 nm from
the OMI Raman cloud product (OMCLDRR, Joiner and
Vasilkov, 2006). The function of a neural network (NN) is
then to use the input predictors or features to predict the out-
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Table 1. The correlation coefficient (r) and root mean square error
(RMSE) between the NN-analyzed OMI SO2 SCDs (SCDNN) us-
ing different predictors and the target SCDs (SCDtarget). The NNs
are trained using data from 5, 10, 15, 20, and 25 July 2005. The
comparisons shown here are for pixels from the same days but not
included in the training.

Predictors r RMSE
(DU)

SRRi 0.642∗ 0.180∗

SRRi +SRRm 0.958 0.0517
SRRi +SRRm+ θ 0.962 0.0491
SRRi +SRRm+R+ θ 0.968 0.0451
SRRi +SRRm+R+ θ0+ θ 0.976 0.0393
SRRi +SRRm+R+ θ0+ θ +φ 0.976 0.0392
SRRm+R+ θ0+ θ +φ+O3 0.793 0.111
SRRi +R+ θ0+ θ +φ+O3 0.978 0.0374
SRRi +SRRm+R+ θ0+ θ +φ+O3 0.976 0.0388

∗ Results shown are from a simple linear regression analysis.

put SCDtarget:

SCDtarget = fNN (SRRi,SRRm,θ0,θ,φ,R,O3) . (3)

To optimize the set of predictors, we carried out a number
of tests using different combinations (see Table 1 for ex-
ample results). Among the predictors, SRRi is well corre-
lated with SCDtarget and has the largest impact on the per-
formance of the NNs. Indeed, the NN without SRRi pro-
duces the lowest correlation coefficient (r) and the largest
root mean square error (RMSE) between the analyzed SCDs
(SCDNN) and SCDtarget (Table 1). SRRm provides geospa-
tial context for the NNs so that higher SCDs tend to be as-
signed to polluted areas. In the particular example in Ta-
ble 1, a simple NN using just SRRi and SRRm as predictors
produces SCDNN that agrees reasonably well with SCDtarget
(r = 0.958, RMSE= 0.0517 DU). The angles, O3 column
amounts, and scene reflectivity all affect the signal-to-noise
ratio of OMI measurements and the quality of SO2 retrievals
(Li et al., 2020). Adding them as predictors generally leads
to small but noticeable improvements in the performance of
the NNs (Table 1). While the NN with all seven predictors
has slightly worse performance than the NN without SRRm
for this case, including SRRm as a predictor helps to re-
tain signals over SO2 source areas. We also tested additional
predictors (e.g., the terrain pressure and the scene pressure)
and found no discernible improvements in the overall perfor-
mance of the NNs. Hereafter we use all seven predictors as
specified in Eq. (3) in the NNs.

The architecture of the NNs in this study (Fig. 1c) is sim-
ilar to that employed by Joiner et al. (2021, 2022) for re-
construction of RGB images from hyperspectral radiances.
A similar architecture has also been used to capture changes
in gross primary production (GPP) from satellite reflectance
data (Joiner and Yoshida, 2020). Briefly, the artificial feed-

forward NNs are implemented in IDL (Interactive Data Lan-
guage) and contain two hidden layers, each with 14 nodes
(twice the number of predictors), and an output layer with
one node. Experiments using more (up to 30) nodes in each
hidden layer yield little difference in the performance of the
NNs. The activation functions are a soft sign for the first hid-
den layer, a logistic (sigmoid) for the second hidden layer,
and a bent identity for the output layer. If we replace the acti-
vation functions in both hidden layers with ReLU (Rectified
Linear Unit), the NNs converge faster in training but increase
the SCDs over background areas by∼ 0.01–0.02 DU (Fig. S1
in the Supplement). An adaptive moment estimation (Adam)
optimizer (Kingma and Ba, 2014) with a learning rate of 0.1
is used to minimize the error. Inputs and outputs are normal-
ized so that they each have a mean of zero and a unit standard
deviation.

