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Abstract. On board the Deep Space Climate Observatory
(DSCOVR), the first Earth-observing satellite at the L1 point
(the first Lagrangian point in the Earth–Sun system), the
Earth Polychromatic Imaging Camera (EPIC) continuously
observes the entire sunlit face of the Earth. EPIC measures
the solar backscattered and reflected radiances in 10 discrete
spectral channels, four of which are in the ultraviolet (UV)
range. These UV bands are selected primarily for total ozone
(O3) and aerosol retrievals based on heritage algorithms de-
veloped for the series of Total Ozone Mapping Spectrome-
ters (TOMS). These UV measurements also provide sensi-
tive detection of sulfur dioxide (SO2) and volcanic ash, both
of which may be episodically injected into the atmosphere
during explosive volcanic eruptions. This paper presents the
theoretical basis and mathematical procedures for the direct
vertical column fitting (DVCF) algorithm used for retriev-
ing total vertical columns of O3 and SO2 from DSCOVR
EPIC. This paper describes algorithm advances, including an
improved O3 profile representation that enables profile ad-
justments from multiple spectral measurements and the spa-
tial optimal estimation (SOE) scheme that reduces O3 arti-
facts resulting from EPIC’s band-to-band misregistrations.
Furthermore, this paper discusses detailed error analyses and
presents intercomparisons with correlative data to validate
O3 and SO2 retrievals from EPIC.

1 Introduction

The Deep Space Climate Observatory (DSCOVR) was
launched on 11 February 2015 and after a 116 d journey
successfully maneuvered into its Lissajous orbit around the
first Earth–Sun system Lagrangian (L1) point, which is about

1.5×106 km from the Earth and located between the Sun and
the Earth on the ecliptic plane. At the L1 point, where the net
gravitational forces equal the centrifugal force, DSCOVR or-
bits the Sun at the same rate as the Earth, staying closely
in line along the Sun and the Earth, thus allowing the
Earth-pointing EPIC to continuously monitor the entire sun-
lit planet.

The Earth Polychromatic Imaging Camera (EPIC) mea-
sures the solar backscattered and reflected radiances from
the Earth using a two-dimensional (2048× 2048) charged-
coupled device (CCD) recording a set of 10 spectral images
successively using different narrowband filters. While EPIC
may continuously observe the Earth from the vicinity of the
L1 point, only a number of spectral image sets are taken in a
day, limited by accessible contact windows of the two ground
stations located in Wallops island (Virginia) and Fairbanks
(Alaska). Currently, between 13 and 22 spectral image sets,
recorded at a sampling rate of one set in every 110 min dur-
ing boreal winter and every 65 min during boreal summer,
are transmitted back to the ground stations in a day.

EPIC takes about 6.5 min to complete an image set. The
first in the set is the blue band (centered at 443 nm), which
takes ∼ 2 min to complete the imaging at native resolu-
tion (2048× 2048 pixels). The images of the nine remain-
ing bands are sequentially recorded at a reduced resolution
(1024×1024 pixels, achieved through an onboard average of
2× 2 pixels), separated by a time cadence of ∼ 30 s between
adjacent bands. Due to the Earth’s rotation and spacecraft jit-
ter, each spectral image records a slightly different (i.e., ro-
tated) sunlit hemisphere. As a result, the images of two differ-
ent channels appear to be displaced from each other, usually
by a distance of about one to a few native pixels, depending
on their observation time difference.
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Each native pixel has a ∼ 1 arcsec or 2.778×10−4◦ angu-
lar instantaneous field of view (IFOV), yielding a geometric
ground footprint size of∼ 8×8 km2 at the image center of the
sunlit disk. The effective footprint size is about 10×10 km2,
which is larger than the geometric one due to the effect of
the optical point-spread function of the EPIC imaging sys-
tem. For a reduced-resolution image (1024× 1024 pixels),
the effective central ground IFOV size is about 18× 18 km2,
which is significantly smaller than the nadir footprints of
some past and present satellite instruments that provided
global ozone mapping from the low Earth orbit (LEO), such
as the Total Ozone Mapping Spectrometer (TOMS; nadir
pixel size 50× 50 km2) on a series of satellites, the Scan-
ning Imaging Absorption Spectrometer for Atmospheric Car-
tography (SCIAMACHY; 60× 30 km2; Bovensmann et al.,
1999) on ESA’s ENVIronmental SATellite (ENVISAT), the
Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-
NM; 50×50 km2; Flynn et al., 2014) on the Suomi National
Polar Partnership (SNPP), and the Global Ozone Monitoring
Experiment-2 (GOME-2; Callies et al., 2000; Munro et al.,
2016) on Metop-A (40× 40 km2), Metop-B (80× 40 km2),
and Metop-C (80× 40 km2). Though it is slightly larger
than the nadir footprint of the Ozone Monitoring Instrument
(OMI; 13× 24 km2; Levelt et al., 2006) on Aura and the
OMPS-NM (17× 13 km2; Flynn et al., 2016) on NOAA-20,
as well as much bigger than that of the TROPOspheric Moni-
toring Instrument (TROPOMI; 5.5×3.5 km2; Veefkind et al.,
2012) on the ESA Sentinel-5 Precursor (S5P), EPIC’s spatial
resolution is sufficiently high to map small-scale O3 natural
variations and observe many volcanic emissions, from de-
gassing to eruption.

EPIC, combining moderate spatial resolution with high
temporal cadences from the unique vantage point of L1,
provides unprecedented Earth observations from sunrise to
sunset simultaneously (see Fig. 1). This synoptic (i.e., con-
current, globally unified, and spatially resolved) perspec-
tive is quite distinctive from satellite observations from an
LEO or geostationary Earth orbit (GEO): LEO observations
are often made within a narrow range of local time with a
small number of samplings at a location per day, while GEO
observations have limited spatial coverage, constrained to
roughly 60◦ away from its position. The EPIC observations
can have simultaneous co-located observations with mea-
surements from any contemporaneous LEO and GEO plat-
forms, allowing direct comparisons and synergistic use of
data acquired from different perspectives. This overlapping
feature has been exploited to calibrate some EPIC channels
by matching its measured albedo values to those of OMPS-
NM on SNPP (Herman et al., 2018).

The 10 narrow bands of EPIC, spanning ultraviolet (UV),
visible, and near-infrared wavelengths, are selected to yield
diverse information about the Earth, from atmospheric com-
positions to surface reflectivity and vegetation. Four of the
10 bands measure UV spectral radiances, which are primar-
ily used for total ozone (O3) retrievals. These UV bands also

provide sensitive detection of sulfur dioxide (SO2) and vol-
canic ash, both of which may be episodically injected into
the atmosphere during explosive volcanic eruptions.

This paper describes algorithm physics, model assump-
tions, mathematical procedures, and error analyses for the di-
rect vertical fitting (DVCF) algorithm. We show examples to
illustrate the high accuracy of O3 and SO2 retrievals achieved
by applying the DVCF algorithm to spectral UV radiance
measurements of DSCOVR EPIC. Lastly, we validate the
DSCOVR EPIC O3 and SO2 through intercomparisons with
correlative data.

2 Algorithm physics

Algorithm physics is a term first used by Chance (2006)
to denote the physical processes contributing to the space-
borne measurement of radiance spectra. A measured radi-
ance Lm (in units of W · sr−1

·m−2
· nm−1) from space con-

sists of sunlight photons within a narrow spectral range (typ-
ically< 2 nm), specified by the instrument spectral response
function S (ISRF, e.g., EPIC UV filter transmissions shown
in Fig. 2), and is modeled as

LM =

∫
S(λ)ITOA(λ)F (λ)dλ∫

S(λ)dλ
, (1)

where F(λ) (in units of W ·m−2
· nm−1) is the monochro-

matic spectral solar irradiance, and ITOA(λ) is the Sun-
normalized monochromatic top-of-the-atmosphere (TOA)
radiance (in units of sr−1) for a wavelength λ (in units
of nm). The Sun-normalized measured radiance IM for
a spectral band is defined as IM = LM/FM, where FM =∫
S(λ)F (λ)dλ/

∫
S(λ)dλ, and the λ integrations in these

equations are performed over the valid range of the ISRF S
for the spectral band. Hereafter we drop “Sun-normalized”
when referring to IM, which is simply called measured radi-
ance. Quantities for a spectral band are flux-weighted band-
pass averages to account for the differential contributions
from individual wavelengths within the bandpass. With-
out loss of generality, ITOA(λ) and other spectral-dependent
quantities are hereafter used to denote flux-weighted band-
pass averages, with λ representing the characterized wave-
length of the spectral band.

