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Abstract. Integrated water vapour (IWV) measurements
from similar or different techniques are often inter-compared
for calibration and validation purposes. Results are usually
assessed in terms of bias (difference of the means), stan-
dard deviation of the differences, and linear fit slope and off-
set (intercept) estimates. When the instruments are located
at different elevations, a correction must be applied to ac-
count for the vertical displacement between the sites. Em-
pirical formulations are traditionally used for this correction.
In this paper we show that the widely used correction model
based on a standard, exponential, profile for water vapour
cannot properly correct the bias, slope, and offset parame-
ters simultaneously. Correcting the bias with this model de-
grades the slope and offset estimates and vice versa. This
paper proposes an improved correction method that over-
comes these limitations. It implements a multiple linear re-
gression method where the slope and offset parameters are
provided from a radiosonde climatology. It is able to predict
monthly mean IWVs with a bias smaller than 0.1 kgm−2 and
a root-mean-square error smaller than 0.5 kgm−2 for height
differences up to 500 m. The method is applied to the inter-
comparison of GPS IWV data in a tropical mountainous area
and to the inter-validation of GPS and satellite microwave ra-
diometer data. This paper also emphasizes the need for using
a slope and offset regression method that accounts for errors
in both variables and for correctly specifying these errors.

1 Introduction

Water vapour plays a key role in many meteorological pro-
cesses and in the hydrological cycle of the Earth’s atmo-
sphere. Because it is extremely heterogeneous and vari-
able, many operational and research observing techniques
have been developed over the years to sense its horizontal,
vertical, and temporal variability. Among the various high-
performing techniques, one may cite in situ measurements
with radiosonde balloons and remote sensing techniques ex-
ploiting different domains of the electromagnetic spectrum,
namely Fourier transform infrared radiometers (FTIR); near-
infrared, visible, and ultraviolet radiometers and spectrome-
ters; microwave radiometers (MWRs); and microwave mea-
surements from global navigation satellite systems (GNSS).
Integrated water vapour (IWV) measurements from ground-
based and space-based platforms are often compared to as-
sess each other’s accuracy, e.g. detect biases and/or long-term
drifts (Bokoye et al., 2003, 2007; Morland et al., 2006a, b,
2009; Bock et al., 2007, 2014, 2021; Sussmann et al., 2009;
Bedka et al., 2010; Palm et al., 2010; Schneider et al., 2010;
Vogelmann et al., 2011; Buehler et al., 2012; Cimini et al.,
2012; Van Malderen et al., 2014; Courcoux and Schröder,
2015; Schröder et al., 2016), as well as for inter-calibration
purposes, e.g. adjusting biases from instruments on succes-
sive space-based platforms (Du et al., 2015; Mears et al.,
2015, 2018; Wentz, 2015; Bennartz et al., 2017; Ho et al.,
2018; Schröder et al., 2019). In this context, it is frequent that
IWV measurements from sites at different elevations need to
be compared (e.g. Bock et al., 2005; Morland et al., 2006a;
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Buehler et al., 2012; Van Malderen et al., 2014). Because
the water vapour concentration in the atmosphere decreases
by several orders of magnitude between the surface and the
upper troposphere, a vertical correction is required to con-
form the measurements from sites at different altitudes or be-
tween point observations and aerial averages, such as those
derived from atmospheric models (Bock et al., 2005, 2007,
2014; Morland et al., 2006b; Buehler et al., 2012). There is
a similar problem for the vertical adjustment of tropospheric
wet delays (Dousa and Elias, 2014). While many studies have
recognized that a height difference results in a systematic dif-
ference (bias) in the IWV measurements, few have applied a
correction, and even fewer have recognized that the height
difference also impacts the linear fit slope and offset esti-
mates. To our knowledge, only Bock et al. (2005), Morland
et al. (2006a, b), Buehler et al. (2012), and Van Malderen et
al. (2014) addressed these points. Van Malderen et al. (2014)
experienced that applying a scaling factor for correcting the
bias degrades the slope estimate. Buehler et al. (2012) anal-
ysed the impact of height difference on the slope estimate
using radiosonde data and proposed using this estimate to
correct the IWV data. We will follow a similar methodology
in this paper with an improved model. Among the correc-
tion models that have been proposed by various authors, two
approaches have been traditionally used. The first and most
widely used approach is based on a proportional correction
term that has its roots in the assumed exponential decrease
of water vapour concentration with height. This model is de-
scribed in Appendix A. It makes use of the assumption of a
constant vertical decay rate of water vapour, γ . At least three
studies have applied this correction model, and they proposed
very similar experimental values for γ ; namely, Bock et al.
(2005) proposed γ = 4×10−4 m−1 for the Alps, Morland et
al. (2006a) proposed γ = 4.7× 10−4 m−1 also for the Alps,
and Buehler et al. (2012) proposed γ = 3.5× 10−4 m−1 for
Antarctica. These models have been claimed by their authors
to be valid for height differences up to 500 m. The second ap-
proach, proposed by Mears et al. (2015), is based on the ob-
served sea surface temperature and a constant relative humid-
ity of 80 %. They applied this model for the inter-comparison
of satellite-based MWR measurements with ground-based
global positioning system (GPS) stations with elevations that
are usually less than 100 m and one exceptional case above
500 m for which it still worked well. Both approaches have
been shown to provide acceptable reductions in the differen-
tial IWV biases.

In this paper, we show that the exponential correction can-
not simultaneously achieve a proper correction for the bias,
the slope, and offset parameters. To overcome this limitation,
we propose an improved vertical correction method based on
multi-linear regression from a radiosonde climatology. An-
other aspect discussed in this paper is the impact of errors
in both variables on the slope and offset estimates. Contrary
to trend estimation, where a physical variable is regressed
in time (a quantity known with negligible error), the linear

regression between two measurements that are both subject
to errors requires a more elaborate estimation method. In-
deed, it has been shown that in this situation, the ordinary
least-squares (OLS) regression leads to biased estimates of
the slope and offset (Draper and Smith, 1998). This prob-
lem has clearly been overlooked in the aforementioned IWV
inter-comparison literature. This may be at least one reason
for the variety of slope results found in these studies (with the
slope being either bigger or smaller than 1). Comparing slope
and offset results from different studies, as was done in, e.g.
Buehler et al. (2012), may therefore be hazardous as different
and sometimes incorrect regression methods have been used.
Only a few of these studies stated explicitly that they used
a regression method accounting for errors in both variables
(e.g. Buehler et al., 2012; Bock et al., 2014, 2021). Using
such a method also poses the problem of correctly specify-
ing the uncertainties in both variables. Lack of such infor-
mation for some of their data sets led Buehler et al. (2012)
to apply OLS regression and to state that constant error es-
timates do not affect the regression results, which is wrong
(see Appendix C). Instead, Bock et al. (2014, 2021) used ap-
proximate error estimates, e.g. 5 % or 10 % for radiosonde or
satellite data, rather than assuming no errors in the x vari-
able. In this paper, we use the three-way error analysis of
O’Carroll et al. (2008) to specify the uncertainties of our data
sets and the regression method of York et al. (2004), which
accounts for errors in both variables.

Section 2 of this paper reviews the impact of a height dif-
ference on the bias, slope, and offset estimates in the case
of an idealized exponentially decaying water vapour density
profile and in the case of a real atmosphere observed by ra-
diosondes. The similarities and differences implied by two
types of profiles are highlighted. Section 3 proposes an im-
proved vertical correction method based on a multiple linear
regression approach, instead of using one single γ parameter
as was done in past studies. The method builds on a clima-
tology derived from radiosonde data. In Sect. 4 we discuss
two application examples where IWV measurements from a
network of GPS stations in a tropical mountainous area are
to be inter-compared and used for the inter-validation with
co-located satellite MWR measurements. Both applications
make use of the new method and the derived radiosonde
climatology. Section 5 discusses further applicability of the
method and concludes.

2 Variation in bias, slope, and offset parameters as a
function of height difference

2.1 Idealized case of an exponentially decaying water
vapour density profile

Before analysing the results from real data, it is instructive to
consider the idealized case of a water vapour density profile
decaying exponentially with height (Eq. A1). This model has
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often been used to describe the state of the mean atmosphere
(e.g. ITU, 2017) and is related to the notion of water vapour
scale height (see Appendix A).

Let us consider the situation of two instruments, A and
B, located at sites with different heights, hA and hB, which
are observing IWV in an idealized atmosphere described by
Eq. (A1). In the absence of any instrumental bias and noise,
the IWV observations are related by

IWVB = IWVA · exp(−γ (hB−hA)) , (1)

where γ > 0 is the vertical decay rate of water vapour, which
is related to the water vapour scale height by the relation
Hv = 1/γ . If hB > hA, we have IWVB < IWVA, meaning
that the IWV content at higher altitudes is lower than the
IWV content at lower altitudes. If the observations from sta-
tion A and B are directly compared without any correction,
we will observe a negative bias, 1= IWVB− IWVA < 0, a
slope smaller than 1, α < 1, and a null offset, β = 0, where
the slope and offset are estimated by a linear regression using
the model y = αx+β, with y = IWVB and x = IWVA (see
Appendix B).

