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Abstract. Remote sensing of water vapour using the Global
Navigation Satellite System (GNSS) is a well-established
technique and reliable data source for numerical weather pre-
diction (NWP). However, one of the phenomena rarely stud-
ied using GNSS are foehn winds. Since foehn winds are asso-
ciated with significant humidity gradients between two sides
of a mountain range, tropospheric estimates from GNSS are
also affected by their occurrence. Time series reveal charac-
teristic features like distinctive minima and maxima as well
as a significant decrease in the correlation between the sta-
tions. However, detecting such signals becomes increasingly
difficult for large datasets. Therefore, we suggest the applica-
tion of machine learning algorithms for the detection and pre-
diction of foehn events by means of GNSS troposphere prod-
ucts. This initial study develops a new, machine learning-
based method for detection and prediction of foehn events at
the Swiss station Altdorf by utilising long-term time series of
high-quality GNSS troposphere products. Data from the Au-
tomated GNSS Network Switzerland (AGNES) and various
GNSS sites from neighbouring countries as well as records
of an operational foehn index are used to investigate the per-
formance of several different classification algorithms based
on appropriate statistical metrics. The two best-performing
algorithms are fine tuned and tested in four dedicated exper-
iments using different feature setups. The results are promis-
ing, especially when reprocessed GNSS products are utilised
and the most dense station setup is used. Detection- and
alarm-based measures reach levels between 66 %–80 % for
both tested algorithms and thus are comparable to those from
studies using data from meteorological stations and NWP.
For operational prediction, limitations due to the availability
and quality of GNSS products in near-real time (NRT) ex-

ist. However, they might be mitigated to a significant extent
by provision of additional NRT products and improved data
processing in the future. Results also outline benefits for the
results when including geographically relevant stations (e.g.
high-altitude stations) in the utilised datasets.

1 Introduction

Global Navigation Satellite Systems (GNSS) are used exten-
sively for positioning and navigation applications worldwide.
Additionally, they enable users to retrieve information about
the state of the earth’s atmosphere, particularly the distri-
bution of water vapour. This technique, commonly referred
to as GNSS meteorology, was first proposed three decades
ago (Bevis et al., 1992) and is still gaining increasing inter-
est from the scientific community as well as from meteoro-
logical institutions. The retrieval of atmospheric information
from GNSS is based on the fact that electromagnetic signals
(such as GNSS signals) are delayed when travelling through
specific layers of the atmosphere. The delay experienced by
a GNSS signal in the lowest part of the atmosphere (tropo-
sphere) is proportional to the water vapour content along the
signal path. This fact is typically exploited in GNSS mete-
orology by introducing GNSS-derived atmospheric parame-
ters like the zenith wet delay (ZWD) or the zenith total delay
(ZTD) in data assimilation schemes. In numerous studies, a
positive impact has been demonstrated, especially on precip-
itation forecasts (see e.g. de Haan, 2008; Brenot et al., 2013;
Bennitt and Jupp, 2012; Yan et al., 2009). However, while
mostly precipitation-related studies represent the current fo-
cus of research (see Guerova et al., 2016 for a comprehen-
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sive summary), other meteorological phenomena can also be
investigated by means of GNSS. The number of studies on
other meteorological processes is relatively small, covering
phenomena such as thunderstorm activity (de Haan, 2013)
or fog formation (Stoycheva and Guerova, 2015; Aichinger-
Rosenberger, 2018). To our knowledge, Stoev and Guerova
(2018) represent the only investigation of foehn winds using
GNSS products in an initial study for Bulgaria based on ob-
servations of integrated water vapour (IWV).

Foehn winds are a characteristic weather phenomenon in
mountainous regions all over the world, especially in the
vicinity of prominent mountain ranges like the Alps (where
it is typically referred to as Alpine foehn). In general, foehn
can be characterised as “a wind (which is) warmed and dried
by descent, in general on the lee side of a mountain” (WMO,
1992). This definition already includes the major character-
istics observed in affected areas: strong and gusty winds, in-
creasing temperatures, and decreasing humidity. While there
are many other effects of foehn winds (from social to eco-
nomic impacts), large wind speeds and gusts are the most
critical features from the perspective of operational fore-
casting and warning systems. In typical foehn valleys like
the Reuss Valley (Switzerland) or the Wipp Valley (Aus-
tria), wind speeds up to 100 km h−1 are common; gusts up
to 200 km h−1 can even be observed at high altitude stations.

Foehn research denotes one of the major topics of (alpine)
mountain meteorology (Steinacker, 2006). Despite the fact
that the underlying physical processes of foehn have been
studied for over a century, still some gaps in knowledge, es-
pecially concerning small-scale features, exist. As the clas-
sical thermodynamic foehn theory is not able to sufficiently
explain all observed foehn events (especially those lacking
precipitation), a number of different theories and extensions
have been proposed. Furthermore, large observation cam-
paigns like the Mesoscale Alpine Programme (MAP) have
been conducted and combined with NWP results in order to
assess small-scale effects (Gohm and Mayr, 2004; Lothon
et al., 2006; Drobinski et al., 2007; Mayr et al., 2007).

Despite these substantial efforts in research, both the clas-
sification and forecasting of foehn are still challenging tasks.
Classification by human expertise still provides the most ac-
curate results, as dedicated experiments comparing subjec-
tive and objective methods reveal (Mayr et al., 2018). The
ability of NWP models to predict foehn is limited by the fact
that small-scale features still cannot be modelled with suf-
ficient accuracy due to coarse representation of real-world
topography (Wilhelm, 2012).

Machine learning (ML) techniques have been a ma-
jor research topic in atmospheric sciences over the last
decade. ML-based approaches of post-processing NWP out-
put, known as model output statistics (MOS), have been
shown to significantly enhance operational weather fore-
casts – see, e.g. Glahn and Lowry (1972), Wilks and Hamill
(2007), or Hess (2020). ML has also been used to assign
uncertainty estimates to forecasts based on deep learning

methods applied to previous forecasts (Scher and Messori,
2018). Furthermore, the classification and detection of differ-
ent weather types has been advanced and automated for dif-
ferent kinds of weather phenomena, such as thunderstorms
(Perler and Marchand, 2009; Manzato, 2005), temperature
forecasts (Yalavarthi and Shashi, 2009), wind systems (Kret-
zschmar et al., 2004; Otero and Araneo, 2021), or large-scale
weather regimes in general (Deloncle et al., 2007). Common
ML methods for such classification problems investigated in
former studies are

– random forests: Deloncle et al. (2007)

– adaptive boosting (AdaBoost): Perler and Marchand
(2009), Sprenger et al. (2017)

– support vector machines: Yalavarthi and Shashi (2009)

– neural networks: Manzato (2005), Kretzschmar et al.
(2004), Otero and Araneo (2021)

Only a few authors have used ML approaches for the detec-
tion and prediction of Alpine foehn yet. Initial studies were
carried out by Sprenger et al. (2017), who applied the Ad-
aBoost algorithm to a dataset combining weather station ob-
servations with NWP output fields from the Consortium for
Small-scale Modelling (COSMO) model. They found good
performance of the algorithm, obtaining high values for the
probability of detecting foehn events (88 %) and the ratio for
correct alarms of the algorithm (66 %). The most recent study
by Mony et al. (2021) showed the feasibility of using ERA5
reanalysis and climate model output instead of NWP output,
in a similar way to Sprenger et al. (2017). In addition, statis-
tical mixture models were also applied for foehn diagnosis,
e.g. by Plavcan et al. (2014).

