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Abstract. HOLODEC, an airborne cloud particle imager,
captures holographic images of a fixed volume of cloud to
characterize the types and sizes of cloud particles, such as
water droplets and ice crystals. Cloud particle properties in-
clude position, diameter, and shape. In this work we eval-
uate the potential for processing HOLODEC data by lever-
aging a combination of GPU hardware and machine learn-
ing with the eventual goal of improving HOLODEC pro-
cessing speed and performance. We present a hologram pro-
cessing algorithm, HolodecML, which utilizes a neural net-
work segmentation model and computational parallelization
to achieve these goals. HolodecML is trained using synthet-
ically generated holograms based on a model of the instru-
ment, and it predicts masks around particles found within re-
constructed images. From these masks, the position and size
of the detected particles can be characterized in three dimen-
sions. In order to successfully process real holograms, we
find we must apply a series of image corrupting transforma-
tions and noise to the synthetic images used in training.

In this evaluation, HolodecML had comparable position
and size estimations performance to the standard processing
method, but it improved particle detection by nearly 20 %
on several thousand manually labeled HOLODEC images.
However, the particle detection improvement only occurred
when image corruption was performed on the simulated im-
ages during training, thereby mimicking non-ideal conditions
in the actual probe. The trained model also learned to differ-
entiate artifacts and other impurities in the HOLODEC im-
ages from the particles, even though no such objects were
present in the training data set. By contrast, the standard
processing method struggled to separate particles from ar-
tifacts. HolodecML also leverages GPUs and parallel com-

puting that enables large processing speed gains over serial
and CPU-only based evaluation. Our results demonstrate that
the machine-learning based framework may be a possible
path to both improving and accelerating hologram process-
ing. The novelty of the training approach, which leveraged
noise as a means for parameterizing non-ideal aspects of
the HOLODEC detector, could be applied in other domains
where the theoretical model is incapable of fully describ-
ing the real-world operation of the instrument and accurate
truth data required for supervised learning cannot be obtained
from real-world observations.

1 Introduction

HOLODEC is a second-generation instrument designed for
cloud particle characterization and sizing (Fugal et al., 2004;
Spuler and Fugal, 2011). The instrument captures in-line
holograms of cloud particles by transmitting a laser pulse
between probe arms and imaging the interference of the in-
cident laser field and that scattered by the cloud particles
onto a CCD with effective pixel dimensions of 3 µm. Unlike
conventional images, holograms capture phase information
about the optical field and can therefore be computationally
refocused to image each particle. Thus the HOLODEC in-
strument is able to capture a relatively large instantaneous
sample volume (15 cm3) while reconstructing an image of
each particle at a transverse optical resolution of 6.5 µm. The
particles’ positions, sizes, and shapes can then be obtained
from these refocused images to investigate microscale cloud
processes (e.g., Glienke et al., 2020; Desai et al., 2021).
Unlike other cloud probe techniques, holographic imaging
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does not rely on scattering models (such as forward scatter-
ing probes) or detailed knowledge and modeling of instru-
ment characteristics to generate accurate measurements (as
required in optical array probes). In addition, the HOLODEC
instantaneous sample volume is large enough to provide a
point-like capture of liquid cloud properties. In those cases,
observations do not need to be accumulated over long path
lengths through a cloud, where the structure may vary con-
siderably.

While HOLODEC is capable of capturing significant in-
formation content on the characteristics of cloud particles,
processing the captured holograms remains a significant
challenge. Current cloud particle hologram processing meth-
ods, e.g., as in Fugal et al. (2009), reconstruct a large number
of planes along the optical path, then search for focused par-
ticles in the scene. This process is computationally expensive
when applied to a large number of holograms and often in-
volves significant human intervention for identifying valid
particles.

This work aims to evaluate the potential for machine learn-
ing to improve holographic cloud particle image processing
by creating a modular processing model that can be trained
without human intervention and deployed in large quanti-
ties for parallel computing on a cluster or cloud computing
platform. While there have been prior works devoted to ma-
chine learning solutions for holographic image processing of
particles in a distributed volume, they tend to focus on in-
stances where the depth dimension is relatively small com-
pared with the particle sizes such that the particle diffrac-
tion patterns are relatively localized. For example, Shimob-
aba et al. (2019) retrieves particles of size 20–100 µm over a
depth of 1–3 cm, Zhang et al. (2022) reports applying an ob-
ject detector to particles with 2–4 cm depth, and Shao et al.
(2020) performs position estimation of 2 µm particles over a
depth of 1 mm. By contrast, the HOLODEC sample volume
extends over a 15 cm depth, so particle diffraction patterns
are poorly localized on the CCD. The consequence of this
is that we found no way to practically extend the processing
depth of field to cover the entire sample volume depth within
an exclusively machine learning framework. In addition, the
large raw holograms cannot be immediately segmented into
smaller sections (as done in Shao et al., 2020 and Shimobaba
et al., 2019) that are more easily ingested by a neural network
model. We also found that non-ideal behavior of the actual
instrument (partly attributable to the considerable range of
environmental conditions in which the instrument must oper-
ate on the aircraft) is a key factor in developing an effective
solution to processing the holograms, but this subject of non-
ideal instrument behavior receives little to no attention from
prior work.

In order to address the needs for processing HOLODEC
data, we investigated several architectures before develop-
ing a hybrid approach that leverages standard holographic
processing techniques, improved hardware utilization, and
machine learning to identify particles. However, develop-

ing a technique for training the machine learning algorithm
for improved performance over the existing software added
further challenges. While it would be theoretically possible
to perform supervised learning that attempts to achieve the
same performance as the current software, this approach was
deemed unacceptable by the team because its performance
would be limited to that already obtained, and it would inher-
ently learn the same (at the time unknown) existing biases.
Instead, we developed an approach using simulated data,
where absolute truth may be known. While holograms can
be simulated with significant accuracy using standard Fourier
optics methods, the challenge in training a machine learn-
ing solution that can be applied to true data lies in capturing
the non-ideal behavior of the instrument, where effects such
as vignetting, laser mode structure, detector noise, as well
as non-uniform response and other unaccounted for physical
processes can result in non-deterministic noise, structure, and
transformations in the captured image. In this work, we ad-
dress this by corrupting the simulations with a series of trans-
formations and adding random noise. However, the process
of properly tuning these transformations and noise sources
required a second optimization process. We used a series
of manually labeled images to perform hyperparameter op-
timization on the tuning parameters, including the noise and
transformations. The manually labeled data are simplified to
only require a binary “yes” or “no” to designate if there is
an in-focus particle centered in the identified image. In this
way, this effort has yet to entirely move beyond manual la-
bels, though the requirements are greatly simplified from us-
ing manual labels for training data.

In the field of computer vision, there are many available ar-
chitectures for detecting and labeling objects of interest that
may be present in holograms. Of particular interest are the se-
mantic segmentation and object detection architectures. Se-
mantic segmentation involves an input image and output im-
age, where the model is tasked with selecting a category label
for each pixel from the input image from a fixed set of labels.
Different examples of segmentation models include those de-
signed with convolutional neural network (CNN) layers and
skip connections, such as U-networks (U-net) (Ronneberger
et al., 2015; Zhou et al., 2018) and other encoder–decoder
architectures (Chen et al., 2018), models which incorporate
attention layers (Li et al., 2018; Fan et al., 2020), as well as
those which utilize pyramid schemes for learning the global
image-level features (Zhao et al., 2017; L.-C. Chen et al.,
2017; Li et al., 2018). Segmentation approaches based on
CNNs are also increasingly being applied in other areas of
climate and weather forecasting (Agrawal et al., 2019; Sha
et al., 2020; Ravuri et al., 2021) and for processing satel-
lite imagery (Yuan et al., 2017; Xiao et al., 2019; Xie et al.,
2020).

Object detection models predict bounding boxes around a
fixed number of objects that may be present in the input im-
age. The model also assigns each box a label chosen from a
fixed set. Architectures, such as the “fast” region-based con-

Atmos. Meas. Tech., 15, 5793–5819, 2022 https://doi.org/10.5194/amt-15-5793-2022



J. S. Schreck et al.: Neural network processing of holographic images 5795

volutional neural network (Ren et al., 2015), come equipped
with a region proposal network (RPN) that first draws many
boxes around potential regions of interest in the image, and
then only the most confident boxes are selected, labeled,
and returned by the model. RPNs and other approaches, in-
cluding You Only Look Once (YOLO), require only one or
two passes of data through the model to generate predic-
tions compared with earlier sliding-window object detectors
that require multiple passes and aggregation (Redmon et al.,
2016). There are also architectures that both label bounding
boxes and fill in segmentation masks around objects of inter-
est (He et al., 2017).

The number of available architectures continues to grow
for both approaches. As such, there are many potential ways
to process holograms using neural networks. For example,
Zhang et al. (2022) utilized an object detector model for pre-
dicting the 3D coordinates of relatively localized particles,
while Shao et al. (2020) showed that a U-net can accom-
plish the same objective with similar performance. Other ef-
forts have focused on performing classification tasks with
holograms, where decision-tree approaches (Grazioli et al.,
2014; Bernauer et al., 2016) and convolutional neural net-
works have been investigated (Zhang et al., 2018; Xiao et al.,
2019; Touloupas et al., 2020; Wu et al., 2020). For exam-
ple, Touloupas et al. (2020) used a vanilla CNN model for
classifying objects detected in the holograms as either arti-
fact, water droplet, or ice particle. Wu et al. (2020) similarly
explored using CNNs for classifying ice crystals in the holo-
grams into different categories.

As we aimed to build a machine learning framework with
improved speed and accuracy, we chose to focus on using the
wide range of segmentation architectures available with the
segmentation-models-pytorch software package. The seg-
mentation models were chosen over potential object detec-
tors for several reasons, first that they are usually smaller
in size by comparison, and the recent studies by Shao et al.
(2020) and Zhang et al. (2022) both showed that the model
types can accomplish prediction of (x,y) coordinates and es-
timate the z-coordinate with good performance (although,
as noted, the results in both studies utilized depth-of-field
ranges that rendered the particles much more localized in
comparison with typical images obtained by HOLODEC).
Segmentation models also have a potential advantage for pro-
cessing holograms because a predicted mask shape may rep-
resent the 2D shape of an object when viewed in a plane,
while object detectors predict the coordinates of a rectangu-
lar box and not the object’s shape.