For each month, we train a neural network (NN1, Fig. 1)
utilizing data from 5 d (the 5th, 10th, 15th, 20th, and 25th
days of the month). Half of the clean and polluted pixels are
used in the training and the rest for evaluation. We notice
that NN1 reproduces SCDtarget well for clean pixels and also
for polluted pixels that have SCDs up to ∼ 4–5 DU, but it
produces a low bias for larger SCDs. This is likely due to the
imbalance between the clean and polluted categories in the
training data. To mitigate this issue, we use the pre-trained
NN1 only for clean and in-between pixels (Fig. 1a) and a
separate neural network (NN2) for polluted pixels from each
day (Fig. 1a). NN2 has the same architecture as NN1 but is
trained daily with half of the polluted pixels. Alternatively,
we can also train NN2 using data from multiple days and
apply the pre-trained multi-day model to the entire month.
Compared with the daily trained NN2, SCDNN produced by
the multi-day model is similar but slightly lower over some
polluted areas (e.g., eastern China). To maximize the retained
SO2 signals over those regions, we use daily trained NN2 in
the present study.

In the final step (Fig. 1a), the SCDNN outputs from NN1
and NN2 are merged with the original SCDs for high-SRR
pixels to produce the final NN-analyzed SCDs.

3 Results

3.1 Daily comparisons of SO2 SCDs

In Fig. 3, we compare the NN-analyzed SO2 SCDs (SCDNN)
and the target SCDs (SCDtarget) from 16 January, April, July,
and October 2005 for independent pixels that are not part
of the training. There is generally good agreement between
SCDNN and SCDtarget, with r > 0.93 and RMSE at ∼ 0.02–
0.03 DU for all 4 d. The vast majority of clean pixels as
identified by the classification scheme have SCDNN between
−0.1 and 0.1 DU, indicating substantial reduction in the re-
trieval noise compared with the original retrievals (1σ noise
of ∼ 0.2–0.3 DU), although a small fraction of the clean pix-
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els still have SCDNN as large as ±0.5 DU. The slopes from
the linear regression analysis are between 0.95 and 0.98, sug-
gesting slight underestimates in SCDNN. There is also some
scatter for the polluted pixels, particularly at higher SCDs
(> 2 DU). The number of pixels having large SCDtarget is rel-
atively small, and this limit in the training data may affect
the performance of NNs under high-SCD conditions (such
as for volcanic plumes). We repeated the analysis for the
whole year and found similar results for most days. On aver-
age, the correlation coefficient from the daily comparisons
is 0.948± 0.0309 (hereafter results are shown as mean ±
standard deviation) and the RMSE is 0.0343± 0.0194 DU,
while the slope is 0.966±0.0409. There are 4 d with RMSE>
0.1 DU (6 April, 11 June, 13 July, and 14 August). All four
have relatively large errors over areas affected by volcanic
plumes, again suggesting that the NN performance may de-
teriorate at high SCDs. Overall, the comparisons here point
to quite good performance of the NNs in reproducing the tar-
get SCDs.

Compared with the original SCDs, the NN-analyzed SCDs
have highly reduced noise and artifacts over background ar-
eas and largely retain SO2 signals over polluted regions.
This is evident from Fig. 4, which shows the original SO2
SCDs, the NN-analyzed SCDs, their differences, and the
mean SCDs for different latitude bands over generally clean
areas (monthly mean SRR< 3) for 16 April 2005 as an ex-
ample. As can be seen from the figure, the NN-analyzed
SCDs show little variation with latitude compared with the
original PCA retrievals (Fig. 4d). The differences between
the two (Fig. 4c) are similar to the original SCDs (Fig. 4a)
over most background areas, as ∼ 80 % of the pixels are
identified as clean and have SCDNN within ±0.1 DU. The
differences are quite small over polluted regions (e.g., east-
ern China, Sichuan Basin, Norilsk), as pixels over those ar-
eas tend to be classified as polluted and have SCDNN close
to their original retrievals. It is worth mentioning that even
though the SAA-affected areas are excluded from training,
the analyzed SCDs over those areas still show smaller noise
than the original ones. One potential reason is that retrievals
over the SAA areas tend to have relatively large rms, and the
use of SRRs partially cancels out the relatively noisy SCDs.