To be a bit more general, we can assume that the obser-
vations contain some amount of random noise and consider
that we have n pairs of observations, (xi,yi), i = 1. . .n, from
which the bias, slope, and offset parameters are estimated.
The bias is written as follows:

1=
1
n

∑n

i=1
(yi − xi)= µy −µx , (2)

where µx and µy denote the sample means of the two data
series. From Eq. (1), and introducing f (1h)= exp(−γ1h),
with 1h= hB−hA, the bias can be expressed as follows:

1=−µx · [1− f (1h)]

= −µx · [1− exp(−γ1h)] ≈ −µxγ1h. (3)

The first right-hand side (rhs) will be used later to describe
the more general atmospheres. The second rhs is valid only
in the case of the exponentially decaying water vapour pro-
file. It expresses that the bias is proportional to the mean
IWV content at the reference site, µx , and that it is negative
given that γ > 0 and1h > 0. The last rhs is the approximate
relation valid for a thin layer (typically, |1h|< 200 m, see
Appendix A) and expresses that, to the first order, the bias
is proportional to µx , γ , and 1h. This last expression has
been used in past studies (e.g. Bock et al., 2005; Buehler
et al., 2012) to estimate the vertical moisture decay rate,
γ̂ =−1·(µx1h)

−1, and to correct IWV observations for the
height difference between sites. The slope and offset param-
eters estimated from the linear regression establish a second
relation between µx and µy given by Eq. (B3), which can be
rewritten in the case of the exponential water vapour profile
as µy = αµx +β = µx · f (1h). Since this relation must be

valid for any µx , it comes out that

α = f (1h)= exp(−γ1h)≈ 1− γ1h, (4a)
β = 0 . (4b)

The second rhs of Eq. (4a) expresses that α < 1, given that
1h > 0, and the third rhs expresses that, to the first order, α
decays linearly with the height difference, with a rate equal
to γ .

Figure 1 illustrates the main characteristics of the bias and
slope variations with height in the case of the idealized expo-
nential water vapour profile, along with the asymptotic lim-
its and the thin-layer linear approximations. It is important
to note that both the bias (|1| is increasing when |1h| is in-
creasing) and the slope (|α− 1| is increasing when |1h| is
increasing) change when the depth of the atmospheric layer
1h changes.

Equations (3) and (4a) also recall that both the bias and
slope parameters depend on the atmospheric profile through
the γ parameter, which may be of relatively localized in
nature and may thus change from one region to another
and vary with time, e.g. seasonally. Moreover, in real atmo-
spheres, the vertical distribution of water vapour is expected
to be more complex than can be represented by an exponen-
tial model with a constant vertical decay rate.

2.2 Real case from radiosonde observations

Figure 2 illustrates the monthly mean water vapour profiles
observed by a tropical radiosonde station (Le Raizet, Guade-
loupe, France, WMO code 78897) over the year 2020. It can
be seen that the water vapour is decaying approximately ex-
ponentially, although the vertical decay rate is not strictly
constant as a function of height and time. This model is nev-
ertheless reasonable in the lower troposphere, i.e. from the
surface up to a height of 2 km (Fig. 2b). In this altitude range,
we expect Eq. (1) to be a good approximation of the verti-
cal variation in IWV. Figure 2c illustrates the link between
x = IWV(hs) and y = IWV(hs+1h), where IWV(hs)=∫
∞

hs
ρv(h)dh and IWV(hs+1h)=

∫
∞

hs+1h
ρv(h)dh, and where

ρv(h) is the observed radiosonde water vapour profile, hs is
the station height, and 1h varies between 200 and 1000 m
in steps of 200 m. For each layer, 1h, the points (x,y) align
roughly on a straight line. For 1h= 200 m, the line is clos-
est to the 1 : 1 line (shown in grey) and the scatter around the
best-fit line is the smallest (RMSE= 0.224 kgm−2), while
for 1h= 1000 m, the line is farthest from the 1 : 1 line and
the scatter around the best-fit line is the largest (RMSE=
0.976 kgm−2). It is interesting to note that for a given layer,
1h, the points remain close to the straight line throughout
the year, despite the quite large seasonal excursion in IWV
shown by the different colours in the figure. The data points
for March are shown as light blue dots, and the data points
for September are shown as orange dots. These two months
show the smallest and largest mean IWV values, µx , of 33
and 51 kgm−2, respectively.
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Figure 1. Illustration of the variation in IWV as a function of height in the case of an idealized moisture profile with exponential vertical
decay with a rate γ = 4× 10−4 m−1 (scale height 1/γ = 2.5 km): (a) y = x · exp(−γ1h) as a function of x for a fixed 1h > 0; (b) bias,
1= µy −µx , as a function of 1h (Eq. 3); and (c) slope, α, as a function of 1h (Eqs. 4a and 4b). The slanted dashed lines in panels (b) and
(c) represent the thin layer approximations (rightmost sides of Eqs. 3, 4a and 4b, respectively).

Figure 2. Real water vapour profiles observed by radiosonde station 78897 (Le Raizet, Guadeloupe, France): (a) monthly mean profiles for
the year 2020. Panel (b) is similar to (a) for altitudes below 5 km. (c) IWV scatter plot, with upper-level IWV plotted on the y axis and total
column IWV on the x axis for five different height differences: 1h= 200, 400, 600, 800, and 1000 m. The radiosonde data include 00:00
and 12:00 UTC soundings. The colour code indicated in panel (a) is valid for all plots.

Figure 3 shows the variations of the bias, offset, and slope
parameters fitted from these data, as a function of 1h. The
bias (Fig. 3a) and the fractional bias (1/µx) (Fig. 3d) follow
the exponential decay predicted by the second rhs of Eq. (3)
reasonably well, but the lines do not actually align perfectly
from 1 month to another, because of the small seasonal vari-
ations in the humidity profile. The monthly variation is even
more visible in the slope and offset plots (Fig. 3b and c).
However, each monthly curve for the slope may be reason-
ably well modelled by an exponentially decaying function
described by the second rhs of Eq. (4a). Regarding the off-
set, the purely exponentially decaying water vapour profile
predicts β = 0, which is clearly not verified in the real at-
mosphere. However, all three parameters together follow the
relationship described in Appendix B, i.e. α < 1 and 1< 0

imply that β > 1. Figure 3c shows that β actually follows
the variation in 1 closely as a function of 1h, while veri-
fying β > 1. Figure 3b and c also show that the slope and
offset estimates are correlated to each other, meaning that
higher slopes are associated with smaller offsets (Walpole et
al., 2012). Figure 3e and f show the standard errors of the
α and β parameters estimated by OLS given by Eqs. (C4),
(C5a), and (C5b). They are increasing with 1h as expected
from the increased scatter of the post-fit residuals (Fig. 2c).
In Sect. 3 we will establish a model describing the behaviour
of α and β as a function of 1h that will be used to correct
the observations x made at a height hA to conform to the
observations y made at height hB = hA+1h.
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Figure 3. Monthly mean estimates computed from the radiosonde observations shown in Fig. 2c for1h= 25 to 1000 m in steps of 25 m: (a,
d) bias, 1, and relative bias, 1/µx ; (b, c) slope and offset parameters fitted from Eq. (B2) by ordinary least squares; (e, f) standard errors of
the slope and offset parameters.

3 Derivation of an empirical correction model from
radiosonde observations

In the previous section we have seen that the bias, 1, and
the slope, α, are dependent on the depth, 1h, of the layer
between the two considered IWV observations. In particular,
|1| and |α− 1| are both increasing when |1h| is increas-
ing, both in the real atmosphere and in the idealized, expo-
nentially decaying, atmosphere. Whereas the offset is β = 0
in the idealized atmosphere, it is generally β 6= 0 in the real
atmosphere. The main difference between the idealized and
real atmospheres is that the vertical moisture decay rate γ is
dependent on the height (and time) in the latter, whereas it is
by definition constant in the former (although a time varia-
tion could also be modelled in the idealized atmosphere). We
must thus derive a correction formula based on a more com-
plex model than just a constant γ . Moreover, a pure rescaling
correction, xc = fc(1h)·x, as discussed in Appendix B, does
not allow us to simultaneously correct the bias and slope and
does not change the offset. Instead, we propose using a linear
correction model such as expressed by Eqs. (B8) and (B9).
Therefore, we need good estimates for both α and β, which
are generally not known at the location and time of interest
but may be derived from a climatology. Hereafter, we pro-

pose using high-resolution radiosonde observations to derive
such a climatology.

The proposed approach is to model the slope and offset
with two independent functions of 1h:

− log(α)= A(1h) , (5a)
β = B(1h) , (5b)

which are represented by polynomials

A(1h)=
∑p

i=1
ai1h

i . (6a)

B(1h)=
∑q

i=1
bi1h

i . (6b)

Note that the polynomials have no intercepts in order to sat-
isfy the constraints A(0)= 0 and B(0)= 0. Figure 3b and c
suggest that the order of the polynomials does not need to be
very high. For example, coefficient a1 can be identified with
the vertical moisture decay rate, γ , in analogy with Eq. (4a).
The higher-order terms help to model the deviations from
linearity observed in Fig. 3b and c.

The estimates of the polynomial coefficients for each of
the two models are derived by a linear regression method, ac-
cording to the generic linear model equation: z= Xθ , where
z is the vector of dependent variables, X the design ma-
trix, and θ the vector of parameters (Walpole et al., 2012).
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The elements, zk , of vector z correspond either to the ob-
served slope values, − log(αk), or to the offset values, βk ,
for the different layers, 1hk , k = 1. . .m. The elements of
the design matrix are Xik = (1hk)i , and the parameters are
θi = ai , with i = 1. . .p, in the case of the slope model and
θi = bi , with i = 1. . .q, in the case of the offset model. Note
that here we estimate the slope and offset coefficients inde-
pendently of each other. Another approach might be to con-
sider both variables simultaneously in a multivariate linear
regression (Christensen, 2001), which is possible here since
both variables are described by similar functional models, i.e.
Eqs. (6a) and (6b). A few tests of this approach revealed that
both the estimates and their standard errors were identical to
the monovariate solutions. So we decided to stay with the
monovariate linear regression approach, which is simpler to
implement and faster to run.