Our approach, named HolodecML, uses a trained segmen-
tation model to obtain estimates of a particle’s (x,y) coordi-
nates and size as represented by the diameter d . The neural
network is evaluated on a series of reconstructed planes at
given values of z, from which an estimate of the particle’s
distance from the detector arms is obtained using a fast post-
processing algorithm. In preliminary investigations we could
not find a one-step object detector or segmentation model

design that could predict both the position and size of the
particles using the raw HOLODEC images. HolodecML was
designed to strike a balance between adding computational
complexity relative to a one-stage approach, to obtain a pre-
dicted (x,y,z,d) for the particles in raw HOLODEC images.
The added computation complexity from the wave propaga-
tion calculations is managed through parallel and GPU com-
putation, and by finding models with optimal performance
through extensive hyperparameter optimization.

Additionally, it was decided that there would be signifi-
cant benefit in developing HolodecML independently of the
current state-of-the-art processing software, referred to here
as the “standard method” (discussed below). The motivation
for this is twofold: first, by creating an independent process-
ing approach, HolodecML can help identify possible biases
and sources of error in the current processing package; and
second, this obviated the need to create a solution where the
standard method imposed a ceiling on the processor perfor-
mance.

The investigation is organized as follows: in Sect. 2 we
describe the preparation of simulated holograms and the
HOLODEC data sets used. In Sect. 2.4, the steps involved
in the processing of megapixel-sized holograms is described
in detail. Section 2.5 describes how models were trained
and optimized using the data sets, as well as manual la-
beling exercises performed by the authors on a subset of
the HOLODEC holograms. In Sect. 3 the performance of
trained models is characterized on the simulated and real
HOLODEC holograms, as well as compared with the perfor-
mance of existing software. Section 4 discusses the strengths
and weaknesses of both the machine learning and direct ap-
proaches for processing holograms, and potential future ap-
proaches for improving the approach. Finally, in Sect. 5 we
conclude our investigation.

2 Methods

2.1 Holographic imaging

Holograms are distinct from conventional imaging because
the captured image retains phase information from the elec-
tric field scattered by the object. As a result, the image can be
computationally refocused along the direction of propagation
in the imaging system (referred to as the z axis in this work).
The holographic image is proportional to the optical intensity
incident on the detector which is described by the magnitude
squared of the scattered and reference electric fields (Good-
man, 2005),

I (x,y)=|ER(x,y,zc)+ES(x,y,zc)|
2 (1)

=|ER(x,y,zc)|
2
+ |ES(x,y,zc)|

2

+E∗S(x,y,zc)ER(x,y,zc)

+ES(x,y,zc)E
∗
R(x,y,zc), (2)
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where I (x,y) is the intensity captured by the camera,
ER(x,y,zc) is the electric field of a known reference wave
at the camera plane zc, ES(x,y,zc) is the scattered field at
the camera plane and ∗ denotes complex conjugate. The first
term, |ER(x,y,zc)|

2 is the effective intensity of the incident
laser or reference field. Because the laser is collimated, it
is relatively unaffected by hologram reconstruction. In most
cases, the square of the scattered field, |ES(x,y,zc)|

2 is small
and can be neglected. The third termE∗S(x,y,zc)ER(x,y,zc)

captures the conjugate field of the scattered particle. Finally,
the last term ES(x,y,zc)E

∗
R(x,y,zc) captures the particle’s

scattered field modulated by the reference wave. The refo-
cused particle image can be recovered from this last term by
multiplying by the phase exponent of the reference wave.

In the case of the HOLODEC instrument, the reference
wave is approximated as a plane wave, so that no corrections
to the phase are applied. Also, because the HOLODEC in-
strument captures an inline hologram, the conjugate and true
images overlap; however, in reconstructing the real image,
the conjugate image becomes heavily defocused and its en-
ergy tends to be spread out over the image plane.

Thus, in order to refocus a HOLODEC hologram at some
plane z, we perform standard wave propagation on the holo-
gram itself after normalizing the background. The refocused
image at position z is described by

I (x,y,z)= P (hc(x,y),z− zc) , (3)

where P(E(x,y),z) is an operator that propagates an elec-
tric field E(x,y) a distance z and hc(x,y) is the intensity
normalized image,

hc(x,y)=
I (x,y)

〈I (x,y)〉
, (4)

where 〈I (x,y)〉 is the ensemble average over the previous
and subsequent eight holograms and used to normalize out
persistent intensity artifacts. The propagation operation is
performed using a Fourier transform such that (Goodman,
2005)

P (E(x,y),z)=

F−1
{

exp
(
j

2πz
λ

√
1− λ2ρ2

)
F[E(x,y)]

}
, (5)

where λ is the wavelength of the laser and ρ is the radial
spatial frequency coordinate, F is the Fourier transform op-
erator, and F−1 is the inverse Fourier transform operator.
For numerical implementation, the Fourier transforms are ap-
proximated using fast Fourier transforms and both the spatial
and frequency coordinates are discrete.

By refocusing a holographic image containing hundreds or
even thousands of cloud particles, the in-focus image of each
particle can be obtained. Based on the particle position, and
which z its in-focus image corresponds to, the particle posi-
tion can be obtained, and by processing the in-focus image,
its size can also be obtained.

2.2 HOLODEC and simulated holograms

HOLODEC operates at a wavelength of 355 nm. The CCD
captures the holograms in the transverse plane (e.g., the xy
plane) at a resolution of 2.96 µm per pixel in each direction.
The total number of pixels in the in the x and y directions
were 4872 and 3248 so that each hologram captures 14.42 by
9.61 mm, respectively. The images contain a single bright-
ness value for each of the pixels that may range from 0 to
255.

Figure 1a shows a typical hologram obtained from
HOLODEC. The inset highlights an out-of-focus particle,
which is positioned at its center, and shows faint rings around
the particle. Close inspection of the hologram reveals other
particles, as well as interference patterns. Overall the holo-
gram appears visually faint, with the individual pixels typi-
cally varying by a small amount relative to the background.

A set of several hundred holograms were selected from
the Cloud Systems Evolution in the Trades (CSET) project
from 1 June to 15 August 2015 (Albrecht et al., 2019), in
particular the RF07 subset. RF07 refers to “Research Flight
#7”, which occurred on 19 July 2015 over the Pacific Ocean
between Kona (Hawaii) and Sacramento (California). The
selected hologram examples contained varying numbers of
spherically shaped liquid particles ranging in count from zero
up to several hundred, and were largely free of ice crys-
tals. The software that was originally used to process the
RF07 data set, referred to here as “the standard method”, fol-
lowed the procedures described in Fugal et al. (2009) and
utilized custom classification rules that were comparable to
the default rules used to process other data sets in the archive
(Glienke et al., 2017). The standard method was used to pro-
cess the RF07 data set with a resolution along z of 144 µm
and searched for particles that were positioned between 20
and 158 mm from the detector arms, respectively, producing
a list of predicted particle positions (x,y,z) and diameter d
for each hologram (Shaw, 2021). Two sets of 10 holograms
were selected from RF07 to help guide the training and val-
idation of neural network hologram processors and to com-
pare the standard method against a neural network.

A set of simulated “synthetic” holograms were gener-
ated using the physical model of the instrument including
the same optical settings as the holograms obtained from
HOLODEC, as in Fugal et al. (2009). The synthetic holo-
grams produced had the same size as examples in the RF07
data set. The image in Fig. 1b shows a typical synthetic holo-
gram. The inset similarly shows an out-of-focus particle po-
sitioned at its center, where the rings surrounding the particle
are a lot easier to resolve in comparison with the HOLODEC
example shown in Fig. 1a. As previously noted, the major
benefit to using synthetic holograms for training is that par-
ticle positions and size are known and therefore the machine
learning solution will not inherit errors or biases from stan-
dard processing of actual data. However, the challenge in us-
ing synthetic data is that simulations generally fail to fully
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Figure 1. (a) An example hologram obtained from HOLODEC. (b) A synthetic hologram obtained from a simulation. The inset box in each
map illustrates an out-of-focus particle. The pixel values ranged from 0 to 255 in each image.

capture non-ideal aspects of instrument operation, which can
impact the effectiveness of the machine learning solution
when it is deployed to actual data.

In total, 120 holograms were simulated that each contained
500 particles positioned at random values along x, y, and z,
while the diameters were sampled using a gamma distribu-
tion to produce realistic particle size distributions. Along the
z direction, the particles were positioned between minimum
and maximum values of 14.072 and 158.928 mm, respec-
tively. The geometric center and the diameter of each particle
were saved along with the holographic image. The simulated
set was then randomly split into training (100 holograms),
validation (10 holograms), and testing (10 holograms) sub-
sets containing in 50 000, 5000, and 5000 particles, respec-
tively. The latter two subsets were used as holdout sets to test
trained models as is described below.

2.3 Wave propagation on synthetic and HOLODEC
holograms

The two particles illustrated in Fig. 1 are brought into fo-
cus by propagating the hologram image to some other value
of z. Figure 2 shows the two examples at values of z where
each has been brought into focus. Clearly, when a particle
is in focus a dark, nearly uniformly shaded circle appears
from which the diameter d , of the particle and its position,
(x,y,z), can be estimated accurately. The two examples in
Fig. 2a and b show a relatively small and large particle, re-
spectively. When they are each out of focus, the rings that
surround the particle center appear more similar in size. Re-
constructed images at z values just before a particle comes
into focus, and just after it goes out of focus, frequently show
a small bright spot (called a Poisson spot) appearing in the
center of a dark circle that grows in size as the image is re-
constructed farther away from the particle’s center.

2.4 Processing holograms with a neural network to
obtain particle positions and sizes

The processing of HOLODEC holograms consists of three
main components and the overall workflow is illustrated in
Fig. 3. First the raw holograms are reconstructed at a set of
planes along the z axis (optic axis) using standard propaga-
tion methods while leveraging GPU acceleration (Fig. 3c (i–
ii)). Second, each reconstructed plane is broken into smaller
images and fed into a neural network which produces a seg-
mentation mask identifying pixels that are part of an in-focus
particle (Fig. 3c (iii–v)). Finally, the smaller segmentation
masks are merged (Fig. 3c (vi)) and a particle “matching”
algorithm is used to identify the size and position of all de-
tected particles in the hologram (Fig. 3c (vii)).