3.2 Comparisons of monthly SO2 SCDs

The monthly maps in Fig. 5 for March 2005 show consis-
tent results with the daily comparisons in Sect. 3.1. While
the monthly mean SCDs from the original PCA retrievals
(Fig. 5a) are close to zero for most background areas, bi-
ases are evident over certain regions. For example, there are
patches of negative SCDs (approximately−0.1 DU) at∼ 40–
60◦ N and over the oceans near the Equator. Another notice-
able feature is the negative bias over the relatively bright arid
and semi-arid land surfaces such as the Sahara, the Arabian
peninsula, and the Taklimakan and Gobi deserts. It is possible
that the retained PCs (derived from hundreds of pixels from

each OMI row) do not fully capture certain interfering fac-
tors for those areas. The exact reasons for these artifacts are
unknown and beyond the scope of the present study. In any
case, they are largely removed through our NN-based analy-
sis (Fig. 5b). Meanwhile, there is no obvious difference be-
tween the original and analyzed SCDs over major SO2 source
areas (Fig. 5c), which is evidence that the NNs have learned
to preserve the SO2 signals over those areas.

One may notice that outside the source regions, the dif-
ference map in Fig. 5c is not identical to the original SCD
map in Fig. 5a. For example, the differences are slightly more
negative than the original SCDs over parts of Canada, Mon-
golia, and Russia. Most pixels have SCDNN near zero, but
some pixels with noisy, positive original SCDs could be mis-
classified as polluted, resulting in a small positive bias in
SCDNN for these areas. This is also noticeable in Fig. 5d that
shows the mean original and NN-analyzed SCDs within 1◦

latitude bands over clean areas. The NN SCDs have gener-
ally less structure, indicating reduced artifacts, but a positive
bias of ∼ 0.02 DU can be found north of 60◦ N. Mean SCD
maps for other months (January, April, July, October 2005;
see Fig. S2) show quite similar results. For areas and/or peri-
ods strongly influenced by relatively large volcanic eruptions
(e.g., the Sierra Negra, Galapagos Islands, eruption in Octo-
ber 2005), the NNs have difficulty completely reproducing
the strong SO2 signals. This again points to the slightly dete-
riorated performance of NNs under high-SO2 conditions, as
already discussed.

A close-up look at the NN-analyzed SCDs and their dif-
ferences from the original SCDs over eastern China is given
in Fig. 6. For polluted areas (analyzed SCDs> 0.15 DU), the
relative differences are typically within ±20 %, with a mean
of 4 % (with the original SCDs being greater). For back-
ground areas, the relative differences are close to ±100 %
as expected for clean pixels. Comparisons for other major
anthropogenic source areas including India, the Middle East,
South Africa, the eastern US, and Norilsk (Russia) yield sim-
ilar results (see Figs. S3–S7). The mean relative differences
for polluted areas in these regions are all within±15 %, rang-
ing between −11 % for the eastern US and 14 % for the
Middle East. In comparison, the relative differences for ar-
eas affected by large volcanic plumes are greater, for exam-
ple reaching 20 % on average over part of the southeastern
Pacific during the October 2005 Sierra Negra eruption (see
Fig. S8).

4 Discussion

4.1 Original and analyzed SO2 SCDs as a function of
SRRs

The results presented in Sect. 3 demonstrate that our NN-
based analysis can reduce noise and artifacts for clean pixels
while largely retaining the original SCDs for polluted pixels.
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Figure 3. Scatter plots between the NN-analyzed SO2 SCDs and the target SO2 SCDs for clean and polluted OMI pixels from the 16th day of
(a) March, (b) April, (c) July, and (d) October 2005. Only pixels not used in the training of the neural networks are shown. Colors represent
the number of data points within each 0.1 DU (in NN SCDs) by 0.1 DU (in target SCDs) bin. The solid line in each panel represents the best
fit through the data from the simple linear regression analysis between NN and target SCDs. The slope and intercept from the regression are
given in each panel, along with the correlation coefficient (r), root mean square error (RMSE), and number of pixels (N ).

However, some key questions remain unanswered. Namely,
given the somewhat subjective criteria used in the pixel clas-
sification scheme (Sect. 2.2) to build the training data, do
we risk removing real SO2 signals as noise (i.e., overcorrec-
tion) and/or keeping noise and artifacts as signals (i.e., under-
correction)? Another related question is how do the NNs treat
pixels that are not in the training data (i.e., the pixels that fall
between the clean and polluted categories)? To shed light on
these issues, we calculate the monthly mean SO2 SCDs as
a function of pixel-level SCD / rms ratios (SRRi) from the
original retrievals (panel a of Figs. S9–S13) and the analyzed
data (panel b of Figs. S9–S13), as well as their differences
(Fig. 7, left) for March 2005. In addition, we also calculate
the mean original and NN-analyzed SCDs as a function of
latitude for different ranges of SRRi (Fig. 7, right).