The presented study represents an initial investigation on
the usability of GNSS troposphere product time series for
the detection and prediction of foehn events at the mete-
orological observation site Altdorf, Switzerland. Therefore
we make use of state-of-the-art ML-based classification al-
gorithms trained and tested on a dataset spanning 11 years
(2010–2020), derived from GNSS observations at sites all
over Switzerland and neighbouring countries as well as from
a long-term record of foehn observations at Altdorf.

Although foehn diagnosis might be characterised as an un-
supervised learning problem (no universal truth exists, and
even forecasts from human experts vary considerably; Mayr
et al., 2018), we apply supervised learning methods in this
initial study. This choice is motivated by the fact that ref-
erence data of proven quality are available (see Sect. 3.1.2
for details), results are easier to interpret, and our only refer-
ence study by Sprenger et al. (2017) also uses this approach.
On the other hand, unsupervised learning is typically used to
cluster data in order to discover something that is not visi-
ble otherwise. For our investigation, it is doubtful that a clear
cluster solely corresponding to foehn events would emerge
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considering the highly imbalanced dataset and the multitude
of phenomena affecting GNSS tropospheric delays.

The average performance of different ML algorithms is
assessed via a cross-validation procedure. The two best-
performing algorithms are trained over an eight-year period
and tested over a two-year period for different study setups
(feature setups). These feature setups cover the usage of re-
processed troposphere products as well as NRT products,
which could be used for operational prediction and detection
of foehn events. Furthermore, we explore the performance
of an extended station network, with the disadvantage of a
shorter period of availability for algorithm training. Finally,
we analyse the performance of our newly developed method
in detail over a week-long period, covering two major foehn
events at Altdorf.

2 GNSS meteorology

As already outlined in the introduction, the concept of GNSS
meteorology is based on the fact that electromagnetic signals
are delayed by the presence of the earth’s atmosphere. The
signal delay is directly proportional to the refractive index n
of the atmosphere. In the neutral atmosphere, the refractive
index or refractivity N is composed of a dry part (Nd) and
wet part (Nw), which depend on temperature T (K) as well
as the dry Pd (hPa) and water vapour partial pressure e (hPa),
respectively (Rüeger, 2002):

N = (n− 1)× 106
=Nd+Nw =

77.6890 ·Pd

T

+

[
71.2952 · e

T
+

3.75463× 105
· e

T 2

]
. (1)

The total tropospheric delay experienced by a GNSS sig-
nal observed at an elevation (el) and azimuth direction a is
referred to as the slant total delay (STD):

STD(a,el)= ZHD ·mfh(el)+ZWD ·mfw(el)+mfg(el)

· [GN · cos(a)+GE · sin(a)] ,
(2)

where ZHD (zenith hydrostatic delay) represents the hydro-
static part, and ZWD the wet part of the signal delay in the
zenith direction. In addition, horizontal gradients GN (north–
south direction) and GE (east–west direction), accounting for
the asymmetry of the atmospheric layers passed by the sig-
nal, can be estimated in GNSS processing. In order to map
the delays and gradients estimated for the zenith direction to
the correct elevation, mapping functions for both parts of the
delay (mfh(el),mfw(el)) and the gradients (mfg(el)) are used.

The total delay in the zenith direction, i.e. the zenith total
delay (ZTD), is the sum of the hydrostatic and wet part:

ZTD= ZHD+ZWD. (3)

ZHD accounts for the major part of the total delay and is
largely determined by the atmospheric pressure. It can be
modelled with sufficient accuracy from surface pressure ob-
servations using, e.g. the formula of Saastamoinen (Saasta-
moinen, 1972):

ZHD=
0.0022767 ·ps

1− 0.00266 · cos(2θ)− 0.00028 ·H
, (4)

where ps is the surface pressure, θ the station latitude, andH
is the station height above the geoid.

ZWD represents the main signal of interest for meteoro-
logical purposes, as it is directly related to the water vapour
content in the air column above the GNSS receiver, and
therefore to IWV, via

IWV= κ(Tm) ·ZWD, (5)

where κ denotes a semi-empirical function depending on the
integrated mean temperature Tm. Thus, it shows the same
high temporal and spatial variability as water vapour, mak-
ing precise modelling from meteorological surface observa-
tions practically impossible. As a consequence, ZWD is com-
monly estimated as an unknown in GNSS parameter estima-
tion alongside station coordinates and the receiver clock er-
ror.

2.1 Influence of hydrometeors on GNSS signal delays

Since foehn events can occur with and without simultane-
ous precipitation, the influence of hydrometeor formation on
GNSS signal delays should also be described in the follow-
ing. In an initial investigation over two decades ago, Solheim
et al. (1999) quantified propagation delays induced in GPS
signals by different types of molecular constituents, such as
dry air, water vapour, hydrometeors, and sand particles. They
were able to show that the influence of water in both solid
and liquid form on GNSS signals is significantly smaller than
for its gaseous form (water vapour). However, in cases of
extreme amounts of precipitation (especially in liquid form,
i.e. extreme amounts of rain in very intense thunderstorms),
a considerable influence for high-precision applications (as
troposphere estimation) can be expected. In the framework
of this study, we do not expect such severe events occur-
ring with foehn events. Nevertheless, these events might lead
to problems for our classification method (misclassification
through degraded GNSS products due to high hydrometeor
influence), especially in the summer months.

3 Methodology

3.1 Data

3.1.1 GNSS station network and tropospheric products

All investigations presented in this study are based on GNSS
troposphere products from the Automated GNSS Network
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Switzerland (AGNES). The AGNES network, which cur-
rently consists of 31 GNSS stations, was established in 2001
and is maintained by the Swiss Federal Office of Topography
(swisstopo) (Brockmann et al., 2002). The capabilities of the
network were extended to multi-GNSS in 2015 (Brockmann,
2016).

Reprocessed, long-term time series of hourly tropospheric
delays and gradients, available for the period 2010–2020,
are used in this study. A description of the dataset as well
as details on the reprocessing of GNSS data can be found
in e.g. Brockmann (2015). Parts of this reprocessing were
carried out in the framework of the second EUREF (In-
ternational Association of Geodesy Reference Frame Sub-
Commission for Europe) Permanent Network (EPN) re-
processing campaign in 2014, where GNSS data from a
large number of European stations were reprocessed (Pa-
cione et al., 2017). Therefore, some interesting stations (from
neighbouring countries such as Italy and Austria) are also
available and incorporated. More details on the actual selec-
tion of GNSS stations utilised for different experiments are
given in Sect. 3.2. For this study, we use hourly GNSS tropo-
sphere products originating from reprocessing campaigns as
well as operational NRT processing. The delay products are
estimated every hour from 30 s measurements together with
station coordinates (in this case using least-squares adjust-
ment). Gradient products are typically estimated only every
12 h and hourly values in between results from linear inter-
polation and extrapolation.

3.1.2 Foehn observations at Altdorf

In order to train a specific ML algorithm and evaluate its per-
formance, a reference dataset of foehn observations is needed
as the target variable. This study uses time series of 10 min
estimates of foehn index (FI) calculated at the station Altdorf,
following the approach presented by Dürr (2008). Altdorf is
located at the exit of the Reuss Valley, between the Gotthard
pass and the Lake Lucerne, at a height of 449 m above mean
sea level (a.m.s.l.). The station has the longest time series of
foehn observations in the Alps (spanning over 150 years of
total observations), and FI data is provided back to 1981 for
10 min intervals. It is also part of the National Meteorologi-
cal Ground-level Monitoring Network (SwissMetNet, SMN)
operated by MeteoSwiss. Currently, data not only from Alt-
dorf but from about 10 sites frequently experiencing foehn
winds are available on an operational level. The FI intro-
duced by Dürr (2008) is designed for operational nowcast-
ing and relies on typical foehn predictors such as wind speed
and direction, pressure and temperature gradients, and hu-
midity observations at the respective measurement site and
surrounding stations. It returns three different integer values:
0 (no foehn), 1 (foehn-mixed air), and 2 (foehn), which are
distinguished based on the predictors mentioned above. In an
extensive validation against classifications by human experts,
the index showed good performance for indices re-calculated

back to 1981 (Gutermann et al., 2012). For a detailed descrip-
tion of the calculation algorithm, we refer to Dürr (2008) and
Gutermann et al. (2012). As we aim for a binary classification
(no foehn or foehn), the cases of FI= 1 are treated as non-
foehn events and therefore mapped to value 0. Furthermore,
we map the cases of foehn (FI= 2) to the value 1 for the sake
of simplicity in all results shown in the following. Then, each
hour in the whole dataset where at least one 10 min value in-
dicates foehn is treated as an hour of foehn appearance and
thus a foehn event.