In order to develop a processor independent of the stan-
dard method, we had to develop a training approach, illus-
trated in Fig. 3b, that avoided excessive manual labeling
(i.e., it is unrealistic to conduct manual labeling of parti-
cle position and size over large data sets, and the accuracy
of such approaches would likely be suspect). We used syn-
thetic holograms, where the true segmentation masks could
be accurately and objectively defined, to train the neural net-
work. However, in order for the model to also work on real
HOLODEC data, we also had to corrupt the synthetic holo-
grams in a way that was reflective of real holograms (Fig. 3b
(vi)). The process of tuning the corruption of the synthetic
inputs was optimized during hyperparameter optimization,
which was conducted on true HOLODEC data using manu-
ally labeled image patches. Those patches were given binary
labels indicating if there appeared to be an in-focus particle
centered in the image (Fig. 3b (v)). The agreement between
the processor and the manual labels was then the metric by
which we established the best hyperparameters (Fig. 3b (v,
viiii–x)), while another second holdout set of manual labels
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Figure 2. In (a) and (b) the image on the left highlights the particle from Fig. 1 for the HOLODEC and synthetic examples, respectively. The
panels in the center column show the same viewpoint of the particles on the left, except that each full-size image from Fig. 1 has been wave
propagated to a value of z where the particle is in focus in each example. The pixel color ranges in hologram images in (a) and (b) are the
same as in Fig. 1a and b, respectively. In the right column the panels illustrate a “mask” with diameter equal to the particle’s diameter for the
HOLODEC and synthetic image in (a) and (b), respectively. All examples show a dimension of 512 by 512 pixels with pixel values ranging
between 0 and 255.

was used to objectively evaluate the neural network and the
standard method’s performance.

2.4.1 Neural network model for particle segmentation

The primary requirements for a neural network hologram
processor are that it can identify a variable number of par-
ticles in the hologram and localize them so that their posi-
tions and diameters can be estimated. Figure 3a illustrates a
neural model that can satisfy these requirements. The model
takes a holographic image as input of a given size and out-
puts an image the same size as the input. The output image
represents the predicted probability that a pixel is contained
within the boundary of an in-focus particle (right column in
Fig. 2). The pixel values greater than some number, typically
0.5, are labeled 1, and otherwise are labeled 0; thus, a mask
represents a group of pixels labeled 1 that fills in the area of
an in-focus particle. There may be more than one mask pre-
dicted if more than one particle is in focus in the input image.
From such a predicted mask, a particle’s position in the plane
and diameter can be estimated.

Some of the architectures available for predicting segmen-
tation masks contain an encoder–decoder structure, as is il-
lustrated in Fig. 3a (labeled E and D, respectively). For ex-
ample, the encoder input “head” in the widely used U-net ar-

chitecture (Ronneberger et al., 2015; Shelhamer et al., 2017)
successively down samples an input image, eventually into
a latent vector of fixed size, that is then successively up-
sampled back into the original image size via the decoder
output head. The layers of an encoder head may also be de-
signed to utilize layers from other pre-trained, convolutional-
based image encoders, such as variants of residual neural net-
works (ResNet) (He et al., 2016b) trained on the ImageNet
data set, that may help speed up training and boost prediction
accuracy (e.g., transfer learning). The type of segmentation
model, the encoder, and whether to use available pre-trained
encoder model weights were left as hyperparameters to be
optimized, as is discussed in Sect. 2.5.

2.4.2 Grid for sub-setting megapixel-sized holograms

The full hologram sizes, when used during training and eval-
uation of neural models, present difficult computation, mem-
ory, and storage challenges. For example, the input size of
full-size holograms is far too large to perform efficient train-
ing and inference with any neural segmentation model and a
single GPU or CPU-only resources. A solution to this prob-
lem is to divide the hologram into a grid ofNx byNy square-
shaped tiles. The grid can be aligned closely with the holo-
gram dimensions if each grid tile is taken to overlap with
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Figure 3. (a) Two input examples to a neural segmentation model are shown. The segmentation model is illustrated as having encoder–
decoder architecture, such as a U-net. (i) The image does not contain an in-focus particle as no mask was predicted. In (ii) the model predicted
a mask around an in-focus particle. Illustrations of (b) the training and hyperparameter optimization workflow and (c) the testing/operational
workflow for processing holograms.

other nearby tiles in both the x and y directions by a fixed
number of pixels. The tiling procedure is illustrated schemat-
ically in Fig. 3b–c (iii). The size of the tile and the overlap
amount are referred to as the tile size and step size, respec-
tively. We chose the tile and step sizes to be 512 and 128 pix-
els, respectively; hence, we used a grid of size 38 tiles by 25
tiles and a total of 950 individual tiles per hologram. How-
ever, some of the tiles in either direction overshoot the holo-
gram size with this choice. In these cases, the tile is instead
placed with one side at the boundary to prevent overshooting,
and the total minimum number of needed tiles is then 828.

Each tile in the grid is passed through the neural segmen-
tation model to obtain a predicted segmentation image con-
taining binary labels for the pixel values, e.g., only 0 and
1 s, as illustrated in Fig. 3c (v). The model predictions are

then averaged using the appropriate grid coordinate to obtain
a prediction result of the same size as the full-sized holo-
grams, illustrated in Fig. 3c (vi) by the reassembly step. Note
that not every pixel in the predicted full-sized mask appears
in the same number of tiles due to being proximal to an edge.

2.4.3 Estimating z through wave propagation

Neural segmentation approaches that can predict a mask
around in-focus particles enables estimation the particle’s
center (x,y) and its diameter d. However, the value of z in
the two examples shown in Fig. 2 were known, and the wave
propagation operation was used to obtain the reconstructed
hologram where each particle was in focus. In general, es-
timating the value of coordinates and diameters for an un-
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known number of particles in a hologram requires evaluation
of the model on N reconstructed planes at different values of
z, as is illustrated in Fig. 3c (ii) at the hologram propagation
step. The choice of N thus determines the resolution along
the z coordinate. Note that this is similar to how the standard
method operates along z.

In order to obtain a resolution along z to match that for
x and y set by HOLODEC, N = 48 648. As noted, the stan-
dard method usedN = 1000 to process the HOLODEC holo-
grams which corresponds to approximately 144 µm between
reconstructed planes. Based on the theoretically determined
numerical aperture, the depth of field for the instrument is
57 µm, so we expect limited performance improvement be-
low this threshold. Once a choice of N is made, the wave
propagation calculations involve taking the reference plane
and first propagating it to z0, and then to z1 = z0+ δz, and
so on, where the values of zj are taken to be the value at the
center of the j th bin along the range of z values. In the re-
sults section, we compare the performance of models trained
using different values of N .

Note that the wave propagation calculation performed to
obtain a plane at one z is independent from an identical cal-
culation performed to obtain a plane at another z. Thus, if
resources are available, the steps in Fig. 3c may scale such
that all planes may be processed simultaneously. In such a
scenario, the time it would take to process the entire z range
therefore equals the time it takes to analyze one plane. Fur-
thermore, the 828 grid tiles in a plane that get passed through
a neural model could also be processed simultaneously. We
also improved the performance of the wave propagation cal-
culation shown in Fig. 3b–c (ii) by leveraging the soft-
ware package PyTorch (1.9), which provides GPU support
for complex numbers and Fourier transformations. In Ap-
pendix 3.6 we compare the neural network processing time
versus the standard method.

In order to help accelerate processing time, we
first considered how to speed up the wave propa-
gation operation. An analysis of different FFT pack-
ages presented on github (https://thomasaarholt.github.io/
fftspeedtest/fftspeedtest.html, last access: 11 October 2022)
suggests that the PyTorch FFT implementation is the fastest
of those packages evaluated (numpy, TensorFlow, CuPy,
PyFFTW). We ran a test reconstructing 1000 HOLODEC
planes and found on average that the GPU implementation
took 71 ms per plane while the CPU implementation took
780 ms per plane. Thus, the PyTorch GPU implementation
of the propagation step likely represents an important speed
improvement in processing HOLODEC data. Notably, this
aspect of hologram processing could also be implemented in
the standard method and likely achieve similar results.

2.4.4 Post-processing model predictions in 3D

Figure 3c (vii) illustrates that the final step in the processing
of holograms involves matching the reassembled hologram-

sized predictions using extracted values of (x,y,z,d) for the
particles identified across N planes. The final result of the
matching procedure is a list of M predicted particle coor-
dinates and diameters, which can be further paired with a
list of true coordinates or those obtained from the standard
method. Matching involves (1) grouping pixel slices in N
2D planes that identify the particles and (2) computing the
distance among all the identified particle slices, and putting
those that fell within a specified matching distance threshold
into clusters, which is defined as the maximum distance by
which two particles can be considered members of the same
cluster.

In the first step, the (x,y) coordinates representing the
center of mass of particles and the particle diameters were
identified from the predicted masks. For planes containing at
least one pixel labeled 1, a pixel labeled 1 was taken to be
part of a mask (group) if a neighboring pixel along x or y
(but not along the diagonal in the plane) was also labeled 1.
Breaks between pixels labeled 1 along x and y differentiate
one group of pixels from another. In other words, the number
of identified groups defines the number of predicted parti-
cles in the plane. An isolated pixel labeled 1 was considered
a particle. Note that with this procedure, overlapping masks
for multiple particles are placed into the same group. The
x and y values of identified particles were then computed as
the average of the maximum and minimum extent along each
direction in the group of pixels, while the diameter was esti-
mated as the maximum extent in either direction in the group.
The value of z for all the particles in a plane was taken to be
the value of the bin center.

Next, in the second step of matching, the list of (x,y,z,d)
from particles identified in N planes was then used to com-
pute the absolute distance among all combinations of pairs
(excluding zero distances). Then, using the leader clustering
algorithm, the particles were (potentially) assigned to clus-
ters given a matching distance threshold. The main advan-
tage of this approach compared with performing the pixel-
grouping approach in step 1 is that using the computed par-
ticle distances allows flexibility, by means of the matching
distance threshold, in how particles ultimately get assigned
to clusters. However, with this approach, particles that hap-
pen to be close in space risk being matched together and be-
ing regarded as a single particle, and the z resolution will
generally be lower compared with x and y depending on the
choice of N . Note also that not all particles necessarily get
assigned to a cluster at a given threshold. However, an ex-
treme choice (e.g., too large) can result in all particles being
regarded as a single cluster. The total number of matched
particles M is then the number of clusters plus the number
that have been left unassigned. The (x,y,z,d) values of par-
ticles that did not get assigned to a cluster are used as is. For
each cluster, the “centroid” is defined as the average value
across (x,y,z,d) and which represents the particles in the
cluster. Once all of the cluster centroids and unassigned par-
ticles have had their position and size determined, the final
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list of M particles is saved and the hologram is considered
processed.

As is the case with synthetic holograms, the number of
particles and each particle position and diameter is known
precisely. The predicted number of particles M will not in
general be the same as the true number of particles, and will
depend on the choice of the distance threshold, the number
of reconstructed planes N used to obtain z, and the model’s
trained performance. In order to compare the true particle
coordinates against the model predictions, the predicted par-
ticles are paired with the true particles by first computing
the absolute distance among all of them, excluding distances
equal to zero. Next, the predicted and true particle pair hav-
ing the smallest distance, as computed using (x,y,z,d) for
each, is taken to be a match. Both particles are then removed
from further consideration. This process continues until there
are no more true or predicted particles left to pair. Thus, there
can be holograms for which the number of predicted particles
is short the true number, as well as holograms for which the
model over-predicts the true count and those where they are
equal. The paired particles can be used to compute perfor-
mance metrics such as accuracy and F1 score (defined here
as the harmonic mean between precision and recall), while
the predicted particle numbers allow us to construct a contin-
gency table for the holograms.

