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Abstract. Thermal image velocimetry (TIV) is a near-target
remote sensing technique for estimating two-dimensional
(2D) near-surface wind velocity based on spatio-temporal
displacement of fluctuations in surface brightness tempera-
ture captured by an infrared camera. The addition of an au-
tomated parameterization and the combination of ensemble
TIV results into one output made the method more suitable
to changing meteorological conditions and less sensitive to
noise stemming from the airborne sensor platform. Three
field campaigns were carried out to evaluate the algorithm
over turf, dry grass, and wheat stubble. The derived veloci-
ties were validated with independently acquired observations
from fine-wire thermocouples and sonic anemometers. It was
found that the TIV technique correctly derives atmospheric
flow patterns close to the ground. Moreover, the modified
method resolves wind speed statistics close to the surface at a
higher resolution than the traditional measurement methods.
Adaptive thermal image velocimetry (A-TIV) is capable of
providing contactless spatial information about near-surface
atmospheric motion and can help to be a useful tool in re-
searching turbulent transport processes close to the ground.

1 Introduction

1.1 Atmospheric turbulence and its implications on
surface temperature

Atmospheric boundary layer turbulence is a key driver for
energy transport and dissipation between the surface and the
atmosphere (Stull, 1988). Turbulence can be organized in co-
herent structures which are estimated to be responsible for
at least 40 % of the surface momentum and heat fluxes and
largely contribute to transport processes within the atmo-
spheric boundary layer (Lotfy et al., 2019; Barthlott et al.,
2007; Litt et al., 2015). Atmospheric turbulence and the co-
herent structures are therefore responsible for surface tem-
perature fluctuations, especially during short time periods
(< 1 min) when radiative input is relatively constant (Chris-
ten et al., 2012). This effect has led to the study of surface
atmospheric interactions using brightness temperature mea-
surements. Paw U et al. (1992) used an infrared thermometer
to identify ramp structures in the surface temperature over a
maize canopy. They found that the surface temperature ramps
of these structures are smaller in magnitude than the air tem-
perature ramps but followed a similar pattern with a high cor-
relation. Katul et al. (1998) linked surface temperature fluc-
tuations over a forest clearing to the turbulent velocities mea-
sured near the surface and concluded that for cloud-free con-
ditions turbulent velocities can induce large brightness tem-
perature perturbations (> 2 ◦C).

Published by Copernicus Publications on behalf of the European Geosciences Union.



5682 B. Schumacher et al.: Adaptive thermal image velocimetry

Time sequential thermography (TST) is a methodology
introduced by Hoyano et al. (1999) referring to ground-
based thermal infrared cameras sampling at sub-minute in-
tervals providing spatial and temporal information about sur-
face brightness temperature changes. TST methods depicting
the imprints of turbulent coherent structures have been used
to draw conclusions about surface atmospheric interaction
mechanisms (i.e. sweep and ejection mechanisms), the sur-
face materials and their potential brightness temperature fluc-
tuation, and the shape and movement of turbulent coherent
structures in the surface layer of the atmospheric boundary
layer (Hoyano et al., 1999; Garai and Kleissl, 2011; Christen
et al., 2012; Garai et al., 2013).

Garai and Kleissl (2011) described the detection of co-
herent turbulent structures using their thermal footprints and
concluded that TST can only provide information under cer-
tain conditions, i.e. low vegetation and a flat homogeneous
surface due to vegetation movement and the preservation of
heat in the vegetation canopy allowing for little brightness
temperature fluctuations.

Infrared cameras provide advantages for spatial turbulence
studies over using traditional approaches such as arrays of
sonic anemometers (Inagaki and Kanda, 2010). Firstly ther-
mal cameras are not invasive of the turbulent flow field.
Secondly the measurement is instantaneous and spatial, and
therefore no interpolation of point-based measurements is
needed. Spatial turbulence studies also utilized particle im-
age velocimetry (PIV) techniques which seed reflective parti-
cles in air, visualizing the turbulent flow using image correla-
tion techniques (Adrian et al., 2000; Hommema and Adrian,
2003). However, PIV implies a number of limitations in a
geophysical environment including small covered areas (<
100 m2) due to the particle size, the seeding density, and the
intensity of the light pulse (Hommema and Adrian, 2003; In-
agaki et al., 2013).

1.2 Thermal image velocimetry

Inspired by PIV techniques, Inagaki et al. (2013) suggested
a method called thermal image velocimetry (TIV) for esti-
mating advection velocities of thermal structures over artifi-
cial surface types like polystyrene boards and turf. A high
correlation of these velocities with near-surface wind ve-
locity measurements was reported. However, when moving
from a static setup and artificial surface covers to an airborne
(helicopter-based) acquisition of the thermal imagery over a
forest, TIV could not be calculated due to image shaking (In-
agaki, 2016). The removal of the image shaking and the ac-
curacy assessment of different correlation techniques within
the TIV process was described by Schumacher et al. (2019),
showing that TIV from hovering uncrewed aerial vehicles
(UAVs) can be accomplished.

The TIV as presented by Inagaki et al. (2013) implies a
number of limitations on the retrieval of the 2D TIV veloc-
ity vectors, which for instance require an experienced user

to set a large number of user input parameters, as well as
the algorithms’ capability to retrieve velocities only on ar-
tificial, smooth surface types with a low thermal conductiv-
ity, high emissivity, and small heat capacity. Moreover, the
retrieved TIV spatial thermal pattern displacement velocity
has not yet been compared and evaluated against near-surface
spatial wind velocity measurements.

In a recent study Alekseychik et al. (2021) employed PIV
techniques to thermal imagery collected with a UAV to re-
trieve spatial TIV wind fields which were averaged over
80 s and compared to average measurements from a sonic
anemometer. The study was focused on identifying coherent
structures interacting with the surface using the brightness
temperature perturbations and deriving statistics about size
and shape of the interactions. However, the used techniques
did not resolve instantaneous velocities of the coherent struc-
tures, which is important for their evolution and shape as well
as the interaction with the surface.

1.3 Thermal imagery in remote sensing

Thermal imagery acquired from towers has been utilized for
highly resolved land surface temperature in space and time
for spatial heat flux calculations in surface energy balance
models (Morrison et al., 2017; Garai et al., 2013). Other
studies have utilized thermal imagery acquired with moving
UAVs as land surface temperature substituting the compara-
tively low spatiotemporal resolution of satellite acquisitions
to estimate evapotranspiration in surface energy balance
models (Brenner et al., 2017, 2018; Simpson et al., 2021;
Bastiaanssen et al., 1998). In both types of studies wind ve-
locity is commonly represented by single-point anemometer
measurements, which can be considered a weakness of the
surface energy balance models (Waters, 2002). Neither TST
nor TIV has been applied to retrieve spatial wind velocities
for the benefit of theses estimations.