3.2 GNSS station selection criteria

The final selection of GNSS stations, whose data we use as
input features, is a difficult task for a number of reasons. The
following list gives an overview of the main problems to keep
in mind:

– Not every GNSS station provides a continuous dataset
of troposphere products. In fact, almost all of the avail-
able stations have data gaps over the chosen study pe-
riod (2010–2020), and a large number of stations were
only established after 2010.

– The ML-based detection and prediction can only be ap-
plied for foehn events where troposphere products from
all selected GNSS stations (i.e. all features or predic-
tors) are available. Since not all GNSS stations have
data gaps at the same periods, the actual amount of pos-
sibly missed events can add up.

In order to document and cope with these challenges, we cal-
culated detailed statistics for data availability for each sta-
tion or feature setup used within this study, which are given
in the respective result sections. Using these statistics, we
try to balance the need to incorporate important stations (e.g.
because of their geographic location) and still cover a suffi-
cient amount of foehn events (for both training purposes and
performance assessment). In the following, we therefore in-
troduce the rules for the selection of GNSS stations applied
in this study:

– Selected stations need to be relevant for the foehn clas-
sification in terms of their geographical location. Based
on previous studies, we define an area of interest with
latitude and longitude borders of [44.9, 48.2◦] and [5.9,
10.75◦], respectively.

– Time series from a selected station (of all troposphere
products used) should cover at least 95 % of all foehn
events (hours of FI= 1) in the study period (2010–
2020).

– The overall feature setup (GNSS stations and available
products) should be available for at least 50 % of all
foehn events in the study period.
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Figure 1. Time series of promising foehn predictors for Decem-
ber 2019. (a): ZWD (12 h moving-averaged for visualisation) from
stations KALT (north of Alpine ridge, blue) and LOMO (south of
Alpine ridge, red), (b): ZWD difference between KALT and LOMO
(black). Observed foehn events at Altdorf (based on FI) are visu-
alised as orange areas.

3.3 Feature selection from GNSS time series

The selection of features from GNSS troposphere time se-
ries is based on previous investigations on visual detection
from time series of different parameters as well as on obvi-
ous choices that are expected to be impacted most by foehn
conditions. Two obvious choices are visualised for Decem-
ber 2019 in Fig. 1, namely ZWD at stations north (KALT,
shown in blue) and south (LOMO, shown in red) of the
Alpine ridge and its difference (bottom section, shown in
black). In addition, foehn events at Altdorf are shown as
colour-coded periods (orange). Strong correlation between
the contrary trends in ZWD at the two stations and the on-
set of foehn in Altdorf can be observed. Furthermore, the
difference in ZWD between the stations reaches minima in
the two extended foehn periods observed (∼ 15–18 and 19–
21 December 2019). These time series give a first impres-
sion how (and from which parameters) foehn events can be
detected using GNSS datasets. As this becomes a very de-
manding task for longer periods (both visually and analyt-
ically), ML techniques are a promising tool to extend and
automate such a detection process, with the additional bene-
fit of possibly providing the ability to also predict upcoming
events.

3.4 Default study setup

In the following, the default feature setup for the algorithm
comparison (cross-validation) and the first (reference) exper-
iment is introduced. In general, the definition of a specific
setup concerns the following points:

– GNSS station network. The selection of GNSS stations,
from which data is utilised for training and testing the
ML algorithms used, should be compliant with the cri-
teria outlined in Sect. 3.2.

– Study period. In combination with the chosen station se-
lection, a sufficient time period must be chosen to match
the criteria outlined in Sect. 3.2.

– Features. This point defines which troposphere products
should (or could) be used for this specific setup.

The detailed setup and statistics of data availability for the
cross-validation and the first feature setup (FS1) are given in
Table 1. It includes ZWD (absolute values and all possible
differences between stations) and gradient products (GN and
GE) as well as a selection of four ZHD differences, which
are representative differences between north–south stations
in the network. Tests have also been conducted using all pos-
sible differences in ZHD (as for ZWD), but no improvement
was found using this setup. This might be explained by the
fact that ZHD is largely dependent on pressure, which typ-
ically does not show such small-scale variations as water
vapour (and thus ZWD). Therefore, a small number of ZHD
differences (i.e. pressure differences) across the Alpine ridge
might be sufficient.

Figure 2 provides a visualisation of the full station net-
work utilised in this study. The different coloured triangles
represent different station setups for the feature setups intro-
duced later (red triangles represent stations used in the de-
fault setup; blue triangles represent stations that are added
for the third feature setup). In addition, a complete list of
utilised stations (including geographical coordinates) can be
found in the Appendix A.

3.5 Data preparation

One of the main challenges for ML-based classification al-
gorithms are imbalanced datasets. This imbalance is also
strongly present in datasets of foehn observations, since
foehn is a rather rare meteorological phenomenon. For the
utilised FI dataset, the average foehn probability over the
11 year period (2010–2020) amounts to only ∼ 4 %. Thus,
the ratio of under-representation of the minority class (foehn
event) compared to the majority class (no foehn event) is as
large as 1 : 25.

3.5.1 Oversampling

A common approach to overcome problems originating from
a high imbalance in a dataset is to oversample the minor-
ity class for the training dataset. One possible approach to
achieve this is the Synthetic Minority Over-sampling Tech-
nique (SMOTE) (Chawla et al., 2002), which we use in this
study. The technique creates new (synthetic) instances of the
minority class within the training data. For this study, an
oversampling of observed foehn hours in the training dataset
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Table 1. Default setup used for the cross-validation and feature setup 1 (FS1). For features not outlined in a specific row, by default, all
stations and combinations of stations are used.

Training period 2010–2018
Test period 2019–2020
Station setup Post-processed: red triangles in Fig. 2
Feature setup ZWD, GN, GE, ZWD_diff, ZHD_diff
ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2,

SIGM-TORI, ETHZ-TORI
Total number of features 564
Foehn events (FI== 1) 5642 h
Foehn events without GNSS data 2049 h (36.3 %)

Figure 2. GNSS station network utilised for this study. Stations in-
cluded in the default setup (cross-validation and all feature setups)
are marked as red triangles. Stations explicitly used in feature setup
3 (FS3) are marked as blue triangles. The SMN station Altdorf is
marked with a yellow star. In addition, the black lines represent the
ZWD differences between stations, which serve as the top predic-
tors in FS3, shown in Sect. 4.3.

by 25 % was conducted using SMOTE, which improves the
performance of the applied algorithms by about 20 %. The
value of 25 % oversampling was chosen to achieve a reason-
able balance between the advantage of having more usable
training events (larger percentage of oversampling) and the
fact that foehn is still a rather rare phenomenon (therefore
also rare in possible test datasets). All results shown in the
following sections are based on pre-processing using this ap-
proach.