To reach a sensor at TOA, sunlight photons are either back-
scattered by air molecules or particles or reflected by the
underlying Earth surface. As these photons traverse through
the atmosphere along many possible optical paths connecting
the Sun to the sensor, they may be absorbed by the under-
lying surface or by some atmospheric constituents, such as
trace gases (e.g., O3 and SO2) and light-absorbing particles
(e.g., dust and smoke). The photons that complete the journey
carry information about atmospheric absorbers along their
paths. The accumulation of photons from each contributing
path yields the TOA radiance, which may be modeled with
radiative transfer (RT) simulation if the properties of surface
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Figure 1. (a) Example of the EPIC field of view (FOV): EPIC Earth image at 11:40:31 UTC on 4 September 2015. Image source: NASA
EPIC Team, accessed via https://epic.gsfc.nasa.gov (last access: 1 October 2022). (b) Viewing and illumination angles are taken from FOV
on the left. The subsolar point is marked on the map with a yellow dot. The area shaded with midnight blue is in the dark, i.e., without direct
sunlight, while the unshaded area is the sunlit hemisphere, with sunrise on the left (west of subsolar point) and sunset on the right (east of
subsolar point). Contours of solar zenith angles (SZAs, blue dashed lines) and viewing zenith angles (VZAs, red dashed lines), going from
10 to 80◦ with a step of 10◦, are shown in the sunlit area. Note that the SZA (θs) and VZA (θv) of an EPIC IFOV have similar values, and
both angles increase as the IFOV moves from the center towards the edge of the sunlit disk.

Figure 2. Filter transmission functions for the four EPIC UV chan-
nels. The widths are ∼ 1 nm for EPIC bands 1 and 2, similar to
those for TOMS and OMPS-NM. Note that the filter transmissions
as functions of wavelength are measured in the air (see Fig. 1 in
Herman et al., 2018). Here we have converted the wavelength in the
air to wavelength in a vacuum using the formula of Edlén (1966).
The filter values are normalized to 1 at band centers (noted on top
of each panel with uncertainty).

reflection as well as atmospheric absorption and scattering
are known explicitly. The ability to model the TOA radiance
accurately is the prerequisite for interpreting the observations
and relating the gas absorptions with TOA radiance measure-
ments.

We next describe the characteristics of UV photon sam-
pling of the atmosphere and the construction of surface and
atmospheric models to enable proper simulation of the pho-
ton sampling of the atmosphere. Dividing the atmosphere

into infinitesimal thin layers, the quantity that specifies the
photon sampling is the mean path length of photons travers-
ing through a layer. This mean path length normalized by
the geometric thickness of the layer is the local or altitude-
resolved air mass factor (AMF, mz). The proper simulation
of photon sampling requires the modeled mean path length
through each layer to closely match that in the actual observ-
ing condition.

In theory, a TOA radiance, ITOA, depends on the view-
ing illumination geometry, the optical properties of the at-
mospheric constituents (both absorbers and non-absorbers),
and their amounts and vertical distributions, as well as on the
reflective properties of the underlying surface. For a wave-
length λ, ITOA can be expressed as the sum of two contribu-
tions,

ITOA = Ia+ Is, (2)

where Ia consists of solar photons scattered once or more by
molecules and particles in the atmosphere without interacting
with the underlying surface, and Is represents solar photons
reflected at least once or multiple times by the underlying
surface.

2.1 Path radiance

Ia is also known as the atmospheric path radiance, i.e., pho-
tons backscattered to the sensor along a path without any
intersection with the underlying surface. Conceptually it is
the accumulation of TOA photons that are last backscattered
toward the sensor along the line of sight from atmospheric
layers at different levels of extinction optical depths. Alge-
braically it is expressed as the path integration of virtual
emission J (t) (Dave, 1964) in the direction specified by the
view zenith angle (θv), attenuated (e−t/µ, where µ= cosθv)
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by atmospheric scattering and absorption, over the extinction
optical depth t along the path of line of sight from the top
(t = 0) to the bottom (t = τ ) of the atmosphere:

Ia =

τ∫
0

J (t)e−t/µω(t)dt/µ. (3)

The source of virtual emission, J (t), consists of all the pho-
tons scattered towards to the sensor, including photons of
the direct solar radiation being scattered once only and pho-
tons of diffuse radiation (i.e., photons scattered to level t)
being scattered once more at t . The strength of the virtual
emission of a thin layer at t is proportional to its scatter-
ing optical thickness, which is equal to the product of the
layer total optical thickness (dt) and the single-scattering
albedo ω(t) (defined as the ratio of layer scattering optical
thickness over the layer total optical thickness). Here we use
9(t)= J (t)e−t/µω(t)/µ to represent the radiance contribu-
tion per unit optical thickness to Ia from a layer at t . Equa-
tion (3) describes how the solar photons sample the atmo-
sphere from top to bottom and how atmospheric absorption
is directly imprinted (via the attenuation e−t/µ) on the path
radiance.

A path radiance Ia for a molecular (i.e., an aerosol- and
cloud-free) atmosphere with absorption from trace gases can
be accurately determined with RT simulations. For exam-
ple, the path radiances for the low and high zenith angle
geometries (see Fig. 3b) are calculated with a vector RT
code (e.g., TOMRAD, Dave, 1964, or VLIDORT, Spurr,
2006) as a function of wavelength for a molecular atmo-
sphere with the O3 profile X1 in Fig. 3a, and the correspond-
ing radiance contributions to the path radiances at EPIC
bands 1 and 2 are shown in Fig. 3c. The radiance contribu-
tion function (RCF) for a wavelength in the UV range (300–
400 nm) is determined by Rayleigh scattering and absorp-
tion by trace gases (primarily O3). O3 is ubiquitous in the
atmosphere, with the bulk of it located in the stratosphere
(e.g., Figs. 3a or 11), and its absorption cross-sections σ(O3)

increase rapidly with shorter wavelengths in the UV range
(see Fig. 13). Rayleigh scattering, whose cross-sections are
proportional to 1

λ4 , also increases with shorter wavelength.
The strong O3 absorption and large Rayleigh cross-sections
at short wavelengths greatly reduce the number of solar pho-
tons reaching the lower atmosphere. Conversely, at longer
wavelengths, weaker O3 absorption and smaller Rayleigh
cross-sections allow more solar photons to reach the lower
atmosphere where higher air density increases the intensity
of backscattering. Similar to the effect of reducing wave-
length, lengthening the slant path (by increasing solar, view-
ing, or both zenith angles) would enhance ozone absorption
and Rayleigh scattering along the slant path, raising the alti-
tude profile of RCF. These spectral and angular characteris-
tics of RCF are illustrated in Fig. 3c, which shows the nor-
malized RCFs (ψ =9/Ia) of EPIC bands 1 and 2 for two

different observation geometries and a midlatitude O3 pro-
file labeled as X1 in Fig. 3a. The results in Fig. 3c show
that at longer wavelengths and lower zenith angles, path ra-
diance contains more photons that are backscattered from the
lower atmosphere. The RCF peak reaches∼ 4 km altitude for
band 2 at 5◦ zenith angle, while at shorter wavelength and
higher zenith angle, the RCF peak moves to the higher alti-
tude, and it rises to ∼ 10 km for band 1 at 70◦ zenith angle.
The shifting shapes of RCF shown in Fig. 3c illustrate the
changes in the photon sampling of the atmosphere with dif-
ferent wavelengths and zenith angles. The rising RCF peak
position signifies diminishing sensitivity to absorptions be-
low the peak while favoring those above it.