For pixels having SRRi < SRR (see Sect. 2.1 for defini-
tions of SRR and σSRR), the original SCD map (Fig. S9a)
shows no obvious hotspots even over the major SO2 source
areas. All such pixels would be classified as clean, and indeed
the mean NN-analyzed SCDs (Fig. S9b) from these pixels are

zero everywhere. The mean analyzed SCDs (Fig. 7b) are also
near zero at all latitudes.

The next group of pixels have SRR< SRRi < SRR+σSRR
(Fig. 7, second row). Most pixels in this group, except for
those near large SO2 sources at low latitudes (30◦ S–30◦ N),
would also be classified as clean. Similar to the first group,
there are no obvious SO2 hotspots in the original SCD map
(Fig. S10a). The analyzed SCDs (Fig. S10b) are similarly
near zero almost everywhere, with notable exceptions over
some degassing volcanoes (Anatahan, Nyiragongo, and Van-
uatu) and heavily polluted areas (Sichuan Basin and No-
rilsk). The case of Norilsk is particularly interesting. Given
the thresholds for high latitudes (Fig. 1b), all pixels in this
group over Norilsk would be classified as clean, but the NNs
seem to be able to override the classification based on fac-
tors other than SRRs. The mean analyzed SCDs are around
zero for all latitude bands, which is smaller than the original
SCDs (Fig. 7d).

For the group of pixels having intermediate SRRs (SRR+
σSRR < SRRi < SRR+2σSRR, Fig. 7, third row), the original
SCD map (Fig. S11a) contains enhanced SO2 signals over
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Figure 4. The (a) original, (b) NN-analyzed OMI SO2 SCDs and (c) their differences for 16 April 2005. (d) Mean SO2 SCDs for 1◦ latitude
bands over generally clean areas (monthly mean SRR< 3), calculated from (red) the original and (blue) NN-analyzed SCDs for the same
day.

Figure 5. Similar to Fig. 4 but showing monthly means for March 2005.

source areas but also artifacts over background regions. The
pixels in this group would be classified as clean, polluted, or
in between depending on their SRRi and locations. In gen-
eral, the NNs are able to largely eliminate the artifacts and
retain signals over SO2 source areas for this group (Fig. 7e),
although there are remaining small positive biases both near
the northern edge of the domain and at lower latitudes (e.g.,
around 30◦ S) as shown in Fig. 7f.

For the following group (SRR+ 2σSRR < SRRi < SRR+
3σSRR, Fig. 7, fourth row), almost all pixels would have a
classification of either polluted or in between. NNs reduce
the retrieval artifacts in this group, particularly at middle to
high latitudes (Fig. 7g and h). The relatively small changes at
low latitudes can probably be attributed to the more relaxed
thresholds for pixels to be classified as polluted and in be-
tween (Sect. 2.2). Using more stringent thresholds may fur-
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Figure 6. (a) The NN-analyzed SO2 SCDs and (b) their relative differences from the original SCDs over eastern China for March 2005.

ther reduce the artifacts in the tropics, but this may also lead
to low bias over pollution sources (see Fig. 8b for example).

For the final group (SRRi > SRR+ 3σSRR, Fig. 7, fifth
row), almost all pixels are identified as polluted. As a result,
the differences between the original and analyzed SCDs are
quite small except over the SAA-affected areas (Fig. 7i and j
at around 30◦ S) where the pixels are not part of the training
data and the noise is reduced by the NNs. Overall, it is en-
couraging that the NN-analyzed SCDs show improvements
over the original ones for all ranges of SRRs.