Due to the limitation of TIV for artificial surface types
and the limitation of use from stable oblique camera tow-
ers, TIV has not yet been adapted into surface energy bal-
ance estimations. Because of these current limitations nei-
ther TST nor TIV has provided a landscape-scale spatial ve-
locimetry estimate over natural surfaces. Nonetheless, a spa-
tial 2D near-surface wind velocity measurement on a land-
scape scale would be beneficial across scientific disciplines.
For example, in atmospheric science this measurement of-
fers the opportunity for desired validation or calibration of
numerical weather models, which are currently commonly
validated with in situ point measurements (Sagaut and Deck,
2009; Giordano et al., 2013). In agricultural and environ-
mental science 2D near-surface wind velocity would be valu-
able for estimations of vital environmental parameters such
as evapotranspiration, water stress of plants, or energy fluxes
(Pozníková et al., 2018; Morrison et al., 2017).

In this study we validate the new development called adap-
tive thermal image velocimetry (A-TIV), which performs
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a Hilbert–Huang transform (HHT) analysis of the bright-
ness temperature data before the calculation of the A-TIV
and then uses multiple surface brightness temperature per-
turbation filter sizes to cover multiple scales of tempera-
ture perturbations. Subsequently, we pursue the validation
with spatially distributed high-frequency fine-wire thermo-
couple measurements as well as using sonic anemometer data
which are compared to the A-TIV measurements. Through
the spatio-temporal high-frequency thermal pattern displace-
ment velocities covered by the developed A-TIV and their
comparison to in situ measurements, new insights into the
interaction of turbulent coherent structures with the Earth’s
surface become possible. With three different surface types
and canopy heights, this study also tests the limitations of
the A-TIV algorithm. The research objectives are

1. to prove that UAVs acquired and stabilized surface
brightness temperature over artificial turf, and non-
artificial grass surface reflects the near-surface atmo-
spheric flow patterns

2. to improve the usability of the TIV algorithm and elim-
inate necessary user-input parameters by analysing the
input thermal imagery before the calculation (This pro-
cess also included building an open-source algorithm
with automated components, making A-TIV and TIV
available to non-experts.)

3. to perform a validation with independent measurements
to assess the accuracy of the A-TIV algorithm over arti-
ficial turf and non-artificial grass surface cover

4. to test the limitations of the A-TIV algorithm using a
third surface cover: wheat stubble (the wheat stubble
experiment is dedicated to analysing the limitations of
the proposed A-TIV algorithm in terms of vegetation
height).

2 Methodology

2.1 Thermal image velocimetry algorithm

Thermal image velocimetry is a method to spatially esti-
mate thermal pattern velocity through the tracking of sur-
face brightness temperature fluctuations measured by an in-
frared camera at a high frequency (> 1 Hz). The success of
the TIV algorithm depends on a set of user inputs, especially
the correlation window size, the search area size, the correla-
tion time interval, and the temporal running filter size for the
perturbation calculation (see Eq. 1). As illustrated in Fig. 1b
and c, the correlation window size defines how many vec-
tors are calculated in the image, the search area size defines
the density of the vectors, the time interval is decisive for the
vector length and for the number of error vectors calculated,
and the running filter size determines the noise level of the

perturbation calculation (Inagaki et al., 2013; Schumacher et
al., 2019).

TIV previously used a correlation technique presented by
Kaga et al. (1992) called the greyscale correlation technique,
which uses simple pixel by pixel subtraction to obtain a cor-
relation value (Inagaki et al., 2013). The A-TIV is usually
calculated using the same technique with a correlation win-
dow size of 16× 16 pixels and a search area size of 32× 32
pixels. These settings were previously investigated as the
most accurate (Schumacher et al., 2019).

T ′s = Ts− TsF (1)

Equation (1) shows calculation of perturbation for the data
cube. T ′s is the resulting perturbation of 1 pixel, Ts is the mea-
sured brightness temperature of the pixel, and TsF is the tem-
poral mean of the pixel dependent on the filter size F (5, 10,
20, or 30 s). See Fig. 1b for context.

2.2 Adaptive thermal image velocimetry

The A-TIV algorithm is based on the same principle as the
TIV algorithm with two new modifications (Fig. 1a red box
and d), which allow an automatic adaptation of the algorithm
to its input brightness temperature imagery and therefore the
underlying environmental conditions. In previous investiga-
tions, the TIV algorithm showed a large sensitivity to the
correlation time interval setting, delivering erroneous vectors
when the setting was too short (see Sect. 3.2.1). Therefore,
as a first development A-TIV takes advantage of the Hilbert–
Huang transform (HHT), identifying the instantaneous fre-
quencies of a given signal (Huang et al., 1998). In the case
of A-TIV the first step of the HHT is to calculate the en-
semble empirical mode decomposition (EEMD), which de-
termines the intrinsic mode functions (IMFs) of the time se-
ries from 11 randomly selected pixels from the input thermal
imagery (Wu and Huang, 2009). The second step is to cal-
culate the Hilbert transform of the first IMF of each selected
pixel, defining the highest instantaneous frequencies of the
input thermal imagery. The average of the 11 calculated in-
stantaneous frequencies prescribe the correlation time inter-
val setting for the A-TIV algorithm. This allows us to change
the interval setting based on variable experimental input data.

As a second development, A-TIV makes use of sequenced
time filters in the perturbation calculation (see Eq. 1). The
temporal filter size F in TsF of the TIV algorithm is varied to
cover multiple magnitudes of perturbations in the brightness
temperature data set (see Fig. 2). When multiple perturbation
filters are calculated on the stabilized brightness temperature
data set, the resulting perturbation from the longest filter size
F represents the largest scale of motion. One TIV sequence
is calculated on each of these three-dimensional (3D) pertur-
bation data cubes (x, y, time; see Fig. 1). All resulting ve-
locity data cubes are subsequently assimilated from longest
to shortest perturbation filter size using a weighted average
with the filter size as weight (in this study 30, 20, 10, and
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Figure 1. Schematic of the A-TIV algorithm – (a) randomly selected stabilized brightness temperature pixels (marked orange) are used with
HHT to find the highest-frequency signal component of the data set which defines the interval setting. (b) The perturbation calculation with
different predefined running filter sizes (F) is done to provide the data for computation of the TIV core algorithm. From the perturbation data
set two images with the time increment of the interval setting are extracted and passed to panel (c). (c) Core TIV algorithm with an example
search area size of 5× 5 pixels and a correlation window size of 3× 3 pixels. Error vectors are adjusted using the standard deviation of the
calculated vectors in the direct adjacent pixels. (d) The process from panel (c) is computed over all predefined filter sizes of panel (b) to
calculate multiple vector fields that are available. Finally, all vector fields are merged using weighted averaging.