2.5 Model training and optimization

2.5.1 Hologram image transformations

The remaining methods sections describe the transforma-
tions performed on the holograms before being used as in-
put to a model, training and optimization of a neural holo-
gram processor as is illustrated in Fig. 3b, and the manual
labeling exercises. First, we discuss several types of transfor-
mations that were performed on images before being passed
into a neural network. Unlike the holograms obtained from
HOLODEC, the synthetic holograms were generated to pro-
vide truth data sets to be used for training neural segmen-
tation models. As such they did not contain any imperfec-
tions, such as background noise. As the HOLODEC exam-
ples were only processed by the standard method, which does
not have perfect performance, it would be difficult to use
the standard method’s predicted particle positions and shapes
as training labels without significant complementary man-
ual efforts or inheriting the accuracy limitations, which are
not fully known. Hence, no truth coordinates (x,y,z,d) for
the true particles in the HOLODEC holograms exist. There-
fore, in order to produce fully accurate training data that was
representative of actual HOLODEC holograms, two types of
transformations were considered for application to synthetic
holograms as a means of producing a trained neural network
that would perform similarly on the synthetic and real holo-
grams: (1) those that map the original input values into an-
other range, such as centering and rescaling the values of the

variables, and (2) those that perform a perturbation of the im-
age as a means for mimicking noise signals that appear in the
HOLODEC holograms.

The first type of transformations probed whether training
on centered synthetic images produced higher performing
models on the HOLODEC holograms, as initial investiga-
tions showed clear performance differences depending on
the transformation used. The transformation types include
(1) “normalizing” the hologram pixel values into the range
[0, 1] by first subtracting the smallest pixel value in the im-
age from every pixel and then dividing every pixel by the
maximum value observed, (2) “standardizing” the hologram
by subtracting the mean pixel value and dividing by the stan-
dard deviation of pixel values from every pixel in the image,
(3) a “symmetric” transformation that recasts the pixel values
into the range [−1, 1], (4) division of all pixel values by the
maximum pixel value 255, and (5) none applied. One type
was selected for application to the HOLODEC and the syn-
thetically generated holograms shown in Fig. 3b–c (i), and
another selected for application to the tiles shown in Fig. 3b
(vi) during training and optimization and in Fig. 3c (iv) when
the model is being used in operation. In both cases, the use
of one of these transformations was determined during model
optimization, as is discussed in Sect. 2.5.3.

The second type of transformations was only used during
training, and was applied to tiles (if determined) just before
being passed into a model, shown in Fig. 3b (vi). If more than
one tile was selected, they were applied one after the other.
They includes a transformation that adds Gaussian blur to
the tile images to help reduce the detail contained in them
by helping to remove high-frequency information. The trans-
formation required a kernel size, which set the maximum
smoothing length, and a standard deviation value to be set.
Similar to the background transformation, the value of the
standard deviation was selected randomly within the range
between 0 and some maximum value (determined in hyper-
parameter optimization) while the kernel size was set to 2. A
third transformation adjusts the brightness of the tile image.
A brightness factor is first selected randomly between zero
and a maximum value. The tile image is then multiplied by
the brightness factor and then the pixel values are clipped to
lie in the range bounded by 0 and 255.

A final set of data augmentation transformations, which
did not involve adding noise, were always performed during
model training as a means for encouraging the model to learn
different views of the same particle. They were random flips
of a tile image in either the x or y directions, applied stochas-
tically with probability 0.5, and applied only during model
training at the step shown in Fig. 3c (iv). A flip in x is taken
to be independent of a flip along y, such that approximately
one in four images will have both x and y flipped. If a tile
is flipped in either direction, so is the corresponding mask
target. Except for the random flips, if not stated explicitly,
a transformation, as well as any relevant parameters needed
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to use it, were left as hyperparameters to be optimized, as is
discussed in Sect. 2.5.3

2.5.2 Training and validation metrics

Training a segmentation model to predict masks around in-
focus particles required a set of input tiles and the associated
masks. The synthetic training holograms contained 50 000
particles in total. Because a particle may show up in multi-
ple grid tiles, each particle was randomly sampled from the
subset of grid tiles that contained it. However, the model also
needed to be exposed to images that did not have any parti-
cles. This included input tiles not near any in-focus particles,
as well as examples that were close to a particle, but were out
of focus by one z-bin increment. The latter examples depend
sensitively on the choice of N . For example, for small values
of N , a particle’s true z may not be close to the bin center,
while large values of N may result in the particle extending
over several z bins. Therefore, an additional 50 000 images
of the same size as the tiles were randomly sampled from
the 100 training holograms for a given N , so that the num-
ber of tile examples with and without particles in focus was
balanced. Of the negative examples, approximately half were
chosen to be examples where in the image, if propagated one
bin in either direction along z, a particle would come into
focus. The remaining half were randomly sampled examples
that did not necessarily contain in-focus particles. The total
training set of 100 000 images were then saved to disk. The
same procedure was performed on the validation and testing
holograms, which produced validation and testing data set
sizes of 10 000 images in total.

Next, fixed-sized subsets of input images and output
masks were selected from the training images to create in-
put batches to the neural network. If instructed to do so, any
of the transformations described above were then applied to
each image in the batch (Fig. 3b (vi)). The batches were
passed through the model to obtain a mask prediction for
each image in the batch. The predicted masks were com-
pared against the true data with a loss function that com-
putes, for example, the mean-absolute error (see Fig. 3b
(viiii)). Using the computed loss value, the weights of the
model were updated using gradient descent through back-
propagation (Rumelhart et al., 1986). This process was re-
peated until a fixed number of training batches, which is the
total number of training samples divided by the batch size,
were passed through the model once, and is referred to as one
epoch of model training. The training data were randomly
shuffled once all examples passed through the model. The
choice of the training loss was left as a choice to be opti-
mized (see the next section).

After each epoch, the model was placed into evaluation
mode, which disabled any stochastic elements, and used to
make predictions with the validation set as inputs. The loss
was computed for each example in the validation set and then
averaged to produce a single value for the set. The procedure

of training for one epoch – then computing a validation loss –
was repeated for a prescribed number of epochs. If the valida-
tion loss value stopped improving after 3 epochs, the learning
rate was reduced by a factor of 10. Furthermore, if the vali-
dation loss had not improved after 6 epochs, model training
was taken to be completed; otherwise, model training was
terminated after 200 epochs.

The validation loss was taken to be the (smoothed) dice
coefficient, which is given by

smoothed dice(x,y)=
2
∑
jxjyj + 1∑

jxj +
∑
jyj + 1

(6)

and was computed by flattening the 2D input images into 1D
arrays. The sum in the numerator is the element-wise prod-
uct of predictions x and labels y. The raw outputs from the
model, which lie within the range (0, 1), are used rather than
the (integer) binary label, which required casting the model
outputs to integer values which would not allow the product
calculation (intersection) to be differentiated. Both the nu-
merator and denominator contain a smoothing factor (+1) to
help prevent division by zero if the inputs contain only null
values.

2.5.3 Model optimization

As noted in earlier sections, at different stages in training a
neural network model there are hyperparameters that need
to be set that affect the performance outcome of a trained
model. Both the type of segmentation model and the lay-
ers from a separate pre-trained model that were used in the
composition of the segmentation encoder model (if the seg-
mentation model was composed of encoder–decoder compo-
nents), were taken to be hyperparameter choices to be opti-
mized along with others. The choice of segmentation model
was made from a fixed set of available models, as well as
the pre-trained encoder model, but the choice of both is only
selected if the pre-trained layers can be used in the encoder
head of the segmentation model. (See Sect. A1 for a full list
of segmentation and encoder models that we evaluated.)

Other hyperparameters include selection of the training
loss function from a fixed set that included Eq. (6) as well
as others (see Sect. A1 for the full list of losses used), the
starting value of the learning rate, and the transformation
type applied to full-sized images before performing the wave
propagation shown in Fig. 3b–c (i) (none, standard, or nor-
malization) and to the tiles at the step shown in Fig. 3b (vi)
(none, standard, normalization, symmetric, division by 255).
Lastly, the parameters involved in the transformations to in-
put tiles that introduce background noise, Gaussian blurring,
and contrast adjustment, applied at the step shown in Fig. 3b
(vi), were chosen to be optimized (see Sect. 2.5.1 for details).

We used the package Earth Computing Hyperparameter
Optimization (ECHO), developed by the authors at NCAR
(Schreck and Gagne, 2021), to perform optimization using
Eq. (6) computed with the synthetic validation data set by
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varying hyperparameters. The optimization begins with a
randomly selected set of choices for the above mentioned
hyperparameters and is used to train a model as discussed
above. The largest validation loss computed using Eq. (6) ob-
served during training was used to score the performance of
the hyperparameter set. Random selection of hyperparameter
sets was repeated 200 times. Then, a Bayesian strategy lever-
aged the validation loss values from previous trials to make
the next hyperparameter selection that aimed to maximize
Eq. (6). This was repeated for several hundred more trials
until the algorithm was observed to approximately converge.
Finally, the best performing set of hyperparameters was then
selected and one final training was performed to obtain the
optimized model weights.

2.5.4 Manual labels for a set of HOLODEC holograms

The synthetic holograms were simulated to produce a truth
data set for use in training neural network segmentation mod-
els, while the HOLODEC examples processed by the stan-
dard method did not necessarily represent the true (x,y,z,d)
values for the particles in a hologram. As the synthetic holo-
grams were all generated with simulations absent any noise,
optimization of models converged toward parameters that
produced noise-free or low-noise transformations being ap-
plied during model training. (See Sect. 2.5.1 for details on
the noise transformations used.) Therefore, some examples
of HOLODEC holograms that contained real-world imper-
fections were required during training and optimization, to
enable effective parameterization of hyperparameters asso-
ciated with the noise transformations. Furthermore, we also
needed to know the performance of the standard method on
the HOLODEC holograms considered, so that a fair com-
parison between a neural network model and the standard
method could be made.

