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Abstract. Atmospheric visibility, or meteorological optical
range (MOR), is governed by light extinction by aerosols.
State-of-the-art visibility sensors, such as employed in me-
teorological observatories and airports, infer MOR by mea-
suring either transmittance or scattering. While these sensors
yield robust measurements with reasonable accuracy (10 %
to 20 %), they measure in situ. MOR from these sensors may
thus not be representative of MOR further away, for example,
under conditions with stratified aerosol types. This includes
off-shore sites near the sea surface during conditions with ad-
vection fog, sea spray or mist. Elastic backscatter lidar can be
used to measure light extinction and has previously demon-
strated to be a powerful method to infer visibility. Lidar can
measure visibility not just near the instrument but also fur-
ther away (remotely) and single-ended whilst also being ca-
pable of measuring profiles of MOR along atmospheric slant
paths. Continuous-wave (CW) Doppler wind lidar systems
make up one of the most widespread type of elastic backscat-
ter lidar and are typically used in wind resource assessment.
Using these existing platforms for remote and single-ended
measurement of MOR profiles could allow for new and valu-
able applications. However, the low-light extinction associ-
ated with this type of lidar excludes the use of the extinc-
tion coefficient for MOR retrieval but leaves the backscat-
ter coefficient as a possible proxy for MOR, though with
an accuracy expected to be inferior to the former method.
We analysed backscatter data from CW wind lidar and co-
measured MOR from visibility sensors from two campaigns
(Cabauw, Netherlands, and Pershore, United Kingdom) and
found backscatter from CW wind lidar to be a viable proxy
of MOR if calibrated against a visibility sensor. The expected
accuracy of the method is low and of the order of few kilo-

metres. This means MOR from CW wind lidar could be used
in safety-uncritical problems, such as assessment of visibility
of manmade objects, including wind turbines.

1 Introduction

Visibility is how well we can see something. More specifi-
cally, atmospheric visibility is the maximum horizontal dis-
tance an object can be seen through the atmosphere with the
naked eye. Visibility is traditionally estimated doing exactly
that, namely by measuring the maximum distance a dark ob-
ject with a suitable size can be seen on the horizon against
the surrounding sky. The visibility of a distant object is a
function of several factors, including the object’s colour, the
angle of the sun and Earth’s curvature. However, at constant
illumination by the sun, the governing physical mechanism
of visibility is the extinction of light by scattering through
aerosols suspended in the atmosphere. This leads to the def-
inition of meteorological optical range (MOR), which quan-
tifies that part of visibility that is caused by light extinction.
The MOR therefore provides a quantifiable estimate of at-
mospheric visibility. The world meteorological organisation
defines MOR as the length of path in the atmosphere required
to reduce the luminous flux in a collimated beam from an in-
candescent lamp, at a colour temperature of 2700 K, to 5 %
of its original value, the luminous flux being evaluated by
means of the photometric luminosity function of the Inter-
national Commission on Illumination (Jones et al., 1990).
Note that a blackbody temperature of 2700 K corresponds to
about 1100 nm. For daylight conditions, MOR is commonly
defined as the horizontal range for which the light intensity
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contrast between the object and the surrounding sky is either
C; =2 %, or, as later suggested, 5 % (Middleton, 1941; Dab-
berdt and Eigsti, 1981; Nebuloni, 2005). Adopting the well-
known Bouguer-Lambert-Beer law and C; =5 %, MOR can
be written as

MOR = M ~ i 1)

o o

where o is the atmospheric extinction coefficient (in units of
m~!). Hence, by measuring the light extinction o, MOR can
be derived. In practice, MOR is evaluated at a wavelength
of 550nm, close to the human eye’s sensitivity maximum
(Nebuloni, 2005). In the rest of the paper the terms visibility
and MOR are used interchangeably.

The traditional method of estimating MOR using human
visual observation of targets of well-defined distance and
albedo delivers values reasonably close to MOR from Eq. (1)
and has the advantage that the visibility does not need to be
translated into a quantity perceptible to humans. The WMO
recommends measuring visibility at a height ca. 2m above
ground, close to human line of sight (Jones et al., 1990).

This is also the height at which state-of-the-art visibil-
ity sensors, or visiometers, determine MOR, using Eq. (1).
These visiometers measure either atmospheric transmittance
along an optical path of fixed distance or the intensity of for-
ward scattered light, from which the extinction coefficient
can be retrieved (Crosby, 2003; Werner et al., 2005). One
main difference between these two approaches is that unlike
the transmissivity metre, a sensor measuring forward scatter-
ing needs a very small optical path only (~ 10 cm); i.e. it
measures in situ, which makes alignment and maintenance
easy. Arguably, this risks sampling a portion of the sky that
is not representative of the wider atmospheric conditions.
Both of these approaches are bound to measure visibility at
the height they are mounted at, usually a few metres above
ground level (a.g.l.), and both are double-ended, meaning the
receiver is located at the opposite end of the optical transmit-
ter.

The aerosol number density, and thus the visibility, is gen-
erally a function of height above ground level. Especially off-
shore, a strong vertical stratification at the sea—atmosphere
interface due to condensation caused by advection is to be
expected. A visibility sensor mounted a few metres above
the sea surface (e.g. at the beach or on a buoy) could be im-
mersed in a layer of spray or haze, giving a biased visibil-
ity reading. An effective visibility measured vertically, rather
than horizontally, considering aerosol stratification effects in
the boundary layer, or, more generally, a slant optical range
(SOR, Werner et al., 2005) may be more desirable for some
applications (Fig. 1). For large features, such as mountains
or manmade structures exceeding 100 m in height, it may be
more beneficial to measure an effective visibility at or near
the actual line of sight between the observer’s eye and the
feature, which would be significantly higher above ground
than only a few metres. For example, the height at half dis-
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Figure 1. Visibility of wind turbines oftshore. The wind turbines are
forming an optical contrast against a clear sky with moderate mist
near the sea surface, which reduces visibility for the lower parts of
the wind turbines. Photo from SSE Renewables.

tance for a 100 m high object located 10 km away from the
observer would be ~50ma.g.l.

Light detection and ranging (lidar) allows a spatially in-
tegrated measurement of atmospheric visibility, in a single-
ended manner and remotely, with ranges of hundreds of me-
tres to kilometres away from the lidar. MOR measured with
pulsed elastic backscatter lidar, including ceilometers, has
shown good agreement with standard in situ sensors, such as
transmissometer and visibility sensors (Werner et al., 2005;
Pantazis et al., 2017; Hongda et al., 2017; Hu and Yang,
2021). Shang et al. (2017) compared visibility from a pulsed
backscatter lidar with visibility from a visibility sensor and
found excellent agreement. Lidar is ideal for atmospheric
sounding, which means it is able to measure visibility not
only at a single location remotely but also at several points
along the lidar line of sight, yielding a visibility profile. The
return power of pulsed backscatter lidar is a function of both
the backscatter coefficient and the atmospheric extinction co-
efficient. Therefore, the lidar return signal contains informa-
tion about the atmospheric extinction and hence the visibility
(Eq. 1). The retrieval of the visibility is based on solving the
lidar equation for both the atmospheric extinction coefficient
and the backscatter coefficient. Retrieval techniques include
inversion (e.g. Werner et al., 2005) and iterative measure-
ments starting from an aerosol-free reference height (Pan-
tazis et al., 2017).