4.2 Sensitivity of NN-analyzed SCDs to the pixel
classification scheme

We further test the sensitivity of NN-analyzed SCDs to the
settings of the pixel classification scheme by altering the a1
and a2 parameters (Eqs. 1 and 2). In one experiment, we
scale both parameters by 90 % (i.e., reduced by 10 % from
the baseline values as specified in Fig. 1b). This leads to more
pixels being classified as polluted and greater monthly mean
SCDs (Fig. 8a). The increase in the SCDs is∼ 0.01–0.02 DU
on average over relatively clean areas (Fig. 8c) and slightly
larger over some source areas (e.g., eastern China) but typi-
cally less than 0.1 DU. In another experiment, both a1 and a2
are scaled by 110 % (i.e., increased by 10 % from the base-
line values), resulting in SCD reductions of ∼ 0.01 DU over
clean areas (Fig. 8c). Some source areas (e.g., Norilsk) show
slightly more reductions (Fig. 8b) that are still typically less
than 0.1 DU. Overall, the tests here point to moderate sen-
sitivity of the NN-based analysis to the settings of the pixel
classification scheme. An overly stringent scheme may lead
to overcorrection and low biases over source areas, whereas
an overly relaxed scheme may result in positive biases. For

our particular study, any overcorrection or under-correction
appears to be minor for major source areas, given the rel-
atively small differences between the analyzed and original
SCDs (see Sect. 3.2). But if one is to apply the technique to
other datasets (e.g., different instruments and/or species), the
pixel classification scheme will need to be tested and opti-
mized. For long-term analysis of a dataset from a single in-
strument (e.g., OMI SO2 for the entire mission), the scheme
will need to be verified using data from different years, al-
though we envision that a constant set of a1 and a2 param-
eters over time will probably be more suitable to avoid ar-
tificial trends introduced by time-dependent parameters. For
future studies, we plan to develop a more systematic way to
classify pixels, for example by using more objective metrics.

4.3 SO2 emission estimates using the original and
NN-analyzed SCDs

Another test involves running both the original and NN-
analyzed SCDs through a top-down emission estimation al-
gorithm to derive annual SO2 emissions from large point
sources. Here we focus on anthropogenic sources, given
the low bias in the NN-analyzed SCDs for large volcanic
plumes. We infer SO2 emissions by fitting oversampled and
smoothed OMI vertical column densities (VCDs) to a three-
parameter (i.e., total mass, lifetime, and plume spread) func-
tion of horizontal coordinates and wind speeds (Fioletov et
al., 2015). To convert SCDs to VCDs, we use the same air
mass factors (AMFs, VCD=SCD /AMF) as in Fioletov et
al. (2016). For wind fields, we use the average winds be-
tween the surface and ∼ 1 km from GEOS-5 Forward Pro-
cessing for Instrument Teams (FP-IT) assimilated products
that have been co-located with OMI (OMUFPITMET; avail-
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Figure 7. (a, c, e, g, i) The differences between the original and NN-analyzed OMI SO2 SCDs for March 2005. (b, d, f, h, j) The mean (red)
original and (blue) NN-analyzed SCDs for 3◦ latitude bands for the same month. Different rows show results from pixels that have SCD / rms
ratios (SRRi ) within different ranges based on the monthly medians of the daily mean (SRR) and standard deviation (σSRR) of SRRs for
their corresponding latitude bands: (a–b) SRRi < SRR, (c–d) SRR< SRRi < SRR+ σSRR, (e–f) SRR+ σSRR < SRRi < SRR+ 2σSRR,
(g–h) SRR+ 2σSRR < SRRi < SRR+ 3σSRR, and (i–j) SRRi > SRR+ 3σSRR.

able at https://disc.gsfc.nasa.gov/datasets/OMUFPITMET_
003/summary, last access: 17 September 2022). The OMI
pixels are then rotated around known source locations ac-
cording to wind directions such that all observations are
aligned in the upwind–downwind direction (Fioletov et
al., 2015). Following Fioletov et al. (2016), we prescribe the

SO2 lifetime (6 h) and the parameter describing the spread of
the emitted plume (20 km) to obtain more robust fitting re-
sults. Only one parameter, the total SO2 mass, is estimated
from the fit. We further derive SO2 emissions by dividing the
fitted total SO2 mass by the prescribed lifetime. For fitting
uncertainty, we calculate the 1 standard deviation error in the
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Figure 8. (a) Differences in the analyzed OMI SO2 SCDs for March 2005 between NNs trained using pixels classified with a1 and a2 (see
Eqs. 1 and 2) scaled to 90 % of the baseline values in the classification scheme and those trained with the baseline scheme. (b) Same as
(a) but for a1 and a2 scaled to 110 % of the baseline values. (c) Mean SCDs for 1◦ latitude bands over relatively clean areas (monthly mean
SRR< 3) using NNs trained with pixels from different classification schemes: (black) the baseline a1 and a2, (blue) a1 and a2 scaled to
90 %, and (red) a1 and a2 scaled to 110 % of the baseline values.

fitted parameter by taking the square root of the diagonal el-
ements of the covariance matrix of the parameter.