3.5.2 Shifting of FI time series

In order to assess the suitability of the GNSS troposphere
products for operational prediction, a time shift of one hour is

applied to the target vector (i.e. FI time series at Altdorf). As
operational usage is considered a future goal of the proposed
method, the shift is applied for all feature setups investigated
in this study (also those using post-processed GNSS prod-
ucts). Therefore, each prediction of a foehn event is based
on GNSS observations collected one hour before a possible
onset of foehn at Altdorf.

3.6 Performance metrics

As already outlined in the last section, the imbalance in
datasets of foehn observations is a major obstacle for the ap-
plication of ML algorithms and the assessment of their per-
formance. For highly imbalanced data, performance metrics
typically used in ML studies might not be representative;
therefore, other options have to be explored. In the case of
the present dataset, a typical performance measure such as
precision alone would not be suitable, as it simply compares
detected or predicted foehn hours with the observed data for
all time steps. Thus, it might happen that an algorithm with
optimal precision predicts (almost) no foehn events at all,
since this will still result in an optimal performance with
regards to precision. In order to overcome these issues, we
adapt the same performance metrics (see e.g. Barnes et al.,
2007) as used in Sprenger et al. (2017). These can be formu-
lated as conditional probabilities P(|) and calculated using
the so-called confusion matrix. The matrix reports the num-
ber of false negatives (FNs), false positives (FPs), true nega-
tives (TNs), and true positives (TPs) and thus allows for the
calculation of common performance measures in ML, such
as precision or recall.

The measures used in this study can be separated into
detection-based metrics:

– probability of detection (POD) = P (predicted | ob-
served)

– probability of false detection (POFD) = P (predicted |
not observed)

– missing rate (MR) = P (not predicted | observed)

and alarm-based metrics:
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– correct alarm ratio (CAR) = P (observed | predicted)

– false alarm ratio (FAR) = P (not observed | predicted)

– missing alarm rate (MAR) = P (observed | not pre-
dicted).

As already visible from the formulations above, POD and
CAR are directly connected to each other via the Bayes
Theorem. This also implies that there is always a trade-off
between those two parameters, and therefore, only one of
them can be optimised while decreasing the respective other
one. Which metric should be optimised strongly depends
on the actual application, as already outlined by Sprenger
et al. (2017), who argued that alarm-based measures might
be more relevant from a forecaster’s perspective.

In addition, we adopt two measures that represent a kind
of mean performance in terms of both CAR and POD for de-
scribing the results presented in the next sections. The first
one is just the simple average of those two parameters com-
bined, therefore referred to as COMB in the following:

COMB=
POD + CAR

2
. (6)

The second adopted metric is based on the F -beta score Fβ
(Baeza-Yates and Ribeiro-Neto, 1999), which can also be
formulated using the confusion matrix. Using precision and
recall measures, the Fβ score can be computed for varying β:

Fβ = (1+β2) ·
precision · recall

(β2 · precision)+ recall
. (7)

The classical F -beta score (F1, using β = 1) represents the
weighted harmonic mean of precision and recall, with a range
between 0 (worst case) and 1 (optimal value). As already dis-
cussed above, a precision measure might not be representa-
tive for results of this study, as this might result in our algo-
rithm predicting no foehn events at all. Thus, we use the F2
score (beta= 2), which weights the recall measure two times
larger than precision measure, instead of F1 in order to put
more emphasis on the recall, i.e. on the detection of all foehn
events:

F2 = 5 ·
precision · recall

(4 · precision)+ recall
. (8)

3.7 Algorithm selection and tuning

This section gives an overview on tested algorithms and the
process of algorithm selection using a cross-validation ap-
proach. Details on this approach are given in the following
Sect. 3.7.1. Furthermore Sect. 3.7.2 presents the means as to
how the chosen algorithms are optimised via a grid search
procedure.

3.7.1 Machine learning algorithms

In the course of this study, several different ML algorithms
are tested in order to investigate their usability for this spe-
cific problem and to compare their performance relative to

each other. The following algorithms, which have already
been applied for classification of foehn or other meteorolog-
ical phenomena (as listed in the introduction), are tested:

– adaptive boosting (AdaBoost) (Freund and Schapire,
1997)

– gradient boosting (GB) (Friedman, 2001)

– multilayer perceptron (MLP) (LeCun et al., 2012)

– random forest classifier (RF) (Breiman, 2001)

– support vector classifier (SVC) (Platt, 1999)

– k-nearest neighbour (KNN) (Cover and Hart, 1967).

As a detailed discussion of all algorithms would go beyond
the scope of this study, we focus on the chosen ones at the
end of this section. For a comprehensive overview of all of
them, we refer to Hsieh (2009).

Before carrying out experiments using a specific ML al-
gorithm, the most promising one(s) have to be identified
from the list of algorithms given above. Therefore, a cross-
validation over the training dataset (2010–2018) was per-
formed and evaluated using the performance metrics intro-
duced in Sect. 3.6. For the cross-validation, single years of
data are iteratively taken out of the training dataset, serving
as validation data in order to assess the performance of the
outlined algorithms. This is repeated until every year serves
once as validation dataset. The actual implementation is car-
ried out using the Python package scikit-learn (version 1.1.2)
(Pedregosa et al., 2011). For these cross-validation runs, the
default settings from the algorithm routines are used in or-
der to get an objective, initial picture of their performance
for this problem. More sophisticated approaches, like includ-
ing more (complex) algorithms or running grid searches for
each algorithm separately before the comparison, were not
followed due to the “proof-of-concept” focus of the study.
However, these approaches might be used in future studies
on this topic in order to optimise the overall performance (see
also the future ideas described in the outlook (Sect. 6)).

Resulting statistics of the cross-validation are summarised
in Table 2. These results indicate best performance for the
SVC algorithm in terms of combined measures (COMB and
F2 score). For detection-based measures (POD), the KNN al-
gorithm achieves the highest value on average but falls short
in terms of CAR and POFD. The same holds for the RF
algorithm in terms of alarm-based measures (CAR), but its
detection-based performance is significantly degraded com-
pared to, e.g. SVC. Ultimately, we decided to use the GB
and SVC algorithms for evaluation in the feature setup ex-
periments, as these are the only ones providing average com-
bined measures of over 70 % (see Table 2).

Based on the results of the cross-validation, the GB and
SVC algorithm are chosen for the experiments shown in
Sects. 4 and 5. In the following, we give a brief introduction
of those two algorithms.
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Table 2. Averaged performance metrics of the cross-validation for
all tested algorithms over the nine year training period 2010–2018.

Algorithm POD CAR COMB F2 POFD MAR

AdaBoost 0.575 0.504 0.540 0.559 0.039 0.030
GB 0.757 0.664 0.711 0.736 0.027 0.016
MLP 0.702 0.686 0.694 0.696 0.024 0.021
RF 0.579 0.789 0.684 0.610 0.011 0.029
SVC 0.764 0.721 0.742 0.754 0.021 0.016
KNN 0.791 0.407 0.599 0.665 0.080 0.015

1. Gradient Boosting (GB). Introduced by Friedman
(2001), GB represents a technique of ensemble learning.
It builds a prediction model by an additive combination
of weak learners. Typically, decision trees, which are
built sequentially in an iterative manner, are used. GB
represents a supervised model that can deal with both
classification and regression problems. The main hyper-
parameters of the algorithm (tuned in the next section)
are:

– n_estimators: number of boosting stages to perform

– max_depth: maximum depth of the individual re-
gression estimators that limits the number of nodes
in the tree

– learning_rate: limits the contribution of each tree.