The question arises whether MOR can be retrieved from
only one of the two parameters, backscatter coefficient or
extinction coefficient. Only single-ended retrieval of vis-
ibility inferred from the backscatter coefficient has suc-
cessfully been demonstrated (Curcio and Knestrick, 1958;
Vogt, 1968), but, as opposed to lidar, by using polychro-
matic light. The backscatter coefficient has a higher sensi-
tivity to the size of the aerosols along the beam path and
hence to the aerosol size distribution (SD) than the extinc-
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tion coefficient (Twomey and Howell, 1965). These fluc-
tuations are smoothed considerably when the emitted pho-
tons are polychromatic, leading to accuracies of the order of
20 % (Twomey and Howell, 1965), which is comparable to
forward-scattering visiometers (Biral SWS Series user man-
ual, 2017; Campbell Scientific CS125 user manual, 2016;
Crosby, 2003). Vogt (1968) found that the backscatter coeffi-
cient is useful to infer visibility, but it needs to be calibrated
against a visibility sensor in an atmosphere similar (similar
mean aerosol SD) to the one of its intended use. Monochro-
matic light, as commonly used in lidar, was found to yield
a poorer, more scattered correlation between backscattered
light intensity and visibility, with an associated scattering
around 50 % of backscattered intensity for a given visibility
(Twomey and Howell, 1965).

Amplitude-modulated direct detection continuous-wave
(CW) lidar has also been proposed and demonstrated to mea-
sure MOR by relating it to the phase shift between transmit-
ted and received photons (Schappert, 1971; Kreid, 1976; But-
ton and Iyer, 1978). Provided a homogenous atmosphere, the
phase shift depends only on the extinction coefficient, avoid-
ing the dependence on the backscatter coefficient (Kreid,
1976).

Coherent CW Doppler wind lidar has not been used yet
to measure visibility. Thousands of these lidars are being de-
ployed worldwide, especially in wind resource assessment
campaigns (Emeis et al., 2007). Coherent CW wind lidars
are designed to measure wind field quantities such as speed,
direction and turbulence index at heights between tens and a
few hundred metres. Similar to other backscatter lidar sys-
tems, a CW Doppler wind lidar measures the light power
returned from atmospheric aerosols moving with the wind
stream lines. Therefore, CW wind lidar is in principle able
to measure visibility, in particular SOR, single-ended and re-
motely and at different heights (profiling). However, the in-
fluence of atmospheric extinction scales with measurement
range and wavelength (light with longer wavelength is scat-
tered less).

As opposed to pulsed aerosol lidar described above, CW
wind lidar has a lower measurement range. In addition, CW
wind lidar operates in the shortwave infrared region close to
1550 nm, which is a factor of 1.5 to 3 longer than for typi-
cal aerosol lidar and ceilometer systems (Werner et al., 2005;
Gasteiger et al., 2011; Navas-Guzman et al., 2013; Shibata
et al., 2018). Compared with pulsed aerosol lidar, at normal
working ranges (up to 300 m), the return signal of a CW wind
lidar is thus not sensitive to atmospheric extinction but is
practically governed by the backscatter coefficient only. This
is illustrated in the following example. Assuming a common
visibility of 10 km (slightly hazy), the maximum extinction
(i.e. at range 300 m) would only be e~600m5x10m™" _ 5 97
. This leaves only the backscatter coefficient (henceforth
termed backscatter) as the most obvious proxy of visibility
of a CW wind lidar.
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The aforementioned studies do suggest a correlation be-
tween visibility and backscatter, but at relatively poor accu-
racy, since CW wind lidar is inherently monochromatic. The
accuracy may, however, suffice for non-safety-critical appli-
cations, such as estimates of minimum or maximum visibil-
ity. An example would be the visibility of manmade struc-
tures such as wind turbines, towers or bridges. A relation
between signal strength of CW wind lidar and visibility is
evident from everyday operation but has not been quantified
yet. Thousands of wind lidar systems already in operation
worldwide could be used to yield a useful remote measure of
visibility and add no extra cost. This could open new appli-
cations of these existing systems in commercial or scientific
applications. Systems used for scientific or observational use
could provide for a denser, more global data set of visibility.
In the present case study, we use data sets from two differ-
ent measurement campaigns, in Cabauw (Netherlands) and
Pershore (UK), to assess if backscatter from CW wind lidar
can be used to retrieve meaningful estimates of visibility. The
wind lidar used in both campaigns and the visibility sensors
are briefly detailed. After that, two methods to retrieve vis-
ibility from backscatter are described. Results from the two
methods are presented thereafter and discussed before con-
clusions are drawn.

2 Method and material
2.1 CW wind lidar operating principles

Both vertical profiling wind lidars used in the two measure-
ment campaigns are of type ZX 300 (ZX Lidars, UK, for-
merly ZephIR Lidar). An overview of some of the properties
and settings of the ZX 300 as deployed at Cabauw is given in
Table 1. The ZX 300 is a homodyne coherent detection CW
focusing wind lidar. The laser beam is transmitted through a
constantly rotating prism (wedge) to perform a so-called ve-
locity azimuth display (VAD) scan with a scanning cone an-
gle of ~30° (with respect to zenith). Up to 10 measurement
heights can be configured, in addition to a pre-fixed height of
39ma.g.l., which are permuted through in descending order.
Once a measurement height is set by focusing the laser beam,
the focus performs a circular scan for 1 s, split into 50 points
with ~ 20 ms integration time, separated by (360/50)°. The
50 measurements are used to reconstruct the vertical and hor-
izontal wind speed components. The optimum height range is
10-200 m above the instrument, although higher heights can
be set in the software. By virtue of the geometrical focusing,
the probe length increases quadratically with measurement
distance (height): at 10 m height above the instrument, the -
3dB probe length is 0.07 m, whereas at 200 m it is 30 m. CW
focusing wind lidars can be sensitive to clouds that are above
the maximum range, as the contribution to the Doppler sig-
nal from clouds in the tail of the laser pulse profile can be
comparable to the aerosol signal at the preselected focus-
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ing height (Smith et al., 2006). A cloud removal algorithm
is used to correct for this effect by removing Doppler signal
biased by cloud returns, which involves a measurement at
an additional higher altitude. For a CW coherent wind lidar,
such as the ZX 300, the time-averaged optical signal power
Ps backscattered by aerosols into the receiving telescope is
given to a good approximation by (Harris et al., 2001)

Ps = PrfA, 2

where Pr is the transmitted laser power and $ is the atmo-
spheric backscatter coefficient, and A is the laser wavelength.
Note the difference to pulsed lidars and ceilometers. Equa-
tion (2) contains no dependence on either the focus range or
the system aperture size. Moreover, the system is monostatic.
That means the typical measurement range of a CW lidar is O
to a few hundred metres with full overlap of transmitted and
received beam, which is different to pulsed, bistatic lidars,
which have limited overlap in the near field. With a typi-
cal value of 1078 m~!sr~! for 8 in relatively clear bound-
ary layer air, a transmitted power Pr of typically ~ 1 W and
A~ 1.5um, the received power Ps derived from Eq. (2) is
of the order of 5 x 10~14W (50 femtowatts) only. Assum-
ing shot noise limited detection, the carrier-to-noise ratio of
a coherent CW lidar is given by (Harris et al., 2001)

nPs

CNR= ——> 3
e Aav[1+ D ()] @

where 71 is the quantum efficiency of the detector, h is
Planck’s constant, c¢ is the speed of light, Av is the coher-
ent detection bandwidth and D(v) is the detector dark noise

spectral density. Combining Egs. (2) and (3) yields the rela-
tionship used to retrieve the backscatter coefficient:

(5)Av[1+DW)INB
TP, -

B= ZB, @)
with CNR = N B, where N is the number of bins of the dis-
crete Doppler spectrum of the lidar, and B is the average het-
erodyne signal power spectral density per bin and computed
as

1 N-1
B==D P (5)

where P; is the power spectral density of bin i.
Plugging in numbers typical for a ZX 300 yields
Z=13x10""m~!sr~!, which is a constant for a given
transmitted optical power. If not written otherwise, backscat-
ter values are henceforth written in units of 107®m~!sr~!.