5 s or 6-fold, 4-fold, 2-fold, and 1-fold). This leads to a ve-
locity field output which contains more information from the
longest perturbation filter sizes. An increasing noise level of
the camera is present with decreasing perturbation filter size.
Therefore the weighted average is based on the perturbation
filter size, which reduces the importance of the TIV output

calculated from the smallest perturbation filter. This allows
the A-TIV algorithm to include all velocity fields with re-
duced noise-associated disturbances. The calculation of the
A-TIV also removes outliers of the output wind velocities
by replacing values that are outside of 2 standard deviations
with the mean value within a 3× 3 window (see Fig. 1c).
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Figure 2. Sample pixel: (a) temperature and (b) temperature perturbations – example showing impact of different running filter sizes to
calculate the perturbations. (a) Temperature measurement from a sample pixel of the IR camera. Dark blue is the original temperature, and
the smoothed lines are the running mean used for the perturbation calculation (see legend for the length). The corresponding perturbation
scales are shown in panel (b). The mean of 100 s only allows large perturbation influences to be shown while the smaller perturbation window
of 5 s accounts for small-scale changes.

According to Inagaki et al. (2013) perturbation filter sizes
(TsF) from 1 to 30 s show a high correlation with near-surface
measured wind velocity when calculating TIV. Therefore, the
default setting is four different running filter sizes: 30, 20, 10,
and 5 s.

2.3 Data

Three separate field experiments in the Canterbury region of
New Zealand were carried out during the Australasian sum-
mer in January and March 2019 and in January 2020. The
two time-sequential thermal infrared turbulence (TURF-T)
experiments were equipped with sonic anemometers, fine-
wire thermocouples, and an infrared camera on a UAV
(Fig. 3). The first experiment TURF-T1 took place at a
hockey turf field, and the second experiment TURF-T2 was
held at a mixed surface with turf and grass. The third ex-
periment included an infrared camera on a UAV acquiring
footage over a dry wheat stubble field with a weather sta-
tion in the proximity of 100 m collecting 1 min average wind
speed. This third experiment was designed to test the al-
gorithm when used over a higher vegetation canopy due to
missing high-frequency measurements in a qualitative analy-
sis. The weather station data were used to monitor the atmo-
spheric conditions during the experiment day and put the A-
TIV output from this experiment into context in the TURF-
T1 experiment and TURF-T2 experiment.

The wheat stubble experiment took place after the harvest
of the crops when the individual stalk heights were cut to
18–20 cm and left standing upright in the field. Compared
to the spikes of the wheat plant the stalks are a very stable
part of the plant, and it was expected that even with higher
wind gusts the stalks would not create any motion effects,
also called “honamis”, interfering with the camera measure-
ment (Finnigan, 2010). Table 1 provides a summary of the
three experiments, and Table 2 provides a summary of the
available instruments.

The surface types were picked in accordance with other
field experiments, which suggest that the application of the
TIV method is more suitable for dry and thermally respon-
sive surfaces with a high thermal admittance (Inagaki et
al., 2013; Christen et al., 2012). For the acquisition of the
infrared video, the Optris PI 450, a lightweight, passively
cooled camera with the capability to be attached and sta-
bilized to a UAV using a three-axis dynamically respon-
sive camera mount, was used (Fig. 3, Image 3). The camera
measures a spectral range of 8 to 14 µm, in a resolution of
382×288 pixels, with a system accuracy of ±2 ◦C or 2 % of
the measured temperature and a thermal sensitivity of 40 mK
(Optris, 2020). Due to the passive cooling mechanism of the
camera, its sensor is reset for 1 s in a frequency of 10 s. The
camera lens used for all experiments is a wide-angle lens
with a field of view of 80◦×54◦ and a fixed aperture of f/6.
The acquisition frequency was set to 80 Hz, and the output
file format is a radiometric video file.

In addition to the brightness temperature measurements,
near-surface temperature and wind velocity measurements
were made to compare the brightness temperature measure-
ments and A-TIV wind speeds to the in situ meteorologi-
cal measurements. TURF-T1 was equipped with one sonic
anemometer, and TURF-T2 was equipped with two sonic
anemometers, one in the grass field and one in the turf
(Fig. 3). All anemometers were mounted at 1.5 m above
ground level, sampled at 20 Hz, and placed in the field of
view of the camera. Additionally, the TURF experiments
were equipped with an array of fine-wire thermocouples (TC
– 0.0254 mm bead diameter) mounted approximately 1.5 cm
above the ground, measuring air temperature with a sampling
speed at 20 Hz (Fig. 3, Image 2). The 12 sensors in the TC
array were distributed in a square with three sensors per edge
(eight sensors total) and four sensors aligned in the bisector
of the square (Fig. 3), resulting in an interdistance of 1.5 m.
This distribution ensured a proper lag correlation methodol-
ogy to retrieve near-surface wind direction and wind velocity.
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Figure 3. Experiment sites and instrumentation – TURF-T1, TURF-T2, and wheat stubble experiment sites: (a) blue hockey turf, (b) green
softball turf with surrounding grass, and (c) a harvested wheat field with stubble. In panels (a) and (b) the positions of sonic anemometer
units (black dots, Image 1 – closeup below) and the thermocouple array (red square with red dots, Image 2 – closeup below) are marked. The
black star shows the position of the base thermocouple upwind which was used for close surface wind velocity estimation (see Sect. 2.7).
The mean wind direction is emphasized by a yellow arrow. Image 3 shows the used quadcopter with a three-axis inertial stabilizer and the
Optris camera mounted.
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Table 1. Overview of the experiments.

Experiment Time Mean WS Mean WD UAV height Location Surface type and A-TIV
dimension interval

TURF-T1 12 January 2019 2.6 m s−1 north-easterly 70 m Rangiora Dry hockey turf 1.5 s
16:21–16:31 sports ground 91.4 m× 55 m

TURF-T2 17 January 2020 5.8 m s−1 north-easterly 35 m Rolleston Mixed grass, turf 2 s
14:25–14:38 sports ground 3–5 cm grass height

60 m× 30 m

Wheat 7 March 2019 8.4 m s−1 northerly 70 m Darfield Wheat stubble 4 s
stubble 17:34–17:39 18–20 cm stalk height

90 m× 52.5 m

Table 2. Overview of the instrumentation.