The measurement sensitivity to a thin molecular absorber
layer is equal to the product of the absorption cross-sections
(σ ) and the mean path length (ma) of photons passing
through the layer, where ma =−∂ lnIa/∂τz and τz is the ab-
sorption optical depth at the layer center altitude z. Note
that the photon path length is equal to the geometric AMF,
mG = 1/cos(θs)+1/cos(θv), for a plane-parallel atmosphere
if there is no scattering. Figure 3d shows the mean optical
path lengths of EPIC bands 1 and 2 as a function of alti-
tude for the low and high zenith viewing illumination geome-
tries, showing thatma decreases rapidly as the layer descends
nearing the surface due to fewer photons reaching the lower
atmosphere, while ma approaches mG as the layer rises to-
wards TOA due to fewer path-altering scatterings resulting
from lower air density. In the upper troposphere and lower
stratosphere (UTLS), ma of the low zenith geometry usually
exceeds mG due to a significant fraction of photons under-
going multiple scattering below and within UTLS, while ma
of the high zenith geometry drops continuously from TOA
down to the surface in the case when the RCF peak is suffi-
ciently high that fewer multiple scatterings contribute to the
path radiance. In general, the mean path length ma is shorter
for a wavelength with stronger O3 absorption, which reduces
the number of photons reaching the lower atmosphere. The
variation of ma with a changing altitude signifies the path ra-
diance dependence on the absorber profile. The path radiance
fractional change due to profile change (1X= X2−X1) can
be expressed as

1Ia

Ia
=
Ia(X2)− Ia(X1)

Ia(X1)
=−

∞∫
0

1X(z) σ (Tz) ma dz, (4)

where Tz is the atmospheric temperature, and X1(z) and
X2(z) are absorber concentration at altitude z. Figure 3b il-
lustrates the change in path radiance caused by an O3 pro-
file change while keeping its total vertical column the same:
lowering the O3 profile (e.g., X1 to X2 in Fig. 3a) tends
to increase the path radiance. Path radiance changes more
with shorter wavelengths at higher zenith angles, thus be-
coming more sensitive to the shape of the O3 profile. At low
zenith angles, the change may have the opposite sign of the
change at large zenith angle for certain wavelengths (e.g., the
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Figure 3. Sample results from RT simulations for a molecular atmosphere with O3 profiles X1 and X2 in panel (a). Both X1 and X2 are
midlatitude zone (30◦ ≤ latitude ≤ 60◦) climatological O3 profiles with the same total vertical column of 275 Dobson units, where 1 DU=
2.69× 1016 molec. cm−2. RT simulations are performed for two viewing illumination geometries: (1) low zenith angles of θs = θv = 5◦ as
well as a relative azimuthal angle of (RAA), φ = 45◦ and (2) high zenith angles of θs = θv = 70◦ and φ = 45◦. (b) Path radiances Ia(X1) for
the low and high zenith geometries and their fractional changes (1Ia/Ia) when the O3 profile is changed to X2. (c) Normalized RCFs, ψ , for
EPIC bands 1 and 2. Here ψ(t) is converted into ψ(lnP) by the multiplication of factor dt/dlnP. (d) Mean photon path lengths (ma) of EPIC
bands 1 and 2 as functions of altitude z for the low and high zenith geometries normalized by the respective geometric air mass factors, mG.

changes plotted as red solid lines for λ > 316 nm in Fig. 3b),
but the magnitude of change is much smaller, indicating that
the path radiances under these conditions are primarily func-
tions of total columns, since they are less sensitive to the pro-
file shapes. The differential responses of the spectral path ra-
diance to profile changes imply that more than one piece of
information about O3 may be contained in the multi-spectral
measurements. Retrieval constrained by multi-spectral radi-
ances instead of a single spectral band may achieve a more
accurate O3 measurement.

2.2 Surface reflection

The path radiance Ia includes backscattered photons that are
independent of the underlying surface, while the surface con-
tribution to TOA radiance, Is (referred to as surface radi-
ance hereafter), consists of photons reflected once or more
from the surface. For a molecular atmosphere bounded by a
surface with well-characterized optical reflection properties,
the surface radiance Is can be accurately predicted with RT
modeling. For a Lambertian surface, which reflects radiation
isotropically independent of the incident direction, the sur-
face radiance Is can be expressed as (Dave, 1964)

Is =
T↓rsT↑

1− rsSb
, (5)

where rs is the reflectance or albedo of the Lambertian sur-
face, T↓ is the total (direct and diffuse) transmittance from
the Sun to the surface along the direction of incoming so-
lar irradiation and T↑ from the surface to the TOA along
the viewing direction, and Sb is the atmospheric spheri-
cal albedo, which is the fraction of the reflected radiation
backscattered from the overlaying atmosphere to the surface.
The surface contribution from the Lambertian surface, Is,

may be described as the once-reflected radiance (T↓rsT↑),
enhanced by the series of interactions: backscattering from
the overlaying atmosphere and reflection from the underlying
surface, which are accumulated to produce the amplification
factor 1/(1− rsSb).

The reflection property of a surface is represented by
a bidirectional reflectance distribution function (BRDF),
which specifies the angular distribution of reflected radi-
ance as a fraction of directional incident spectral irradiance.
Field measurements (Brennan and Bandeen, 1970) demon-
strate that reflection from natural surfaces (such as cloud,
water, and land surfaces) is anisotropic in the UV, exhibiting
different apparent reflectances when viewed from different
directions. For instance, a water surface looks bright when
viewed from the direction near the specular reflection but is
much darker outside the glitter (see, e.g., Fig. 4a). Here the
apparent reflectance is the Lambertian equivalent reflectivity
(LER), i.e., the isotropic reflectance rs that reproduces the
radiance Is from a surface with an anisotropic BRDF at a
viewing illumination geometry. This LER is also referred to
as the geometry-dependent surface LER (GLER) to indicate
its dependence on the viewing illumination geometry.

Reflection of UV sunlight from natural surfaces has long
been measured by instruments on board satellites in Sun-
synchronous polar orbits (e.g., Eck et al., 1987). Since
BRDFs for most natural surfaces (except for water surfaces)
have not been adequately characterized in the UV, satellite
measurements provide scene reflectivities that are quantified
with LERs at wavelengths in the range of weak gaseous ab-
sorption. To derive LER rs from a measured radiance IM, the
atmospheric path radiance Ia, transmissions T↓ and T↑, and
reflectance Sb for a spectral band are calculated for a molec-
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Figure 4. Apparent reflectances of an ocean surface described by a Cox–Munk BRDF (Cox and Munk, 1954a, b) for a wind speed of 6 m s−1,
viewed along the plane of incidence with the Sun at a zenith angle of θs = 15◦. (a) GLER at four EPIC UV bands vs. viewing zenith angle
θv. Here positive θv denotes φ = 0◦ and negative θv for φ = 180◦. (b) GLER at several viewing zenith angles vs. wavelength λ.

ular atmosphere, and the inversion of Eq. (5) yields

rs =
Is

T↓T↑+ Sb Is
, (6)

where Is = IM− Ia. A vast majority of scene LERs derived
from satellite observations contain contributions from scat-
tering from clouds, aerosols, or both (see Sect. 2.3 for their
treatment). To characterize reflective properties of natural
surfaces, many investigations have been devoted to creat-
ing global LER climatologies by selecting gridded LERs
that are minimally affected by clouds or aerosols from re-
peated observations over a period of time (typically a cal-
endar month). These climatologies include spectral surface
LER databases constructed from the TOMS radiance mea-
surements at 340–380 nm from 1978–1993 (Herman and
Celarier, 1997), GOME-1 at 335–772 nm from 1995–2000
(Koelemeijer, 2003), SCIAMACHY at 335–1670 nm from
2002–2012 (Tilstra et al., 2017), OMI at 328–499 nm from
2005–2009 (Kleipool et al., 2008), and GOME-2 at 335–
772 nm from 2007–2013 (Tilstra et al., 2017). Intercompar-
isons of these spectral LERs from different satellite missions
show good agreement among corresponding measurements
(Tilstra et al., 2017) despite differences in observation time
periods, viewing illumination geometry, and footprint size.
For a location on Earth, its surface is usually observed at
nearly the same local solar time from a Sun-synchronous or-
bit, and thus the sampling of its surface BRDF is limited to
a small range of SZAs. Furthermore, the selection of cloud-
and aerosol-free LERs tends to favor low LER values, thus
likely excluding the LERs at high VZAs. LER values of nat-
ural surfaces tend to be quite close when SZAs fall within
a small range and large VZAs are excluded; hence, these
LER climatologies are presented as independent of view-
ing illumination geometry. The low LER sensitivity to vary-
ing viewing illumination geometry (within limited ranges of
SZA and VZA) indicates that natural surfaces (excluding
glittering water surface) have weak anisotropy and can be
treated as Lambertian surfaces. These climatological data re-
veal that the surface LER in the UV for snow- and ice-free

areas varies within the range of 0.02–0.1 for most land and
(off-glint) water surfaces, except for a few places on Earth,
such as the Saharan desert and the salt flat in Bolivia, where
surface LERs may exceed 0.1. These low surface LER val-
ues derived from satellite observations have been validated
in field experiments (Coulson and Reynolds, 1971; Doda
and Green, 1980, 1981; Feister and Grewe, 1995), which
have found that the spectral reflectances of natural surfaces,
such as the open ocean, forest, grassland, and desert, fall
within the same range of satellite LER measurements. These
field experiments have also demonstrated that the spectral re-
flectances of natural surfaces vary slowly and smoothly with
changing wavelengths. The spectrally smooth GLER of nat-
ural surfaces permits accurate estimation of GLER within
the UV range with measurements at two or more wave-
lengths, specifically the extrapolation of GLERs determined
at the long (weak O3 absorption) wavelengths to estimate the
GLERs at short (strong O3 absorption) wavelengths.