The outcomes from the standard method on
10 HOLODEC holograms were used to select exam-
ples where a particle was predicted to be in focus. Using the
predicted particle location along z, the hologram was wave
propagated to the nearest bin center with N = 1000. Then,
using the predicted center, a subsample of the propagated
hologram was selected, where the particle was positioned
at the image center, and which was the same size as the
grid tiles used above. (Examples where the particle was
close to an edge were padded so that the particle remained
at the center of the image.) A neural network optimized on
the synthetic holograms that utilized noise transformations
was also used to provide additional examples (illustrated
in Fig. 3b (v)); see below for more details). In total, 1202
images were produced for consideration where some were
identified as in focus by the standard method, some were
identified by the neural net, and in some cases, but not all,
these predictions overlapped. These examples are referred to
below as the validation set of HOLODEC holograms.

Each example in the validation set was then labeled as con-
taining an in-focus particle (true), or not (false), by the au-
thors. Information about which method identified a particle
was withheld. Each image label was also assigned a confi-
dence score by a reviewer, ranging from 1 (no confidence) to
5 (most confident). The final label assigned to an image was
determined by computing a weighted average for the label
and then labeling 1 if the score was larger than 0.5 and 0 oth-
erwise. Several examples of hand-labeled images are shown
in Fig. 4, with positive examples shown in the top row and
negative examples shown in the bottom row. A trained neu-
ral network model was selected for use due to its high rate of
false-positive predictions on the HOLODEC holograms, to
ensure that both positive (mainly, but not exclusively, from
the standard method) and negative examples (mainly, but not
exclusively, from a trained model) would be sampled. In to-
tal, 367 examples were labeled 1 compared with 835 labeled
0.

2.5.5 Optimization with synthetic and HOLODEC
holograms

Model optimization was performed with the noise transfor-
mations being used during the training runs. After the end of
every training epoch, in addition to computing the dice loss
on the validation set of synthetic images for mask predic-
tions, the model was used to make binary predictions on the
validation HOLODEC holograms. If a mask was predicted
by the model, it was labeled 1; otherwise, it was labeled 0.
(This step is shown schematically in Fig. 3b (viii).) The av-
erage dice coefficient was then computed for the manually
labeled set according to Eq. (6) and added to that computed
for the mask prediction task for the synthetic images. (This
step is shown in Fig. 3b (viiii–x).) Similarly, during hyper-
parameter optimization, the objective metric was taken to be
the sum of the computed dice coefficients.

Lastly, a second round of manual evaluation focused on
all positive predictions by the standard method, and those
by a trained model with optimized hyperparameters which
utilized both the synthetic holograms and the validation
HOLODEC examples as a means for optimizing the parame-
ters associated with noise added during training. The labeling
was performed with 10 additional HOLODEC holograms not
used in the first round, and which is referred to as the test set
of HOLODEC holograms. The test set was used for comput-
ing and comparing the performance of the standard method
and the neural network model just after the clustering step
as judged by the four reviewers, and the steps followed are
shown schematically in Fig. 3c (vii–x). In total, 1154 exam-
ples were considered by the reviewers, which had 890 exam-
ples labeled 1 and 264 labeled 0. The same examples were
also used to estimate the approximate (x,y,z,d) coordinates
for in-focus particles. For example, when both the standard
method and the neural model predicted a particle to be in fo-
cus, the (x,y,z,d) assigned to the in-focus particle was taken
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Figure 4. Examples of manually labeled, wave-propagated holograms. Panel (a) shows cases where the particle in the image was determined
to be in focus (labeled true), while (b) illustrates cases where no particle was in focus. The second and fourth examples on the bottom
illustrate reflection and what was determined to be an artifact, respectively. The insets highlight the center of each image. In all images the
pixel values ranged from 0 to 255.

to be the average of the two predictions. In the remaining
cases, (x,y,z,d) was selected to be the output of the model
that predicted the particle to be in focus.

3 Results

3.1 Model performance on the synthetic and
HOLODEC test tiles

We investigated six models to probe the performance de-
pendence on the choice of N as well as the noise intro-
duced during training as described in Sect. 2.5.1. We use a
subscript “S” to reference the first model that was trained
and optimized on synthetic holograms only, as described in
Sect. 2.5.3, using NS= 1000 bins along the z direction. The
remaining models used different resolutions along z, which
were NSH= 100, 1000, 5000, 10 000, and 46 648, where
“SH” means the models were trained on synthetic holograms
that were corrupted by noise processes. We optimized the
corruption in hyperparameter optimization by utilizing the
manually labeled validation HOLODEC examples, hence the
subscript “SH”, which is used to differentiates these models
from the “S” model that is used here as a baseline.

Table 1 lists several binary performance metrics computed
for the models on the synthetic and HOLODEC test data sets
containing the randomly sampled tiles, as they were not used
in any way during training and optimization. These metrics

measure how well each model performed at predicting masks
around in-focus particles in synthetic tiles and at detecting
in-focus particles in HOLODEC tiles. The synthetic test set
contained 10 000 tiles and was balanced between tiles con-
taining in-focus particles and no in-focus particles, while the
HOLODEC test set contained 1154 example tiles and con-
tained about 3.4 examples of in-focus particles for every ex-
ample containing no particle. Figure A1 also plots the train-
ing performance as a function of epochs on the validation
sets of synthetic and HOLODEC images. (See Sect. A1 for
further training and optimization details and results.)

Table 1 shows that all of the trained models performed
well on the synthetic test tiles, where the F1 score, area under
the ROC curve (AUC), probability of detection (POD), and
maximum critical success index (CSI) (Wilks, 2011) were
all greater than 0.9 indicating strong mask prediction per-
formance. With the exception of NSH = 100, the false alarm
ratio (FAR) was less than 5 %. Additionally, the NS= 1000
model, which was trained exclusively on noise-free synthetic
images, generally had higher performance scores on the syn-
thetic test tiles compared with the other models. The effect
on performance from added noise during training is clearly
seen by the modest drops in the computed metrics for the
NSH models. On the other hand, the binary performance on
the HOLODEC test tiles went up significantly for the NSH
models, and peaked with the NSH= 48 648 model, but 1000,
5000, and 10 000 all had comparable performance.
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Table 1. Several metrics are listed for each model and were computed on the synthetic (Synth) and HOLODEC (HOLO) test data sets for
mask and particle detection (binary) predictions, respectively. The values of POD and CSI reported for mask prediction used the probability
threshold which maximized CSI.

Metric F1 AUC POD FAR CSI

Synth HOLO Synth HOLO Synth HOLO Synth HOLO Synth HOLO

NS= 1000 0.977 0.279 0.993 0.372 0.982 0.186 0.029 0.432 0.954 0.163

NSH= 100 0.911 0.786 0.984 0.756 0.956 0.794 0.129 0.102 0.837 0.728
NSH= 1000 0.962 0.881 0.985 0.807 0.964 0.953 0.040 0.102 0.927 0.860
NSH= 5000 0.961 0.885 0.990 0.799 0.970 0.983 0.047 0.112 0.926 0.875
NSH= 10 000 0.962 0.841 0.983 0.803 0.963 0.870 0.040 0.089 0.926 0.802
NSH= 48 648 0.962 0.888 0.991 0.799 0.971 0.987 0.046 0.112 0.927 0.878

Overall, the noise added to synthetic tiles during training,
and the manually labeled HOLODEC tiles that were used
to influence the optimization of the neural network weights,
resulted in trained models having lower performance on syn-
thetic holdout tiles but higher performance on the holdout
HOLODEC tiles. Furthermore, the models optimized with
labeled HOLODEC tiles clearly outperformed those trained
with just synthetic examples. The table also shows that mod-
els with NSH greater than or equal to 1000 all outperformed
the NSH= 100 model, which clearly had the worst perfor-
mance on the HOLODEC test tiles for models trained with
noise, but still it outperformed the model trained, absent any
noise, by a wide margin.

3.2 Reassembled model performance on test synthetic
holograms

With the models listed above, the values for (x,y,z,d) were
determined for the particles in each of the 10 test synthetic
holograms according to the steps illustrated in Fig. 3c that in-
volved reassembly, matching, and pairing predicted particles
with true ones. Table 2 shows the same performance metrics
for the predicted masks for the 10 test holograms as in Ta-
ble 1, here computed across all planes as a function of N , for
the reassembly step illustrated in Fig. 3c, that is, before clus-
tering but after the predicted probabilities for the grid tiles
have been combined to create hologram-sized predictions for
each reconstructed plane, and concatenated along z to create
a 3D prediction array.

Table 2 shows that the NSH= 100 model produced the
highest values on AUC and POD, and the maximum CSI,
as well as the lowest values on FAR, while the NSH= 48 648
model was the worst overall performer. These three metrics
are clearly correlated with the total average number of parti-
cles predicted per hologram, which grows large as the num-
ber of planes used along z increases. In particular, the larger
the number of planes, the lower the AUC, POD, and CSI,
and the higher the POD. Only the NSH= 100 model under-
predicted the true number (500), while the other models pre-
dicted numbers that were proportional to N and which had

a similar particle prediction rate for a plane, as measured by
the total number predicted divided by N in Table 2.

The dependency of POD on N relative to FAR, which did
not exhibit as strong a dependence onN by comparison, sug-
gests that the models generally predicted a mask around a
particle when it was actually in focus while, at the same
time, increasingly over-predicting the same particle in suc-
cessive planes as N increased. Figure 5 illustrates a model
predicting a mask around a large particle, but over three suc-
cessive planes, as well as the plane identified by the standard
method as that which was closest to the in-focus particle. The
standard method and the neural model agreed that the im-
age reconstructed at the z plane shown in Fig. 5b contains an
in-focus particle. However, the neural network does not dif-
ferentiate from the three examples, as viewed from the front
and back of the particle, as seen in Fig. 5a and c, respectively.
The example shows NSH= 1000, where larger particles pri-
marily are over-predicted along the z coordinate. However,
as N increased, smaller particles also appeared to be in focus
in greater numbers of reconstructed planes.

3.3 Coordinate and diameter performance on synthetic
holograms

The 3D prediction array for each test synthetic hologram
were clustered using a range of match distance thresholds
(referred to as thresholds). Figure 6a shows how the choice
of threshold determines the number of predicted particles
that get assigned to clusters (circles) and also those that do
not (squares). The total number of particles (triangles) is the
number of clusters plus the number of unassigned particles
for a given threshold. In Fig. 6b, the match accuracy and F1
metrics were computed using the total number of predicted
particles and the total number of true particles in the holo-
gram (dashed lines in Fig. 6a). The match accuracy measures
the fraction of predicted particles having been paired against
the true number in each hologram. When the threshold value
is small in the figure, the match accuracy is higher than the
match F1 score because there is an excess number of pre-
dicted particles. At larger threshold values there are fewer
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Table 2. The average number of predicted particles divided by the number of planes N , and the computed binary metrics for the mask
prediction task, are listed for each model. The metrics were computed using the 10 test holograms, where each hologram contained 500
particles.