2. Support Vector Classifier (SVC). The SVC (Platt, 1999)
also denotes a supervised model that classifies samples
by searching for the best hyperplane separating data
points of one class from those of the other class. The ba-
sic version of SVC is a linear classifier, finding the best
linear separation between two classes. In order to solve
non-linear problems, one can make use of the kernel
formulation, which uses a radial basis function (RBF)
in our study. Through the combination of several binary
classifiers, binary problems can be extended to multi-
class classification.

The main hyperparameters for SVC are:

– C: regularisation parameter

– gamma: represents the kernel coefficient

– kernel: kernel type to be used in the algorithm, set
to radial basis function (RBF) in this study.

3.7.2 Hyperparameter tuning

In order to optimise the performance of the chosen algo-
rithms, dedicated tuning of their hyperparameters is carried
out. Therefore, a (small-scale) grid search procedure is con-
ducted, which is an exhaustive search over a subset of man-
ually selected values. The performance of all hyperparam-
eter value combinations is evaluated based on a three-fold
cross-validation. Therefore, the training dataset (2010–2018)

is randomly divided into three folds, where two thirds are
used for training while the last third serves for validation.
This procedure is repeated three times until each third is used
once for validation. All tested hyperparameter values as well
as the best performing value combinations are summarised
in Table 3.

We waive to do a more intensive grid search procedure
for reasons already mentioned in the cross-validation section
(“proof-of-concept” study), although we plan to optimise the
performance of the method through this in future studies.

4 Results: feature setup experiments

As the major performance test of the proposed method, four
experiments are performed. Within these experiments, differ-
ent setups regarding utilised GNSS stations and tropospheric
parameters in the feature matrix are investigated.

4.1 Feature setup 1: reprocessed products

Feature setup 1 (FS1) investigates the performance of the
chosen algorithms for an optimal combination of the largest
station network and longest study period, still compliant to
the selection criteria from Sect. 3.2. For this setup, the repro-
cessed time series of GNSS troposphere products are used;
thus, tropospheric gradients can also be utilised.

Resulting statistics for FS1 from both algorithms are given
in Table 4. Both algorithms show a promising performance,
which, on average, is comparable to the results reported by
Sprenger et al. (2017). For the GB algorithm, POD val-
ues significantly (13 %) lower than for the reference study
are balanced by a ∼ 10 % improvement in CAR. The SVC
algorithm tends to predict more events (higher POD) and
therefore also produces more false alarms (higher POFD,
lower CAR), somewhat similar to the AdaBoost algorithm
of Sprenger et al. (2017). Combined measures (COMB and
F2) indicate very similar overall performance for both tested
algorithms, with GB having the advantage of more balanced
(almost equal) values for detection- and alarm-based mea-
sures. Furthermore, the actual probability of foehn events
predicted by both algorithms over the test period (3.7 % and
4 %) lies within 1 percentage point of the actual observed
probability (4.7 %) for all events where GNSS-based results
could be generated.

Table 5 provides the confusion matrix statistics of the GB
and SVC algorithm for all setups investigated in this study.
The uppermost two lines provide the values of TN, FP, FN,
and TP for FS1. First of all, the results show the large im-
balance of the classification problem, with TN values be-
ing approximately 30 times larger than TP values. Further-
more, it can be seen that SVC produces a significantly larger
amount of FP values (false alarms), which is also reflected
in the statistics given in Table 4. On the other hand, it also
misses less events compared to the GB algorithm, resulting
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Table 3. Tuned hyperparameters of both algorithms with their best, tested and default values.

Algorithm Hyperparameter Best value Tested values Default value

GB n_estimators 300 [100, 300, 500] 100
max_depth 5 [3, 5, 8] 3
learning_rate 0.1 [0.05, 0.1, 0.2] 0.1

SVC C 0.1 [0.1, 1, 10, 100, 1000] 1
gamma “scale” [1, 0.1, 0.01, 0.001, 0.0001, “scale”] “scale”

Table 4. Performance metrics for the proposed models using post-processed troposphere products and the full feature setup (as shown in
Table 1).

Algorithm POD CAR COMB F2 POFD MAR P_predicted P_observed

GB 0.753 0.764 0.758 0.7555 0.011 0.012 0.037 0.047
SVC 0.804 0.663 0.733 0.771 0.020 0.010 0.040 0.047

Table 5. Confusion matrix statistics for all four feature setup exper-
iments.

Setup Algorithm TP TN FP FN

FS1 GB 324 8643 100 106
SVC 346 8567 176 84

FS2 GB 277 8714 123 122
SVC 319 8635 202 80

FS3 GB 222 3797 57 71
SVC 249 3778 76 44

FS4 GB 258 4249 71 105
SVC 294 4214 106 69

in a lower number of FNs and thus lower MAR. GB shows
an approximately equal number of FP and FN values, but
providing more TN values than SVC.

In addition to the statistics provided in Tables 4 and 5,
Fig. 3 shows observed (red) and predicted (orange=GB and
blue=SVC) foehn events for FS1 (top left corner) as well
as the results for all other FS experiments. It should be noted
that all observed events are shown, including those where
no GNSS data are available and thus no prediction could
be made. This fact also has to be kept in mind when look-
ing at the results in Table 4, otherwise they might look too
optimistic. Nevertheless, some overall conclusions, such as
SVC predicting more events than GB (higher POD but lower
CAR), are still visible from Fig. 3.

Another major advantage of the GB algorithm is its ability
to assess the importance of the used features for the predic-
tion result. In Fig. 4, we show the 20 most important predic-
tors (features) for the classification carried out for FS1. By
far, the best predictor is the ZWD difference between the sta-
tions FLDK and FALE, which is surprising due to the fact
that both stations are not as close to Altdorf as others in the

utilised network. Interestingly, features from stations even
further away from Altdorf also have a significant impact,
most prominently ZWD and also gradient products (even for
an east–west direction), e.g. in the Valais area (WEHO and
HOH2 stations). This is reasonable due to the fact that typi-
cal wind trajectory in the Rhone valley is east–west oriented.
ZHD differences representing larger-scale pressure gradients
(such as LUZE-STA2 or ETHZ-TORI) are also found in
Fig. 4. This is consistent with the study from Sprenger et al.
(2017), where the pressure difference between Zürich and
Locarno was the single most important predictor.

4.2 Feature setup 2: NRT products

Feature setup 2 (FS2) addresses the major question of to what
degree the proposed method can be used for (or incorporated
into) operational forecasting of foehn events. Therefore, the
investigations presented for FS1 are extended by using NRT
troposphere products for the two-year test period. This way,
we investigate the suitability of the proposed ML algorithms
for operational prediction. NRT troposphere products are
currently available in the form of tropospheric delays (ZHD,
ZWD, and ZTD), which are typically provided with a latency
of approximately 30–40 min after each full hour. Unfortu-
nately, no atmospheric gradients are currently delivered in
NRT mode, but an extension is possible and aimed for in
the near future. The missing gradient information makes it
necessary to train the GB and SVC algorithms again for the
dedicated period (2010–2018 of reprocessed products) but
this time only using features related to tropospheric delays
(ZWD, ZTD, ZWD differences, ZHD differences). The de-
tailed setup used for FS2 is again aligned with the criteria
outlined before and given in Table 6.

Resulting statistics of the prediction using NRT products
can be found in Table 7. In comparison to FS1, a general
performance decrease in all measures is apparent for both
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Figure 3. Time series of observed (red, FI) and predicted (orange=GB, blue= SVC) foehn events (FI== 1) for all FS experiments and their
respective time periods (2019–2020 or 2019). Note that all observed foehn events are shown here, including those for which no prediction
could be made due to missing GNSS data.

Table 6. Default setup used for FS2. For features not outlined in a specific row, by default, all stations and combinations of stations are used.