Based on the reflective characteristics of natural surfaces
described above, the forward model for retrieval treats the
reflections from a surface as Lambertian, whose reflectance
is determined from the radiance measurement of the spectral
band with weak gaseous absorption or is extrapolated from
the weak to the strong absorption band. We use the reflection
from an ocean surface as an example to illustrate the suc-
cess and deficiency of the isotropic surface treatment and the
GLER extrapolation, since a water surface is likely the most
anisotropic surface encountered in satellite remote sensing.
Figure 4a displays the GLERs of an ocean surface at the
four EPIC UV bands as a function of VZA along the inci-
dent plane with the Sun at θs = 15◦. Viewing in the specu-
lar direction (θv = 15◦ and φ = 180◦), the GLER decreases
with longer wavelengths, but the reverse is true when view-
ing in directions ∼ 25◦ or greater away on either side of it.
In other words, the reflection appears to be less anisotropic
at shorter wavelengths. This is due to a less direct beam
and thus more diffuse radiation (resulting from more pho-
tons being Rayleigh-scattered by air molecules) at the shorter
wavelengths. While the reflection of a direct beam yields
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anisotropic outgoing radiation according to the BRDF, the
diffuse radiation impinges on the surface from every possible
direction of the hemisphere above, usually resulting in much
less anisotropic reflected radiation, which follows the an-
gular distribution specified by the hemispherically averaged
BRDF. Figure 4b shows the spectral dependence of GLER
on wavelength, illustrating that linear extrapolation of GLER
at longer wavelengths (340.0 and 388.0 nm) yields highly ac-
curate GLER estimations at shorter wavelengths (317.5 and
325.0 nm), usually with errors much less than 1 %.

The Lambertian surface treatment enables an accurate es-
timation of the surface radiance Is without knowledge of the
actual BRDF, provided that the GLERs estimated at some
(usually the weak absorbing) wavelengths can be accurately
extended (linearly extrapolated) to other wavelengths. How-
ever, the paths traversed by photons reflected from a Lam-
bertian surface differ from those from an anisotropic one, as
illustrated in Fig. 5, which displays the mean optical path
lengths, ms =−∂ lnIs/∂τz, of EPIC band 1 as a function of
altitude for two viewing illumination geometries. As shown
in Fig. 5, the path lengths differ the most just above the sur-
face, but the difference decreases with higher altitudes due
to less course-altering atmospheric scattering resulting from
lower air density and vanishes around 25 km above the sur-
face. Thus, the Lambertian treatment of an anisotropically re-
flective surface may introduce an error, called the AMF error,
in accounting for atmospheric absorption due to the differ-
ence in the photon sampling of the atmosphere. This differ-
ence is larger in the lower troposphere but becomes negligi-
ble in the stratosphere, implying that the effect of anisotropic
reflection, i.e., the BRDF effect, has a larger impact on the
quantification of trace gas absorption in the troposphere but
a smaller one for trace gases in the stratosphere. Because the
bulk O3 (∼ 90 %) is located in the stratosphere, the Lamber-
tian treatment does not introduce a significant AMF error in
total O3 absorption.

As described above, UV reflectivities for most natural
surfaces are quite low (GLER< 0.1); therefore, the surface
contributions Is are typically much smaller than (< 10 % at
317.5 nm) the path radiance Ia (see Fig. 6). In modeling a
measured radiance IM, an error in surface radiance Is is com-
pensated for with the path radiance Ia. The uncertainty of ex-
trapolated GLER is usually less than 1 %, corresponding to
a less than 1 % error in Is and hence less than 0.1 % error in
the path radiance Ia. Furthermore, the AMF error due to the
Lambertian treatment of an anisotropic surface is insignifi-
cant, since the combined mean photon path lengths,

mz =−∂ lnITOA/∂τz = (Iama+ Isms)/ITOA, (7)

contain minor contributions from surface radiance Is.
Natural surfaces with high UV reflectivities (GLER> 0.2)

are surfaces covered with snow, ice, or both. The high-
est GLER values are found over Antarctica and Greenland,
where typical GLER values are higher than 0.9, as shown
in Fig. 7. Figure 7 shows sample results of a climatological

Figure 5. Mean path lengths (ms) of EPIC band 1 reflective photons
from an ocean surface (with the same BRDF described in Fig. 4)
and its Lambertian equivalent surfaces. Here the mean path lengths
ms, normalized by the respective geometric air mass factors (mG),
are plotted as functions of altitude z for two viewing illumination
geometries: one view from the direction of specular reflection at
θv = 15◦ and φ = 180◦ and the other at θv = 50◦ and φ = 0◦, while
the Sun is at θs = 15◦ for both geometries.

Figure 6. Example path radiance, Ia, and surface radiance Is for
θs = 45◦, θv = 40◦, and φ = 135◦. Ia is the middle line in black,
and Is for LER= 0.1 and LER= 0.94 is represented by the lower
(red) and upper (blue) lines, respectively.

GLER database for Antarctic ice constructed from the obser-
vations of polar-orbiting instruments, including Aura OMI
and SNPP OMPS, and it reveals a sizable dependence of ice
GLER values on the viewing illumination geometry, indicat-
ing that the reflection from ice is significantly anisotropic.
Because of the much higher surface radiance Is (e.g., Fig. 6
blue line), the Lambertian treatment of ice surface can lead
to large AMF errors. However, the ice GLER varies within
a small range (0.94 to 0.98), and hence ice reflection has
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Figure 7. Climatological Antarctic GLER values at 331 nm as func-
tions of SZA (θs) for three viewing geometries, revealing a signifi-
cant dependence of ice GLER on the viewing illumination geome-
try.

weak anisotropy for low SZA and VZA (< 70◦). Because
the stronger O3 absorption and Rayleigh scattering at shorter
wavelengths reduce the fraction of direct solar beam but in-
crease that of the diffuse radiation reaching the surface, fur-
ther weakening the BRDF effect, the error of Lambertian
treatment of ice surface in the sampling of atmospheric O3
absorption is suppressed for the low SZA and VZA observa-
tions.

2.3 Particle scattering and absorption

Atmospheric particles, including clouds and aerosols, reside
mostly in the troposphere and cover a large portion (∼ 67 %
by clouds alone; King et al., 2013) of the Earth’s surface. Ra-
diative transfer modeling of sunlight through a particle-laden
atmosphere can be performed to quantify the TOA contri-
butions from possible light paths, provided that the optical
(scattering and absorption) properties of these particles, their
amounts, and vertical distributions are specified. However,
for UV remote sensing observations, the quantitative infor-
mation about particles needed for radiative transfer modeling
is in general not sufficiently known, precluding their explicit
treatment. In this section, we describe an implicit treatment
of atmospheric particles for the simulation of measured ra-
diances with the mean photon path approximately matching
that through the particle-laden atmosphere.

Atmospheric particles scatter and possibly absorb UV
photons; they can thus significantly alter their paths through
layers from closely above the particles down to the ground
surface, usually shortening the path lengths below while
lengthening those above the particles. Observing from space,
the apparent effect of atmospheric particles is the enhance-
ment of the TOA radiance contributed by backscattering
from them. Since this effect is very similar to the conse-
quence of an increased surface albedo, it is often referred
to as the albedo effect. The albedo effect can be modeled
by placing in a molecular atmosphere an elevated bright sur-

face that partially covers an IFOV. This treatment is called
the mixed Lambertian equivalent reflectivity (MLER) model,
which is frequently employed by many algorithms for trace
gas retrievals. Based on the MLER model, the TOA radiance
for an IFOV is expressed as

ITOA = Ig(Rg,pg)(1− fc)+ Ic(Rc,pc)fc, (8)

the weighted sum of two independent contributions Ig and
Ic. Here Ig is the radiance from the cloud-free portion of the
IFOV containing a Lambertian surface of reflectivity Rg at
pressure pg . Similarly, Ic is from the cloudy portion, and fc
is the cloud fraction and Rc the reflectivity of the Lambertian
surface at pressure pc.