The quality of the fitted models depends on the number
of observations, m, and the choice of the polynomial or-
ders, p and q. Indeed, larger layers would require us to in-
clude higher-order terms to adequately fit the deviations from
linearity. The number of observations depends on the verti-
cal sampling of the radiosonde profiles. Since we are using
high-resolution radiosonde data, we can set a regular ver-
tical sampling of 1h= 25 m, i.e. 1hk = k ·1h. Consider-
ing two different maximal thicknesses of 1hm = 500 and
1hm = 1000 m, this leads to m= 20 and m= 40, respec-
tively.

The order of the polynomials can be either fixed to pre-
determined values or determined automatically by a step-
wise linear regression method (Hocking, 1976). The stepwise
regression selects the best model by adding and removing
terms to and from the model. The selection can be based on
the p value of the F statistic associated with the change in
the sum of squared errors (SSE) that results from adding or
removing a term. Other types of criteria, such as the Akaike
information criterion (AIC), the Bayesian information crite-
rion (BIC), or the adjusted coefficient of determination R

2
,

can be used as well (Draper and Smith, 1998). A few tri-
als with different values for p (resp. q) revealed that all the
aforementioned criteria (SSE, AIC, BIC, andR

2
) lead to very

consistent results and that the quality of the model is gener-
ally improved when p (resp. q) is increased. However, we
also noticed that when p > 5 (resp. q > 5), the regression
failed due to poor conditioning of the normal matrix, XTX.
We consequently limited the regression to maximum orders
p = 5 (resp. q = 5). The SSE criterion was used with the fol-
lowing limits for the p values: when pval< 0.05, the term
is added during the forward step, while when pval> 0.10,
the term is removed during the backward step. This method
is, e.g. implemented in the stepwiselm function available in
MATLAB (2017).

Another aspect of the implementation of the linear regres-
sion method is whether we consider the data as homoscedas-
tic (the observations have constant variance) or heteroscedas-

tic (the observations have different variance). Figure 3e and f
suggest that a heteroscedastic model is plausible: the stan-
dard errors, σk,α and σk,β , of the “observations”, αk and βk ,
are generally increasing with k. Heteroscedasticity can be
simply accounted for by specifying a diagonal weight ma-
trix, W, where the diagonal elements are Wkk = wk,α for the
slope and Wkk = wk,β for the offset, which are computed
here from the standard errors, i.e. wk,α = (σk,α/αk)−2 and
wk,β = (σk,β)

−2. Note that the relative standard error is used
in the case of the slope because we use log(α) and not α in
the regression.

We conducted a large number of trials for different values
of the model parameters, i.e. p = 1. . .5, q = 1. . .5, m= 20
and m= 40 (maximum layer depths of 500 and 1000 m),
and weighted or un-weighted regression, and different data
sets, i.e. monthly or yearly input data (i.e. α and β fitted
month by month or from a full year of radiosonde profiles).
We also compared the regression results from different ra-
diosonde stations to assess the robustness of the method as
well as the spatial variability of the fitted parameters. The
results from the different trials were inter-compared on the
basis of two quality criteria: the standard error of the regres-
sion, also called the root-mean-squared error (RMSE), and
the standard error (SE) of the estimates (Draper and Smith,
1998). The RMSE quantifies the dispersion of the observed
values, zk , around the predicted values, ẑk , adjusted for the
degrees of freedom:

se =

[
1

m−p

∑m

k=1
ê2
k

]1/2

, (7)

where êk = zk − ẑk is the prediction error and m−p is the
degrees of freedom in the case of the slope (m−q in the case
of the offset). The SE of the estimates is obtained from the
variance–covariance matrix Q:

SE(θi)= σe · (Qii)
1/2 , (8)

where σe is the standard deviation of the errors in the “ob-
servations”, an estimate of which is given by σ̂e = se, and Q
depends only on the regressors, Xi , and the weights, Wkk .
In the case of the OLS, Q= (XTX)−1, while in the case
of the weighted least-squares (WLS), Q= (XTWX)−1. It is
straightforward to show that in the case of OLS, a simple
polynomial model such as expressed by Eq. (6a) and limited
to the order p = 1, leads to (X11)

2
≈ (m3/3)1h2 for large

m. This result indicates that the SE of the parameters varies
asm−3/2. We may thus expect some benefit from performing
the regression over more elevated layers, e.g. with m= 40
compared to m= 20, although the final SE also depends on
the standard error of the regression, se, which is expected to
be increasing when more elevated layers are included.

The results obtained from the trials are summarized below.

– The RMSE is decreased when the order of the model (p
or q) is increased. This result is expected as a higher-
order model better fits the real data.
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– The RMSE is increased with WLS compared to OLS.
This is a statistical property of OLS compared to WLS,
i.e. OLS generally better fits the original data than WLS
(Draper and Smith, 1998).

– The SE of the estimates is increased when the order of
the model is increased. This result is expected from the
fact that more parameters are estimated with the same
number of observations.

– The SE of the estimates is decreased with WLS com-
pared to OLS. This result is expected because OLS is no
longer the best linear unbiased estimator when the errors
in the data are not equal (Draper and Smith, 1998).

– Both the RMSE and the SE are increased when more
elevated layers (up to 1000 m compared to 500 m) are
considered, despite the increase in the number of obser-
vations (m= 40 compared to m= 20).

The above results were found to be valid for both variables
(zk =− log(αk) and zk = βk), when both time samplings
(monthly and yearly) and the different stations are consid-
ered. They suggest preferably using high-order polynomi-
als, WLS estimation, and a vertical extent of the regression
adapted to the application, i.e. verifying the condition that
the fitted model is not used beyond the fitting range. The fine
tuning of the regression parameters can be further made by
checking the errors in the bias, slope, and offset parameters
after correction (see Figs. 5 and 6, discussed below). Apart
from the setting of the regression model, an additional im-
portant point is to choose a proper time and space sampling.

Figure 4 shows the estimates for parameters a1 and b1 to
illustrate the variability in time and space at three stations
located in the Caribbean region (78526 is located 531 km to
the north-west of 78897 on Puerto Rico, and 78954 is located
417 km to the south of 78897 on Barbados). The temporal
variations at each of the three sites are significant (compared
to the error bars) but correlated between the sites. These re-
sults indicate (i) that it may be preferable to use monthly re-
gression coefficients rather than yearly and (ii) that the ra-
diosonde climatology derived from one site may be applied
to distant sites to some extent (e.g. a few hundreds of kilo-
metres apart). We investigated the first point by analysing
the IWV error after correction for monthly and yearly coeffi-
cients.

Figure 5 shows the results when the coefficients are fitted
by WLS, with p = q = 5, and a vertical range is limited to
500 m. Larger dispersion is clearly observed with the yearly
model, with significant seasonal variation and an amplitude
increasing with 1h. To quantify the impact of the second
point, we used the model fitted for station 78954 to correct
the data for station 78897. The resulting bias increased to
0.6 kgm−2.

Finally, Fig. 6 shows the corresponding errors in the
bias, slope, and offset parameters after correction for the

model with monthly coefficients. The monthly mean bias
remains negligible, |1c|< 0.02 kgm−2, and independent of
the height difference, which demonstrates that the regres-
sion model is well parameterized. The standard deviation
is increasing with the height difference up to 0.5 kgm−2

when 1h= 500 m (this quantifies the dispersion observed
in Fig. 5a). The slope and offset after correction are signif-
icantly improved compared to Fig. 3 and get very close to
the ultimate objective (αc = 1 and βc = 0). We note that a
smaller order of the polynomials could be chosen with the
vertical range of 500 m, e.g. order 3 still achieves |1c|<

0.1 kgm−2, |αc− 1|< 0.005, and |βc|< 0.15 kgm−2. When
the vertical range is raised to 1000 m, order 4 or 5 are recom-
mended to achieve the same level of accuracy in 1c, but αc
and βc are slightly degraded.

In conclusion, the proposed correction method is able to
reduce almost perfectly the impact of the height difference on
the IWV observations and achieve 1c ≈ 0, αc ≈ 1, and βc ≈

0, when a proper regression model is used. The correction
model is expressed by Eqs. (B8) and (B9), where fc and gc
are derived from the predicted values for α̂ and β̂ given by
Eqs. (5) and (6). The estimates of the correction model are as
follows:

f̂c = exp
(
−

∑p

i=1
âi1h

i
)
, (9a)

ĝc =
∑q

i=1
b̂i1h

i . (9b)

4 Applications

4.1 GPS vs. GPS inter-comparison

Here we will consider the case of the permanent GPS net-
work in Guadeloupe analysed by Bock et al. (2021) in the
framework of EUREC4A, for the period from 1 January to
29 February 2020. It is composed of 15 stations located on
four islands, in a region bounded by 15.75–16.75◦ N and 62–
61◦W. The station elevations range from 1 to 418 m (see Ta-
ble 1). The ultimate goal of this inter-comparison is to deter-
mine the consistency of the IWV measurements from these
GPS stations and to check for biases and non-linearities.
Therefore, the IWV data need to be corrected for the height
differences. Here we will consider both the simple scaling
factor model, based on Eq. (A5), and the new model based
on Eqs. (9a) and (9b). These correction models will be re-
ferred to as v1 and v2 in the following, and the uncorrected
data will be denoted v0. The model coefficient in v1 is taken
to γ = 4× 10−4 m−1 consistent with Bock et al. (2007) for
the tropics. In v2, we will use the coefficients determined
from the radiosonde climatology derived in the previous sec-
tion from the radiosonde station 78897, which is located on
Guadeloupe, close to the GPS station ABMF. The bias, slope,
and offset parameters derived from the inter-comparisons for
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Figure 4. Monthly estimates of the polynomial coefficients for the slope (a) and the offset (b) according to Eqs. (6a) and (6b), respectively,
limited to order 1. The different curves show results for three different radiosonde stations (labelled by their WMO codes: 78897, 78954,
and 78526) and two regression methods (OLS and WLS). The OLS and WLS results are almost superposed and are not labelled. Note that
for station 78526 only 2 months of observations (January and February) were available in 2020. The error bars indicate the 95 % confidence
interval for each estimated parameter.