Experiment Wind velocity Thermal imagery Thermocouples Logging frequency

TURF-T1 One sonic anemometer (EC100) Optris Pi450 16 thermocouples type E 20 Hz
TURF-T2 Two sonic anemometers (EC100) Optris Pi450 16 thermocouples type E 20 Hz
Wheat stubble One automated weather station Optris Pi450 None 1 min

Meteorological conditions

Experiments were carried out when the Canterbury region
was under the influence of stagnant anti-cyclonic (high-
pressure) synoptic conditions with weak pressure gradients,
resulting in near-surface wind speeds in the ranges of 2–
5 m s−1. However, we expect differences in the characteris-
tics of the boundary layer development (and hence the turbu-
lence field) for each day. This will be due to the variation in
cloud cover and the fact that the characteristics of the ther-
mally generated flows (such as sea breezes) will be different
for each day. The conditions on 7 March 2019 were addition-
ally influenced by a low-pressure system to the southwest of
New Zealand which caused higher wind speed ranges during
this day. The TURF-T1 experiment day was characterized
by cloudy conditions in the morning progressing to clear-sky
conditions in the afternoon with an average temperature of
18.3 ◦C. This morning cloud cover did not interfere with the
temperature during the TURF-T1 experiment. TURF-T2 was
carried out with no cloud cover and an average air temper-
ature of 20.6 ◦C. The wheat stubble experiment was carried
out during a period with scattered high clouds and an average
air temperature of 22.2 ◦C. For more detailed descriptions
on the meteorological conditions during the experiments, see
Table 1. For an overview of the used instrumentation please
refer to Table 2.

2.4 Thermal imagery stabilization process

The unstable brightness temperature collected with a UAV-
based system is stabilized using Blender, a 3D video ani-
mation software package (Cardona and Hartenstein, 2006;

Ramos et al., 2011; Blender Online Community, 2019). A
detailed description of the process is available in Schumacher
et al. (2019), which can be summarized as follows: to read the
collected brightness temperature video into Blender, the data
are transferred to RGB colour value images. The Blender
software is employed to track the camera movements using
the manual camera tracking feature and the low-emissivity
targets, which are displayed as cold spots in the imagery.
Then the stabilization process was computed with a nearest-
neighbour interpolation on the RGB colour images using
low-emissivity targets in the field of view of the camera.
Subsequently a random forest machine learning algorithm is
trained on the unstable brightness temperature–colour value
image pairs. The random forest algorithm in this case works
as a colour value–temperature model. Finally, the stable tem-
perature images were predicted from the stabilized colour
images with the random forest algorithm. The effects of the
stabilization for the TURF-T1 experiment are shown with the
standard deviation of the images over time in Fig. 4. Before
using the stabilized brightness temperature, it should be sub-
sampled using averaging from the original acquisition fre-
quency to a suitable noiseless frequency. For example, the
TURF-T1 experiment data were subsampled from 80 to 2 Hz.
The stabilized and subsampled video can be registered with
a geographic coordinate system.

2.5 Thermocouple analysis

The thermocouple (TC) array allowed us to estimate wind
speed and wind direction very close to the surface, by esti-
mating the lag cross-correlation on overlapping subsets (10 s)
of TC time series data (20 Hz). The resulting 2 Hz TC-based
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Figure 4. Standard deviation over time for (a) unstable and (b) stabilized thermal imagery – impact of stabilization algorithm on the bright-
ness temperature (Tb) standard deviation over time zoomed to a low-emissivity target of the TURF-T1 experiment. Panel (a) shows the
unstable Tb standard deviation, and panel (b) shows the stabilized Tb standard deviation. Panel (c) shows RGB imagery with the blue turf
and the low-emissivity target in the centre. The peaks of the standard deviation of panels (a) and (b) are shifted due to the working mechanism
of the software stabilization. Any subsequent frame in the stabilization will be matched with the base frame (first frame), and the standard
deviation peak is hence shifted towards this first frame.

advection wind velocity is calculated based on one TC mea-
surement (base TC, black star in Fig. 3) lagged over 10 s and
cross-correlated with all the surrounding TCs. The base TC
was defined as one of the inner four TCs which was placed
upwind of the other thermocouples. The TC-based advection
wind speed was used in the accuracy assessment of the A-
TIV algorithm.

The time lag and the distance of the TC with the highest
correlation coefficient determined the wind velocity, and the
position relative to the base TC determined the wind direc-
tion. Because of the overlapping 10 s windows in the time
series, the resulting frequency of wind speed and wind direc-
tions measurements was 2 Hz. Due to maximal and minimal
lag-correlation times, the minimal resolved wind velocity is
limited to 0.25 m s−1.

To evaluate the brightness temperature data captured by
the infrared camera with the TC derived air temperature in a
first step, the same methodology was applied to a “virtual”
array taken from the brightness temperature perturbations
which were sub-sampled using mean sampling to a sampling
rate of 20 Hz. The lag cross-correlation was calculated on this
sampling rate, resulting in a 2 Hz wind direction and wind

speed measurement identical to the physical array calcula-
tion. For the TURF-T1 experiment the centre of this virtual
array was located about 9 m upwind from the centre of the
physical TC array. The retrieved wind speed and wind direc-
tion were compared directly to the results from the physical
array using a basic statistical t-test analysis and a histogram
comparison. The same method was applied to the TURF-
T2 experiment in which the physical array was distributed
across both surfaces; hence, the virtual array was tested in
three different positions: one in the grass field 9 m upwind
of the physical array, one in the turf field 9 m downwind of
the physical array, and one 1 m next to the physical array to
resolve the same surface types for each TC.