The MLER model can reproduce measured radiances Im
through the determination of cloud fraction fc. First, the
scene LER rs at surface pressure pg is estimated using
Eq. (6). If rs is less than or equal to the climatological LER
value Rg (e.g., Kleipool et al., 2008), this IFOV is treated
as a particle-free scene (fc = 0). If rs is greater than or
equal to the LER value for cloud Rc = 0.8 (Koelemeijer and
Stammes, 1999; Ahmad et al., 2004), this IFOV is treated as
fully cloud-covered (fc = 1). When rs is between Rg and Rc,
the cloud fraction is inverted from Eq. (8), which yields

fc =
IM− Ig

Ic− Ig
. (9)

In the case of fc = 0 or 1, surface LER rg or cloud LER rc
is determined using Eq. (6) to ensure that modeled radiance
ITOA is equal to the measurement IM. Figure 8 shows cloud
fractions (fc) as a function of wavelength for several exam-
ples of particle-laden atmospheres.

The radiance intensity scattered from atmospheric par-
ticles varies smoothly with wavelength without high-
frequency spectral structures. For instance, the contributions
to TOA radiances (ITOA) from backscattering by meteoro-
logical clouds change smoothly and slowly with wavelength
(see Fig. 8, the CLD curve). The selection of Rc = 0.8 facil-
itates close simulation of the spectral variation of clouds ob-
served from space (Ahmad et al., 2004) by the MLER model
such that retrieved fc has a small spectral variation (i.e., fc
nearly the same for different wavelengths) for most cloudy
observations. The small and smooth change of fc with wave-
lengths allows its extrapolation to provide a reliable estimate
of fc at shorter wavelengths from those determined at longer
wavelengths.

Certain types of aerosols, such as continental aerosols con-
taining soot, smoke from fires, mineral dust from deserts,
and ash from volcanic eruptions, both scatter and absorb UV
photons passing through them. Usually, aerosol absorptions
cause the underlying surface (including clouds) to appear
darker, more so at shorter wavelengths. The change in ITOA
due to the addition of aerosols and hence the cloud fraction
(fc or the surface LER, rg) are smooth in wavelength (see,
e.g., Fig. 8, with smooth curves for weakly absorbing sulfate-
based aerosols – SLFs, carbonaceous aerosols from biomass
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Figure 8. Four examples of cloud fractions (fc) derived from ex-
plicitly modeled TOA radiances for particle-laden atmospheres. The
first of these is the atmosphere with a 1.5 km thick layer of C1
cloud (CLD; Deirmendjian, 1969) with a single-scattering albedo
ω = 1 and an optical thickness τ = 5 at 340 nm centered at 5 km
altitude (or pressure level of 545 hPa). The others are atmospheres
with a 1 km thick layer of aerosols, including SLF (ω = 0.996), BIO
(ω = 0.921), and DST (ω = 0.900) aerosols (SLF, BIO, and DST
models are taken from Torres et al., 2007), with an optical thick-
ness τ = 1.5 at 340 nm centered at 3 km altitude (or pressure level
of 703 hPa). The insets list the MLER parameters, Rg , pg , Rc, and
pc, as well as the angles (θs, θv, and φ) that specify the viewing
illumination geometry.

burning – BIO, and mineral dust – DST; Torres et al., 2007).
Therefore, fc (when fc > 0, from Eq. 9) or rg (when fc = 0,
from Eq. 6) determined at longer wavelengths where atmo-
spheric absorption is weak may be linearly extrapolated to
O3-sensitive wavelengths for estimation of contributions to
TOA radiance from surface reflection and particle backscat-
tering (referred to as the rgfc extrapolation method here-
after).

The UV aerosol index (AI; Herman et al., 1997; Torres
et al., 1998), which measures the deviation of the spectral
variation of TOA radiance from that of a pure molecular at-
mosphere, is proportional to the spectral slope cl used in the
rgfc extrapolation scheme. Algebraically, AI is calculated
as the N -value (defined as −100log10I ) difference between
the modeled (ITOA) and measured (IM) radiances at a wave-
length λ.

AI= 100 log10
IM (λ)

ITOA (λ,Re)
(10)

= 100cl1λ
∂log10ITOA (λ,R)

∂R

∣∣∣∣
R=Re

(11)

Here, the modeled radiance ITOA(λ,Re) is calculated for
a molecular atmosphere with an estimated reflectivity pa-
rameter Re, which may be the LER value rs or the MLER
cloud fraction fc determined at a well-separated wavelength
(λ+1λ). The pair of wavelengths used for the AI calcula-
tion is in the UV spectral range with weak molecular absorp-
tion, and their separation 1λ should be sufficiently large (>

10 nm) to capture the spectral contrast of Rayleigh scatter-
ing. Using IM(λ)= ITOA(λ,Rm)= ITOA(λ,Re+1R), since
the reflectivity parameter Rm is derived from IM(λ) and
1R = Rm−Re = cl1λ, we arrive at Eq. (11) from the def-
inition of AI in Eq. (10). In short, the spectral slope cl is
equivalent to the AI, which is significantly positive for par-
ticles (such as smoke, dust, and volcanic ash) with large ab-
sorption and slightly positive to negative for non-absorbing
and weakly absorbing particles (such as clouds and sulfate
aerosols). Note that for the conventional AI (also called LER
AI) calculation, radiance ITOA is modeled for a Rayleigh-
scattering-only atmosphere over a Lambertian surface. To
capture the spectral slope of the rsfc extrapolation scheme,
we switch the LER treatment with the MLER modeling of
ITOA for AI calculation. The resulting MLER AI is usually
higher than the corresponding LER AI when fc > 0, but oth-
erwise it can be similarly used to indicate the presence of
UV-absorbing aerosol.

The MLER treatment enables the modeling of measured
radiances without knowledge of the optical properties or the
full vertical distributions of atmospheric particles. The ac-
curacy of the modeled radiances at the extrapolated wave-
lengths depends on how closely the MLER parameter (rg
or fc) follows the linear relationship among different wave-
lengths. In reality, the spectral dependence of natural sur-
face reflection (rg) or particle scattering and absorption (fc)
is nonlinear, though moderately as exemplified in Figs. 4b
and 8. Therefore, rgfc extrapolation yields small errors in
rg or fc at the extrapolated wavelengths. The radiance un-
certainties associated with the rgfc extrapolation error are
below 1 % for the vast majority of remote sensing observa-
tions. Higher radiance uncertainties usually occur in the pres-
ence of highly elevated or strongly absorbing aerosols. These
observations may be flagged with high AI values.

In addition to the mostly small radiance errors at the ex-
trapolated wavelengths, the MLER treatment can simulate
the photon sampling of particle-laden atmospheres with a di-
verse range of particle types and vertical distributions. Fig-
ure 9 shows comparisons of mean photon path lengths of
particle-laden atmospheres with those from the correspond-
ing MLER treatments. These comparisons illustrate that the
layer mean photon paths based on the MLER model deviate
from those of the particle-laden atmospheres, mostly in the
region immediately above the particles down to the underly-
ing surface. These deviations diminish with higher altitudes
where lower air density reduces the chance of photons being
scattered. Since the vast majority of clouds and aerosols are
in the lower troposphere (<∼ 10 km), the MLER treatment
does not introduce significant AMF errors in accounting for
O3 absorption, which occurs mostly in the stratosphere. This
is similar to how the Lambertian treatment of surface re-
flection works for the estimation of total O3 absorption (see
Sect. 2.2).

The MLER treatment relies on a few adjustable parame-
ters, including the cloud fraction fc and cloud pressure pc, to
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Figure 9. Mean photon path lengthsmz, normalized by the geometric AMFmG, of EPIC bands 1 and 2 as functions of altitude z for particle-
laden atmospheres and their MLER treatments. See the caption of Fig. 8 for the description of aerosol characterizations, MLER treatments,
and the viewing illumination geometry.

model a vast range of conditions encountered in remote sens-
ing of Earth’s atmosphere. The cloud fraction fc, obtained
directly from radiance measurements using Eq. (9), provides
an estimate of the cloud amount in an IFOV. The pressure
pc of the elevated Lambertian surface needs to be set at a
proper level to best approximate the layer mean photon paths
of a particle-laden atmosphere. As seen in Fig. 9, the opti-
mal placement of the elevated Lambertian surface is within
the particle layer, as pc located too high or too low from the
optical centroid pressure (OCP; Joiner and Vasilkov, 2006;
Vasilkov et al., 2008) would make layer mean photon paths
deviate further from those of the particle-laden atmosphere.
The effective cloud pressures retrieved from the EPIC mea-
surements of the O2 A band (Yang et al., 2019) are usually
located within the particle vertical distributions and therefore
used to set the cloud pressures pc for processing EPIC obser-
vations.