2.2 Description of data and field site

Data from a visibility sensor and from the wind lidar are re-
trieved for two sites: Cabauw, Netherlands, and the UK re-
mote sensing test site in Pershore.
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Table 1. Key parameters of a ZX 300 wind lidar. The measure-
ment heights are specific to the Cabauw site; all other parameters
are generic.

Laser wavelength 1560 nm

Optical laser power 1.3W

Ranging Geometric focusing
Horizontal wind retrieval ~ VAD scan

Measuring heights 11, 20, 39, 80, 140, 200, 252 ma.g.1.

Scan dwell time 1s
Height instrument 1m
(@) g ™
53°N %
Pershor;
52°N iy L |
/" UK
51°N k;
/ f\\l 6
50°N C

Figure 2. Location of lidar and visibility sensors (visiometers).
(a) Pershore (United Kingdom, UK) and Cabauw (Netherlands,
NL). (b) Visiometer at Pershore with meteorological mast in the
background where the wind lidar is located. (¢) ZX 300 wind li-
dar at Cabauw with meteorological mast A in the background (from
Knoop et al., 2021).

The UK remote sensing test facility at Pershore is lo-
cated in a flat, rural setting at a former air base (52.143° N,
2.037° W, Fig. 2a). The Pershore data set covers 24 months,
from 1 January 2018 to 1 January 2020. A single visibility
sensor of the type Campbell Scientific 120/125 was available
at Pershore, mounted at 2 m a.g.l. on a mast on a meteorologi-
cal measurement site operated by the UK Met Office, located
~ 600 m away from the lidar (Fig. 2b). The Campbell Scien-
tific 120/125 uses a 42° scatter angle (Campbell Scientific
CS125 user manual). The measurement accuracy is 10 %
(visibility up to 10km), £15 % (visibility up to 15km) and
+20 % for visibilities above 15 km.

The Cabauw Experimental Site for Atmospheric Research
(CESAR) is located in an extended and flat polder land-
scape, about 40 km off the coast, 0.7 m below mean sea level
(51.971° N, 4.927° E; Fig. 2a), run by the Royal Netherlands
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Meteorological Institute (KNMI), and is part of the Ruisdael
Observatory. The visibility data used were acquired during a
wind measurement campaign described in detail in Knoop et
al. (2021), and their measurement is part of a regular observa-
tion programme (Bosveld, 2020). The coinciding data from
the wind lidar and the visibility sensors for Cabauw used here
cover about 24 months, from 15 February 2018 to 29 Febru-
ary 2020. The visibility was measured with visiometers of the
type Biral SWS100 at heights of 10 and 20 ma.g.l. at a me-
teorological mast called mast B and at 40, 80, 140 and 200 m
at mast A (depicted in Fig. 2c). The visiometers measure the
forward scattered intensity at 45° (Biral SWS100 user man-
ual). The accuracy of the visibilities as reported in the user
manual are between £10% (up to 16 km) and £20km (16
to 30 km). The relevant measurement heights of the wind li-
dar were 11, 20, 39, 80, 100, 140 and 200 m a.g.l. (Table 1).
The ZX 300 wind lidar was located 293 m away from mast A
and 267 m away from mast B (Fig. 2b). Due to the extended
probe length of the lidar, height mismatches of 1 m between
lidar measurement height and sensor height are expected to
be insignificant.

Both visiometer types at Cabauw and Pershore use the
same principle of operation, so that the differences between
the two types of visiometers are expected to be much smaller
than between visiometer and wind lidar. All data from the
visibility sensors are time series with visibility in units of
metres. As stated above (Eq. 4), the backscatter coefficients
from the wind lidars are recorded as time series in units
of 1.3 x 107®m~!sr~!. Both backscatter and wind data are
measured every second for a given height but are averaged
over 10 min periods.

2.3 Retrieval of visibility from the backscatter
coefficient

2.3.1 Method A: directly converting backscatter to
visibility

The retrieved backscatter coefficients from Eq. (4) are di-
rectly related to visibility as follows. The ratio between the
extinction and the backscatter coefficient, the extinction-to-
backscatter ratio (also called lidar ratio) S, is used to estimate
the extinction coefficient from the backscatter coefficient as
(Doherty et al., 1999)

o =pS, (6

where § is the backscatter coefficient. S is assumed to be
constant (Young and Vaughan, 2009). However, S can vary
for common atmospheric aerosols from 1 to about 100 sr,
depending on the SD, shape and chemical composition of
the particles (Fernald et al., 1972; Doherty et al., 1999), as
will be discussed further below. The empirical power law
by Angstrom is used to relate the extinction coefficient mea-
sured at the lidar wavelength of ~ 1550 to 550 nm (Nebuloni,
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2005; Schuster et al., 2006; Shang et al., 2017) as

A\
Uo=01<%> , @)

where « is the Angstrém exponent, and A9 and A; are the
wavelengths corresponding to the extinction coefficients oy
and o1, respectively. Combining Egs. (1), (6) and (7) yields
an approximate MOR of

MOR =~ ;a’ )
p3(%)

which is used to relate backscatter from the lidar to visibility.

Ao and A are set to 1560 nm (Table 1) and 550 nm, respec-

tively. The two unknowns, o and S, depend on the aerosol

type and are a non-unique combination, which can be ob-

tained by matching the converted backscatter with the visi-
bility from the in situ sensor.

2.3.2 Method B: fitting a transfer function

Coinciding visibility and backscatter data are selected and
binned into 120 values of backscatter and 80 values of visi-
bilities. Figure 3 shows a scatter plot of the resulting distribu-
tion, representing a 2D histogram, with the logarithm of the
inverse visibilities plotted against the logarithm of the lidar
backscatter.

For the Cabauw visibility data, depending on the avail-
ability of both backscatter and visibility at a given height,
and depending on the height, there are between ~ 13 000 and
~ 25000 samples, that is, coinciding visibility—backscatter
pairs. There appears to be a secondary mode (Fig. 3a and
b), the origin of which is not entirely clear. A reasonable ex-
planation could be a contaminated visibility sensor window
beyond the capability of the self-correcting algorithm of the
visibility sensor, or it could be residual cloud contribution.
Visibilities greater than 20 km in the visiometer data were set
to 20 km during acquisition, which explains the dispropor-
tionally high accumulation of values at that visibility. Most
of the data are concentrated below 20 km visibility, which
therefore is deemed an appropriate upper range. It is obvi-
ous from Fig. 3a that the data correlate linearly only for a
limited parameter range. Towards lower visibilities, the de-
pendence becomes increasingly nonlinear. Only visibilities
of at least 4 km are considered, which helps to select a data
range with reasonably linear correlation between backscatter
and inverse visibility and excludes the impact of fog or cloud
on the visiometer readings.