Training period 2010–2018
Test period 2019–2020
Station setup Default network: Red triangles in Fig. 2
Feature setup ZWD, ZTD, ZWD_diff, ZHD_diff
ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2,

SIGM-TORI, ETHZ-TORI
Total number of features 501
Foehn events (FI == 1) 5642 h
Foehn events without GNSS data 2004 h (35.5 %)

algorithms. For the SVC algorithm, the degradation is more
pronounced for the alarm-based (∼−6 % in CAR) than for
detection-based measures (almost equal performance). The
GB algorithm shows equal degradation for both types.

Rows three and four of Table 5 give the confusion matrix
entries for FS2. Results for the different algorithms are al-
most identical to those of FS1. As for FS1, SVC produces a
larger amount of FP values but misses less events compared
to the GB algorithm. GB again shows an approximately equal
number of FP and FN values and provides more TP values.

The top right corner of Fig. 3 shows observed vs. predicted
foehn events for FS2, in a similar way to that which is already
described for FS1. It also confirms the conclusions drawn
from statistics given in Tables 5 and 7, namely that using
NRT products increases the number of false alarms (low-

ering CAR) compared to post-processed data (FS1). This
holds true especially for the GB algorithm, where signifi-
cantly more predicted events are visible for FS2 compared
to FS1.

This indicates the importance of gradient parameters for
the proposed method, as already visible in feature impor-
tances of FS1 (Fig. 4). Furthermore, lower quality of ZWD
estimates must also be taken into consideration for the NRT
solution, since lower quality orbit and clock products have to
be used for GNSS processing. Nevertheless, combined mea-
sures (F2 and COMB) are still reaching values around 70 %,
which might qualify the method as a potentially beneficial
additional tool for operational forecasting, if efficient mitiga-
tion strategies for missing GNSS data can be applied. Some
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Table 7. Performance metrics for FS2 using NRT GNSS products.

Algorithm POD CAR COMB F2 POFD MAR P_predicted P_observed

GB 0.694 0.693 0.694 0.694 0.014 0.014 0.0428 0.0432
SVC 0.799 0.612 0.706 0.753 0.023 0.010 0.0564 0.0432

Figure 4. Feature importance score of the 20 top predictors for the
GB algorithm for the setup used in FS1.

possible strategies will be discussed in the outlook section
(Sect. 6).

In the absence of gradient parameters, ZWD differences
dominate the top 20 most important features of the GB al-
gorithm, as is to be expected (see Fig. 5). The dominance of
the top predictor (again ZWD difference between FALE and
FLDK) is even more pronounced than for FS1. Nevertheless,
ZHD differences and DOY are again present, and absolute
ZWD for certain stations also shows up.

4.3 Feature setups 3 and 4: shorter period and more
stations

These additional experiments investigate the question of
whether the time period of training data can be reduced
when, at the same time, new stations (and therefore features)
are introduced. This is especially important, since it allows
for the introduction of geographically interesting stations
(e.g. located at higher altitudes, such as SANB or OALP, see

Figure 5. Feature importance score of the 20 top predictors for the
GB algorithm for FS2.

Appendix A for more details), which might be beneficial for
the algorithm performance. The details of the feature setup
for both experiments are given in Table 8. The utilised GNSS
parameters remain unchanged from the default setup, but in
addition, four stations (marked in blue in Fig. 2) are added
to the station setup. The study period is adjusted to 2015–
2019 in order to again be aligned with the selection criteria,
and this period is split into training and test periods by an
80 %/20 % proportion.

In order to make a direct comparison possible, a fourth fea-
ture setup (FS4) is introduced in addition. It uses the station
setup of the former experiments (FS1 and FS2) but the study
period of FS3. Resulting statistics for both experiments (FS3
and FS4) are given in Table 9.

The results for FS3 show improvements for both al-
gorithms, especially for alarm-based measures, compared
to FS4. This outlines the importance of including geo-
graphically relevant stations (especially stations at the crest,
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Table 8. Default setup used for FS3 and FS4. For features not outlined in a specific row, by default, all stations and combinations of stations
are used.

Training period 2015–2018
Test period 2019
Station setup Post-processed: Red+ blue/red triangles in Fig. 2
Feature setup ZWD, GN, GE, ZWD_diff, ZHD_diff
ZHD_diff combinations KALT-STA2, LUZE-STA2, BOU2-STA2,

SIGM-TORI, ETHZ-TORI
Total number of features 738/564
Foehn events (FI== 1) 2650 h
Foehn events without GNSS data 1244 h (46.9 %)/745 h (28.1 %)

i.e. higher altitudes) for the performance of the methods.
Confusion matrix elements for FS3 and FS4 can be found
in the lower half of Table 5. Overall, they show the same be-
haviour as already observed for the other experiments. How-
ever, it should be noted that the relative amount of FNs is
lower for this feature setup, which is also reflected in the (im-
proved) resulting statistics. One major reason for this is the
higher probability of foehn events during 2019 in general.
This is evident from both Table 9 (probability only, consid-
ering events which are also covered by GNSS data) as well
as from Fig. 3 (showing all observed events). Another reason
is that introducing new stations also leads to a significant de-
crease in foehn events, for which results are available. This
is clearly visible by comparing time series for FS3 and FS4,
e.g. for the GB algorithm in November 2019 (around DOY
315–320). Still, benefits can be attributed to the newly intro-
duced stations, as they are also reflected in the feature im-
portances of the GB algorithm, visualised in Fig. 6. In this
case, the top predictor of FS1 and FS2 (ZWD difference be-
tween FLDK and FALE) is superseded by the ZWD differ-
ence between FLDK and SANB (station at San Bernadino
pass, 1702 m a.s.l.). The station SANB as well as other high-
altitude stations (such as OALP) are present a few times in
the top 20 for FS3. ZHD differences are actually no longer
among the top predictors for FS3, which might be explained
by the fact that ZWD observations (and having them at rele-
vant location) still provides significantly more valuable infor-
mation. Feature importances for FS4 are not shown, as they
are excepted to be fairly similar to those obtained for FS1, for
which the same station setup and products are used. Overall,
it can be concluded that benefits from additional stations can
be excepted, although for future applications of the method,
it will be crucial to ensure data availability, especially for the
top predictors shown in Fig. 6.

5 Results: performance analysis for distinctive foehn
events

The performance statistics shown in the last section give an
overview of the average performance over the test period. In
order to gain more insight on the performance of our method

for specific events, we look at a week-long period (including
two foehn events) at Altdorf in the year 2019 in more detail.
Therefore, we make use of results from both algorithms for
FS3 and evaluate their performance for this specific week
against the operational FI.

Between 15–21 December 2019, two major (south) foehn
events were observed at Altdorf, for which we analyse the
performance of our method in the following. Relevant mete-
orological parameters (provided by MeteoSwiss) describing
the situation are visualised in the upper two panels of Fig. 7.
The upper part shows observations of temperature (red) and
relative humidity (green) as well as wind speed (black) and
direction (grey) for the time period 15–21 December 2019
(DOY 349–355). The first major event started around mid-
night at DOY 350 (16 December 2019), as visible in the sig-
nificant increase in temperature and decrease in relative hu-
midity as well as the onset of a strong southerly flow (up to
60 km h−1). This situation persisted over 48 h until the early
morning hours of DOY 352 (18 December 2019). After a
short break during daytime, the second major event started
in the late evening of that same day and again lasted close
to 48 h until the evening of DOY 354 (20 December 2019),
again accompanied by similar conditions observed at the
SMN station.

The bottom part of Fig. 7 shows the classification results of
our method for the GB (orange) and SVC (blue) algorithms
as well as the reference FI index (red) from MeteoSwiss. First
of all, it must be noted that, for both the initial hours of the
first major event and the last hours of the second event, no
full feature matrix was available, and therefore, no classifi-
cation was possible. This highlights the major drawback or
limitation of the introduced method. However, as soon as all
necessary data are available, the event is captured by both
algorithms.