The use of OCP for pc enables the MLER model to ac-
count for the measurement sensitivity change when a layer
of particles is introduced into the atmosphere: enhancing the
photon attenuation by absorbers inside and above the layer,
while reducing them below, as the mean photon paths or
AMFs from the MLER model lengthen above pc but shorten
below it, as illustrated in Fig. 9. Since the MLER model cap-
tures the enhancement and shielding effects on trace gas ab-
sorption by atmospheric particles, it is widely adopted due
to its simplicity for retrievals of trace gases besides O3, such
as NO2 and SO2 in the troposphere. However, sizable AMF
errors are prevalent for modeling tropospheric absorptions
based on the MLER treatment, which usually yields signif-
icantly different mean photon paths from those of explicit
treatment in the troposphere.

2.4 Inelastic molecular scattering

The scattering of sunlight with atmospheric constituents is
mostly elastic; i.e., the energy and thus the wavelength of
a photon remain the same before and after the interaction.
But a small portion (∼ 4 %) of molecular scattering is inelas-
tic, resulting in energy gain or loss of the scattered photons.
Specifically, the rotational Raman scattering (RRS) from air
molecules (such as nitrogen and oxygen) can alter the wave-
lengths of scattered photons, with UV wavelength shifts
1λ <±2 nm (Joiner et al., 1995; Chance and Spurr, 1997;
Vountas et al., 1998). These inelastic scatterings cause the
filling-in of telluric lines (i.e., trace gas absorption features)
and solar Fraunhofer lines (also known as the Ring effect,
which was first noticed by Grainger and Ring, 1962).

The filling-in effect is a function of wavelength and de-
pends on the optical properties of the atmosphere, the view-
ing and illumination geometry, and the surface reflectivity
and pressure. The filling-in effect also depends on the ISRF,
especially on the instrument spectral resolution, which is the
width of its ISRF, since the measured radiance of a band is
a convolution of spectral radiance and the ISRF (see Eq. 1).
This effect is quantified with the filling-in factors, defined
as % = (IRRS−IELA)/IELA, where IELA is the TOA radiance
calculated assuming all molecular scattering is elastic, while
IRRS includes the inelastic (RRS) contributions. To illustrate
the significance of RRS, we show in Fig. 10 examples of the
filling-in factors, calculated for EPIC bands using the scalar
LIDORT-RRS radiative transfer code (Spurr et al., 2008).
Since RRS is weakly dependent on polarization, a scalar ra-
diative transfer model, from which both IELA and IRRS are
calculated without including radiation polarization, can accu-
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Figure 10. Filling-in factors
(
% =

IRRS−IELA
IELA

× 100
)

for EPIC UV
bands as a function zenith angle at two surface pressures pg =
0.7 ATM and pg = 1.0 ATM, with a surface albedo of rg = 0.1.

rately provide filling-in factors (Landgraf et al., 2004; Wag-
ner et al., 2010).

The filling-in factors provide estimates of the modeling
errors in ITOA when RRS contributions are neglected, and
results in Fig. 10 show variations of modeling errors with
different observing conditions. These errors are usually sys-
tematic for a spectral band and are between 0.5 and 1 %
for measurements of EPIC bands 1 and 2. These errors are
sufficiently large that corrections are required for achiev-
ing high (∼1 %) O3 retrieval accuracy. The filling-in factors
(%), modeled using a scaler code (like LIDORT-RRS), may
be used to correct the results (ITOA) from vector radiative
transfer codes (e.g., Dave, 1964; Spurr, 2006) that perform
elastic modeling only, i.e., the RRS-corrected TOA radiance
= ITOA(%+ 1).

3 O3 and temperature vertical profiles

As shown in Sect. 2.1, the O3 vertical distribution or pro-
file directly affects the magnitude of a measured radiance in
the spectral region with significant O3 absorption. Hence, the
interpretation of radiance change due to O3 absorption re-
quires some knowledge of its profile. In general, the retrieval
of quantitative information about a gaseous absorber (such
as O3 and SO2) requires a model to prescribe its vertical dis-
tribution. The skill of this model in representing the actual
vertical distribution of the absorber significantly contributes
to the quantification accuracy. In this section, we describe a
recently developed O3 profile model for remote sensing re-
trieval algorithms and its improvements over the model com-
monly used by other total O3 algorithms.

Ozone is naturally present throughout the atmosphere, and
its spatial and temporal distribution is controlled by atmo-
spheric processes of O3 production, destruction, and trans-
port. The O3 distribution exhibits a high abundance of O3 in
the stratosphere and a minor portion (∼ 10 %) in the tropo-

sphere, with the peak O3 concentration occurring at a lower
altitude as the latitude increases towards the poles. These
characteristics are well-captured by O3 profile climatolo-
gies (e.g., Fortuin and Kelder, 1998; McPeters et al., 2007;
McPeters and Labow, 2012), which provide the mean and
variance of O3 vertical distribution as a function of lati-
tude and calendar month. These climatologies also reveal
that the O3 profile has the highest variability in the upper
troposphere and lower stratosphere (UTLS), contributing the
most to the natural variations in total O3. This high O3 vari-
ability is the consequence of atmospheric movements that
blend air masses with different O3 concentrations, such as
uplifting of O3-poor air in the troposphere or lowering of
O3-rich air in the stratosphere resulting from the rise and
fall of the tropopause. Predictors of O3 profile shape, includ-
ing tropopause pressure and total O3 columns, are developed
to capture the dynamical influences on O3 vertical distribu-
tions, resulting in the construction of tropopause-sensitive
(Wei et al., 2010; Bak et al., 2013; Sofieva et al., 2014)
and total-column-dependent (Wellemeyer et al., 1997; Bhar-
tia and Wellemeyer, 2002; Lamsal et al., 2004; Labow et al.,
2015) O3 profile climatologies.

The O3 profile model for the Total Ozone Mapping Spec-
trometer Version 8 (TOMS-V8) total O3 algorithm com-
bines the latitude-dependent monthly mean Labow–Logan–
McPeters (LLM) climatology (McPeters et al., 2007) with
the latitude- and total-column-dependent annual mean cli-
matology (Bhartia and Wellemeyer, 2002) to determine the
O3 profile as a function of latitude, time (day of year, DOY),
and total O3 column. This model has been adopted by nearly
all the contemporary total O3 algorithms (e.g., Bhartia and
Wellemeyer, 2002; Eskes et al., 2005; Veefkind et al., 2006;
Van Roozendael et al., 2006; Lerot et al., 2010; Loyola et al.,
2011; Van Roozendael et al., 2012; Lerot et al., 2014; Wass-
mann et al., 2015) owing to its capability to characterize O3
profile variation with the total column.

To improve the representation of the O3 profile, we
construct both tropopause-dependent and total-column-
dependent climatologies using the Modern-Era Retrospective
Analysis for Research and Applications Version 2 (MERRA-
2; Bosilovich et al., 2015; Gelaro et al., 2017) O3 record be-
tween 2005 and 2016. The total-column-dependent climatol-
ogy, named M2TCO3, is more appropriate for use as the O3
profile model needed by a total O3 algorithm, as it is gener-
ally more reliable than the tropopause-dependent version in
prescribing realistic O3 profiles (Yang and Liu, 2019).