Metric Ave. # Rate F1 AUC POD FAR CSI

NS= 1000 1245 1.24 0.624 0.985 0.920 0.528 0.453

NSH= 100 395 3.95 0.883 0.921 0.841 0.071 0.791
NSH= 1000 1276 1.28 0.558 0.970 0.870 0.589 0.387
NSH= 5000 7297 1.46 0.130 0.976 0.892 0.985 0.069
NSH= 10 000 11 125 1.11 0.084 0.961 0.846 0.956 0.044
NSH= 48 648 64 163 1.32 0.016 0.952 0.802 0.992 0.008

Figure 5. Three successive planes are shown in (a)–(c). Each row illustrates the tile image at z, the center of the tile image zoomed in, the
prediction by the standard method, and the mask prediction by the NSH= 1000 neural network model. The pixel values ranged from 0 to
255 in the holograms images. The standard method prediction is the result of a clustering procedure that eliminated the particle in multiple
planes.

particles compared with the total true number; hence, the
match F1 score is higher than the match accuracy. Figure 6c
shows the computed RMSE for the matched particles paired
with true ones versus the threshold value for the NS= 1000
and NSH= 1000 models.

At small thresholds, most of the predicted particles have
not been clustered for either model; hence, there is an excess
of predicted particles compared with the true number. As the
threshold increases to approximately the spatial separation
of the reconstructed planes, which is 144 µm for N = 1000,
many particles have joined clusters and the total number of
clusters plus unassigned particles quickly drops close to the

number of true particles. Then a flattening of the curves oc-
curs over a small range of thresholds in Fig. 6a, approxi-
mately centered around 1000 µm. Figure 6b and c also show
that in this regime of threshold values, the highest values
of match F1 and accuracy were observed, and the lowest
computed RMSE values between predicted and true parti-
cle pairs, respectively. However, once the threshold becomes
large relative to the size of the system, most of the particles
were grouped into a few clusters.

The lowest average RMSE was always observed at a
threshold value which resulted in fewer particles predicted
than the true number. In fact, the NS= 1000 model had
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Figure 6. In (a)–(c), the number of particles, the matched F1 and accuracy metrics, and the average RMSE, computed for predicted particles
paired with true particles, are all shown versus the match distance threshold, respectively. The left and right columns show the results for
the noise-free NS= 1000 model and the noise-optimized NSH= 1000 model, respectively. In (a), the horizontal grid lines denote 0 and
500 particles.

the lowest computed RMSE at 84 µm when 93 % of pre-
dicted particles were paired with true particles (threshold
of 890.2 µm), while it was 50.7 µm for the NSH= 1000
model when the match accuracy was at 85 % (threshold of
585.7 µm), which is close to the depth of field for the instru-
ment of 57 µm. Overall, the noise-free NS= 1000 model had
a higher match accuracy and F1 over the range of thresholds
compared with the NSH= 1000 model, consistent with Ta-
bles 1 and 2, with generally larger computed RMSE between
the paired predicted and true particles.

The reason for the higher RMSE in the noise-free model
NS compared with NSH models is due to the higher match
accuracy. This can be observed in Fig. 7, which shows his-
tograms for the predicted and true (x,y,z,d) coordinates for
the particles in the 10 test synthetic holograms using a thresh-
old of 1000 µm for the NS= 1000 and NSH= 1000 models,
respectively. Table 3 also shows the same mask prediction
performance metrics for the two models after matching and
pairing at the same threshold.

The strong overlap in all of the histograms in Fig. 7 and
the high mask prediction performance listed in Table 3 both
show that the clustering procedure was mostly successful at
assigning particles, such as those illustrated in Fig. 5, into the
same cluster, for both models. However, clearly the model
trained without noise (top row) shows greater overlap be-
tween predicted and true particles, due to the greater num-
ber of predicted particles, and generally had slightly bet-
ter mask-prediction performance. Comparing the two his-

Table 3. The same mask prediction performance metrics shown in
Table 2 are listed for predicted particles paired to true particles av-
eraged over the 10 test synthetic holograms. The match distance
threshold used was 1000 µm.

Metric Ave. # F1 AUC POD FAR CSI

NS= 1000 465 0.922 0.964 0.929 0.085 0.855

NSH= 100 372 0.869 0.906 0.813 0.066 0.769
NSH= 1000 423 0.911 0.950 0.900 0.078 0.837
NSH= 5000 437 0.433 0.693 0.386 0.506 0.277
NSH= 10 000 417 0.403 0.663 0.323 0.470 0.253
NSH= 48 648 409 0.420 0.713 0.427 0.587 0.266

tograms for the predicted particle diameters indicates that
adding noise to the synthetic images during training as de-
scribed in Sect. 2.5.1 resulted in a lower ability by the model
to identify and predict the coordinates of the smaller par-
ticles. The predicted distributions for x and y suggest that
noise may have also lowered the model performance near the
edges of a plane. But the generally higher observed RMSE
seen in Fig. 6c for the NS= 1000 model indicates that these
particles were also the hardest to predict and cluster precisely
in 3D when noise was absent during training. As a result, the
NS= 1000 model had a marginally higher FAR compared
with NSH= 1000.
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Figure 7. Histograms for the particle coordinates (x,y,z,d) are shown in each column comparing the models’ predictions (blue outlined
boxes) against the true values (solid orange boxes), computed using the 10 test (synthetic) holograms. The results for models NS= 1000 and
NSH= 1000 are shown in (a) and (b), respectively. The value of each bin and the error bar were computed by taking the mean and standard
deviation across the 10 holograms.

3.4 Performance dependency on N

Lastly, the performance dependence on the choice of N is
characterized at the 1000 µm threshold. Figure 8 shows the
same performance metrics as in Fig. 6b and c for the four
NSH models. Table 3 compares their mask-prediction per-
formance for paired particles and Table A3 compares their
average coordinate and RMSE predictions.

Overall, the performance forN > 1000 for varying thresh-
old values was found to be either comparable or lower
relative to 1000. For example, the RMSE computed for
NSH= 48 648 improved on NSH= 1000 by 1 µ m, but with
a lower match accuracy of 82 % compared with 85 %. The
maximum CSI for the paired particles was also lower for the
NSH= 48 648 model. Similarly, theNSH= 10 000 model had
a slightly better estimate of z and the RMSE (Table A3), but
predicted fewer total particles that were less aligned in 3D
relative to 1000 (see Table 3). The lack of improvement ob-
served with increasing N is mainly due to the problem of
models over-predicting the same particle in multiple planes,
as illustrated in Fig. 5.

Figure 9 shows the computed histograms for the models
for each coordinate (x,y,z,d) along with the true particle
histograms. For clarification, theNSH= 1000 results in Fig. 7
(bottom row) are shown again in the Fig. 9 (second row).
Even though no improvement was observed for N larger
than 1000, overall all of the models showed strong overlap
relative to the true distribution for each coordinate, as the
match accuracy was higher than 80 % in each case except
for NSH= 100 where it was 75 %. The increased difficulty
in predicting edge particles, as caused by the noise intro-
duced during training, is apparent for each value of N , while
the histograms for particle diameters show that increasing N
from 1000 decreases the overlap between true and predicted
bins corresponding with larger diameter sizes. The predicted
distributions for z may also indicate that larger values of N
slightly lowers the accuracy at larger values of z, relative to
N = 100.

3.5 The standard method and NSH performance on
HOLODEC holograms

Finally in this section, the performance of the standard
method is compared against that for the NSH= 1000 model
using a matching threshold of 1000 µm. The test set of manu-
ally labeled HOLODEC holograms was used to estimate the
performance of particle detection after matching and the ap-
proximate error in the predicted (x,y,z,d) coordinates. All
particles labeled true could be assigned coordinates because
the examples selected for the second round of manual exami-
nation were all positive predictions from the standard method
and theNSH= 1000 model. The standard method only began
searching for particles at z= 20 000 µm while we selected
z= 14 300 µm for the NSH= 1000 model. Below, reported
performance metrics comparing the two methods used only
the examples with z values which were examined by both
approaches.

Table 4 shows several performance metrics comparing
the particle-detection ability of the standard method and
the NSH= 1000 model. Of the 1109 examples considered
in the comparison, 847 were manually determined to con-
tain at least one in-focus particle, with the standard method
and the NSH= 1000 model each identifying 771 and 839
true particles, respectively. The table clearly shows that the
NSH= 1000 model had higher average performance on all
computed metrics, in particular besting the standard method
by more than 20 % on the F1 score (87.8 % versus 66.8 %).
Inspection of individual hologram performances revealed
that the standard method struggled with hologram examples
containing zero particles, by predicting significant numbers
of false-positive particles, while it performed much better
with hologram examples containing hundreds of particles.
By contrast, the neural network performed very well on all
the examples containing no particles and had higher perfor-
mance on the other holograms with the exception of example
13, where the the standard method slightly outperformed the
neural network.
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Figure 8. (a) The match accuracy and F1, and (b) the average RMSE for paired particles, are each plotted versus the match distance threshold.
The columns show the results for the five models trained and optimized on synthetic and HOLODEC images with the number of planes used
for reconstruction increasing from left to right.

Figure 9. Histograms for the particle coordinates and diameter are shown in each column comparing the models’ predictions (blue outlined
boxes) against the true values (solid orange boxes), computed using the 10 test holograms. The rows show the results for models NSH= 100,
1000, 10 000, and 48 648, respectively. The value of each bin and the error bar were computed by taking the mean and standard deviation
across the 10 holograms. The match distance threshold was 1000 µm.
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Table 4. Table of metrics for the standard method and the NSH= 1000 neural network model (denoted N. N.) computed using the test set of
manually labeled HOLODEC holograms. The number of examples equals the total number predicted by both the standard method and the
neural network, while the true number was determined by manual examination. The confidence scores assigned to the manual labels by the
reviewers were used in the AUC calculations.

Id N examples N true F1 AUC POD FAR CSI

Standard N. N. Standard N. N. Standard N. N. Standard N. N. Standard N. N.

10 253 215 0.755 0.9 0.414 0.923 0.898 0.902 0.154 0.03 0.772 0.878
11 89 70 0.735 0.885 0.588 0.952 0.886 0.943 0.184 0.083 0.738 0.868
12 267 243 0.828 0.888 0.753 0.912 0.835 0.918 0.065 0.051 0.79 0.875
13 179 158 0.846 0.836 0.761 0.915 0.873 0.899 0.068 0.09 0.821 0.826
14 149 127 0.772 0.823 0.718 0.915 0.78 0.953 0.092 0.123 0.723 0.84
15 41 34 0.7 0.756 0.643 0.874 0.647 0.853 0.083 0.147 0.611 0.744
16 30 0 0.125 0.966 – – 0.0 0.0 1.0 1.0 0.0 0.0
17 48 0 0.0 1.0 – – 0.0 0.0 1.0 0.0 0.0 0.0
18 23 0 0.0 0.955 – – 0.0 0.0 1.0 1.0 0.0 0.0
19 30 0 0.0 1.0 – – 0.0 0.0 1.0 0.0 0.0 0.0

1109 847 0.668 0.878 0.442 0.930 0.847 0.915 0.230 0.076 0.676 0.851

We should note that false positives in the standard method
could be improved by adding a second-pass classifier to elim-
inate artifacts from the data. While the data processing con-
sidered here did not include this second pass, we still believe
it represents a reasonable baseline for comparison since it is
part of a released processing run.