2.6 A-TIV evaluation

The sonic anemometer data from the three experiments were
used to calculate the mean wind speed over the experimen-
tal period to characterize the different meteorological condi-
tions during the experiments (Table 1). The evaluation of the
A-TIV-based thermal pattern velocity involved a statistical
analysis with a comparison to the statistics of the TC and EC
measurements. For the comparison, the A-TIV speeds were
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averaged over an area of 15 m× 15 m to ensure four homoge-
neous fields of turf (TURF-T1 and TURF-T2), grass (TURF-
T2), and wheat stubble. In TURF-T2 the calculation of the A-
TIV was separated for both surface types to be able to com-
pare the results from the artificial to natural surface cover.
The statistical analysis included an analysis of the probabil-
ity density functions and a t-test comparison of the average
of the thermal pattern speed from both TURF experiments
to the TC measurements. Additionally, the algorithm per-
formance from the wheat stubble experiment was analysed
comparing the area-average A-TIV speed histograms of all
experiments. For all comparisons histograms and probabil-
ity density functions are presented rather than instantaneous
cross-correlations because of the difference in measurement
approaches meaning that A-TIV is resolving a near-surface
spatial velocity whereas the sonic anemometers represent a
point measurement of a spatial footprint, and the TC ar-
ray measurements are representative of the immediate area
where they are mounted. Therefore, the histograms and prob-
ability density functions provide a better overview of the sim-
ilarities and differences than the time series from the mea-
surements.

3 Results

3.1 Stabilized brightness temperature evaluation

The TC array data were used to estimate wind speed and
wind velocity approximately 1.5 cm above the ground using
cross-correlation and the distance of the TCs (see Sect. 2.7).
However, in a first analysis the brightness temperature (Tb)
from the camera was used to create a virtual TC array to
check if the data depict a similar measurement as the physi-
cal TC array. Figure 5 shows the histograms of the estimated
wind speed and wind direction for TURF-T1 and TURF-T2
over grass and turf. In TURF-T1 the calculated wind speed
and wind direction of the virtual TC array did not differ sig-
nificantly from the physical TC array (p value > 0.95). When
the virtual TC array was placed in either the grass or the turf
surface in TURF-T2 no similarity could be determined. How-
ever, when the virtual TC array was placed next to the physi-
cal array and the surface types of the virtual and the physical
TCs matched a weak significant difference in wind speed,
distribution was estimated (p value > 0.9).

3.2 A-TIV evaluation

3.2.1 TIV sensitivity to user input

The stabilization of UAV thermal imagery is the foundation
for a successful TIV; however the A-TIV incorporates two
steps to reduce error vectors (see Sect. 2.2) and create a more
detailed output over non-artificial surface types. To show the
advantages of the first step, an example frame of the TURF-
T1 TIV is displayed with the correlation time interval set-

ting informed by the HHT and compared to one with a user-
defined correlation time interval setting (see Fig. 6). The TIV
with the HHT as the correlation time interval setting mech-
anism removes error vectors and shows a larger spectrum
of velocities. An error vector in Fig. 6 is defined as a vec-
tor which implies local, unrealistic measured A-TIV speeds
(> 6 m s−1), whereas during the experiment day the mean
wind speed was measured at 2.6 m s−1.

The second step of A-TIV is the incorporation of the four
perturbation calculations resulting in one TIV each, which
are subsequently assimilated using a weighted average (see
Sect. 2.2). Figure 7 shows an example frame of TURF-T1
with each of the four perturbation filters and the correspond-
ing TIV with the HHT as the interval setting mechanism. The
product A-TIV for this frame is the weighted average of these
four TIVs.

3.2.2 Differences of A-TIV and TIV

A-TIV adds velocities to certain areas where the TIV does
not estimate velocities (Fig. 6). The difference of A-TIV
speed and TIV speed is displayed in Fig. 8. A positive dif-
ference indicates that the A-TIV speed is higher than the
corresponding TIV speed of a certain perturbation filter size.
Through the weighted averaging, the A-TIV gains with each
new layer new information until the lowest perturbation filter
adds the least amount of information due to its weight in the
weighted average.

Table 3 shows the quantitative advantage of A-TIV over
TIV. A-TIV provides fewer vacant grid cells compared to any
TIV with a fixed perturbation filter size. Most of the veloci-
ties are added by the TIV with the highest perturbation filter
size, whereas the other TIVs add less information to the final
A-TIV product. The percentage given is the number of cells
that add velocity information respective of the full number of
available cells. Therefore, each TIV product could reach up
to 100 % of added information.

3.2.3 Evaluation of A-TIV with wind velocity
measurements

The A-TIV velocity fields for TURF-T1 were compared
in two steps with the in situ available sensors, the sonic
anemometer, and the lag-correlated thermocouple wind
speeds. The first comparison covered the magnitude and tim-
ing of the perturbation scales of temperature and wind speed
(Fig. 9). It showed that the A-TIV measurement matches the
magnitudes of wind speed perturbation very well, when av-
eraged over an area. There is also a clear timing difference
of the perturbation peak occurrences between the A-TIV and
the sonic anemometer data, which is expected due to the dif-
ferences in measurement height and type.

The second comparison also involved the turf and grass
surface within the TURF-T2 experiment. This comparison
revealed the different impacts of the surface types on the A-
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Figure 5. TURF-T1 and TURF-T2 brightness temperature accuracy assessment – comparison of wind speed (a, b: metres per second) and
wind direction (c, d: degrees) of the physical TC array (red) to the virtual TC array (blue) for TURF-T1 and TURF-T2. It is evident that the
lag correlation using the virtual arrays depicts similar wind speed and direction as the physical TC array, which measures air temperature
approximately 1.5 cm above the ground in both experiments.

Figure 6. Error vector removal due to correct correlation time interval setting – (a) a TURF-T1 TIV with a correlation time interval of 0.5 s.
(b) The same TIV with an interval setting of 1.5 s, which was calculated using the HHT. The large error vectors mask the display of the
small-scale vectors within panel (a).

TIV measurement. In general, the TC wind speed distribution
is shifted to higher wind speeds due to the limitations of the
method allowing only wind speeds greater than 0.25 m s−1.
Compared to the spatial TC wind speeds, A-TIV measures a
similar wind speed distribution on the artificial surface type
of TURF-T1, which confirms the results presented by Ina-
gaki et al. (2013) (Fig. 10). With TURF-T2 a new mixed sur-
face type was added, and A-TIV resolved generally higher
wind speeds than the TURF-T1 experiment, which aligns the
mean wind speed measured by the sonic anemometers (Ta-
ble 1). The mean of the A-TIV speed distributions of TURF-

T2 is 2.2 times higher than the TURF-T1 mean, which is a
similar ratio to the average of the sonic anemometer mean
wind speeds from both experiments (Table 4).

Figure 11 shows the relationship between A-TIV speeds
compared to sonic anemometer wind speeds and TC wind
speeds. The results are comparable with previously published
relationships by Inagaki et al. (2013) over artificial surface
types. Notable is that in the TURF-T2 experiment there is
no significant relationship between the aerial average A-TIV
speed and the wind speeds from the sonic anemometers.
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Figure 7. TIV from four different temporal running filter sizes – extraction of TIV vectors from the four perturbation temporal running filter
sizes 30–5 s. It is evident that with decreasing temporal running filter size more vectors are calculated.