Figure 5. IWV correction error, xi,c−yi , with (a) monthly coefficients and (b) yearly coefficients, as a function of time and height difference,
1h= 25. . .500 m. Both models used polynomials of order 5 and weighted least-squares estimation. The time is colour coded in panel (a),
while the height difference is colour coded in panel (b). The dots aligned in filaments correspond to a given time and varying 1h in both
plots.

the different data versions will be denoted 1v , αv , and βv ,
with v = 0,1,2, respectively.

Figure 7 shows the results of the inter-comparison of
two stations at very different elevations (ABMF: hA = 15 m;
HOUE: hB = 418 m). It is seen that the initial bias of 10 =

−7.29 kgm−2 is quite large but consistent with the values
predicted from the radiosonde data (Fig. 3) for such a large
height difference. Both correction models significantly re-
duce the bias, although v1 has some residual bias, 11 =

−2.35 kgm−2, whereas v2 achieves12 =−0.50 kgm−2, i.e.
almost perfect correction. Figure 7 also compares the slope
and offset results estimated by two different regression meth-
ods: Fig. 7a–c used the OLS method, i.e. assuming no errors
in the x variable, and Fig. 7d–f used the York et al. (2004)

method. With the latter method, the formal errors provided
by the GPS data-processing software were used as “obser-
vation errors”, after a rescaling by factor of 5 to be consis-
tent with the traditionally assumed uncertainty of 1.5 kgm−2

for GPS IWV data (Bock et al., 2021). The initial slope and
offset amount to α0 = 0.92 and β0 =−4.63 kgm−2 with the
OLS estimator and α0 = 0.97 and β0 =−6.34 kgm−2 with
the York estimator. The latter values are more in line with
the values found from the radiosonde data (Fig. 3) and pre-
dict a higher slope. It is well known that the OLS slope esti-
mator is biased low (towards zero) when the x variable con-
tains random errors (Edland, 1996). This feature is clearly
observed with all three data versions shown in Fig. 7. The
results also verify the relationship between bias, slope, and
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Figure 6. Monthly mean bias (a) and standard deviation of the IWV correction error (b) with the monthly coefficients up to order 5 and
WLS. Slope (c) and offset (d) parameters, αc and βc, respectively, of the best linear fit after correction, yi = αcxi,c+βc, as a function of
time and height difference. The colour code for time is the same as in Fig. 2.

Table 1. Height above sea level and number of IWV estimates (N ) for 15 GNSS stations over the Guadeloupe archipelago (15.75–16.75◦ N,
62–61◦W) for the period from 1 January to 29 February 2020 (Bock et al., 2021).

PPTG LDIS DEHA DESI MAGT BOUL ABMF ABD0 ABER GOSI FFE0 MAGA FNA0 CBE0 HOUE

Height 1 4 5 11 13 14 15 20 25 49 53 62 122 374 418
(m a.s.l.)

N 1281 1439 1423 1208 1439 1199 1438 1380 1209 1165 1439 1191 474 752 1429

offset sketched in Fig. B1, whatever the estimator. After cor-
rection with model v1, the slope becomes α1 = 1.08 with the
OLS estimator and 1.15 with the York estimator, while cor-
rection with model v2 achieves α2 = 0.95 with the OLS esti-
mator and 1.01 with the York estimator. Both estimators find
that model v1 slightly overcorrects the data (α1 > 1). On the
other hand, v2 performs much better and achieves almost a
perfect slope (α1 ≈ 1) with the York estimator. Regarding the
offset, we see that the value is unchanged with model v1, as
predicted from Eq. (B7), whereas model v2 achieves nearly
perfect correction (β2 ≈ 0). These results are highly consis-
tent with those found in Sect. 3 from the radiosonde data. Re-
garding the initial question, we can state the IWV measure-

ments from stations HOUE and ABMF are fairly consistent
after the vertical correction. The residual bias and offset after
correction are within the error bars of the technique (Bock et
al., 2013; Ning et al., 2016).

Figure 8 presents the results for 105 inter-comparisons
made of pairs of stations from the set of 15 stations of
this network ordered by positive height differences, 1h > 0.
The plots compare the bias, offset, and slope for the uncor-
rected (v0) and the corrected (v1 or v2) data. Only the results
from the York estimator are shown here. As expected, the
uncorrected results show a general tendency towards larger
negative biases, decreasing slope, and larger negative offset
when 1h is increased. There are, however, some exceptions,
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Figure 7. Scatter plots of IWV observations from two GPS stations at different elevations (HOUE, 418 m, and ABMF, 15 m) before correction
(a, d), after correction with a simple scaling factor model (b, e), and after correction with the proposed model fitted from a radiosonde
climatology (c, f). The slope and offset parameters were either fitted by an ordinary least-squares method (a–c) or by the York et al. (2004)
method accounting for errors in both coordinates (d–f). The data cover the period from 1 January to 29 February 2020, with a temporal
resolution of 1 h.

namely the comparisons involving station CBE0 (altitude of
374 m), for which the biases and offsets are slightly less
negative and the slopes are slightly farther from 1 than ob-
served with the other stations, especially compared to station
HOUE, which is located higher (418 m) and should thus have
more pronounced effects. After correction with model v1, the
biases and slopes are globally improved for all comparisons,
while the offsets are unchanged, as expected with this model.
The mean bias is reduced from −1.67 to −0.24 kgm−2, but
some bias remains in the higher-altitude inter-comparisons
involving HOUE (Fig. 8a). In contrast, model v2 achieves
a better bias correction for HOUE (Fig. 8d). The results
with model v2 also confirm the bias in the CBE0 that was
already suspected from the uncorrected data. The problem
with station CBE0 is further confirmed by the slope analysis,
with model v2 indicating α2 < 1 for these inter-comparisons
(Fig. 8e), and large positive offsets (Fig. 8f). The correction
with model v1 is not able to lead to these conclusions be-
cause the slopes are globally overcorrected for many stations
(Fig. 8b) and the offsets are unchanged (Fig. 8c). Figure 8e
and f also detect scale errors and anomalous offsets for a
number of other inter-comparisons, namely when1h is close
to zero.

Figure 9 provides further insight into the consistency be-
tween stations, with significance tests computed according to
the t-statistics given in Appendix C. It is evident that CBE0
has an anomalous positive IWV bias of about 2 kgm−2 com-
pared to all other stations (Fig. 9a, red curve, well above the
other curves), a slope that is too low (Fig. 9b, red curve be-
low the other curves), and an offset that is too large (Fig. 9c).
Figure 9b and c reveal a second outlying station, BOUL,
with a slope that is too high (Fig. 9b, light blue curve, about
0.12 above the other stations) and an offset that is too low
(Fig. 9c). These anomalies could not be detected from the
uncorrected data or from the data corrected with model v1.
Further investigation is needed to understand the issues in
the IWV estimates for these two stations. Table 2 reports
the median and the smallest absolute values for each sta-
tion. Apart from stations CBE0 and BOUL, all other sta-
tions have median biases smaller than±0.53 kgm−2, median
slopes in the range 0.97–1.02, and median offsets smaller
than ±0.77 kgm−2. These numbers demonstrate a very good
consistency between IWV measurements retrieved from the
different GPS stations of this network. The dispersion of re-
sults is believed to be due to station-dependent errors. The
smallest absolute values quantify the best agreement between
nearby GPS stations, which is < 0.1 kgm−2 between all sta-
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Figure 8. Variation in (a, d) bias, (b, e) slope, and (c, f) offset estimated from pairs of GPS stations as a function of inter-station height
difference, 1h. The blue dots correspond to the results before correction, and the red dots correspond to the results after correction, with (a–
c) the scaling model, v1, and (d–f) the proposed model fitted from a radiosonde climatology, v2. The results include 105 inter-comparisons
with positive height differences from a total of 15 GPS stations located over the Guadeloupe archipelago for the period from 1 January to
29 February 2020. The vertical grey lines indicate the stations that have elevations above 50 m, namely FNA0 (122 m), CBE0 (374 m), and
HOUE (418 m), the comparisons of which are also highlighted by ellipses in Fig. 8d.

tions, except CBE0 which has a large bias, and BOUL which
has a slope significantly different from 1.0.

4.2 GPS vs. MWR satellite inter-validation

GPS and MWR measurements of IWV are often used to-
gether for the inter-validation of the two techniques (Bock et
al., 2007; Mears et al., 2015; Wentz, 2015; Ho et al., 2018).
Microwave radiometer measurements are adversely affected
by rain, whereas GPS measurements are not. On the other
hand, the GPS IWV estimates have uncertainties linked with
data processing models and conversion from propagation de-
lay to IWV (Bock et al., 2013, 2021; Ning et al., 2016). The
inter-comparison of both types of measurements is thus in-
structive for detecting and quantifying their mutual uncer-
tainties.