As noted, the manual labels were also assigned confidence
scores by each reviewer. Examples ranged from clearly con-
taining in-focus particles (average score= 5) to those which
the reviewers essentially could not determine if the predic-
tion was a particle (average score= 1). Figure 10 shows the
performance of the confusion matrix and F1 score for the
standard method and the NSH= 1000 model, versus the av-
erage confidence of the manual determination. The metrics
were computed on the subset of images which had average
confidence at least as large as the values shown in the x axes
in Fig. 10.

The true positive rate was higher for the NSH= 1000
model across the confidence scores. The standard method
had a larger false-positive rate that increased with confi-
dence, while the NSH= 1000 model had a higher true neg-
ative rate that increased with confidence. As seen in Fig. 10c,
these observations translated into an increasing F1 score with
increasing average confidence for the NSH= 1000 model,
while it remained flat and then decreased for the standard
method.

Figure 11 compares the estimated distributions for
(x,y,z,d) for the manually determined particles in
HOLODEC test holograms against those predicted by the
standard method, and those predicted by the NSH= 1000
model, when a threshold of 1000 µm was used (unpaired dis-
tributions are shown in Fig. A2). As described in Sect. 2.5.5,
the estimates were obtained from the standard method and/or
the neural network for the images labeled to contain an in-

focus particle. Figure 12 illustrates the 3D predictions by the
standard method and the neural model relative to the manu-
ally determined particles for HOLODEC example 10.

The high performance of the NSH= 1000 model is re-
flected by the strong overlap between predicted and true his-
togram for each coordinate, while the overlap is clearly lower
for the standard method. This can also be seen for the exam-
ple illustrated in Fig. 12 by comparing the top and bottom
panels for either approach. Aside from the clear discrepancy
at small z for the standard method (included are the particles
manually labeled in focus that were below the search win-
dow of the standard method but were found by the neural
network), there was not any clear performance bias observed
at the edges of a hologram, along z, or with d for either model
(however, for unpaired predictions the standard method may
be biased toward one side of a hologram; see Fig. A2). The
average absolute error between the paired true and predicted
particles for (x,y,z,d), and the RMSE, were mainly compa-
rable between the two models, with the neural network hav-
ing slightly lower RMSE (39.5 µm versus 45.1 µm) while the
standard method performed slightly better on diameter esti-
mation (see Table A4).

Lastly, Fig. 13a and b illustrate examples where the stan-
dard method and the neural network model made incor-
rect predictions, respectively. The false-positive examples in
Fig. 13a show the standard method detecting a reflection and
some sort of “artifact” as particles, respectively. Examples
like these represented nearly all of the false-positive predic-
tions in the holograms that were determined to contain zero
particles, as well as in many of the higher density holograms
(see Table 4). Additionally, the manual evaluation for many
of these examples were typically of high confidence, as they
were easy to spot by eye, and were mainly the reason for the
increasing false-positive and true-negative rates with confi-
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Figure 10. The computed number of true positives (TP, circle), true negatives (TN, plus), false positives (FP, cross), and false negatives (FN,
star) versus the minimum confidence score, for the standard method and the neural network model in (a) and (b), respectively. The F1 score
versus confidence is shown in (c) for the standard method (circles) and the neural model (triangles). Examples having confidence lower than
the minimum were not included in the calculation.

Figure 11. Histograms for x, y, z, and d are shown in each column, computed using the 10 testing HOLODEC holograms. The results for the
standard method and the NSH= 1000 model are shown in (a) and (b), respectively. The value of each bin and the error bar were computed
by taking the mean and standard deviation across the 10 holograms.

dence, as was seen in Fig. 10a and b, respectively, as the
neural network model correctly predicted no in-focus parti-
cle for many of them. False-negative examples produced by
the standard method were often particles with smaller diam-
eters surrounded by distortion, as the examples in the figure
illustrate.

The false positives produced by the NSH= 1000 model,
such as the examples shown in Fig. 10b, were often close to
a hologram edge, appeared blurry, and sometimes resembled
a crescent moon in shape, rather than a well-defined circle.
Examples of false negatives in the figure show a particle ap-
pearing blurry with a less uniform (and dark) center, and a
small particle surrounded by distortion. In some cases, the
confidence by the reviewers was lower than 3 on the false
predictions, especially for those near the edge. Since manual
labeling is also imperfect, it is possible that some of the more
ambiguous images evaluated, in reality, contained a particle
but one that was slightly out of focus.

3.6 Average hologram processing time

The neural network model (NSH= 1000) was evaluated on
NCAR’s Casper supercomputer, using one core on a 2.3 GHz
Intel Xeon Gold 6140 processor (CPU) with 128 GB of mem-
ory allocated, and an NVIDIA Tesla V100 32 GB graph-
ics card (GPU). The standard method simulations were per-
formed on NCAR’s Cheyenne supercomputer, on a node that
contained a 2.3 GHz Intel Xeon E5-2697V4 (Broadwell) pro-
cessor (CPU). For the standard method, it took 3.5 core hours
per hologram on an ice case, while liquid cases varied by
concentration and particle size, and ranged from 1–3 core
hours per hologram. With the GPU present, the neural net-
work took approximately 2.1 CPU core hours per hologram,
or about 7.5 s per plane. The batch size used in the evaluation
was set to 128 so that the total operation of HolodecML uti-
lized nearly the maximum amount of available GPU memory.
Once all planes have been evaluated, the final 3D clustering
step takes less than 0.1 s using a threshold of 1000 µm. When
sufficient computational resources are available, the parallel
design and utilization of GPUs by HolodecML enables pro-
cessing speeds of less than 8 s per hologram. Serial inference
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Figure 12. The particles in hologram 10 from the HOLODEC test set are plotted in 3D for (a) the true particles as determined by manual
evaluation, (b, d) the standard method predictions, and (c, e) the neural network predictions. In (b) and (c), all predictions are shown for either
approach. In (d) and (e), only pairs between true particles and those predicted by the standard method or the neural network, respectively,
are shown. The color bar shows the diameter of the particles and applies to all panels. Note that the three axes do not have the same size, and
therefore distances between particles do not scale.

time could be reduced further by reducing the overlap be-
tween input tiles and by using smaller segmentation models.

4 Discussion

In general, the observed differences between theNSH= 1000
model and the standard method on the HOLODEC test
holograms demonstrates the advantages of using the
convolutional-based neural networks in several key areas.
First, it was much more successful at differentiating reflec-
tions and other artifacts from in-focus particles. Second, the
NSH= 1000 model was more robust against making false-
negative predictions as caused by other kinds of distortion
in the images, such as the patterns seen in the examples in
Fig. 13. This is reasonable as the neural model was opti-
mized using both synthetic and HOLODEC examples, and
with noise added to the synthetic images. Third, as noted, the
neural network identified greater numbers of true particles
from the HOLODEC holograms compared with the standard
method. Fourth, the algorithm was designed so that differ-
ent components could be run in parallel. This paralleliza-
tion is scalable so processing times can range from seconds

to a few minutes per hologram depending on available re-
sources. These results taken together demonstrate that the
neural networks investigated here are capable of learning key
features of images containing in-focus, localized particles, in
both synthetic and real-world examples, and leveraging those
parameterizations to make higher performing predictions on
unseen holograms. Furthermore, the method we undertook
here maintained a level of independence from the standard
method processing package which is beneficial for the eval-
uation of both methods. In this case it allowed us to identify
issues with low density holograms in the current processing
package.

However, more investigations with different sampling
strategies and higher density holograms are needed to de-
termine this performance dependence, and there may be
modifications to the current architecture that would re-
duce the issue of over-prediction. The performance of the
NSH= 1000 model on holograms containing thousands of
particles, which was trained on holograms containing 500
particles, will depend on how the particles are distributed in
3D. The model should still predict masks around the clearly
in-focus particles. As a result of the matching/clustering pro-
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Figure 13. Examples of incorrect (false positive) or missed predictions (false negative) made by (a) the standard method and (b) the neural
network model NSH= 1000. The title in each panel shows the manual label and that determined by the model. False negatives are indicated
by “labeled 0” and false positives are indicated by “predicted 1”. The pixel values ranged from 0 to 255 in each image.

cedure, however, these particles may be grouped into the
same cluster and considered one (larger) particle with the
clustering threshold of 1000 µm. (This was observed even
with holograms that contained hundreds of particles.) It is
possible that the model may still estimate the total mass but
not the correct number. On the other hand, if the particles are
sparsely distributed across (x,y,z) and on the smaller side,
the model performance should be less dependent on the num-
ber of particles present.

Another primary drawback with the supervised-learning
approach pursued here was the non-existence of correctly
labeled, real-world holograms obtained from HOLODEC.
Using data generated from the physical model of the
HOLODEC instrument proved to be insufficient as the sole
source needed to produce a model that performed on the
HOLODEC examples. We learned that adding noise to the
synthetic images helped to improve performance, initially
through trial and error. This was clearly not ideal and thus
motivated us perform manual labeling on HOLODEC im-
ages to optimize the noise transformations described in
Sect. 2.5.1. Three problems arise as a result of the lack
of labeled HOLODEC images: the first is that we simply
guessed which kinds of transformations to perform on the
synthetic images. Second, the noise transformations reduced
the model’s ability to find the smallest diameter particles.
Third, the manual evaluation for many examples with low
confidence were ambiguous, and the label associated with
each example did not represent the truth, but instead rep-
resented a mental model of what each reviewer thought an

in-focus particle should look like in a 2D image plane. Fur-
thermore, the total number of particles in the HOLODEC
holograms was not known in reality, only the examples that
were identified by either method. Only physical measure-
ments could be used to determine the true numbers. We
should also note that a manual training process may need
to be repeated depending on the stability of the instrument’s
noise characteristics. It may be reasonable to expect that the
transformation optimization process would need to be con-
ducted on each field project. Even the simplistic manual la-
beling we employed here is very labor intensive and is not
realistic for routine deployments. For this reason, we are in-
vestigating less labor intensive methods for creating realistic
synthetic holograms.