For Pershore, data for the same range of visibilities as for
Cabauw are selected. Visibility data from a single height only
(2ma.g.l.) were available. The nearest lidar data were for a
measurement range of 10 ma.g.l., which was only available
for a relatively short period, corresponding to only ~ 9000
coinciding value pairs (samples). Therefore, lidar data from
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Figure 3. Overview 2D histogram scatter plots of inverse visibility versus backscatter (both logarithmic). For better readability, y-tick labels
of visibility are shown. The backscatter is logarithmic to facilitate display due to its large dynamic range. (a) Scatter plot for Cabauw, with
backscatter distribution at 12 km visibility, indicating a peak at 10793 x 1070 m~1 s 1. Visibility measured at 40 m a.g.l. and backscatter
from 39 ma.g.1. (b) Scatter plot for Pershore, with backscatter distribution at 12 km visibility. Visibility measured at 2 ma.g.1. and backscatter

from 39ma.g.l.

39 m were chosen, associated with ~ 28 000 coinciding sam-
ples (Fig. 3b). The vertical separation is justified further be-
low. There appear to be two modes: a correlation with rel-
atively flat slope for high visibilities, where data density is
highest, and a steeper mode for visibilities below ~ 20 km.

The curvature in Fig. 3a and b, similar to measurements
at other locations (Fenn, 1966), suggests a linear relation-
ship of visibility and backscatter only over a limited range, as
opposed to the relationship between visibility and extinction
coefficient (Eq. 1). This implies that the lidar ratio (Eq. 6) is
constant only for a limited range of visibility (or backscatter).

After binning, for each visibility, a threshold ¢ is applied
over the spectrum of backscatter values, which is computed
as

t=p+6, ®

where p is the mean sample density of the backscatter spec-
trum and § is an adjustable parameter. The thresholding
is used to exclude spectral outliers and artefacts (deemed
to be unlikely values) and to tighten the distribution of a
backscatter values at given visibilities (reduce the variance,
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or spread), corresponding to a forced reduction in samples.
After thresholding, the first moment of the backscatter dis-
tribution (centroid) is retrieved for each of the 80 visibili-
ties. This corresponds to a maximum likelihood estimation
of the backscatter, i.e. the estimation of the expectation value
of the distribution of backscatter—visibility sample. The re-
trieved backscatter values for all 80 visibilities are then used
for a linear fit, which is also a measure of linear correlation
between visibility and lidar backscatter. The linear fit is then
used as a transfer function (similar to a calibration) to trans-
late a measured backscatter value from the wind lidar to vis-
ibility (or vice versa if desired).

3 Results

3.1 Method A

Equation (8) was used to estimate visibility from wind lidar
backscatter for Cabauw from the full visibility range (no se-

lection or filtering was applied; see Fig. 3). The visibility es-
timate, Eq. (8), is very sensitive to the Angstrom exponent o,
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whereas the choice of the lidar ratio S is rather forgiving. The
lidar ratio was held constant at 70 sr, representing a continen-
tal tropospheric SD (Jager et al., 1995; Doherty et al., 1999).
A typical value for the ;\ngstr(jm exponent has been empiri-
cally determined as 1.4 for visibilities between 6 and 20 km
(Nebuloni, 2005). This value largely overestimated visibili-
ties from the visiometer. Increasing the Angstrém exponent
to 2.0, associated with a finer, more continental aerosol dom-
inating the backscatter, improved the fit considerably, and
the result is shown in Fig. 4a. The scatter of the data and
the nonlinear dependence between backscatter and visibil-
ity (Fig. 3a and b) translate into mismatches between the
time series of backscatter and visibility. This does not ex-
plain why for some periods the visibilities match well (21
to 25 November 2018) and for some they do not (19 Novem-
ber, 29 November to 3 December 2018). A more marine-type
lidar ratio of 28 sr (Doherty et al., 1999) associated with a
larger aerosol mode size improves the fit somewhat for early
December 2018, whilst largely overestimating the visibilities
from the visibility sensor overall (Fig. 4b). The mean abso-
lute error (MAE) for the whole period of 24 months of data is
8.6 km for a lidar ratio of 70 and over 21 km for a lidar ratio
of 28, suggesting that the dominant aerosol at Cabauw is of
continental type. The poor agreement for midday 19 Novem-
ber and around 30 November persists (Fig. 4a). This may
partly be due to the visiometer data levelling off at 20 km
visibility. The backscatter at midday of 19 November was in-
deed ~ 4 times lower than during the morning of 19 Novem-
ber, hence with the same combination of S =70sr, o =2,
thus leading to a 4-fold increase in visibility (~ 58 km) re-
trieved from the lidar backscatter. The aerosol SD and hence
the Angstrom exponent and the lidar ratio usually vary over
time (Doherty et al., 1999), thus leading to mismatches as in
Fig. 4.

As demonstrate above, by varying the Angstr‘dm exponent,
a coarse fit could be produced, which could then be fine-
tuned using the lidar ratio. Of course, this yields a nonunique
solution. For example, S =28 sr and « = 2.6 yield a sim-
ilar fit as in Fig. 4a, including MAE. Therefore, assump-
tions about the lidar ratio and Angstrém exponent would
have to be made. These parameters would need to be mea-
sured separately in parallel to lidar backscatter, such as with
a nephelometer in combination with a sun photometer (Do-
herty et al., 1999). Although the Angstrom exponent does
vary over short periods of time (hours to days), it does so
in a confided manner. For certain sites, including Cabauw,
Angstrijm exponents are available from the aerosol opti-
cal depth (AOD) product from the Aerosol Robotic Net-
work (AERONET, https://aeronet.gsfc.nasa.gov/new_web/
data_description_AOD_V2.html, last access: 28 July 2022).
For a few sites, lidar ratios are measured within the portable
Raman lidar network (PollyNet, Baars et al., 2016). For
Cabauw, although none of these are available for autumn and
winter 2018 from both networks, the Angstrém exponent re-
trieved within AERONET at Cabauw usually varies between
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approximately 0.1 and 2.0 over the course of any given day
and is bounded by these limits over the course of a year. This
makes S = 70 sr, « =2 more likely than § = 28 sr, o = 2.6.
Figure S1 in the Supplement shows an example where time
series of Angstrém exponent at Cabauw from AERONET
(O’Neil et al., 2001) were used to improve the agreement
with the visiometer, especially for lower visibilities, while
the agreement for the higher visibilities reduced, since the
lidar ratio was assumed constant.

While method A is an interesting exercise, it is question-
able whether it would be practical enough in obtaining a
general transfer function between lidar backscatter and vis-
ibility. It could be feasible where data from monitoring net-
works such as AERONET exist, which yield time series of
the Angstrém exponent and lidar ratio.

3.2 Method B

To that end method B was applied to the Cabauw data. A
limited visibility range in the 2D histogram of [4, 20km]
(Fig. 3a) was selected in order to increase linearity of the
correlation. This was followed by thresholding using @+ 1.5
(Fig. 5a). After the thresholding is applied, the secondary
mode has little influence on the fit, due to the relatively
few points associated with these backscatter—visibility pairs
(Fig. 5b). The resulting histogram reveals a good correla-
tion between visibilities from the visibility sensor and the
backscatter values from the wind lidar.

The lidar backscatter coefficient can be quite dynamic. The
lidar backscatter coefficients at both sites were observed to
fluctuate by up to 5 times within 10 min. To assess whether
the 10 min averaging window caused any deterioration of the
correlation, selected series of backscatter were offset by up
to 5min before averaging, with no significant effect on the
correlation with the 10 min visibility time series.

The ratio of the number of measurements with a given vis-
ibility versus the number of total measurements was com-
puted to assess how frequent a given minimum visibility is.
For comparison, this was done using visibility values from
the lidar backscatter and visibility values from the visiome-
ter. As a result, using the visibility sensor data only, about
60 % of the time visibility is at least 8 km (Fig. 5¢). This may
be compared with the fraction of measurements for a given
visibility as retrieved from the centroid backscatter values,
which are in line, but slightly off, especially for the higher
visibilities (68 %, Fig. 5c¢). This is caused by the slight non-
linearity in the correlation plot (Fig. 5a).