As shown in Fig. 9a, the two sets of emission estimates
agree quite well (r > 0.99, slope> 0.96), suggesting the NN
analysis has largely preserved SO2 signals in the original re-
trievals. In general, the estimated emissions using the NN-
analyzed SCDs are slightly smaller than those based on the
original retrievals, particularly for relatively small sources
(< 20 kt, 103 t yr−1). While on the surface this may sug-
gest loss of some real SO2 signals in our analysis for rela-
tively small sources, the emission uncertainties (Fig. 9b) for
those sources also become much smaller when using the NN-
analyzed data. This leads to greater emission-to-uncertainty
ratios (Fig. 9c) for those sources, implying that the reduced
noise and artifacts in the analyzed data may facilitate SO2

source detection and quantification. We note that the results
here should be interpreted with caution, given that OMI sen-
sitivity to sources < 30 kt yr−1 is quite limited (Fioletov et
al., 2015).

4.4 Can a simple linear interpolation model reproduce
NN-analyzed SCDs?

Given the seemingly simple assumptions made about the
clean and polluted pixels during the training process
(Sect. 2.3), one may also ask whether there is any advantage
to using the NN-based data analysis approach. To test this,
we apply the same pixel classification scheme as described in
Sect. 2.2 and build a simple model by assigning zero SCDs to
the clean pixels, assigning the original SCDs to the polluted
pixels, and linearly interpolating between zero and the origi-
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Figure 9. Scatter plots comparing (a) the annual emission estimates for 485 large point sources for 2005, (b) the uncertainties in the emission
estimates, and (c) the ratios between the emission estimates and the uncertainties using the NN-analyzed vs. the original SCDs. All sources
shown here are anthropogenic and have emission estimates at least twice the uncertainties for both datasets.

nal SCDs for pixels that fall in between (based on the SRRs
for those pixels and the corresponding thresholds as defined
in Eqs. 1 and 2).

The mean SCDs for March 2005 (Fig. 10a), produced with
this simple linear interpolation model, appear to be quite sim-
ilar to those produced with the NN-based analysis (Fig. 5b).
This is not surprising since the majority of pixels are clas-
sified as clean, and NN-analyzed SCDs for those pixels are
also close to zero. The plot of mean SCDs as a function of
latitude (Fig. 10c) also indicates overall comparable results
for relatively clean areas between the two methods, although
the linear model has more obvious step changes at 30◦ N
and 30◦ S probably related to the pixel classification scheme.
Over pollution source areas (e.g., eastern China), on the other
hand, the linear model has a substantial negative bias com-
pared with the NN-based approach (see the SCD difference
map in Fig. 10b). Additionally, the noise is also larger over
the SAA areas for the linear model. This comparison demon-
strates some advantages in the NN-based approach, particu-
larly for preserving SO2 signals over source areas. It should
be mentioned that the simple linear model tested here can be
potentially improved by including more predictors such as
those used in the NNs (e.g., monthly SRRs, the Sun–satellite
geometry, and O3). But such a multi-regression model may
need to be optimized locally for different regions and can be
more challenging to implement compared with the NNs.

4.5 Implementation of a PCA–NN SO2 fitting
algorithm

So far, we have relied on the output from the existing PCA
SO2 algorithm as input to the NNs; therefore, our method can
be viewed as an additional data processing step following
the spectral fit. For a potential alternative to this approach,
we also attempt to build an NN-based SO2 SCD fitting al-
gorithm that uses the measured radiances as inputs and the
NN-analyzed SCDs for training targets. As with the PCA
SO2 algorithm, the NN fitting algorithm uses the logarithm of