Microwave radiometer measurements are traditionally
made over the world’s oceans, where they achieve their high-
est accuracy. The inter-comparison with GPS measurements
is thus possible only for coastal stations and stations located
on small islands. Although the MWR data are missing over
land and over the island’s footprint, due to “land contami-
nation”, the high-resolution (0.25◦× 0.25◦) of the RSS v7.0
data set used here (Mears et al., 2015) allows us to get enough

valid measurements for comparison with the GPS stations on
the Guadeloupe archipelago discussed in Sect. 4.1. Table 3
shows the mean distance between the GPS stations and the
nearest MWR satellite grid points within the 7×7 pixels sur-
rounding each station. On average over all stations, the mean
distance is 33.6 km for AMSR2, 82.3 km for F18, 26.9 km for
GMI, and 37.6 km for Windsat. The difference in distance
is due to the difference of footprints of the satellite instru-
ments, F18 having the largest footprint (69km× 43 km) and
GMI the smallest (18km×11 km). For the inter-comparison,
MWR IWV data from the 7× 7 pixels are interpolated to
the location of the GPS sites by a Delaunay triangulation
method (Press et al., 2007) and corrected vertically using the
same method as for the GPS–GPS comparison discussed in
Sect. 4.1. The height difference is here equal to the height
of the GPS station, since the MWR data are valid on the
mean sea level. The bias, slope, and offset parameters are
derived as in the GPS–GPS comparison. The regression with
the York et al. (2004) method needs to correctly specify the
uncertainties of the measurements from the two data sets
or at least to correctly represent the ratio of their mean un-
certainties (see Appendix C). As mentioned above, the for-
mal error rescaled by a factor of 5 is used for GPS. For
MWR, we surmise that the horizontal interpolation from the
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Figure 9. (a) Bias, (b) slope−1, and (c) offset estimated from all (210) pairs of GPS stations after correction with model v2 for the period
from 1 January to 29 February 2020. The station names along the x axis refer to comparisons when the stations are in x, while the colour
code indicates comparisons when the stations are in y. The bias is always reported as1= µy−µx and the linear regression as y = α ·x+β.
For example, station CBE0 has a positive bias (red curve) when considered in y, while it has a negative bias when considered in x. The
comparison results from Fig. 8 were transformed using 1′ = µx −µy , and α′ and β ′ according to Eqs. (B4a) and (B4b), when necessary.

gridded data will introduce some representativeness differ-
ence with the GPS point measurements that we should take
into account. We first computed the standard deviation of
all valid IWV values from the 7× 7 pixels. It amounted to
∼ 2.2 kgm−2 on average over all sites and satellites. These
values seemed too high to be used directly as a measure of
uncertainty of the MWR data. However, the variations over
time of the standard deviation are thought to correctly re-
flect the changes in the local atmospheric state, weather con-
ditions, and measurement noise. In a second step, we made
a three-way error analysis between GPS, MWR, and ERA5
IWV data, following O’Carroll et al. (2008). This was done
with the GPS station BCON on Barbados (Bock et al., 2021).
For this station, the number of valid MWR pixels was higher
than at all other sites of the Caribbean GPS network, with
an average of 46 valid pixels out of 49. This comparison
is thus believed to provide a good estimate of the preci-
sion of the MWR data with negligible representativeness er-
rors. We found the following standard error estimates for the
three data sets: σGPS = 1.06 kgm−2, σMWR = 0.67 kgm−2,
and σERA5 = 1.82 kgm−2 for AMSR2. Nearly similar values
were found for the other satellites. According to these num-
bers, the GPS IWV data are slightly noisier than the MWR
data, which seems plausible, although the MWR and ERA5
standard errors might be slightly underestimated given that
MWR radiances are assimilated into ERA5, i.e. errors are
correlated. Finally, we rescaled the GPS formal errors and
the MWR standard deviations to match these three-way error
values on average for each satellite. The resulting “measure-
ments errors” were then used in the York fit.

Figure 10 shows the results of the GPS–MWR compar-
isons, where the bias, slope, and offset parameters were re-
trieved for the whole year 2020. The number of colloca-
tions here is much smaller than for the GPS–GPS compar-
isons (between 200 and 400 for the GPS–MWR compar-

isons compared to nearly 8000 for the GPS–GPS compar-
isons over the full year). The median GPS–GPS results for
the full year are superposed to emphasize the high corre-
lation with the GPS–MWR inter-comparisons (the Pearson
correlation coefficients reported in each plot). Regarding the
biases especially, the variations from station to station are
about ±0.5 kgm−2 (if we except CBE0) from both inter-
comparisons. They are thought to be GPS station-specific er-
rors (due to, e.g. multipath and/or field of view limitations).
The large bias in CBE0 is confirmed with the MWR vali-
dation, but station BOUL does not appear to be an outlier
here (for this station, the slope and offset estimates com-
puted over the full year are closer to normal values, but in-
spection of monthly statistics revealed a drift throughout the
year, the origin of which is not explained so far as no equip-
ment change could be incriminated). All three versions of
the comparisons also reveal a systematic mean bias between
GPS and MWR IWV data of about 0.7 kgm−2 (0.67 kgm−2

with respect to AMSR2), with GPS being drier than MWR.
A similar mean bias was previously observed by Mears et
al. (2015) on global long-term averages including more GPS
sites and satellites. Whether this bias is imbedded in the GPS
or MWR retrievals is not clear at the moment. The mean dif-
ference between the different satellite estimates is, compar-
atively, slightly smaller: AMSR2 and Windsat agree almost
perfectly, while GMI has a slight moist bias of +0.2 kgm−2

compared to either AMSR2 or Windsat, and F18 has a slight
dry bias of−0.4 kgm−2 compared to the AMSR2. The slope
estimates show more scatter between sites and satellites, al-
though the mean GPS–MWR values agree very well with
the GPS–GPS values. Similar to the findings of Sect. 4.1,
the classical correction (v1) does not preserve the slopes and
leads to large overestimations for the stations at higher alti-
tudes. Again, the new correction (v2) achieves almost perfect
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slopes for both the GPS–GPS and the GPS–MWR compar-
isons.

Following the IWV inter-comparisons, statistical tests
(Appendix C) were applied to sort those comparisons that
show biases and offsets that are significantly different from
zero and slopes significantly different from one. Test results
with p values < 0.01 are highlighted in Fig. 10 for all com-
parisons. It can be noted that most biases (but not all slopes
and offsets) are significant. Indeed, the standard errors for the
latter parameters remain relatively high, despite a full year
of data being used here. For example, several slopes of the
GPS–F18 comparisons deviate notably from 1 but are not
significant (mean standard error of 0.0193), whereas they are
significant for the GPS–GPS inter-comparison (mean stan-
dard error of 0.0029). These results indicate that accurate
vertical correction (model v2), correct specification of the
measurement errors, and sample size are all crucial when di-
agnosing biases and scaling errors.

5 Discussion and conclusions

In this paper we have shown that the model traditionally used
for the correction of the IWV difference due to the verti-
cal displacement between observation sites has two short-
comings. First, it induces a bias in the slope estimate and
correlatively in the offset estimate, with slopes being over-
estimated when the IWV measurements from the lower site
are corrected (see, e.g. Fig. 10e). Second, it does not change
the offset estimate, which remains generally close to the
uncorrected bias value (Fig. 10a, c, and f). We have pro-
posed an improved correction model (Eq. B8) based on two
terms, fc and gc, which overcomes these limitations. This
model relies on a multi-linear regression of slope and off-
set (Eq. B9) as a function of the height difference (Eqs. 5
and 6). We have shown that high-resolution radiosonde data
are capable of providing accurate estimates of the parame-
ters (ai,bi) of this model on a monthly basis. The correc-
tion model reduces the bias, slope, and offset to negligi-
ble mean errors (bias<±0.02, slope−1<±0.004, offset<
±0.1) for height differences up 500 m, with a standard de-
viation smaller than 0.5 kgm−2. The errors are expected to
increase slightly for larger height differences (e.g. we found
bias<±0.08, slope−1<±0.025, offset<±0.5 for a height
difference of 1000 m with the data from radiosonde station
78897). The method has been successfully applied to the cor-
rection of GPS IWV data from a network of stations in a trop-
ical mountainous area, with altitudes ranging from the sea
level up to more than 400 m. Corrected data were allowed to
diagnose anomalous biases and scaling errors at two sites that
could not be detected in the raw measurements or when the
traditional correction method was applied. The method was
also applied to inter-validation of IWV from satellite MWR
measurements and GPS measurements in the same region.
The corrected data confirmed the significant bias and anoma-
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Table 3. Mean distance between GPS stations and the nearest MWR satellite grid-point within the 7×7 box surrounding each station (MWR
grid resolution 0.25◦× 0.25◦). Values are given in kilometres. NA stands for not available.

PPTG LDIS DEHA DESI MAGT BOUL ABMF ABD0 ABER GOSI FFE0 MAGA FNA0 CBE0 HOUE

AMSR2 40.0 20.0 20.7 20.0 46.3 26.3 20.5 42.4 41.5 45.5 42.1 45.7 30.8 41.1 21.0
F18 80.1 NA 73.8 NA 77.1 NA 81.9 93.5 93.8 82.5 82.2 76.3 NA 82.0 NA
GMI 38.8 20.5 11.7 20.5 21.2 12.7 18.5 40.5 40.3 42.5 40.5 20.4 28.1 29.7 18.3
Windsat 40.8 20.5 22.3 20.5 47.3 29.2 40.2 54.8 54.8 46.6 43.0 46.5 31.5 44.5 21.7

Figure 10. Bias, slope, and offset results for GPS–GPS comparisons (the blue line shows median of all GPS comparisons from Fig. 9 except
for the full year) and for GPS–MWR comparisons from four different satellites (AMSR2, F18, GMI, and WINDSAT; the dashed black
line shows the mean of all satellite results) for the year 2020. Slope and offset are estimated with the York et al. (2004) method. Bias and
offset values significantly different from 0 and slope values significantly different from 1 are marked with a circle (p value ≤ 0.01). Pearson
correlation coefficients between GPS–GPS and mean GPS–MWR results are indicated in the lower left of each plot.
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lous slope for one of the GPS stations (CBE0, bias close
to 2 kgm−2, and slope close to 0.98). The reason why the
second station (BOUL) did not show up in this comparison
is that the errors decreased over time, possibly linked with
several equipment changes that were reported during 2020
at this site. Some dispersion was also observed between the
four satellite data sets that were compared, with F18 showing
more scatter as well as a smaller number of available colloca-
tions. We suspect that the larger footprint of the MWR instru-
ment on board this satellite induced larger representativeness
differences, since pixels located farther from the GPS sta-
tions have been used. F18 might also have slightly more land
contamination than the other satellites do. However, when
the results from the four satellites were averaged together,
they were in very good agreement with the GPS-only results.