Table 3. Comparison of A-TIV with TIV – further qualitative information is also available in Appendix B.

A-TIV TIV-30s TIV-20s TIV-10s TIV-5s

Vacant grid cells 0.4 % 24.2 % 19.9 % 11.2 % 4.6 %

A-TIV cells gain velocity information from this TIV – 86.3 % 67.1 % 51.4 % 36.4 %

Average A-TIV/TIV speed 0.35 m s−1 0.43 m s−1 0.33 m s−1 0.25 m s−1 0.22 m s−1

(averaged for TURF-T1 over entire area)

RMSE of A-TIV direction compared TIV direction – 14.2◦ 12.7◦ 11.2◦ 14.1◦

(averaged for TURF-T1 over entire area)

Weight of the TIV – 6 fold 4 fold 2 fold 1 fold

3.2.4 Evaluation of A-TIV for higher roughness
elements (wheat stubble)

The wheat stubble A-TIV was carried out to test the lim-
itations of the A-TIV algorithm when a higher canopy (∼
20 cm), which is not affected by wind-induced movements,
is present. The effect of different perturbation temporal run-
ning filter size on the averaged vector field shows that the
assimilation increases the number of higher wind speeds

due to the shortest perturbation window (Fig. 12). However,
through the weighted averaging in the A-TIV calculations
the shortest perturbation window does not have a large im-
pact on the combined final wind speeds (Fig. 12). Due to
a fault in the high-frequency wind velocity measurements
in the wheat stubble experiment, the A-TIV-based advec-
tion velocity measurement can not be compared to high-
frequency in situ measurements and is therefore only of a
qualitative nature. Nevertheless, when comparing the com-
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Figure 8. A-TIV wind speed difference compared to the TIV result of TURF-T1 for an example frame – red indicates that the A-TIV result
exhibits a higher speed than the corresponding TIV result. A positive difference means that all the other TIVs add velocity information to
these pixels according to their weights (respectively meaning no velocity information is gained from this TIV pixel). A negative value means
that velocity information is added from this pixel. A value close to zero means that the TIV of this pixel matches the A-TIV value. All
velocity information gains and losses are changes in respect to the weight, which is defined by the perturbation filter time. A-TIV therefore
gains information from different TIVs and creates an average measurement over various perturbation scales.

Figure 9. TURF-T1 wind speed and temperature perturbations – TURF-T1 comparison of spatial average (15 m× 15 m) brightness temper-
ature (Tb) perturbations (a, blue), with sonic temperature (ST) perturbations (a, orange), and the areal A-TIV wind speed perturbations (b,
grey) with the measured wind speed perturbations from the eddy covariance/sonic anemometers (b, EC – black). Panels (a) and (b) show
the timing of the measured temperature perturbations – see black square. The red rectangles in panels (b) and (c) show the differences in
distribution of perturbations. The area of ∼ 15 m× 15 m for the calculation of the spatial average perturbations was picked slightly upwind
of the sonic anemometer.
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Figure 10. TURF-T1 and TURF-T2 accuracy assessment with TC array – TURF-T1 and TURF-T2 wind speed histogram comparison. Blue
histograms are A-TIV histograms of an area of ∼ 15 m× 15 m, the purple histogram shows the same area over grass, and red histograms are
thermocouple wind speeds. The black arrows mark the cut-off point of the minimal resolvable wind speed of the lag-correlation method from
the thermocouples. The boxplot on the bottom shows the differences in the median value of the displayed histograms. Across all surfaces the
difference of the median is within ±0.4 m s−1.

Table 4. Sonic anemometer mean wind speed compared to the A-TIV mean speed.

Experiment Mean wind speed Mean A-TIV speed Ratio

TURF-T1 2.60 m s−1 0.43 m s−1 6 : 1
TURF-T2 turf 5.86 m s−1 1.03 m s−1 5.7 : 1
TURF-T2 grass 5.71 m s−1 0.91 m s−1 6.2 : 1
Wheat stubble 8.41 m s−1 0.55 m s−1 15.3 : 1

bined histograms from the A-TIV measurement of all experi-
ments, we hypothesize that the canopy height is causing a de-
crease in measured A-TIV-based advection speed due to the
influences of drag introduced by the canopy (Fig. 13). This
is supported by the average wind speed ratios of the three ex-
periments, which would also lead to a higher expected A-TIV
velocity estimation (Table 4).

4 Discussion

A-TIV is a first effort to calculate a spatial atmospheric ve-
locity measurement over natural surface types and make the
algorithm available to a wider community in atmospheric
science and near-target infrared remote sensing. Garai and
Kleissl (2011) pointed out that movements of leaves or the
movement of the canopy itself within the field of view of the
sensor itself can influence the brightness temperature mea-
surement. This can impact near-target infrared measurements
also depending on the canopy height and the wind velocity

(Garai and Kleissl, 2011; Finnigan, 2010). Due to the har-
vested wheat pasture, such effects are not expected for the
wheat stubble experiment. However, the higher canopy of the
wheat stubble has an additional insulation effect by absorb-
ing thermal radiation. This radiation is emitting over longer
periods of time, whereas short turf or grass emits the long-
wave thermal radiation faster. The effect of slower emittance
over wheat stubble interferes with the brightness temperature
perturbations, leading the A-TIV algorithm to estimate a low
velocity distribution while higher mean wind velocity was
measured (Fig. 13 and Table 1). Furthermore, the wheat stub-
ble alters the wind profile above it more significantly com-
pared to the smooth roughness elements of TURF-T1 and
TURF-T2, which also affects the exchange of heat between
the surface and the atmosphere.

Nonetheless, there are additional limitations involved
when collecting brightness temperature from a UAV. To
avoid noise and temperature spikes from external solar heat-
ing of the camera body, the Optris camera provides a reset-
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Figure 11. A-TIV speed relationship with other measurement methods – TURF-T1 and TURF-T2 relationship of wind speeds measured by
the sonic anemometer and the lag correlation of the TC array with the A-TIV speed. It is evident that TURF-T1 shows higher R2 values than
TURF-T2. A weak relationship between the sonic anemometer and the A-TIV speed in TURF-T2 is evident.