Sun-normalized Earthshine radiances at 310.5–340 nm and
processes each OMI row separately with individually trained
NNs. We pool the data from 12 d in 2005 (the 10th day
of each month), generating a training dataset that contains
about 200 000 pixels for each row. To reduce the data di-
mension of the inputs, a PCA technique is combined with
the NNs in this PCA–NN fitting algorithm as in Joiner et
al. (2022). We conduct PCA on the radiance spectra and in-
clude the coefficients of the first 50 leading PCs as predic-
tors in the NNs. Experiments using fewer (as few as 20) or
more (up to 100) PCs generally result in larger errors in the
retrieved SCDs. In addition to the PC coefficients, the NNs
also use four other parameters (solar zenith angles, O3 col-
umn amounts, scene reflectivity, and monthly mean SRR ra-
tios) as predictors. Viewing zenith angles are not included
since the training is carried out separately for each row. We
also exclude the phase angles, given that adding them as a
predictor leads to no discernible improvements in the algo-
rithm performance. The SRRs for individual pixels are also
excluded, as the PCA–NN algorithm is designed to run in-
dependently from the PCA SO2 algorithm after the training
phase. While the monthly mean SRRs also originate from
the PCA retrievals, they essentially provide geospatial con-
text on the spatial distribution of SO2 and can be potentially
replaced with other datasets such as SO2 emission invento-
ries or model-simulated SO2.

For the PCA–NN algorithm, we utilize an NN architec-
ture similar to that in Fig. 1c, with the only difference being
that the number of nodes in each hidden layer is now 108
(twice the number of the predictors). For each row, we train
an NN using half of the pixels and the rest for evaluation.
The pre-trained NNs are then applied to SO2 SCD retrievals
for 16 April 2005, a day not used in the training.

The results shown in Fig. 11 indicate that the PCA–NN al-
gorithm can reduce the retrieval noise over background areas
compared with the original PCA SO2 algorithm. However,
over polluted areas and degassing volcanoes, the PCA–NN
retrieved SO2 is biased low (Fig. 11c). This suggests that the
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Figure 10. (a) Monthly mean OMI SO2 SCDs for March 2005, analyzed using a simple linear interpolation model. (b) The differences in the
analyzed SCDs between the linear model and the neural networks. (c) Mean SCDs for 1◦ latitude bands over generally clean areas (monthly
mean SRR< 3), calculated from the SCDs from (red) the linear interpolation model and (blue) the NNs.

PCA–NN algorithm, with its present implementation, can-
not yet achieve the same level of performance as our NN-
based data analysis on the original PCA retrievals. It is pos-
sible that due to the much smaller number of polluted pixels
compared with the clean ones, some spectral signatures of
SO2 are lost in the first 50 or even 100 PCs, leading to the
low bias over polluted areas. The NNs may need to include
more PCs as predictors or directly use radiances without the
transformation. A separate set of NNs trained on a refined
dataset that contains more polluted pixels may also help to
mitigate the bias. But applying these NNs to retrievals would
require some prior knowledge about the status of the pixels
(whether they are polluted or clean). Also, the PCA–NN re-
trievals show some striping features, probably reflecting the
different performance of the NNs for different rows despite
the use of the same architecture. The reason for this row-to-
row change in performance is not yet understood. Nonethe-

less, the PCA–NN algorithm shows promise and will be the
subject of more in-depth studies in the future. For example,
the training performance may improve if the architecture is
optimized for each row.

5 Conclusions

We have developed a new machine-learning-based method
to analyze satellite-retrieved atmospheric composition data,
with the aim of reducing the noise and artifacts while retain-
ing the signals in the original retrievals. To demonstrate this
approach, we use OMI SO2 SCDs retrieved with the PCA-
based spectral fitting algorithm as an example. A key param-
eter in the analysis method is the SRR, which is the ratio
between the retrieved SCD and the rms of the fitting resid-
uals. Based on prior knowledge about the global distribu-
tion of SO2 pollution (from existing in situ measurements
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Figure 11. OMI SO2 SCDs for 16 April 2005 retrieved using (a) the original PCA algorithm and (b) a PCA–NN algorithm, (c) the differences
between the two retrievals, and (d) mean SO2 SCDs for 1◦ latitude bands over relatively clean areas (monthly mean SRR< 3), calculated
from (red) the original and (blue) PCA–NN retrievals.

and model simulations), we assume that a given pixel with a
small (large) SRR is likely clean (polluted) and its real SCD
should be close to zero (the original retrieved SCD). This al-
lows us to overcome the lack of ground-truth data and build a
training dataset for SO2 by selecting clean and polluted pix-
els from the original retrievals.