This study also emphasized the need for using a regres-
sion method that accounts for errors in both variables and
for correctly specifying these errors. Not doing so is known
from least-squares theory to result in biased slope and offset
estimates, as well as biased standard errors and inconsisten-
cies in subsequent significance tests. These issues are dis-
cussed in Appendix C (using Monte Carlo simulations) and
illustrated in Sect. 4.1 for the case of the GPS–GPS inter-
comparison. It is shown that the regression method of York
et al. (2004) works well as soon as the ratio of the uncertain-
ties in both variables is properly specified. Stated differently,
it appears not to be necessary to provide absolute uncertain-
ties but only relative ones. This is fortunate as the former
are usually not known unless an absolute calibration tech-
nique is involved. In this study, we have successfully used
a triple collocation method to estimate the relative errors in
the GPS and MWR data, using ERA5 as the third data set.
This approach provides generally satisfying results as long
as the representativeness errors in all data sets are small or
at least similar (Stoffelen, 1998; O’Carroll et al., 2008). In
our case, the MWR and ERA5 have similar spatial resolu-
tions, which may induce representativeness errors of similar
magnitudes compared to the GPS observations (which are of
a more local nature). We also attempted to combine GPS,
satellite MWR, and radiosonde observations, but the triple
collocation failed in this case. However, the combination of
co-located GPS, radiosonde, and ground-based MWR mea-
surements from the Barbados Cloud Observatory during the
EUREC4A campaign worked well. In this case, we found
the following error estimates: σGPS = 0.93, σRS = 0.65 and
σMWR = 1.53 kgm−2. This new estimate for the GPS er-
rors is fairly consistent with the one found with the satellite
MWR and ERA5 data reported in Sect. 4.2. It is also con-
sistent with the estimate reported by Cimini et al. (2012) of
0.94 kgm−2. The other two errors seem plausible as well, es-
pecially the higher value for the ground-based MWR data
that were shown to contain excessive noise during the first
weeks of the campaign (Bock et al., 2021).

The improved vertical correction method described in this
paper can be easily applied to any other region for which

high-resolution vertical profiles of water vapour are avail-
able. Such profiles can be provided by radiosonde obser-
vations, numerical weather model outputs, or reanalyses. A
few additional trials showed that very good results are still
achieved with a vertical resolution of 100 m (e.g. bias error
smaller than 0.1 kgm−2). In this study, the model parame-
ters have been derived on a monthly basis, and they seem
to be well adapted to correct data sets that cover at least 1
month of measurements. We also tested separate model ad-
justments and corrections for the 00:00 and 12:00 UTC pro-
files, but the results were not significantly different. In the fu-
ture, we plan to derive the model parameters on a global grid
from the ERA5 reanalysis that provides a stable and accu-
rate climatology of the water vapour distribution. The global
correction grid will be useful to provide more accurate inter-
comparisons and inter-validations of global IWV data sets
from various techniques.

Appendix A: Correction model based on an exponential
profile

The distribution of water vapour density in the atmosphere
is generally highly variable but may be approximated by the
following equation:

ρv(h)= ρ0 exp(−γ h) , (A1)

where γ > 0 is the mean vertical decay rate of water vapour,
also sometimes expressed as the inverse of the water vapour
scale height, Hv = 1/γ , ρ0 is the ground-level water vapour
density, and h is the geometric height. Standard values for
Hv and ρ0 areHv = 2 km and ρ0 = 7.5 gm−3 or alternatively
γ = 5× 10−4 m−1 (ITU, 2017).

It follows from Eq. (A1) that the IWV above a height hA
is simply

IWV(hA)=

∫
∞

hA

ρv(h)dh=
ρ0

γ
exp(−γ hA) . (A2)

The IWV in the layer in between two stations, A and B, at
heights hA and hB is written as follows:

1IWV=
∫ hB

hA

ρv(h)dh

=
ρ0

γ

[
exp(−γ hA)− exp(−γ hB)

]
. (A3)

Equation (A3) can be used to correct the IWV measure-
ments from station A to conform to the height of station B in
an additive way: IWVA,c = IWVA−1IWV, where IWVA =

IWV(hA). Combining Eqs. (A2) and (A3) shows that the cor-
rection is actually multiplicative in nature:

IWVA,c = IWVA · exp(−γ (hB−hA)) . (A4)
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Here we can define fc(1h) as the correction factor which
(applied to IWVA) conforms to the height hB:

fc(1h)= exp(−γ1h), (A5)

where1h= hB−hA is the height difference between station
A and station B.

When |1h| is small (or more rigorously when |γ1h| �
1), Eq. (A5) can be approximated by fc(1h)≈ 1− γ1h,
which leads to a widely used form of the IWV correction
(Bock et al., 2005; Morland et al., 2006a, b; Buehler et al.,
2012):

IWVA,c ≈ IWVA− γ ·1h · IWVA . (A6)

Equation (A6) has traditionally been used to estimate γ from
the IWV observations at different heights, e.g. for two sta-
tions at heights hA and hB:

γ ≈
IWVA− IWVB

1h · IWVA
, (A7)

which expresses the idea that γ represents the fractional IWV
variation over a height 1h (Bock et al., 2005). The range
of validity for the approximate formulations expressed by
Eqs. (A6) and (A7) to hold can be estimated from the con-
dition |γ1h|< 0.1, which leads to |1h|< 200 m if we use
Hv = 1/γ = 2 km. For larger height differences, it is recom-
mended to use the exact formulations (Eqs. A4 and A8):

γ =−
1
1h

log
(

IWVB

IWVA

)
. (A8)

Appendix B: Link between bias, slope, and offset
parameters

Let us assume that we have n observations, (xi,yi), i =
1. . .n, corresponding to paired measurements of the same
physical quantity coming from the same instrument at two
different sites or from two different instruments at the same
site. The difference in the observation conditions is assumed
to lead to a bias,1, and a scaling error that can be represented
by a linear fit slope, α, and offset, β, defined as follows:

1= µy −µx , (B1)

where µx and µy are the sample means of x and y and the
slope and offset parameters are derived from the linear re-
gression model:

y = αx+β . (B2)

Thanks to the linearity of the mean operator, Eq. (B2) rela-
tionship is also verified for the means as follows:

µy = αµx +β . (B3)

Note that since {xi} and {yi} are both obtained from mea-
surements, they are usually both subject to errors. There are
robust methods in the literature to optimally estimate α and
β in the presence of errors in both variables (e.g. Mandel,
1984; Macdonald and Thompson, 1992; York et al., 2004).
It should also be noted that, depending on which of x and y
is considered as the reference, the opposite relationship may
sometimes be used, x = α′y+β ′, which relates to Eq. (B2)
by

α′ =
1
α
, (B4a)

β ′ =−
β

α
. (B4b)

Note that Eqs. (B4a) and (B4b) are in general not verified
when the estimation method does not account for errors in
both variables.

Equations (B1) and (B3) recall that the parameters 1, α,
and β are inter-related through µx and µy . It is instructive
to discuss the different cases of interest for the interpretation
of experimental results. These cases are described below and
illustrated in Fig. B1.

– Case no. 1: α = 1. In this case, the two observation se-
ries only have a bias and no scaling error, and it follows
from Eqs. (B1) and (B3) that µy = µx +β and β =1.

– Case no. 2: α > 1. In this case, the two series have a
scaling error, where the range of yi values is larger than
the range of xi values. It also follows from Eqs. (B1)
and (B3) that β < 1. Depending on the sign of 1 there
is an additional constraint or not on β.

(a) If 1> 0, then β can be either positive or negative,
with β < 1.

(b) If1< 0, then β can be only negative, i.e. β < 1<
0.

– Case no. 3: α < 1. In this case, the two series have a
scaling error, where the range of yi values is smaller
than the range of xi values, and it follows from
Eqs. (B1) and (B3) that β > 1. Again, there may be
an additional constraint on β.

(a) If 1> 0, then β can be only positive, i.e. β > 1>
0,.

(b) If 1< 0, then β can be either positive or negative,
with β > 1.

Let us now analyse the impact of applying a rescaling of
the reference series, {xi}, in order to correct it for differ-
ence in the observation conditions with respect to the tested
series {yi}. We denote the corrected series by {xi,c}, with
xi,c = fc ·xi . In the case of IWV vertical correction, the scal-
ing factor fc could be computed from Eq. (A5) under the

Atmos. Meas. Tech., 15, 5643–5665, 2022 https://doi.org/10.5194/amt-15-5643-2022



O. Bock et al.: Improved IWV vertical correction 5659

Figure B1. Illustration of different cases of paired observations with perfect scaling (α = 1), imperfect scaling (α > 1 or α < 1), and positive
or negative bias (1> 0 or 1< 0). Each case has a different implication on the offset parameter β obtained from a linear regression with the
model y = αx+β. The regression lines are shown as dashed lines, with red indicating negative offsets and blue positive offsets. The 1 : 1
lines are shown as solid black lines. The distributions of data around the regression lines are represented schematically by the red and blue
ellipses.

hypothesis of a vertical distribution of water vapour follow-
ing an exponential law. The bias, slope, and offset parameters
after correction are denoted, respectively, as 1c, αc, and βc,
and are written as follows:

1c = µy − fcµx , (B5)

αc =
α

fc
, (B6)

βc = β . (B7)

Equations (B5) and (B6) follow from the fact that µy =
αµx +β = αcfcµx +βc must hold for every µx . A crucial
question is to check if this correction method can achieve a
perfect bias correction and scaling simultaneously, i.e. 1c =

0 and αc = 1.
Let us first check the conditions for achieving a zero bias,

1c = 0. This result is achieved if and only if fc = µy/µx .
From this condition, it follows that αc = α(1−β)/(1α−β).
The only possibility to simultaneously achieve 1c = 0 and
αc = 1 is actually that α = 1, i.e. when the data initially only
have a bias but no scaling error. In all other cases, the final
slope will be different from one, and it can be either larger
or smaller than the initial slope, meaning that in some cases
the slope can be degraded (getting farther from one). These
situations again depend on the initial values of α and 1.