Figure 11 compares daytime M2TCO3 (Yang and Liu,
2019; referred to as M2TCO3 hereafter) and TOMS-V8 pro-
files for 2 months and four latitude zones, illustrating the sim-
ilarities and differences between the two O3 models. Both
show north–south asymmetry, i.e., profiles in the North-
ern Hemisphere differ from those in the Southern Hemi-
sphere for the corresponding months and latitude zones (e.g.,
September and 60–50◦ S vs. March and 50–60◦ N in Fig. 11),
substantial seasonal variations (e.g., 60–50◦ S, March vs.
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September in Fig. 11), a strong dependence on latitude ex-
hibiting lower altitudes of O3 concentration peaks at higher
latitudes for similar total columns, and characteristic depen-
dence on the total column, which gets smaller with a higher
O3 peak altitude (e.g., March and 50–60◦ N in Fig. 11). Fig-
ure 11 shows good agreements of zonal mean profiles (e.g.,
close matches between solid black and dotted black curves in
each panel of this figure) but significant differences between
M2TCO3 and TOMS-V8 profiles for similar total columns.
These differences are due to TOMS-V8’s use of annual mean
column-dependent climatology to account for profile vari-
ations with the total column throughout the year (Bhartia
and Wellemeyer, 2002), thus ignoring the significant sea-
sonal dependence. An additional deficiency of TOMS-V8
contributing to the differences is its inadequate representa-
tion of latitude-dependent O3 profile variation with the total
column, including broad (30◦) latitude zones and omission
of north–south asymmetry. These deficiencies are eliminated
with M2TCO3, which improves the realism of O3 profile rep-
resentation.

In short, M2TCO3 better captures the dynamical changes
and spatiotemporal variations in O3 profiles with higher res-
olutions in total O3 column (25 DU), latitude (10◦), and time
(monthly). Taking into account the substantial change in at-
mospheric O3 over a long time, M2TCO3 is more accurate in
representing atmospheric O3 vertical distribution from the re-
cent past to near future than the TOMS-V8 model, which was
compiled from earlier satellite and ozonesonde data (mostly
from the 1980s and 1990s; Wellemeyer et al., 1997; McPeters
et al., 2007). Hence, we use the M2TCO3 climatology as the
O3 profile model for total O3 retrieval from EPIC.

The M2TCO3 climatology contains not only mean pro-
files that represent the likely O3 vertical distributions, but
also the modal O3 adjustment profiles that specify the proba-
ble deviations from the means. These modal profiles are de-
termined from the O3 profile covariance statistics, as illus-
trated in Fig. 12, showing examples of M2TCO3 climato-
logical O3 profiles and the associated modal profiles, which
are the eigenvectors (also known as the empirical orthogonal
functions or EOFs) of the profile covariance matrices. Alge-
braically the representation of an O3 profile X is expressed
as

X= Xm(v)+

p∑
k=1

γk ek(v), (12)

where Xm(v) is a climatological profile that depends on a
set of variables v, which for M2TCO3 consists of the total
column (�0), time, and location. ek(v) is the kth modal pro-
file, γk the kth coefficient, and p the number of ek(v), with a
maximum equal to the number of levels used to represent an
O3 profile in the climatology. Usually, a few modal profiles
are sufficient to account for the majority of profile variance.
For example, in Fig. 12, the first five EOFs (panels b and e)
of the covariance matrices (panels c and f) account for 80 %

of profile variances (blue shaded area in panels a and d). An
actual O3 profile X, which deviates invariably from the mean
Xm, can be accurately represented using Eq. (12) with a small
number of expansion coefficients γk . Much like the mean the
profile Xm represents the most probable vertical distribution
of O3: the modal profiles, {ek, k = 1. . .}, describe the most,
the second most, and so on likely vertical patterns of devia-
tions from the mean profile. Each modal profile describes a
rearrangement, like shifting, shrinking, or broadening, of the
mean profile without substantially changing the total column.
With these modal profiles constraining how a profile can be
adjusted, the retrieval algorithm can exploit the O3 profile
information contained in multi-spectral measurements to im-
prove the O3 profile representation by determining one or
more linear expansion coefficients {γk, k = 1. . .}. Note that
for most total ozone algorithms, the O3 profile representa-
tion is limited to the climatological mean only, equivalent to
restricting γk = 0 for all k in Eq. (12).

The total column is a good predictor of an O3 profile
that is especially accurate for the shape in the stratosphere
but less so in the troposphere. Tropospheric O3 exhibits
characteristic spatiotemporal distribution, which is captured
in the MERRA-2 tropospheric O3 climatology (Yang and
Liu, 2019). To better represent the O3 profile, the tropo-
spheric part of a column-dependent M2TCO3 profile, Xm,
is scaled with the ratio of the MERRA-2 climatological
tropospheric column to the tropospheric column integrated
from the downgraded M2TCO3 profile (see Fig. 11 for sam-
ple M2TCO3 and downgraded M2TCO3 profiles). In other
words, the profile Xm in Eq. (12) has its tropospheric part
tied to the spatiotemporally varying climatological tropo-
spheric column, to which the tropospheric column of the
mean Xm profile (obtained by averaging over the different
column amounts) is matched.

In addition to knowledge of profiles of light-absorbing
trace gases, such as O3 and SO2, radiative transfer mod-
eling of measured radiance requires knowledge of the at-
mospheric temperature profile because the absorption cross-
sections of these trace gases significantly depend on temper-
ature. For total O3 retrieval from EPIC, this knowledge is
taken from the temperature profile climatology created from
MERRA-2 data together with the ozone profile climatology
(Yang and Liu, 2019). This temperature climatology provides
mean temperature profiles corresponding to the climatolog-
ical O3 profiles, capturing the dependence of the tempera-
ture profile on season and location, as well as the variation
of temperature with the O3 profile. It is an improvement over
the TOMS-V8 temperature profile climatology, which pro-
vides latitude- and month-dependent temperature profiles,
but without accounting for the strong correlation between
temperature and O3 profiles.
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Figure 11. Profile comparisons between M2TCO3 and TOMS-V8 for 2 months (March and September) and four latitude zones: 60–50◦ S,
30–20◦ S, 20–30◦ N, and 50–60◦ N. Colored solid lines represent M2TCO3 profiles, while the dotted ones are for TOMS-V8 profiles. The
color of a solid line indicates the percentage occurrence of the climatological profile, and its line legend displays the mean tropopause
altitude and the mean total column O3 of the profile. The solid black lines represent the downgraded M2TCO3 (i.e., the monthly zonal mean)
profiles, and dotted lines are TOMS-V8 monthly zonal mean (i.e., the LLM climatological) profiles. Here pressure altitude is defined as
Z∗ = 16log10

[
ps
p

]
, where p is pressure level (in hPa) and ps = 1013.25 hPa.

4 Inversion technique

Section 2 describes algorithm physics treatments of interac-
tions of solar radiation with atmospheric particles and sur-
faces to enable RT modeling of photons traversing through
a molecular atmosphere to reproduce the measured TOA ra-
diances with photons that follow the paths similar to those
through the actual atmosphere and therefore establish the
relationship between spectral measurements and the atmo-
spheric state, as well as surface reflectivity and instrumen-

tal parameters. At its core, the RT modeling sets up a for-
ward mapping from the vertical distributions of gaseous ab-
sorbers and the surface reflectivity parameters to measured
TOA radiances. The retrieval of gas absorbers, such as O3
and SO2, is the inverse of this mapping, i.e., to find their
vertical distributions and the surface reflectivity parameters
for which forward modeling closely reproduces the measured
TOA radiances. However, this inverse mapping is inherently
an ill-posed problem, as the solution is not unique; i.e., more
than one set of profiles and surface parameters can yield the
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Figure 12. Examples of M2TCO3 climatological profiles for the southern midlatitude zone in March (a) and the northern midlatitude zone in
September (b), the associated correlation matrices (c, f), and the corresponding modal O3 profiles (b, e). The blue shaded areas in panels (a)
and (d) are within 1 standard deviation of the mean. The correlation matrices in (c) and (f) are standardized (i.e., diagonal element normalized
to 1) covariance matrices. The five modal profiles in (b) and (e) are the first five ordered eigenvectors (also known as empirical orthogonal
functions or EOFs) of the corresponding covariance matrices, with percentages of the profile variance explained by the EOFs displayed in
the line legends. The text box in each panel displays the average tropopause altitude (in km) and the average total O3 column (in DU) for the
climatological profile.

same measurements. This problem is made worse with mea-
surement uncertainties, which expand the profile and surface
combinations that can reproduce, within error bars, the mea-
sured spectra.