An overall assessment of the results shows a good average
performance of the GNSS-based classification, especially for
the GB algorithm. The SVC algorithm tends to over-predict
foehn during the break period and therefore issues a large
number of false alarms. This fact is also reflected in the statis-
tics of all feature setups shown in Sect. 4 (higher POD but
also higher POFD and lower CAR).
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Figure 6. Feature importance score of the 20 strongest predictors for the GB algorithm when using the FS3 setup.

Table 9. Performance metrics for FS3 and FS4.

Setup Algorithm POD CAR COMB F2 POFD MAR P_predicted P_observed

FS3 GB 0.758 0.796 0.777 0.765 0.015 0.018 0.065 0.071
SVC 0.850 0.766 0.808 0.832 0.019 0.012 0.078 0.071

FS4 GB 0.711 0.784 0.747 0.724 0.016 0.024 0.070 0.078
SVC 0.810 0.735 0.772 0.794 0.025 0.016 0.070 0.078

However, the transition from foehn to non-foehn and vice
versa is not as accurately captured as in the operational FI
index. One possible reason might be a slightly longer (or
shorter) response time of the GNSS-based parameters at a
specific station to a change in synoptic conditions, relative
to the classical meteorological parameters observed at Alt-
dorf. Therefore, it might be beneficial to introduce different
time lags on some of the predictors, depending on the ac-
tual physical parameter and the geographical location of the
contributing stations.

In order to analyse the performance of the methods in more
detail and to increase understanding of the physical processes
captured in the GNSS products, we additionally analyse the
time series of the most important predictors (features) of the
introduced method. Figure 8 shows the six top predictors of
the GB classification for FS3, as shown in Fig. 6, as well
as the observed foehn periods (colour-coded in red). Most
of them show distinctive patterns for foehn as well as for
non-foehn periods, which are consistent with the physical re-
lationships between GNSS observations and meteorological
conditions (as introduced in Sects. 2 and 3.3) experienced for
the respective period. ZWD differences show local minima or
maxima for the major foehn periods, as already suspected in
Sect. 3.3. Whether minima or maxima are observed depends
on the actual location of the stations and on how the differ-

ence is built. Most of the (ZWD difference) features shown
in Fig. 8 are built as a north–south station difference, which
was expected to be a good predictor for foehn. Typically,
low ZWD values are observed at stations north of the Alpine
ridge (such as FLDK here) and high ZWD values at stations
south of the Alpine ridge (e.g. LOMO). The north gradient
observed at station WEHO (GN_WEHO) is also consistent
with the physical understanding, showing a southward (neg-
ative) trend for the observed foehn periods. The only feature
that might not be intuitive is the ZWD difference between the
stations ZIMM (near Bern) and HABG (located a bit north of
the main Alpine ridge). Although the extreme values are not
as pronounced as for other predictors, they are still visible
in the shown time series. This suggests that, in the majority
of cases, humid air also reaches the station HABG, which is
located further north of the main Alpine ridge.

6 Conclusions and outlook

In the present study, we introduced a new method for the
detection and prediction of foehn events at the Swiss sta-
tion Altdorf based on GNSS troposphere products and ML-
based classification. We showed the performance of the in-
troduced method by making use of an 11-year-long dataset of
GNSS tropospheric parameters from a dedicated station net-
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Figure 7. Time series of meteorological observations (a: temper-
ature (red) and relative humidity (green), (b): wind speed (black)
and direction (grey)); (c): classification results of SVC (blue) and
GB (orange) and the reference FI index (red)

work, namely the Swiss AGNES GNSS network, as well as
from additional sites in neighbouring countries. Furthermore,
we made use of FI observations at the SMN station Alt-
dorf for the chosen time period, provided by MeteoSwiss. In
the course of an extensive cross-validation over the training
dataset (2010–2018), six different classification algorithms
were tested. The two best-performing algorithms were the
GB and SVC algorithms, which were then used in the fol-
lowing feature setup experiments. In a first experiment (FS1),
we evaluated results of foehn classifications and predictions
from those two algorithms over a two-year test period (2019–
2020) at Altdorf. The second experiment (FS2) investigated
the usability of NRT GNSS products for foehn prediction in
order to assess the feasibility of these low-latency (∼ 30–
40 min) data for operational forecasting. By comparing re-
sults from a third and fourth experiment (FS3 vs. FS4), we
assessed the benefit of including single, geographically rele-
vant GNSS stations, such as high-altitude sites. Additionally,
the performance of the method was tested in a detailed inves-
tigation of a weekly period including two strong foehn events
in December 2019.

The following main conclusions can be drawn from the
presented results:

Figure 8. Time series of the six top predictors of the GB algorithm
(most important features as shown in Fig. 6) for the analysed time
period (15–21 December 2019). Observed foehn events (FI= 1) are
colour-coded in red.

– The introduced ML-based method using GNSS tro-
posphere products can provide encouraging results. It
achieves equal performance in terms of both detection-
based (POD= 75 %–80 %, POFD= 1 %–2 %) and
alarm-based (CAR= 66 %–76 %, MAR= 1 %–2 %)
metrics. On average, the results of both utilised algo-
rithms are comparable to those obtained by Sprenger
et al. (2017).

– The most promising results can be obtained if the full
station network (shown in Fig. 2) can be utilised. This
also incorporates stations from neighbouring countries
(Austria, Italy, Germany).

– When using NRT troposphere products instead of repro-
cessed data, e.g. for operational prediction, some degra-
dation of the results has to be accepted. This shows dif-
ferently for the two used algorithms. For SVC, the per-
formance loss mainly concerns alarm-based measures,
whereas for the GB algorithm, both performance met-
ric types are affected similarly. There are two apparent
reasons for the experienced degradation related to the
GNSS products. First, the NRT products do not include
tropospheric gradients, which show up in the top pre-
dictors for the other case studies, at least for dedicated
stations. Second, it can be expected that the quality of
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the prediction results is also influenced by the quality of
the troposphere products. For NRT products, this qual-
ity is lower due to lower quality (but also lower latency)
products used in GNSS processing (such as satellite or-
bits and clocks). In order to confirm this assumption, we
plan to compare results using the NRT setup (using only
delay products) on both NRT and reprocessed products
in a possible future study.

– The final decision on which algorithm (GB or SVC)
to use is left to the actual users. Both algorithms show
equal performance for combined measures (COMB and
F2), with GB providing a more balanced performance in
terms of detection- and alarm-based statistics. Another
major advantage of the GB algorithm is the availabil-
ity of feature importance information, which can pro-
vide valuable insight in the physical relations and mean-
ingfulness of the results. Furthermore, its performance
for the detailed event analysis, presented in Sect. 5,
was clearly better (significantly lower number of false
alarms).

– As expected from the physical background of GNSS
troposphere products, ZWD differences from geograph-
ically important stations serve as the most important
predictors. Still, other chosen parameter types, such as
north and east gradients as well as ZHD differences
(representing pressure gradients), also show up in the
list of top features for all experiments. Furthermore, it
is worth noting that stations not only in the vicinity
of Altdorf but also further away (e.g. the Valais area
or the Rhine valley) play an important role. Therefore,
stations from neighbouring countries can also be cru-
cial for good performance (such as station Feldkirch
(FLDK), Austria). Using the special setup of FS3, the
benefits of having additional data from high-altitude sta-
tions (SANB, OALP, ZERM) was outlined. Having the
positive impacts of these stations on the result could
also allow for shortening the amount of data for train-
ing (from nine to four years, in this case), but lost foehn
events due to missing data at added stations have to be
kept in mind.