– Case no. 1. If1> 0, then αc < α. If, in addition, α < 1,
then αc < α < 1, i.e. the slope is degraded. If, instead,
α > 1, then αc < α can lead to an improvement in the

slope, but there is no guarantee that αc will be close to
1.

– Case no. 2. If1< 0, then αc > α. If, in addition, α > 1,
then αc > α > 1, i.e. the slope is degraded. If, instead,
α < 1, then αc > α can lead to an improvement in the
slope, but there is no guarantee that αc will be close to
1.

The above analysis shows that, except when α = 1, the final
slope will be different from 1, and in some cases, depending
on the sign of the initial bias, it will be degraded.

Let us now check the conditions for achieving a unity
slope, αc = 1. This result is achieved if and only if fc = α.
From there it can be seen that 1c = β, meaning that the sign
and magnitude of the final bias will depend on the sign and
magnitude of the initial offset. Unless β = 0, the final bias
will generally be different from zero; i.e. it is in general not
possible to achieve a zero bias if the reference data are cor-
rected by a simple scaling factor that would achieve a final
slope of 1.

Instead of a simple rescaling correction model, we propose
using a linear correction model that includes both a scaling
factor, fc, and an intercept, gc:

xi,c = fc · xi + gc. (B8)

For our application to IWV vertical correction, both fc and
gc would depend on the height difference,1h. Following the
same reasoning as for the simple scaling model, it is straight-
forward to show that the condition to achieve both a zero
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bias, 1c = 0, and a unity slope, αc = 1, after correction is
written as follows:

fc = α and gc = β. (B9)

Indeed, substituting Eq. (B9) into Eq. (B8) and expressing
the bias 1c = µy −µx,c and the linear fit equation µy =
αcµx,c+βc, after correction we find 1c = 0, αc = 1, and
βc = 0, which is the desired result.

Appendix C: Statistical properties of the bias and
straight line fitted parameters

The classical straight-line fitting problem can be formalized
as follows. Let us assume the linear model

Y = αx+β + εY , (C1)

where Y is the response variable, x the independent variable,
α and β the slope and intercept, and εY a random variable
of zero mean and variance σ 2

ε,Y , representing the error in Y .
When x is known without error, the ordinary least-squares
(OLS) solution is found by minimizing the sum of squared
errors, SSE=

∑n
i=1e

2
i , where ei = yi − ŷi and ŷi = α̂xi + β̂

is the predicted value from the fitted line. In this case, the
errors represent the vertical distance of the best-fit line to
the data points. The OLS solution for α and β has a simple
analytical formulation (Walpole et al., 2012):

αOLS =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)
2 , (C2a)

βOLS = y−αOLSx . (C2b)

The variance of the OLS estimators is given by the following
equations (Walpole, 2012):

σ 2
α,OLS =

1∑n
i=1(xi − x)

2 σ
2
ε,Y , (C3a)

σ 2
β,OLS =

∑n
i=1x

2
i∑n

i=1(xi − x)
2 σ

2
ε,Y . (C3b)

An unbiased estimate of σ 2
ε,Y is given by the following equa-

tions (Walpole, 2012):

s2
ε,Y =

SSE
n− 2

=

∑n

i=1

(yi − ŷi)
2

n− 2
. (C4)

From there, it is customary to compute the standard errors of
the estimates as follows:

se2
α,OLS =

1∑n
i=1(xi − x)

2 s
2
ε,Y , (C5a)

se2
β,OLS =

∑n
i=1x

2
i∑n

i=1(xi − x)
2 s

2
ε,Y . (C5b)

Assuming that the errors εY,i are normally distributed, it fol-
lows that the estimators αOLS and βOLS are also normally

distributed and that (n− 2)s2
ε,Y /σ

2
ε,Y is a chi-squared vari-

able with n−2 degrees of freedom. Hypothesis testing of the
fitted parameters is then done using the following statistics:

tα,OLS =
αOLS−α0

seα,OLS
, (C6a)

tβ,OLS =
βOLS−β0

seβ,OLS
, (C6b)

which both have t distributions with n− 2 degrees of free-
dom. In Eqs. (C6a) and (C6b), α0 and β0 are the values as-
sumed in the null hypotheses. Typically, one wants to testH0:
αOLS = 1 against H1: αOLS 6= 1 and H0: βOLS = 0 against
H1: βOLS 6= 0. The associated p values are then computed
from the t cumulative distribution function (CDF):

pα,OLS = 2 · tcdf(−|tα,OLS|,n− 2), (C7a)
pβ,OLS = 2 · tcdf(−|tβ,OLS|,n− 2). (C7b)

When x is observed with error, a second observing equa-
tion applies:

X = x+ εX , (C8)

where the observed quantity X of the unknown variable
x now contains a random error εX and the OLS solution
(Eq. C2) is no longer optimal. Indeed, the slope estimate will
typically have negative bias (see Draper and Smith, 1998,
Eq. 3.4.10, for an expression of the bias), and this will bias
the intercept estimate in return.

The solution of the regression of Y on X with errors
in both variables can be found by minimizing the sum of
squared errors in both variables, i.e. SSE=

∑n
i=1[w(xi)(xi−

x̂i)
2
+w(yi)(yi − ŷi)

2
], where w(xi) and w(yi) are the

weights of the observations and x̂i and ŷi are the predicted
values. Weights have been included here to follow the for-
malism of York et al. (2004). They would typically be com-
puted from the assumed uncertainties, u, in the measure-
ments, e.g. w(xi)= 1/u2

i,x and w(yi)= 1/u2
i,y . Note that in

the special case of unit weights, the solution is the straight
line that minimizes the sum of the squares of the perpen-
dicular distances to the observed points (Macdonald and
Thompson, 1992). Finding the solution to this problem is not
straightforward, and many different and often approximate
solutions have been proposed in the literature (see, e.g. the
discussion in Press et al., 2007). In this work, we use the it-
erative algorithm approach proposed by York et al. (2004),
which also includes equations for the standard errors of the
fitted parameters. The equations are more complex than those
of the OLS solution and will not be repeated here. The stan-
dard errors of the York estimators can be likewise used with
Eqs. (C6) and (C7) for hypothesis testing. However, here we
want to emphasize that the formulations of the standard er-
rors given by York et al. (2004) need to be rescaled by the
goodness of fit factor

√
SSE/(n− 2), where SSE is the resid-

ual sum of squares given above. This rescaling is important
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to retrieve realistic values of the standard errors and thus the
test statistics and the subsequent p values. If the uncertain-
ties in the measurements have been properly specified, this
quantity should be close to 1.

In addition, it is useful to describe how the bias estimates
can be tested. We especially want to test the null hypothe-
sis (H0: 1= 0) against H1: 1 6= 0, where 1 is computed
as 1= y− x. The difficulty here is with standard error of
1 when both variables have errors. It can be shown that
the mean and variance of the 1 estimator are E(1)= (α−
1)x+β and Var(1)= σ 2

1 = (σ
2
ε,X + σ

2
ε,Y )/n, respectively.

The problem here is that σ 2
ε,X and σ 2

ε,Y are unknown. It may
be conjectured that s2

δ =
∑n
i=1(δi − δ)

2/(n− 1) is a proper
estimator of the variance of Y −X, with δi = yi − xi and
δ = y− x, and that s2

δ /n may be used as an estimator of σ 2
1.

However, it can be shown that E(s2
δ )= (1−α)

2∑n
i=1(xi −

x)2/(n− 1)+ σ 2
ε,X + σ

2
ε,Y and that the first term is typically

dominant over the latter two, i.e. this estimator of σ 2
1 is bi-

ased. Instead, we propose using Eq. (C4) as an estimator of
σ 2
ε,Y and a similar estimator for σ 2

ε,X:

s2
ε,X =

∑n

i=1

(xi − x̂i)
2

n− 2
, (C9)

where x̂i = (yi − β̂)/α̂ is the predicted value for xi . It can be
shown that E(s2

ε,Y )≈ α
2σ 2
ε,X + σ

2
ε,Y and E(s2

ε,X)≈ σ
2
ε,X +

σ 2
ε,Y /α

2. Since in our applications α is usually close to 1 and
the two error variances (σ 2

ε,X ≈ σ
2
ε,Y ) are comparable, both

estimators will only depart slightly from σ 2
ε,X + σ

2
ε,Y . As a

consequence, we propose averaging the two estimates and
use

s2
1 =

s2
ε,X + s

2
ε,Y

2n
, (C10)

as an estimator of σ 2
1 = Var(1). Note that the OLS and York

estimators predict different values of s2
1 because s2

ε,X and
s2
ε,Y depend on the estimated values of α and β. The test

statistic and subsequent p value for 1 can be computed in
a similar manner to what was used for α and β, although the
statistic does not exactly follow a t distribution in this case.