We then train neural networks (NNs) using the compiled
dataset. The NNs contain two hidden layers with 14 nodes
each and one node in the output layer for the analyzed SCDs.
The predictors for the NNs include SRRs for individual pix-
els, solar zenith, viewing zenith and phase angles, scene re-
flectivity, and O3 column amounts, as well as the monthly
mean SRRs. The latter provide context for the spatial dis-
tribution of SO2, whereas the other predictors (angles, O3,
and reflectivity) affect the quality of the original SCDs. The
function of the NNs is to connect these predictors to the tar-
get SCDs (zero for clean pixels, the original SCDs for pol-
luted pixels in the training data). For data analysis, we em-
ploy a hybrid model (Fig. 1) that includes two NNs: (1) an
NN pre-trained using 5 d of data from each month to pro-
duce analyzed SO2 SCDs for pixels that are clean or moder-
ately polluted (i.e., those with SRRs between clean and pol-
luted pixels) for the entire month and (2) an NN trained daily
to produce analyzed SCDs for the polluted pixels each day.
This hybrid model helps to maximize the retained SO2 sig-
nals over source areas.

Results for 2005 show that the NNs can reproduce the
target SCDs well and largely reduce noise and artifacts in
the original retrievals. For polluted areas, the monthly mean
SCDs from the analysis are mostly within ±15 % from the

original retrievals, indicating that the NNs are able to pre-
serve SO2 signals. This is confirmed by another experiment
in which the NN-analyzed and original SCDs are used to es-
timate the SO2 emissions for ∼ 500 anthropogenic sources
in 2005, with both datasets yielding largely similar results.
For relatively small sources (< 20 kt yr−1), the emission esti-
mates based on the analyzed SCDs are generally smaller, but
the uncertainties for those sources are reduced even more,
although OMI has quite limited sensitivity to such small
sources. One remaining issue is that the NNs perform slightly
worse for high-SO2 conditions such as plumes from large
volcanic eruptions (e.g., the 2005 Sierra Negra eruption).
This will be the focus of future studies to further improve
the method. Also, the NN-analyzed SCDs show moderate
sensitivity to the settings of the pixel classification scheme.
Therefore, the scheme needs to be tested, especially for dif-
ferent instruments and/or species, to minimize overcorrec-
tion or under-correction. Overall, it is quite encouraging that
the NNs seem to have improved the quality of SCDs for pix-
els from different ranges of SRRs.

We also compare two alternative approaches with the NN-
based analysis method. In one test, we employ a simple lin-
ear interpolation model to analyze the original retrievals. The
linear model can largely match the performance of NNs over
background areas but underestimates SO2 over polluted re-
gions. In another test, we develop a PCA–NN algorithm that
first transforms OMI measured radiances using a PCA tech-
nique and then uses the resulting PC coefficients as predictors
in NNs (trained with NN-analyzed SCDs) for SO2 retrievals.
Again, the PCA–NN algorithm can reduce retrieval noise but
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also has a low bias over SO2 source areas. One advantage of
the PCA–NN algorithm is its computation speed (approxi-
mately a factor of 2 faster than the original PCA algorithm in
our limited tests) that can make it useful for high-resolution
instruments such as TROPOMI or TEMPO (Tropospheric
Emissions: Monitoring of Pollution). Further improvement
in the PCA–NN SO2 algorithm may be possible through,
for example, refinement of the training data and will be the
subject of follow-up studies. The lack of the high-quality
training data has been a major obstacle for training NNs to
conduct retrievals using radiances (or PCA-transformed ra-
diances). Our analysis method can contribute to such efforts
by providing training data with improved quality compared
with the original retrievals.

In summary, our new machine-learning-based data analy-
sis method shows promise in further improving satellite re-
trievals of atmospheric composition. In a way, our analysis
method can be viewed as a more advanced version of the
Pacific sector correction (PSC), a quite common and well-
established practice to reduce retrieval artifacts for species
such as SO2 (e.g., Theys et al., 2017). While we focus on
OMI SO2 in this study, the method can also be potentially
applied to other instruments (e.g., TROPOMI) and/or species
(e.g., HCHO). The improved data quality from such analyses
will likely enhance the value of satellite data in air quality
research and applications such as reducing the uncertainty in
top-down emission estimates.
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