Method B was applied to the Pershore data set (Fig. 6a).
Owing to the spread in backscatter, the R* value is sig-
nificantly lower than for Cabauw (0.80). The difference
to Cabauw in intercept and slope of the transfer function
(Fig. 6a) indicates that the annual average backscatter is be-
low that of Cabauw for all visibilities considered here. This
becomes easily visible when comparing the 1D histograms
(Figs. 5b and 6b). This implies that for the same backscat-
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ter the visibility at Pershore is smaller than at Cabauw. In
line with the lower R? of the fit (Fig. 6a), the discrepancy is
higher between the prevalence of a given visibility for lidar-
derived versus sensor-derived visibilities (Fig. 6¢). For exam-
ple, a minimum visibility of 8 km was measured 62 % of the
time with the visiometer but 82 % of the time using lidar-
derived visibilities from the transfer function. The closest
agreement is for visibilities around 13 km, which is similar
to Cabauw (Fig. 5c¢).

3.2.1 Height dependence Cabauw

Only Cabauw data are considered since Pershore data were
available for a single height only. While the correlation plots
and the transfer functions for different heights of sensor and
lidar do not reveal it directly (Fig. 7a to f), the visibilities
computed from the fitted transfer functions of these corre-
lations, depending on the given backscatter value, show a
possible slight upwards trend with increasing height (Fig. 8).
It appears that visibility below ~80ma.g.l. varies only lit-
tle with height. This is expected, since, at least in unstable
and neutral atmospheric conditions, no significant aerosol
stratification at these low heights would be anticipated. It is
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also in line with other long-term ZX 300 lidar observations
from various sites across the globe, suggesting a vertically
weakly exponential decrease in lidar signal strength (hence
backscatter) that becomes significant above ~200ma.g.l.,
corresponding to an increase in visibility. These vertical
trends can also be identified in data from the CALIOP satel-
lite borne aerosol lidar (Winker et al., 2013). The temporal
mean of the visibilities between 4 and 19.5 km from the vi-
siometers follows a similar trend (Fig. 8).

To assess the severity of separating visiometer height
and lidar probe vertically, lidar backscatter from 39m
was correlated with visibilities from sensor heights not
matching the lidar height. At a fixed backscatter value
(0.65 x 10~ m~1 sr 1), for the correlation of 39 m lidar vs.
200 m visiometer data, the difference in visibility to the vis-
ibility from the collocated visiometer-lidar data (lidar at
39m, visiometer at 40ma.g.l.) is 35 % (~ 3 km), with R?
dropping to 0.81. Below that height, the difference is within
9% (800m), that is 1%, 9%, 3 % and 3 % with an R? of
0.96, 0.97, 0.95 and 0.89 for 10, 20, 80 and 140 m, respec-
tively. This is comparable to the relative change in visibility
for heights up to 80 ma.g.l.. This indicates that, at least for
this case, the visibility sensor and lidar probe height may be
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separated by a few tens of metres, provided a generally well-
mixed atmosphere within the layer, in which the sensor and
lidar probe are located (as assumed for Pershore). This is also
suggested by the time series of the visibility sensors, which
for the heights of 10, 20, 40 and 80 m a.g.l. largely correlate.
Whilst this can often be assumed for the continental bound-
ary layer, especially during daytime, when convective mixing
takes place, this would less likely be expected offshore, for
instance, due to the presence of advection fog near the sea
surface, causing strong vertical gradients in aerosol density
and SD.

3.2.2 Seasonality

Figure 9 shows 2D histograms for 40 ma.g.1., which under-
went the same processing, as described in method B, but split
by seasons. The threshold has been lowered to 4 1 to par-
tially compensate for the decrease in sample number, which,
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if below ~ 4000, may deteriorate the linear correlation. The
correlation still deteriorates for summer, due to fewer data
points and a larger scattering (only ~ 2500 data points vs.
~ 8000 for other the seasons), especially for the less frequent
lower visibilities. For Cabauw, the backscatter for all visibil-
ities undergoes a strong shift to lower values from spring to
summer to then remain relatively unchanged until autumn.
Between autumn and winter, the backscatter mainly for the
lower visibilities decreases, causing a decrease in slope of
the transfer function. A backscatter of 0.5 x 10~®m~1 sr—!
(—0.28 x 107m~'sr~! in Fig. 9a) would give a visibil-
ity of ~13km in spring, ~9km during summer and win-
ter, and 8 km during autumn. For Pershore, the backscatter
is distributed differently with respect to visibility but indi-
cates a decrease from spring to summer and an increase from
summer to autumn. A backscatter of 0.5 x 10~®m=! sr~!
corresponds to visibilities of 2500, 1800, 4400 and 1300 m
(spring, summer, autumn, winter).

Atmos. Meas. Tech., 15, 5527-5544, 2022
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Reorganising the backscatter data into monthly averages
shows a clear seasonality for both Cabauw and Pershore
(Fig. 10), which the 2D histograms do not reveal directly. As
with the 2D histograms, the monthly averages show a sys-
tematic difference in backscatter between the two sites that
will be discussed further below. For both sites, the backscat-
ter is highest in the winter and lowest in the summer (Fig. 9).
A backscatter minimum around July has been measured with
different ZX 300 CW wind lidar systems at the ZX site near
Ledbury, UK, but also other locations in the Northern Hemi-
sphere (Scott Wyle, ZX Lidars, personal communication,
2022). Analysing monthly mean backscatter from Pershore
for 9 years (2012 to 2020) resulted in a standard deviation
of monthly mean backscatter over the years between 0.02
(July) and 0.09 (March). The z score varied between 0.04 and
2.1. Depending on the year and month, the monthly mean
backscatter, therefore, differed from the mean over 9 years
by 0.04 to 2.1 standard deviations.

3.2.3 Visibility time series

Figure 11 shows a visibility time series for Cabauw de-
rived from lidar backscatter using the fitted transfer function
(method B), covering the same period as Fig. 4 (method A).
The lidar visibility was derived from lidar backscatter from
39ma.g.l. against visibilities from the sensor at 40 ma.g.l.
(Fig. 5). In places, the lidar-derived visibilities agree well
with visibilities from the visiometer (e.g. 21 to 26 Novem-
ber 2018); sometimes they largely disagree (e.g. 27 Novem-
ber), leading to an MAE of ~4km for the whole 24
months covered by the data (an improvement over the MAE
for method A, Fig. 4) and 2.1km for the plotted period
(Fig. 11a). The seasonality in the transfer function (Figs. 9
and 10) and the fact that the visiometer data are part of the
fitting process suggest that the closer the data acquisition pe-
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riod used for fitting the transfer function matches the period
to predict visibilities, the better the agreement should be-
come. Since the time series in Fig. 11 up to November cor-
responds to autumn, a reasonable period to choose data from
should be autumn. When using data from autumn only to fit
the transfer function, the MAE increases slightly from 2.1
to 2.8 km, which is somewhat unexpected and will be inves-
tigated further below. The agreement around 27 November,
however, improves (Fig. 11b). The MAE for the whole period
of 24 months increased from ~ 4 to ~ 5 km, as one would ex-
pect, since autumn-only data were used to estimate visibility
for all four seasons. When only data acquired in November
are used for prediction (2 months of data, November 2018
and November 2019), the agreement for the period displayed
worsens (MAE 2.6 km), while the MAE for the whole 24
months remains at ~5km (Fig. 11c). A very similar result
is obtained when data from November 2019 only are used to
predict visibilities for the period displayed (Fig. 11d).