The performance of the OLS and York regression methods
have been evaluated based on Monte Carlo tests. The main
goals were to evaluate (i) the impact of errors in x on the
OLS estimator, (ii) the impact of misspecification of the er-
rors in the two variables with the York estimator, and (iii) the
performance of the test statistic for the bias. We simulated
m= 105 data sets, each composed of n= 41 pairs of obser-
vations, (xi,yi), i = 1. . .n, where xi = 10. . .50 by a step of
1 plus a random value from a normal distribution, N(0,σ 2

X),
and yi = αx̃i +β plus a random value from a normal distri-
bution, N(0,σ 2

Y ), where x̃i is the true (noise-free) value of
xi . Table C1 presents the results for different cases where the
true noise variances, σ 2

X and σ 2
Y , were changed and the as-

sumed variances, u2
x and u2

y , were either correctly specified

or not (note that the latter are used only in the York fit). All
of these simulations were run with α = 1 and β = 0. We also
run simulations for other values of α and β, but the conclu-
sions were unchanged; e.g. with α = 0.8 and β = 5.0 we did
not observe any significant difference in the results compared
to those presented in Table C1. Note that the SE values for1
reported in Table C1 were computed with the York estimates
of α and β. We observed that they were consistent with the
values computed with the OLS estimates to 0.01 or better
(OLS values greater than York values) and consequently led
to the same hypothesis test results on average.

The performance of the estimators was assessed in terms
of bias (difference between the mean estimate and the truth),
variance (the consistency between the observed standard de-
viation, SD, and the mean standard error, SE), and the cor-
rectness of the 5 % significance level (the value p0.05 re-
ported in Table C1 is the fraction of simulations with p values
< 0.05). The results are summarized below.

– Where σ 2
X = 0 and no errors are simulated in x (case

no. 1), the OLS and York methods yield identical results
(mean, SD, SE, p0.05).

– Where σ 2
X > 0, the OLS estimates of slope and offset

are biased (αOLS < 1 and βOLS > 0) and the magnitudes
of the biases depend on the strength of the noise.

– When σX = 1 (case nos. 2, 3, 4, 6, 8), the biases
are small: αOLS ≈ 0.993, βOLS ≈ 0.19, and p0.05 ≈

0.06.

– When σX = 4 (case nos. 5, 7), the biases are larger:
αOLS ≈ 0.90, βOLS ≈ 2.9, and p0.05 ≈ 0.5.

– When σX is proportional to X (case nos. 9, 10), the
biases take intermediate values: αOLS = 0.93–0.98,
βOLS = 0.5–1.9, and p0.05 = 0.1–0.2.

– When σY > σX (case nos. 6, 8), the mean values
are unchanged, SD and SE increase, and p0.05 is
improved (compare, e.g. case nos. 2 and 6).

– Where σ 2
X > 0, the York estimates are unbiased in all

cases, except when the uncertainties are misspecified
and are dissimilar in both variables.

– When uX/uY 6= σX/σY (case nos. 3, 5, 6), the bi-
ases amount to αYork− 1=±0.05, βYork =±1.5,
and p0.05 = 0.14–0.18 in case nos. 5 and 6, but they
are much smaller in case no. 3.

– When uX/uY = σX/σY (case nos. 7, 8), all the
biases vanish, but the specified uncertainties are
smaller than the true errors.

– The standard errors are consistent with the standard de-
viations in all cases. They increase when the noise in-
creases. Note that the standard errors are relatively large
in these simulations because the samples contain only
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Table C1. Monte Carlo tests of linear regression using the ordinary least-squares (OLS) and the York et al. (2004) method. In all simulated
cases, the true slope is 1 and true offset is 0. Noise is simulated in both variables according to the standard deviation values indicated in the
first two columns. Each data set was run for 105 simulations. The OLS method assumes noise is present only in the y variable. The York
method accounts for errors in both variables, with uncertainties specified in the third and fourth columns. The other columns report the mean
and standard deviation (SD) of estimated parameters (bias, slope, and offset) and their mean standard errors (SE). The column “p < 0.05”
indicates the fraction of results that have p values smaller than 0.05. The expected value for the latter is 0.05. Mean values and p < 0.05
values that differ significantly from the expected values are highlighted in bold.

Case no. Noise Bias OLS

Simulated Assumed Slope Offset

σx σy ux uy mean SD SE p < 0.05 mean SD SE p < 0.05 mean SD SE p < 0.05

1 0 1 0 1 −0.0005 0.1561 0.1533 0.0507 1.0000 0.0132 0.0131 0.0495 −0.0011 0.4272 0.4231 0.0501
2 1 1 1 1 0.0001 0.2207 0.2165 0.0500 0.9934 0.0186 0.0184 0.0659 0.1991 0.5984 0.5950 0.0636
3 1 1 4 1 0.0015 0.2203 0.2170 0.0574 0.9935 0.0185 0.0185 0.0644 0.1964 0.5973 0.5954 0.0619
4 1 1 4 4 0.0000 0.2207 0.2167 0.0513 0.9934 0.0185 0.0185 0.0656 0.1983 0.5980 0.5955 0.0633
5 4 1 1 1 0.0013 0.6445 0.6261 0.1833 0.9038 0.0453 0.0491 0.4922 2.8825 1.4823 1.5955 0.4343
6 1 4 1 1 −0.0002 0.6450 0.6261 0.1358 0.9937 0.0545 0.0539 0.0515 0.1890 1.7580 1.7385 0.0516
7 4 1 1 0.25 0.0031 0.6431 0.6326 0.0508 0.9038 0.0453 0.0491 0.4933 2.8833 1.4820 1.5955 0.4330
8 1 4 0.25 1 −0.0026 0.6441 0.6325 0.0525 0.9937 0.0543 0.0539 0.0517 0.1870 1.7503 1.7379 0.0507
9 5 % 5 % 5 % 5 % −0.0007 0.3567 0.3499 0.0512 0.9831 0.0311 0.0294 0.1021 0.5087 0.7585 0.9490 0.0370
10 10 % 10 % 10 % 10 % 0.0001 0.7130 0.7005 0.0549 0.9359 0.0597 0.0567 0.2175 1.9362 1.4757 1.8371 0.1256

Case no. Noise York fit

Simulated Assumed Slope Offset

σx σy ux uy mean SD SE p < 0.05 mean SD SE p < 0.05

1 0 1 0 1 1.0000 0.0132 0.0131 0.0495 −0.0011 0.4272 0.4231 0.0501
2 1 1 1 1 1.0001 0.0188 0.0185 0.0514 −0.0032 0.6040 0.5969 0.0517
3 1 1 4 1 1.0063 0.0188 0.0187 0.0576 −0.1860 0.6045 0.6022 0.0560
4 1 1 4 4 1.0001 0.0187 0.0185 0.0511 −0.0044 0.6038 0.5974 0.0508
5 4 1 1 1 0.9530 0.0513 0.0504 0.1805 1.4073 1.6586 1.6340 0.1620
6 1 4 1 1 1.0527 0.0565 0.0556 0.1404 −1.5818 1.8132 1.7890 0.1269
7 4 1 1 0.25 1.0029 0.0552 0.0543 0.0516 −0.0906 1.7783 1.7518 0.0511
8 1 4 0.25 1 1.0004 0.0546 0.0539 0.0516 −0.0155 1.7611 1.7386 0.0507
9 5 % 5 % 5 % 5 % 1.0002 0.0245 0.0243 0.0498 −0.0047 0.5383 0.5326 0.0508
10 10 % 10 % 10 % 10 % 1.0014 0.0498 0.0483 0.0543 −0.0298 1.0897 1.0605 0.0541

n= 41 values. Increasing n by a factor of 10 (consistent
with the GPS–MWR comparisons of Sect. 4.2) would
decrease SE by a factor of 10. A reduction of the SE
would also imply that some of the slope and offset bi-
ases become significant (e.g. in case no. 3).

– The bias estimator,1= y−x, is “unbiased” in all cases
(mean ≈ true value) and its SE estimator is consistent
with the standard deviation (this confirms the validity
of the SE estimator given by Eq. C10) with only a small
bias when the noise variances are dissimilar (case nos. 5,
6: SE≈ 0.62 compared to SD= 0.64) and a subsequent
impact on the p0.05 probabilities (p0.05 = 0.13–0.18).

Note that even when σ 2
X > 0 is constant, the OLS estima-

tors and subsequent test statistics are biased.

Figure C1 shows the distributions of the slope, offset, and
p values from the hypothesis tests for case nos. 5 and 7. The
shapes of the distributions of the slope and offset resemble
non-central t distributions. Note the biases of the OLS esti-
mators in both cases and the bias in the York estimators only
in case no. 5. The distributions of the p values are expected
to be flat (equal probability for all p values), which is ver-
ified for the York fit in case no. 7 and all other simulated
cases, except for case nos. 5 and 6 and to a lesser extent case
no. 3 (where the error ratios are misspecified). In case no. 5
(shown in Fig. C1), it is seen that the small p values have
larger probability, which indicates that an excessive number
of slope and offset estimates are biased. This happens more
often with the OLS estimator.
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Figure C1. Monte Carlo tests of linear regression using the ordinary least-squares (OLS) and the York et al. (2004) methods. The plots
show the distributions of slope, offset, and respective p values from the hypothesis tests (H0: slope equal to 1; H0: offset equal to zero). The
dotted vertical lines indicate the mean values. Mean and standard deviation are reported in each plot. The true slope is 1, and the true offset
is 0. Panels (a)–(d) correspond to case no. 5 from Table C1, and panels (e)–(h) correspond to case no. 7. Each case is computed from 105

simulations (see Appendix C for further details).
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