What can be done in future work? First, a one-step ap-
proach for predicting particle coordinates and their shapes
using only the reference hologram would provide the great-
est benefit in terms of processing speed. Second, with the
current approach involving wave propagation, an object de-
tector, rather than the segmentation architecture, may provide
some benefit for obtaining d for particles in higher density
regions, because the bounding boxes can be overlapping and
the area can be related to the particle surface area. Third,
lowering the false alarm rate would help to solve problems
that resulted from the matching procedure. We only explored
training models with one quarter of the examples being those
that we thought would help with the false-positive issue, but
informed up-sampling strategies should be considered in fu-
ture investigations, such as aiming to optimize the ratio of
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positive to negative examples exposed to the model during
training using ECHO rather than simply choosing that ratio
to be one half. Another approach could train models using in-
put sequences rather than a single image. For example, com-
mon grid tiles at zi−1, zi , and zi+1 could be combined into
a single tensor with a color dimension size of 3 (rather than
1 as was used here) to make a mask prediction at zi . Note
also that recurrent-CNN methods are available, and the im-
age transformer has recently been gaining popularity and can
be used for video processing (Yan et al., 2021). The approach
utilizes attention features, which may be useful for identify-
ing the correct z for an in-focus particle, for the space and
time dimensions. Such an approach could be applied to holo-
grams to create “videos” along the z coordinate, using the 2D
images created via wave propagation. Finally, the binary pre-
diction task we selected for the segmentation models could
be extended to K label types so that other objects, such as ice
crystals, could be identified and characterized.

Last, potential ways to improve the models of the instru-
ments could extend to using neural networks. The physics is
not in question; rather, how can we improve the characteriza-
tion of uncertainties in the detector, such as potential optical
imperfections, and other ways noise and impurities get repre-
sented in the instrument data? Guessing about the noise pro-
duced reasonable results when combined with extensive hy-
perparameter optimization and manual labeling efforts. How-
ever, a more generic approach could be used to learn a more
general model of instrument imperfections, one that could
be combined with the physical model to produce a more ac-
curate representation of the HOLODEC instrument. For ex-
ample, generative models, such as adversarial networks and
variational auto-encoders, could be explored for obtaining
a parameterized representation of real-world noise, which
could be used to enhance the synthetic holograms to make
them look more like the observed instrument outputs, but
crucially, that could be prepared using the exact positions and
diameters for particles for training neural models.

5 Conclusions

In summary, this work describes a neural network hologram
processing that provides a new approach for fast and accurate
prediction of the particle locations and sizes in both simu-
lated and real holograms obtained by HOLODEC. We should
note that the full solution developed here does not repre-
sent an operational solution to HOLODEC processing, but
it does layout a framework for such a solution. Components
of this framework require further development. Simulated
holograms were produced using the physical model of the in-
strument for use as a truth data set to train models; however
models trained only on the simulated data performed poorly
on the holograms obtained by HOLODEC. The introduction
of several types of pre-processing transformations, which in-
cluded several types of noise added to training examples,

enabled the discovery of model parameterizations that per-
formed well on both simulated and real-world holograms.
Two sets of HOLODEC holograms were labeled by NCAR
scientists that were used to optimize the noise transforma-
tions and to compare the neural network model against the
standard method. Overall, the neural network outperformed
the standard method at the task of particle identification by
approximately 20 % and predicted the particle location and
shapes with high fidelity. The framework is also much faster
compared with the standard method as it was designed to
use GPUs such that analyzing wave-reconstructed planes at
different z values can be performed in parallel. Addition-
ally, the Fourier transforms used during wave propagation
calculations utilized GPU computation. Furthermore, exten-
sive hyperparameter search was a crucial step in finding the
best model. The introduction of noise does not depend on the
hologram data sets used here and could be applied to other
data types where the physical model of the instrument only
represents ideal operation.

Appendix A

A1 Training and optimization performance

Table A1 lists the best parameters found for the NS= 1000
and NSH= 1000 models. The segmentation models consid-
ered were the U-Net (Ronneberger et al., 2015), U-Net++
(Zhou et al., 2018), MANet (Fan et al., 2020), LinkNet
(Chaurasia and Culurciello, 2017), FPN (Lin et al., 2017a),
PSPNet (Zhao et al., 2017), PAN (Li et al., 2018), Deeplabv3
(L.-C. Chen et al., 2017), and Deeplabv3+ (Chen et al.,
2018), while the encoder models considered were ResNet-
18 and ResNet-152 (He et al., 2016a), DenseNet-121 (Huang
et al., 2017), Xception (Chollet, 2017), EfficientNet-b0 (Tan
and Le, 2019), MobileNet version 2 (Howard et al., 2017),
DPN-68 (Y. Chen et al., 2017), and VGG-11 (Simonyan and
Zisserman, 2014). See the package segmentation-models-
pytorch located at https://github.com/qubvel/segmentation_
models.pytorch (last access: 11 October 2022) for more de-
tails on the segmentation and encoder models. The training
losses considered were the Dice loss, Dice combined with
binary cross entropy (BCE), intersection over union (IOU),
Focal (Lin et al., 2017b), Tyversky (Salehi et al., 2017),
Focal–Tyversky, and the Lovasz–Hinge loss (Berman et al.,
2018). For additional definitions of each loss function, see
the Holodec-ML software package located at https://github.
com/NCAR/holodec-ml (last access: 11 October 2022). We
always observed models that utilized pre-trained weights ob-
tained from the ImageNet data set outperforming those that
did not as well as requiring fewer training epochs.

Figure A1a plots the average dice coefficient computed
on the validation set of synthetic images while Fig. A1b
shows the same quantity computed with the binary-labeled
HOLODEC examples, both versus epochs.
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Figure A1. The average dice coefficient versus epochs computed on the validation set of training tiles and masks in (a), and on the validation
set of human-evaluated HOLODEC images and binary labels in (b). Models trained and optimized with both the synthetic and the HOLODEC
images are shown in (b).

Figure A2. Histograms for x, y, z, and d for false predictions are shown in each column, for the 10 testing HOLODEC holograms. The
results for the standard method and the NSH= 1000 model are shown in (a) and (b), respectively, relative to the true histograms. The value
of each bin and the error bar were computed by taking the mean and standard deviation across the 10 test HOLODEC holograms.

A2 Data sets

Table A2 lists the names of the HOLODEC
and synthetic data sets that can be accessed at
https://doi.org/10.5281/zenodo.6347222 (Schreck et al.,
2022a) with the different splits used during training and
optimization. As noted, the HOLODEC examples were a
subset of the RF07 data set, while the synthetic holograms
were generated with simulations. See Sect. 2.2 for more
details.

A3 Additional results

Table A3 lists the mean absolute error in each coordinate or
particle diameter, as well as that for the computed RMSE.
The standard deviation is listed in parentheses. Figure A2
shows histograms for each coordinate and diameter for the
false-positive (unpaired) particles, computed using the test
set of HOLODEC holograms. Table A4 lists the mean and
standard deviation of the absolute error for each coordinate,
diameter, and RMSE, computed using the manually evalu-
ated test set of HOLODEC holograms.

Table A1. The values of the best hyperparameters in the optimiza-
tion studies for the neural segmentation models for the three species.
The batch size was fixed at 16.

Parameter NS= 1000 NSH= 1000

Learning rate 3.86× 10−4 2.46× 10−4

Training loss Focal–Tyversky Focal–Tyversky
Segmentation model U-Net LinkNet
Encoder model EfficientNet-b0 Xception
Hologram transform None None
Tile transform None Normalized
Gaussian blur σ – 2.125
Gaussian noise – 0.326
Brightness factor – 1.270
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Table A2. The HOLODEC and synthetic data sets are matched with the notation used here for HOLODEC and synthetic holograms.

File name Data set name

real-holograms-CSET-RF07-20150719-200000-210000.nc Validation HOLODEC holograms (id: 0-9)
real-holograms-CSET-RF07-20150719-200000-210000.nc Test HOLODEC holograms (id: 10-19)
synthetic-holograms-500particle-gamma-4872x3248-training.nc Training synthetic holograms
synthetic-holograms-500particle-gamma-4872x3248-validation.nc Validation synthetic holograms
synthetic-holograms-500particle-gamma-4872x3248-test.nc Test synthetic holograms
manual-images-valid.npy Manually labeled validation HOLODEC holograms (id: 0-9)
manual-labels-valid.npy Manual labels for validation HOLODEC holograms (id: 0-9)
manual-images-test.npy Manually labeled test HOLODEC holograms (id: 10-19)
manual-labels-test.npy Manual labels for test HOLODEC holograms (id: 10-19)
manual-images-conf.npy Average label confidence for test HOLODEC holograms (id: 10-19)

Table A3. The mean and standard deviation in the absolute error for each (x,y,z,d), and RMSE. The metrics were computed using the test
set of synthetic holograms. All reported values have units of µm.

NS= 1000 NSH= 100 NSH= 1000 NSH= 5000 NSH= 10 000 NSH= 48 648

x 6.17 (82.30) 24.36 (140.58) 3.10 (40.18) 5.89 (59.51) 3.18 (31.10) 3.11 (32.77)
y 4.58 (55.66) 23.63 (138.46) 2.70 (22.64) 5.21 (59.75) 3.08 (30.32) 3.07 (24.70)
z 76.50 (123.17) 83.52 (490.16) 50.11 (63.07) 45.52 (191.96) 40.30 (142.44) 50.42 (76.19)
d 0.42 (1.16) 1.47 (2.42) 0.52 (1.34) 1.57 (1.59) 0.59 (1.56) 0.69 (1.44)
RMSE 91.44 (361.80) 162.13 (756.47) 59.14 (147.62) 60.63 (313.17) 48.22 (190.57) 58.15 (141.11)

Table A4. The mean and standard deviation in the absolute error
for each (x,y,z,d), and RMSE, for evaluation on the test set of
HOLODEC holograms. All reported values have units of µm.

Standard NSH= 1000

x 0.47, 3.84 0.44, 3.62
y 0.58, 4.40 0.50, 4.13
z 38.44, 37.65 33.64, 37.42
d 0.25, 0.45 0.28, 0.45
RMSE 45.06, 141.40 39.47, 133.15

Code availability. The neural networks described here and simula-
tion code used to train and test the models are archived at https:
//github.com/NCAR/holodec-ml (last access: 11 October 2022;
https://doi.org/10.5281/zenodo.7186527, Schreck et al., 2022b).
Data set generation and processing code are also available, and a
README file describing how to run the simulation codes.

Data availability. All HOLODEC and synthetic holo-
gram data sets created for this study are available at
https://doi.org/10.5281/zenodo.6347222 (Schreck et al., 2022a).
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