These tests do not support the hypothesis that the agree-
ment between lidar-derived visibilities and visiometer read-
ings improves when the periods for fitting and predicting vis-
ibility match more closely. To assess that, other time periods
underwent the same procedure with a similar outcome. It was
found that limiting the data acquisition period practically de-
creases the variance of the backscatter distribution at a given
visibility, i.e. has a similar effect as increasing the threshold
(Eq. 9), at the expense of an increased risk of a poorer linear
fit, which could explain an increase in MAE. In particular, re-
gardless if spring, summer, autumn or winter was chosen, the
overall MAE and the MAE of the period of interest decreased
to comparable amounts (4 to 5 km and ~ 2 km, respectively).
Limiting the data period further (or increasing the threshold
above a certain level) may decrease the number of data and
hence the goodness of the fit, at which point the MAE may
increase (as between Fig. 11a and b). For a very large data set
(e.g. 10 years of data), however, matching the data period for
the fit to that for the prediction could possibly be beneficial
to predict more accurate visibilities.

Decreasing the range of visibilities was also tested. It was
found that MAE improved, at the cost of a lower dynamic
range of visibilities in the time series, since the lidar-derived
visibility time series covers only visibilities that were used
in the fit of the transfer function. For instance, decreasing
the range of visibilities to [7, 15]km led to a MAE of 1.6
and 2.1 km, for the plotted period and the whole 24 months,
respectively.

Figure 12 shows the visibility time series for Pershore, de-
rived from lidar backscatter from 39 m a.g.l. against visiome-
ter visibilities at 2ma.g.l. (Fig. 6). Compared to Cabauw,
the data for Pershore are less tightly clustered around the
centroid backscatter values, especially for lower visibilities.
Since the fit can approximately be interpreted as the vis-
ibility that corresponds to a given mean backscatter value
with the width of the distribution indicating deviation, the
larger spread of backscatter values leads to a correspond-
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ingly larger MAE between the time series of the lidar-derived
visibility and sensor visibility (Fig. 12). In other words, a
given backscatter value corresponds to a larger range of vis-
ibilities. Increasing the threshold reduces the spread of the
backscatter values at given visibilities (Fig. 6a and b), and, in
fact, it reduces the MAE between the time series (Fig. 12a).
An optimum threshold of © + 1.5 was found (Eq. 9), which
avoids deteriorating the linear fit (R?). As the threshold is in-
creased, slope and intercept approach similar values as those
for Cabauw. However, since the scale is logarithmic, even
small differences lead to significant discrepancies in visibil-
ity and backscatter. For a given backscatter, and the visibility
ranges regarded here, visibility remains smaller for Pershore
than for Cabauw. A reduction in MAE (overall MAE) from
3.8 km (4.8 km) to 3.5 km (4.4 km) is achieved when autumn
data are selected (Fig. 12a and b). MAE remains unchanged
for November data and decreases to 3.2 km (4.2 km) if only
November 2019 data are used to predict visibilities.

4 Discussion

The backscatter values at a given visibility form a fairly
monomodal distribution. The transfer function is the linear
least-squares fit of the first moments (centroids) of the distri-
bution of backscatter values at given visibilities. It maps the
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most common backscatter value to visibility. The linear rela-
tionship between the centroids of the logarithmic backscatter
and logarithmic inverse visibilities over a limited parameter
range is in line with theory (Eq. 1) and previous results (Cur-
cio and Knestrick, 1958; Twomey and Howell, 1965; Nebu-
loni, 2005). The smaller the range of visibilities considered,
the more linear the relationship between logarithmic visibili-
ties and backscatter, and hence the larger the R? value of the
transfer function becomes. One would therefore expect that
decreasing the visibility range would lead to enhanced agree-
ment between sensor and lidar-derived visibilities, i.e. MAE
decreases. While this is the case, it has little practical rele-
vance, since the visibilities the transfer function would try to
match were not included in the fit of the transfer function.
Assuming that the lidar backscatter probability density is
monomodal, thresholding is applied to the distribution to re-
move artefacts and reduce the spread of the distribution at a
given visibility. The transfer function changes after thresh-
olding is applied. For example, for Cabauw the difference
in visibility as a result of applying a threshold of © + 0 ver-
sus u + 1, depending on the backscatter, amounts to a few
hundred metres. Thresholding reduces data points and there-
fore may decrease the “goodness” of the linear fit (R?), by
increasing the fit error variance (squared error). One would
expect this to ultimately cause an increase in MAE between
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lidar-derived visibilities and reference visibilities from a vi-
siometer, since the fitted transfer function explains the data
less well. On the other hand, the thresholding decreases the
spread of backscatter values at a given visibility, which de-
creases the MAE, provided the number of data points is suf-
ficient to form a monomodal distribution (> 1 points around
the centroid). The results, therefore, indicate that an opti-
mum threshold exists that maximises R2, at the same time
minimising MAE with reference measurements from the vi-
siometers. In the present work this optimum has been roughly
approached by trial and error, but certainly there is potential
for an improved procedure.

The backscatter retrieved from the CW wind lidars un-
dergoes seasonal cycling. Annual mean values of different
years and monthly means between different years are rea-
sonably comparable (Fig. 10). However, depending on the
year, the result suggests uncertainties up to a few kilometres
if a transfer function for a given month was used to predict
visibility for the same month of a different year. Since the
monthly mean backscatter traces the cycling in gross primary
productivity quite well (Fleischer et al., 2015), the observed
seasonality could be attributed to aerosol removal processes
by leaved vegetation (Wedding et al., 1975). Other possi-
ble mechanisms include peaks in primary biological material
(Held et al., 2008), a seasonality of condensed water aerosol
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in the planetary boundary layer and seasonal variations in
boundary layer height, which influences dilution of aerosols.
Seasonality of atmospheric aerosol extinction, scattering and
backscatter coefficients has been measured by others, such
as with ground-based in situ measurements and lidar, includ-
ing the Arctic (Schmeisser et al., 2018; Shibata et al., 2018)
and Spain (Sicard, et al., 2011; Navas-Guzman et al., 2013).
Mean extinction coefficients over several regions on Earth
were measured with the Cloud-Aerosol Lidar with Orthog-
onal Polarization (CALIOP, Koffi et al., 2012). Consistent
with the present finding, the mean extinction coefficient over
western Europe had a minimum in the summer. Schmeisser
et al. (2018) found that in some locations around the Arctic
Circle, maximum aerosol scattering occurred during spring
and winter, whilst in other locations maximum extinction
was measured during the summer months. This advocates as
likely drivers of seasonality of aerosol backscatter regionally
different mechanisms as well as the transport of aerosols into
the region of measurement, such as from manmade sources
(e.g. sulfates and soot particles, Shibata et al., 2018) or natu-
ral sources, including Sahara dust (Sicard et al., 2011; Navas-
Guzman et al., 2013) and sea salt (Koffi et al., 2012).