– Choosing the optimal performance metrics and appro-
priate pre-processing is a key task in ML-based classifi-
cation algorithms, especially when working with such
a highly imbalanced dataset as in this study. The ac-
tual choice for the most important metric(s) strongly
depends on the actual application of the prediction
method, deciding whether detection- or alarm-based
measures should be preferred. Within this study, we
tried to tune the algorithms for an optimal balance be-
tween both metric types and leave a possible decision
to the potential users. However, as already outlined be-
fore, there exists a trade-off between POD and CAR,

and therefore, the optimisation of one metric will al-
ways result in the shortcoming of the other.

Overall, these initial results are promising, and the developed
method might aid the meteorological community as an addi-
tional tool for foehn detection and/or prediction as soon as
the current major limitations can be mitigated. These limita-
tions of the introduced method are outlined as follows:

– The most apparent limitation is that the availability of
results from our method directly relies on the availabil-
ity of GNSS data from all incorporated stations. As soon
as data from only one station of the training network are
missing, no results can be provided. This leads to a sig-
nificant amount of periods (up to half of the events, in
some cases) for which no results can be produced, as
seen e.g. in Sect. 5.

– Station specificity. This study only shows the applica-
bility of the method for the FI station Altdorf. The
performance achieved at this location cannot be gen-
eralised for other stations or a whole region. Tests for
other meteorological stations that regularly experience
foehn, both in Switzerland and neighbouring countries,
are planned for future studies (see possible improve-
ments below).

– Supervised learning and dependence on target obser-
vations. As we use supervised learning techniques in
this study, the results produced by our method will al-
ways be worse in comparison to the FI provided by
MeteoSwiss, as this serves as our target observation.
However, this might change when both GNSS-based FI
and operational FI are compared to another, indepen-
dent reference dataset (such as human forecasts).

– Detection-based measures are not yet at the level of
studies with meteorological data. However, alarm-based
measures were higher for our study, so a combination of
datasets is expected to be beneficial for the overall per-
formance.

– Looking into specific foehn events, the introduced
method shows weaknesses in terms of capturing the ex-
act periods of foehn onset and decay compared to the
standard FI algorithm. As only a one-week period (in-
cluding two major foehn events) was analysed here, this
result cannot be generalised yet. Therefore, further stud-
ies are needed to look into more events in detail and, if
needed, develop ways to increase the accuracy of the
methods in terms of event start and end prediction.

Some of these limitations might be overcome by enhance-
ments that can still be achieved through more detailed in-
vestigations in future studies. Possible improvements of the
method we aim to investigate in the future would be the fol-
lowing:
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– As stations from neighbouring countries are found to be
important for the performance of the methods, extend-
ing the utilised station network for several more of them
is expected to benefit the results. In particular, having a
denser station distribution on the southern side of the
Alps (Italy) should have a positive impact on the perfor-
mance of the methods.

– Time lags of specific predictors should be introduced,
accounting for the response time of the actual parame-
ter at a specific station to changes in the synoptic condi-
tions indicating a foehn event or lack thereof. Pressure-
related parameters (ZHD) might be applied a greater
time lag (response in advance) compared to humidity-
or temperature-related parameters (such as ZWD). The
same relation holds for the geographic location of con-
tributing stations (south stations should respond in ad-
vance). Such approaches might help to overcome the
limitations in terms of exact onset or decay prediction.

– The developed method should be used at other foehn lo-
cations in Switzerland and neighbouring countries. For
some of those locations, the currently used setup might
even provide better results than for Altdorf, based on a
denser station network in those areas (e.g. Valais area).

– Enhance the nowcasting capabilities of the proposed
method by including GNSS atmosphere gradients in the
NRT products. If possible, gradient parameters should
also be estimated at the same rate as delay products (ev-
ery hour). Currently, this is done only every 6–12 h, and
hourly estimates in between are interpolated linearly.
This adaption might make the detection of smaller foehn
events (lasting only a few hours) easier or even possible.

– Data gaps in GNSS time series should be mitigated. In
this regard, a number of different strategies can be in-
vestigated:

– Interpolation techniques should be explored, at
least for shorter gaps.

– A set of different algorithms should be explored,
iteratively excluding GNSS data from one station
in the feature setup each time. This could provide a
continuous solution under the assumption that only
data from one station is missing.

– Alternate features should be used in the case of a
particular missing feature, which is possible for ML
algorithms relying on weak learners.

– The methods’ performances should be optimised by car-
rying out a more extensive grid search for hyperparame-
ter tuning of the used algorithms or by trying new (pos-
sibly more sophisticated deep learning) algorithms.

– The incorporation of GNSS products (especially from
stations showing large impact in this study already) into
algorithms based on meteorological data, as in Sprenger
et al. (2017), should be tested. As mentioned before, this
might allow for a performance increase, especially for
alarm-based statistics.

– Comparisons to independent reference data should be
made. As mentioned in the list of limitations, the GNSS-
based FI will always perform worse than the operational
FI in direct comparison. Therefore, it would be of inter-
est to compare GNSS-based results with other indepen-
dent methods, such as forecasts by human experts.
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Appendix A: List of GNSS stations

This section provides the full GNSS station network that is
utilised for this study.

Table A1. Full list of GNSS stations utilised for this study. Indicated are Name, geographical location (Longitude, Latitude and Height),
Network to which a station belongs, and the Feature setup in which it is used.

Height Feature
Name Longitude [◦] Latitude [◦] [m a.s.l.] Network setups

AIGE 6.128259 46.247775 473.8768 AGNES All
BOU2 7.230437 47.394055 941.9955 AGNES All
DAV2 9.843516 46.812917 1645.5747 AGNES All
EPFL 6.567896 46.521467 460.4702 AGNES All
ETHZ 8.510532 47.407070 594.8398 AGNES All
FALE 9.230295 46.804491 1344.1583 AGNES All
FLDK 9.580601 47.231347 570.3447 BEV All
HABG 8.182777 46.747459 1147.8459 AGNES All
HOH2 7.762704 46.319408 985.7388 AGNES All
HOHT 7.762704 46.319408 985.7388 AGNES All
HUTT 7.834883 47.141075 779.1001 AGNES All
KALT 9.008414 47.217961 477.0371 AGNES All
KOPS 10.115432 46.973951 1906.5541 BEV All
KREU 9.160039 47.641294 529.9748 AGNES All
LECH 10.139078 47.224056 1822.8005 BEV All
LOMO 8.787428 46.172565 437.9931 AGNES All
LUZE 8.300642 47.068204 542.2217 AGNES All
MAR2 7.070694 46.122154 644.1085 AGNES All
NEUC 6.940483 46.993829 504.6724 AGNES All
OALP 8.673724 46.660062 2139.4693 AGNES FS3
PAYE 6.943941 46.812141 548.7010 AGNES All
PFA2 9.784663 47.515328 1090.0990 EUREF All
SAAN 7.301290 46.515572 1419.5502 AGNES All
SANB 9.184548 46.463831 1702.2351 AGNES FS3
SCHA 8.655846 47.737566 638.1986 AGNES All
SIGM 9.223912 48.083589 645.2889 SAPOS All
STA2 8.941636 45.855855 417.2265 AGNES All
STCX 6.501172 46.822386 1155.4289 AGNES FS3
STGA 9.345949 47.441769 753.7296 AGNES All
TORI 7.661280 45.063367 310.7408 EUREF All
WEHO 7.472834 46.382054 2966.9314 COGEAR All
ZERM 7.731996 46.001444 1931.1722 AGNES FS3
ZIMM 7.465275 46.877097 956.3256 AGNES/ All
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