Figure 12. Impact of the lowest and highest perturbation running
filter size on the wheat stubble A-TIV result – the blue histogram is
based on the 30 s perturbation window and the red histogram on the
5 s perturbation window. The combined final wind speed histogram
is shown in purple. The perturbation temporal running filter sizes of
10 and 20 s are shown in grey.

ting mechanism every 20 s for 1 s. During this period, the
camera does not acquire images which then must be removed
from the time sequence and possibly cause the timing delay
of the calculated A-TIV velocity perturbations (Fig. 9). Fur-
thermore, due to flight height restrictions of the UAV, a wide-
angle lens was used to cover a larger area. This implies a
distortion of the camera lens which has not been removed be-
cause the stabilization and the A-TIV algorithm involve crop-
ping the edges of the images. An assessment of the pixel dis-

Figure 13. A-TIV comparison of all experiments – probability den-
sity functions for the ∼ 15 m× 15 m average aerial wind speed
from all experiments. It is evident that the wheat stubble experi-
ment shows the lowest average wind speed histogram distribution
whereas the mean wind speed was the highest during the experi-
ment. The dashed line shows the expected probability density based
on the ratio 6 : 1 calculated in Table 3. The decrease demonstrates
the effect of the canopy.

tortion showed that for the TURF-T1 experiment the maxi-
mal deviation from the calculated pixel size was 0.05 m. This
error is within the error range of the TC array calculated wind
speeds, which can be affected by the possible misplacement
of the sensors on the ground. For TURF-T2 the distortion
was further minimized by a lower flight height of the UAV,
and hence a smaller field of view was covered (Table 1).

Atmos. Meas. Tech., 15, 5681–5700, 2022 https://doi.org/10.5194/amt-15-5681-2022



B. Schumacher et al.: Adaptive thermal image velocimetry 5695

The final 2D velocity vector from A-TIV represents the
interaction of atmospheric coherent structures with the sur-
face. Structures can have a higher or lower velocity than sug-
gested by the mean wind if the advection is not purely hor-
izontal. Hence, A-TIV is not necessarily a direct measure-
ment of the mean wind of the coherent structure causing the
A-TIV velocity estimation. Furthermore, the estimations de-
pend on the scale of the interaction in time and space. Larger
structures than the defined correlation window size as well as
small structures smaller than half of the correlation window
size might not be resolved by the A-TIV algorithm.

An advantage of the A-TIV algorithm is that it provides
a spatial measurement of wind velocities at the resolution of
the camera sensor array. This is an advantage over traditional
point-based measured velocities, which are limited to a spa-
tial footprint dictated by the height of the sensor on a tower
and the mean wind speed. The spatial near-surface velocity
measurements through A-TIV can give valuable insight into
the instantaneous turbulent eddy sizes, and future work can
focus on evaluating the resolved turbulence spectra and com-
paring to spatial eddy covariance measurement campaigns.
This is specifically advantageous when combining the two
measurement approaches to further analyse the point mea-
surements which depend on Taylor’s hypothesis and are po-
tentially prone to underestimating the turbulent spectrum in
the inertial subrange (Taylor, 1938; Engelmann and Bern-
hofer, 2016; Cheng et al., 2017)

Furthermore, the A-TIV measurement may not reflect
the same atmospheric turbulence compared to the sonic
anemometer mounted at 1.5 m height. Previously Inagaki et
al. (2013) applied a correction factor to the TIV measure-
ments to compare them to sonic anemometers. This correc-
tion factor was not applied in this study because the measure-
ment footprint of the sonic anemometer was larger, and the
R2 values, specifically in TURF-T1, show similar correlation
as determined by Inagaki et al. (2013).

The thermal interactions of structures with shorter
timescales create a reduced amplitude in thermal perturba-
tions measured by a sonic anemometer or measured by ther-
mal imagery. Without a time–frequency decomposition on
the signal, the sonic anemometer registers these as one time
series integrating these scales and represented by a measured
temperature or wind velocity. The TIV does not directly re-
flect this frequency composition and may reflect only certain
frequencies due to the decomposition done in the calculation
of the perturbation and the Hilbert–Huang transform. Higher
frequencies and sensor noise are neglected in this way. To
mitigate this indirect focus and limitation to certain frequen-
cies, we introduced the A-TIV composition of multiple per-
turbation windows, which then allows us to reflect the reality
better, which is a composition of superimposed multiple fre-
quencies. In our case we decided to use 30, 20, 10, and 5 s
because our thermal sensor’s noise was only starting to inter-
fere with the 5 s perturbation window. Therefore, we decided
to use a weighted averaging system because it is expected

that the noise level rises with the decrease in the temporal
perturbation filter size. This is the case for any sensor used
and is not limited to the thermal camera.

For any lower-quality camera systems that include more
noise in the first detected frequency by the HHT, the second
highest frequency may be picked. This may also be success-
fully used; however the A-TIV output may display more va-
cant grid cells.

A-TIV and TIV have only been tested in dry, warm en-
vironmental (approximately 20 ◦C) conditions with low la-
tent heat flux present. Moisture, high roughness elements,
and shading directly lower the fluctuations in the brightness
temperature measurement caused by atmosphere–surface in-
teractions. Further assessment is needed to test the range of
environmental condition A-TIV can be applied to such as
below-0 ◦C conditions. It is expected that this is mainly de-
pendent on the amount of latent heat flux, the surface type,
the canopy height, and the accuracy of the camera.

When comparing A-TIV measurements to eddy covari-
ance measurements in TURF-T1 (Fig. 9), there is an indi-
cation for a coupling between the surface and the air tem-
perature. But neither the wind speed perturbations nor the
temperature perturbations show similar distributions. How-
ever, both measurements show similar magnitudes of per-
turbations. This emphasizes that the A-TIV captures cool-
ing and heating patterns when the atmosphere is interacting
with the surface. However, the histograms show that the dis-
tributions are not comparable, which is expected comparing a
point measurement to a spatial approach. This means that the
A-TIV reflects a spatial measurement whereas the other mea-
surement methods are based on single-point measurements
which depend on their mounting height and their footprint.
The direct spatial measurement of A-TIV reflects the atmo-
spheric situation directly adjacent to the surface and hence,
when compared to point measurements further away from the
surface, may not reflect the same conditions. The patch size
of 15 m× 15 m to compare A-TIV to the eddy covariance
measurements was chosen based on the size and the calcu-
lated footprint of the available upwind area (25 m× 20 m) of
the sonic anemometers in the TURF experiments (see Ap-
pendix A on footprint calculation). To avoid corner effects,
i.e. from obstacles, and to reflect the core of the calculated
footprint, we decreased the size of the averaging area to
15 m× 15 m.