Although both sites have the same qualitative seasonality
in backscatter, when sorted by visibility in a 2D histogram
(Figs. 5 and 6), the trends are dissimilar, indicating that a
given backscatter does not imply the same visibility at a dif-
ferent location. In fact, the backscatter at Pershore is system-
atically lower than at Cabauw. As mentioned above, differ-
ences between the visiometers should be insignificant. There
is a contribution from the transmitted optical power of the
wind lidars at the two sites. The transmitted power between
units may vary by ~ 6 %. Adding differences in receiver sen-
sitivities between the two, the maximum expected difference
in backscatter is of the order of 10 %. As the observed dif-
ferences are far greater than that, they are in all likelihood
related to the local aerosol properties, more specifically, to
different dominant aerosol types. For instance, a visibility of
12km corresponds to a backscatter of 0.61 x 107 m~! sr~!
at Cabauw and 0.26 x 10~®m~! sr~! at Pershore. Given that
on a scale of minutes the lidar backscatter value at a given site
may easily vary by several factors, this difference is small.
However, as it represents an average over many minutes, it
is significant. Averaged on a monthly basis, the backscatter
values at Cabauw are systematically greater than those for
Pershore for each month of the year (Figs. 5 and 6). Dur-
ing the summer months, the backscatter at Cabauw is about
3 times larger and during winter about 2 times larger than
at Pershore (Figs. 9 and 10), suggesting differences in local
atmospheric backscattering characteristics that may change
with season. Interestingly, for Pershore, the backscatter val-
ues scatter considerably more around the centroid backscat-
ter than for Cabauw.

These results are coherent with previous findings that re-
ported a strong dependence of backscatter to the govern-
ing aerosol mode (Twomey and Howell, 1965; Vogt, 1968),
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Figure 11. Lidar-derived visibility time series and readings from visiometers for Cabauw. Also shown is the mean absolute error (MAE)
between the two time series. MAE is for the plotted period only, and MAE all is for the whole data period of 24 months. (a) Fit used all data.
(b) Fit used autumn data only. (¢) Fit used data from Novembers only. (d) Fit used data from November 2019 only. Lidar-derived visibilities
outside the [4, 20] km range used for retrieval have been excluded from the calculation of MAE but are plotted to illustrate the effect of

extrapolating the transfer function outside that range.

as stated in the introduction of this paper. Although the
extinction-to-backscatter ratio (lidar ratio) is often assumed
to be constant (including method A), this assumption is
strictly only a fair approximation for homogenous scatter-
ing, such as Rayleigh scattering. As the size of the scatter-
ing particle increases, Rayleigh scattering is replaced by the
Mie scattering model, which, assuming spherical aerosols,
is predominant for the present study. Under Mie scattering,
the assumption of isotropic scattering breaks down, and the
angular distribution of the scattered electromagnetic field de-
velops a directivity, i.e. an imbalance in the light intensities
between forward scattering angles (measured by visiometers)
and the backscatter angle of = (measured by the wind lidar),
which varies with size parameter o« = 2rrr/A and therefore
with particle radius r and wavelength A (Vogt, 1968; Shang
et al., 2017). As the lidar ratio of a spherical particle changes
with particle size, backscatter may vary strongly as particle
type and size change, even along the beam, while the ex-
tinction coefficient varies only a little (Tworney and How-
ell, 1965). The visiometers measure forward scattering, and
hence aerosol extinction, at angles with minimum sensitivity
to changes in Mie scattering intensity upon change of particle
type and size.

https://doi.org/10.5194/amt-15-5527-2022

Since extinction and backscatter coefficients are quanti-
ties integrated over SD and size parameter, the fluctuation of
the lidar ratio (and hence backscatter) with particle size is
smoothed. Real-world aerosol SDs are far from being homo-
geneous, and a smoothing effect can be expected. This also
implies that the use of polychromatic light yields a backscat-
ter intensity less dependent on the aerosol SD than the highly
monochromatic light of a coherent wind lidar. The result
by Tworney and Howell (1965) suggests that, due to this
smoothing effect, the spread of backscatter for a given visi-
bility (Figs. 5, 6, 7 and 9) is up to twice as high as it would be
for a measurement with polychromatic light. The magnitude
of the spread is likely also a function of the variety of aerosol
types and hence SD present over the data acquisition period,
which increases nonuniqueness of the relation between visi-
bility and backscatter (Fenn, 1966). This suggests the possi-
bility that relative to Cabauw Pershore experienced a higher
variety in aerosol type and SD.

The systematic offset between two sites too is likely
caused by a different local aerosol SD to which the backscat-
ter is more sensitive than forward scatter at the angular ranges
used in the visibility sensors. It appears likely that different
aerosol types (or SDs) may give a similar forward scattering
intensity, and hence similar visibility sensor reading, but dif-
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Figure 12. Lidar-derived visibility time series and readings from visiometers for Pershore. Also shown is the mean absolute error (MAE)
between the two time series. MAE is for the plotted period only, and MAE all is for whole data period of 24 months. (a) Fit used all data.
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outside the [4, 20] km range used for retrieval have been excluded from the calculation of MAE but are plotted to illustrate the effect of

extrapolating the transfer function outside that range.

ferent backscatter values. Different sites are associated with
a different predominant (mean) aerosol SD, which, therefore,
qualitatively could explain not only the variance (spread) of
the lidar backscatter value for a given visibility (e.g. Fig. 6a),
but also the offset by a factor of 2 to 3 between the mean
backscatter of the two sites (Fig. 10).

Since aerosol density affects backscatter, a mean aerosol
number density systematically higher or lower throughout
the year would certainly contribute to the observed offset.

As the difference in transfer function is in all likelihood
related to differences in the predominant local aerosol SD
and/or particle number density, this indicates that after cal-
ibrating the backscatter measured by the CW wind lidar
(method B) using a visiometer the lidar could be used to
measure visibility. The same applies to method A. Since the
predominant aerosol SD in the planetary boundary layer is a
function of location and the transfer function has been found
to vary between different locations, the transfer function is
probably not generalisable but site specific. Even if the trans-
fer function was similar for aerosol SD typical to a certain
setting (e.g. marine, near coastal), it would not necessarily
be transferrable to a different location, since the local aerosol
SD could become atypical, for instance, if the location is
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near a heavy polluter, such as a dense urban area (Curcio
and Knestrick, 1958; Twomey and Howell, 1965).

The more that is known about the dominant aerosol probed
by the lidar, the more the transfer function could potentially
be applied to different locations with similar average aerosol
SDs. It is therefore desirable to gain more information on
the predominant aerosol type at Pershore and Cabauw. This
would require a different set of instruments, which is be-
yond the scope of this work. But informed estimates can be
made nonetheless. Pershore is located in a rural area. Dur-
ing the predominant southwesterly and westerly winds, air
coming from the Atlantic Ocean passes a strip of land about
300 km wide before it reaches Pershore. This area lacks ma-
jor industry hubs or urban areas that would concentrate sea
or road traffic and act as constant and strong polluters. The
dominant aerosol SD is thus likely a rural one, which might
be disturbed by road traffic. Furthermore, a landfill, located
~ 800 m to the southwest of the lidar location, could also
produce enhancements in diesel aerosol from the operated
machinery and aerosols common to landfills (Nair, 2021).
This was indicated by a pronounced difference in the trans-
fer function fitted on weekend and weekday data. Less road
traffic on the weekend could be confirmed by observation.
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During the predominant southwesterly winds, the aerosol
type and number density around Cabauw is expected to be
heavily influenced by road traffic aerosol from the Rotter-
dam suburban area, including the sea port (Karl et al., 2016),
and remnants of combustion aerosol from the southeast of
England, notably the London area (Fig. 2a). The strong con-
centration of aerosols from both road and sea traffic and in-
dustrial air pollution downwind of Rotterdam and Rotter-
dam harbour may explain the larger average backscatter at
Cabauw (Fig. 10) and the corresponding difference in the
transfer functions between the two sites (Figs. 5a and 6b).
The difference in slope of the transfer functions is likely
dominated by the difference in the lidar ratio, i.e. due to dif-
ferent dominating aerosol type(s) at the two sites.