The assumption from Stull (1988) that meteorologists ob-
serve atmospheric conditions over longer periods of time
(more than several hours) rather than creating short obser-
vations over a large region of interest does not reflect the
strategy of A-TIV applications. According to Stull (1988) the
long-term point measurements can be translated to their cor-
responding spatial measurements as a function of time. A-
TIV is a new approach in the sense that the measurement
type is directly spatial, and hence short-term observations
can immediately reflect the spatial component of turbulence.
Moreover, the new type of data that are retrieved need new
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spatiotemporal statistics and new analysis methods such as
A-TIV for new insights into spatial turbulence.

Essentially the underestimation of A-TIV velocity mea-
surements is a result of the difference in the measurement
process between the TC lag correlation and the A-TIV. A-
TIV will resolve only wind velocities when the coherent
structures exhibit a temperature difference to the surface tem-
perature. Therefore, A-TIV is fully based on the difference
of spatial change in brightness temperature, whereas the lag-
correlated TC wind speeds estimate motion based on air tem-
perature changes measured in points and are not bound to the
thermal properties of the surface. This means that the A-TIV
algorithm will resolve surface–atmosphere interactions and
motions of a certain scale very well. However very small-
scale processes within the size of half of the correlation win-
dow size will not be resolved by the algorithm.

Specifically small spatial interactions with low velocities
may not be reflected in the TIV estimations with a higher
temporal running filter size (30 and 20 s in this paper). There-
fore, the A-TIV includes velocities from lower temporal run-
ning filter sizes (10 and 5 s in this paper) and ensures that
fewer vacant grid cells are present compared to any TIV. The
display of very small velocities (< 0.5 m s−1) is also not ideal
due to the a high range of extracted velocities from the mul-
tiple TIVs neglecting the display of small velocities (Fig. 7).

It is evident that A-TIV speeds are related to the wind ve-
locity measured by other measurement techniques (Fig. 9).
However, when the wind speed increases, the relationship
between the sonic anemometers and the A-TIV speeds is not
as strong. This is likely due to the elongation of the ther-
mal structures, which has been described before (Garai et al.,
2013). Streaky surface structures are measured differently
with the thermal camera compared to the sonic anemometer,
which was mounted at 1.5 m height. More detailed investi-
gations are needed to quantify the measurement differences
and possibly the adjustments to the A-TIV algorithm to bet-
ter resolve the surface layer turbulence.

5 Conclusions

The results from this research present an enhancement of
the TIV algorithm: the adaptive thermal image velocimetry
which enables it to derive spatial wind velocity measure-
ments from thermal images at moderately high frequency
(2 Hz) over artificial and non-artificial surfaces.

The key findings of this study are as follows.

1. High-frequency (>1 Hz) brightness temperature mea-
surements over dry thermally responsive surfaces reflect
similar atmospheric influences as near-surface (approx-
imately 1.5 cm) temperature measurements (Fig. 5).

2. Brightness temperature measured with a UAV, when
software image stabilization is applied, can be used to

retrieve instantaneous spatial wind fields using A-TIV
over artificial and non-artificial surface types (Fig. 10).

3. The TURF-T experiments showed that A-TIV can cor-
rectly resolve air temperature perturbation and wind
speed perturbations and retrieve spatial velocity fields
very close to the ground (approximately 1.5 cm) when
compared to in situ lag-correlated thermocouple mea-
surements (Figs. 9 and 10).

4. The wheat stubble experiment showed the impact of the
canopy height on the A-TIV wind speed distribution.
Further investigation is needed to evaluate the impact of
the canopy height on the algorithm settings (Fig. 13).

The key limitations for a successful retrieval of higher-
frequency A-TIV velocities are the camera’s noise levels
and the spatial field of view of the camera. This means that
small infrared cameras carried from UAVs deliver high ac-
quisition rates (Optris Pi 450: 80 Hz). However due to the
camera noise present at this frequency, they need average
sub-sampling to lower frequencies to enable analysis on the
brightness temperature imagery. This is in direct connection
with the camera’s distance to the target surface where the ac-
quired temperature differences become less due to the physi-
cal property of infrared light carrying less energy than visible
light. This creates a feedback with the electrical noise of the
camera. Therefore, depending on the acquisition situation,
we suggest a careful assessment of all environmental param-
eters to retrieve optimal results. In similar conditions as pre-
sented in this study, a sub-sampling averaging to < 3 Hz is
recommended.

The potential of thermal cameras in remote sensing of
micro-meteorology is large, and the A-TIV algorithm can
be seen as a new opportunity for advanced analysis methods
of spatial velocity field measurements. Further investigation
will be needed to optimize the algorithm’s performance and
usability, especially over new surface types, to make it avail-
able for a larger community of remote sensing specialists and
atmospheric scientists.

Appendix A: Footprint calculation

The footprints used for comparison of the sonic anemometer
measurements with the A-TIV algorithm were calculated us-
ing the Urban Multi-scale Environmental Predictor (UMEP)
(Lindberg et al., 2018) with input data from Land Infor-
mation New Zealand and the measured variables. The foot-
print model used in the calculation was set to Kormann and
Meixner (2001). For TURF-T1 and TURF-T2 the averaging
area (15m× 15m) was picked within the field of view of
the infrared camera and covered ∼ 60 % of the cumulative
source area (see Fig. A1 for an example from TURF-T1).
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Figure A1. Footprint calculated from the TURF-T1 experiment – background Image: © OpenStreetMap contributors 2022. Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

Appendix B: A-TIV – TIV wind speed and wind
direction comparison

The qualitative comparison of A-TIV wind speed and wind
direction with TIV wind speed and wind direction is shown
in Figs. B1 and B2. While the TIV wind speed depends
mainly on the perturbation filter sizes, the A-TIV reflects the
weighted mean of all calculated TIVs and removes outliers
that may depend on camera noise or short temporal thermal
disturbances within the measured thermal perturbation. On
the other hand the measured wind direction signal of A-TIV
compared to TIV is very similar. This shows that both meth-
ods reflect directions of moving thermal patterns correctly.

Figure B1. Qualitative comparison of A-TIV wind speeds to TIV wind speeds of TURF-T1. The speeds are averaged over the entire area
of the turf field. TIV speeds from the perturbation filters 10 and 20 s would be located between the 5 and the 30 s wind speeds and are not
shown in this plot.
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Figure B2. Qualitative comparison of A-TIV wind directions to TIV wind speeds of TURF-T1. The directions are averaged over the entire
area of the turf field. TIV directions and A-TIV directions are very similar; hence this plot shows only the 30 s TIV directions and the A-TIV
directions. For a quantitative comparison please refer to Table 3.
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