Splitting the data into day and night may also yield hints
as to which extent manmade aerosols are dominating. How-
ever, other diurnal mechanisms, such as boundary layer mix-
ing processes (Stanier et al., 2004), most certainly will affect
aerosol type and number density, and hence lidar backscat-
ter. Interestingly, for Cabauw (Fig. 13a and b) the centroid
backscatter increases during the night (18:00 to 06:00 UTC
) for both 19km visibility (by ~45 %, from 0.28 x 107°
to 0.41 x 107m~"! s~ 1) and 5000 m visibility (by ~ 21 %,
from 0.86 x 107 % t0 1.05 x 10~ m~! sr~1). A backscatter of
0.65x 107 m~ sr™! (=0.19 x 107®m~!sr~! in Fig. 13a)
would give a visibility of ~7.1km for the day fit and
~9.7km if considering night-time data only. For Pershore
(Fig. 13c and d), no significant change in backscatter was
found during night-time for 19km visibility, but a pro-
nounced decrease for 5km visibility of 20 % was found
(from 0.43 x 107°t0 0.34 x 10~® m~! sr~!). Though not ad-
equate to indicate manmade aerosol, splitting the data into
day and night is insightful as it further demonstrates the sen-
sitivity of linking visibility to lidar backscatter. For practical
application that target daylight visibility, it may be advisable
to exclude night-time data before fitting the transfer function.

In the Mie scattering regime, which assumes spherical par-
ticles, the polarisation of light is preserved. The polarisation
transmitted by the wind lidar is random, and the polarisation
of transmitted and received photons is assumed to be equal.
Depolarisation effects by aerosols could, however, influence
backscatter intensity. The technique used by the visiometers,
on the other hand, is polarisation insensitive. Two aerosol
types, spherical (e.g. water droplets) and non-spherical (e.g.
sea salt aerosols), may thus cause similar scattering inten-
sities, but due to a change in polarisation (depolarisation)
caused by the non-spherical aerosol, the backscatter as de-
tected by the wind lidar may differ, which will contribute to
a site-specific transfer function.

For Cabauw, lidar-backscatter-derived visibility was found
to be weakly height dependent (Fig. 8), in line with the ob-
servation that under cloud-free conditions backscatter from
CW wind lidar usually tends to slightly decrease with height
in the lower part of the planetary boundary layer. The coher-
ence of vertical trends of visibility as seen between wind lidar
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and the visiometer and lidar is encouraging in that it suggests
that once calibrated, a CW wind lidar may indeed be useful
in generating profiles of SOR in situations where visiome-
ters at heights above tens of metres above ground level are
not available or feasible.

5 Conclusions

Backscatter data from two CW-wind lidar systems, at
Cabauw (Netherlands) and Pershore (UK), have been anal-
ysed with the aim to retrieve meteorological optical range
(visibility).

Directly relating backscatter to visibilities was found
practical only in cases where additional input data to the
backscatter are available, that is extinction-to-backscatter ra-
tio (lidar ratio) and Angstrém exponent.

Calibrating lidar backscatter coefficients with co-
measured visibilities from visiometers and fitting a linear
transfer function to points of maximum likelihood backscat-
ter was found to be more viable, since, once the backscatter
is calibrated, it would not rely on secondary measurements
acquired in parallel. For larger ranges of visibility and
backscatter coefficients, the correlation was found to be less
linear. The method is deemed, therefore, practical only over
a limited parameter range. This implies that the lidar ratio is
constant over a limited range of backscatter values only. In
addition, the results indicate a spread of backscatter values
for a given visibility, with the spread being dependent on
the location. The spread likely corresponds to a nonunique
relation between visibility and backscatter.

For a given location and backscatter coefficient, both the
nonlinearity and the nonuniqueness are linked to the contri-
bution of a variety of aerosol types and size distributions over
the data acquisition period (Fenn, 1966). For a given time,
but separate locations, differences in local dominant aerosol
type lead to differences in lidar ratio and therefore a site-
dependent transfer function. In other words, two different
aerosol types may give a similar forward scattering inten-
sity, and hence similar visibility sensor reading, but a differ-
ent backscatter and thus a different wind-lidar-derived visi-
bility. Therefore, backscatter measurements from CW wind
lidar are only representative and repeatable for environments
with similar aerosol SDs. This is in line with previous find-
ings (e.g. Curcio and Knestrick, 1958; Fenn, 1966). Both
nonlinearity and nonuniqueness are independent of the setup
used to measure backscatter (e.g. CW lidar, pulsed lidar,
flash light, Curcio and Knestrick, 1958; Doherty et al., 1999;
Werner et al., 2005, p. 172).

The result suggests that backscatter from CW-wind lidar is
useful to infer visibility, but it needs to be calibrated against
a visibility sensor in an atmosphere similar (similar mean
aerosol type) to the one of its intended use, ideally over the
course of a year to capture seasonal variation. For the 2-
year data set used here, selecting a subset of the data (sea-
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Figure 13. Comparison of 2D histograms between day and night at 39 m lidar probe height. (a) Cabauw, day. (b) Cabauw, night. (c) Pershore,
day. (d) Pershore, night. To account for the reduced sample size, the threshold was reduced to © + 1.

son, month, etc.) did not improve the accuracy of the transfer
function, i.e. accuracy of predicting visibility for the corre-
sponding subset of the same year or a different year. Data
sets acquired over more than 2 years may improve the accu-
racy of the transfer function.

Going forward, it might be useful to acquire transfer func-
tions at more sites globally and categorise them into sites
with similar predominant mean aerosol size distributions.
Obtaining visibility data from more sites is desirable to test
how site specific the transfer function is and how comparable
it is between similar environmental settings.

As far as the two sites assessed in this study are concerned,
even after calibrating the lidar backscatter with an in situ vis-
ibility sensor at the site of intended use, the expected accu-
racy in terms of mean absolute error is over a kilometre. The
method was thus deemed suitable for safety-uncritical appli-
cations, such as industrial (e.g. visibility of wind turbines,
oil rigs from the shore) or in scientific research. A possible
application could include the statistical estimation of the fre-
quency of wind turbine visibility. This could especially be
interesting for offshore sites, where, for economic reasons,
the distance between the wind farm and the shore has to be
minimised. The visibility derived from backscatter could be
a modelling input parameter amongst other input parameters,
such as solar angle, object colour, Earth’s curvature or cloud
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cover. Since the backscatter depends critically on the aerosol
SD, this could potentially open up applications where sensi-
tivity to aerosol chemistry is desired, such as pollution mon-
itoring or detecting changes in particular matter properties
during passive and eruptive degassing phases of volcanoes,
which are linked to physiochemical processes inside the vol-
canoes’ plumbing systems.

Data availability. Cabauw tower and surface data sets are avail-
able as Meteo profiles — validated tower profiles of wind, dew
point, temperature and visibility at 10 min intervals from https:
//dataplatform.knmi.nl/dataset/cesar-tower-meteo-1b1-t10-v1-2
(last access: 22 September 2022; KNMI, 2022a), and Meteo
surface-validated observations of common atmospheric variables
at 10min intervals from https://dataplatform.knmi.nl/dataset/
cesar-surface-meteo-1b1-t10-v1-0 (last access: 22 September
2022; KNMI, 2022b). Pershore visibility data are available at
https://doi.org/10.5281/zen0do.6325902 (Queiler et al., 2022).
Backscatter data are available from the first and second authors on
request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-5527-2022-supplement.
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