For successful inversion, analytical constraints are placed
on the profiles of gas absorbers as well as the spectral varia-
tions of ground reflectivity and atmospheric particle (aerosol
and cloud) backscattering. For O3 retrieval, Eq. (12) em-
bodies the profile constraint, while the MLER model with
rsfc extrapolation regulates the surface reflection and parti-
cle backscattering. These constraints control the dimension
of the inverse mapping space and manifest themselves as the

retrieval (i.e., adjustable) parameters, which, in the case of
O3 retrieval, consist of total O3 column �, a number (p) of
modal expansion coefficients {γk, k = 1. . .p}, surface LER
(rs) or cloud fraction (fc), and a number (q) of polynomial
coefficients {cl, l = 1. . .q} of the rsfc extrapolation. The set
of adjustable parameters forms the state vector (x) whose
length (n) is the dimension of inverse mapping space. Proper
selection of adjustable parameters by limiting the number
of modal coefficients (p ≥ 0) and polynomial coefficients
(q ≤ 1) ensures that the inverse problem is well-posed and
simultaneously maximizes the amount of information col-
lected from the spectral measurements. Here p = 0 indicates
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no modal expansion, equivalent to restricting the profile to a
climatological column-dependent O3 profile, and q = 0 for
the spectral invariant reflectivity parameter.

4.1 Exact solution

Conceptually, the inversion is to find the state vector (x)
that satisfies a set of m simultaneous equations, {1yi =
0, i = 1. . .m}, one for each spectral band difference, 1yi =
lnIM(λi)− lnITOA(x,λi), between the radiance measure-
ment IM and the forward modeling ITOA: here λi the wave-
length that characterizes the ith (1≤ i ≤m) spectral band
and 1yi the residual of this band. In matrix form, the m si-
multaneous equations can be expressed as

1y = 0, (13)

where 1y is residual column vector {1yi, i = 1. . .m}. Since
the forward mapping ITOA(x) is a nonlinear function of the
state vector x and has no analytical inverse, the solution to
Eq. (13) is usually obtained iteratively. The iteration is started
with an initial (i.e., iteration number L= 0) state vector xL to
linearize the equation between residuals and the state vector.

1yi = ln IM (λi)− lnITOA (xL,λi)−

n∑
j=1

(
xj − xLj

)
∂ lnITOA (x,λi)

∂xj

∣∣∣∣
x=xL

, (14)

where xj and xLj are the j th components of x and xL, re-
spectively, 1xj = xj − xLj the j th components of state ad-
justment vector, and Kij =

∂ ln ITOA(x,λi )
∂xj

|x=xL the Jacobian,
also known as the weighting function for the retrieval param-
eter xj at spectral band λi . The m residual elements, each
written in Eq. (14), can be expressed in matrix form as

1y =1yL−K1x, (15)

where 1yL is the column vector {lnIM(λi)−

lnITOA(xL,λi), i = 1. . .m}, 1x = x− xL the state ad-
justment vector, and K the m× n Jacobian matrix with the
{Kij , i = 1. . .m, j = 1. . .n} as its elements. Putting Eq. (15)
into Eq. (13) yields

1yL =K1x, (16)

which may be solved exactly (under strict conditions) to de-
termine the state adjustment vector 1x. After each iteration,
the linearization state vector is updated to

xL+1 = xL+1x. (17)

The final state x is found when the iteration converges, i.e.,
when the absolute change in state vector 1x is below a
threshold.

The linear equation (Eq. 16) may be solved exactly only
when the number of measurements is equal to the number

of retrieval parameters (i.e., m= n) and the Jacobian matrix
K is invertible (i.e., non-singular matrix), as exemplified in
the well-known TOMS-V8 total O3 algorithm (Bhartia and
Wellemeyer, 2002). The TOMS-V8 algorithm determines the
two-component state vector, x = {�,rs or fc}, from radiance
measurements of two spectral bands: one with low O3 sen-
sitivity to estimate the MLER parameter (rs or fc) and the
other with high O3 sensitivity to derive total O3 column �.
However, few other algorithms adopt this inversion method,
since it requires m= n and K to be a non-singular matrix.
Even if both these conditions are met, inverting Eq. (16) to
obtain exact solutions tends to enhance the impact of mea-
surement uncertainties (noises) on the retrieved results, as in
cases that K matrices are nearly but not quite singular. These
cases occur when the spectral variation of a Jacobian has
some similarity or a high degree of correlation with that of
another retrieval parameter, leading to algorithm difficulty in
distinguishing two retrieval parameters corresponding to the
two Jacobians, thus yielding unstable retrieval results, such
as in the case of simultaneous retrieval of total O3 and SO2
columns from EPIC UV measurements.

4.2 Direct fitting

Since spectral measurements have errors and m 6= n in gen-
eral, the inversion is achieved by finding the solution x that
minimizes the cost function

ϒ(x)=

∥∥∥∥S−
1
2

ε 1y

∥∥∥∥2

2
=1yT S−1

ε 1y (18)

=

m∑
i=1

(
1yi

µi

)2

, (19)

where Sε is the measurement error covariance matrix, with
its ith diagonal element equal to µ2

i . Here µi is the fractional
standard deviation of the radiance error of the ith band. In
the case of independent measurement error, i.e., no error cor-
relation between different spectral bands, Eq. (18) can then
be explicitly written as Eq. (19), which is the formulation of
the least-squares method.

The minimization of the cost function ϒ can be started
by linearizing the residuals with an initial (i.e., iteration
number L= 0) state vector xL. Substituting 1y (Eq. 15)
into Eq. (18), we minimize this cost function to obtain the
state adjustment vector

1x = (KT S−1
ε K)−1KT S−1

ε 1yL =GDF1yL, (20)

which is the solution of linear weighted least-square regres-
sion. Here, GDF = (KT S−1

ε K)−1KT S−1
ε is the direct fitting

(DF) gain matrix.
This procedure of iterative minimization of the difference

between measurements and modelings to determine the bulk
parameters is called the direct vertical column fitting (DVCF)
algorithm. The DVCF algorithm is quite general and valid for
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both discrete wavelength and hyperspectral measurements,
as well as for different types of retrieval parameters, such
as MLER parameters, layer partial columns of various ab-
sorbing trace gases, and their total vertical columns. This
algorithm has been applied to retrievals of total O3 vertical
column (Joiner and Bhartia, 1997; Yang et al., 2004; Lerot
et al., 2014), the combination of total O3 and SO2 vertical
columns (Yang et al., 2007, 2009a, 2013), the combination of
O3 and altitude-resolved SO2 vertical columns (Yang et al.,
2009b, 2010), and stratospheric and tropospheric NO2 ver-
tical columns (Yang et al., 2014). This algorithm is named
DVCF to contrast with the DOAS (differential optical ab-
sorption spectroscopy) method (Platt, 2017), which derives
a slant column and then uses an air mass factor (AMF) at a
single wavelength (λ0) to convert it to a vertical column.

In general, the DVCF algorithm works well when the
changes in radiance measurements responding to changes in
the state vectors are significantly different between any two
retrieval parameters, i.e., that columns of K, which are the
Jacobians of a retrieval parameter at different wavelengths,
exhibit significantly different spectral dependence from one
another. This is usually true for any two bulk retrieval param-
eters over a sufficiently broad spectral range, such as total
O3 column (�) and an expansion coefficient (γk) of differ-
ential profile ek (see Eq. 12), or the SO2 vertical column and
its layer altitude. With measurements from a broad spectral
range, the DVCF algorithm can discriminate subtle spectral
features contained in hyperspectral measurements to enhance
the retrieval accuracy (e.g., Yang et al., 2009b, 2010). Be-
sides contrasting with the DOAS method, the name DVCF
emphasizes the vertical column because this algorithm is
usually not suitable for traditional profile retrieval due to the
high similarity of partial column Jacobians between adjacent
layers and hence the difficulty in distinguishing their partial
columns.

4.3 Optimal estimation

In many cases, such as sparse spectral sampling or a narrow
spectral range, the performance of the direct fitting inversion
method may decline as a result of limited information con-
tained in the spectral measurements. For stabilizing the re-
trieved results, the inversion process can be regulated with
an additional constraint, which is frequently based on a priori
knowledge of the retrieval parameters. Algebraically, adding
an a priori constraint to Eq. (18) yields a new cost function

ϒ(x)=1yT S−1
ε 1y+ (x− xa)

T S−1
a (x− xa), (21)

where xa is the a priori state vector and Sa the a priori
state vector covariance matrix. The first term on the right-
hand side (rhs) of Eq. (21) strives to diminish the difference
between measured and modeled radiances, performing the
same function as the direct fitting retrieval, while the second
rhs term seeks to reduce the deviation of retrieved x from
the a priori xa. This a priori constraint effectively stabilizes

the retrieval by guiding the state vector adjustment when
the measurements contain little information to differentiate
the contributions from different components of the state vec-
tor. Using the optimal estimation (OE) technique (Rodgers,
2000) to minimize the cost function, Eq. (21) yields the a
posterior state adjustment vector at the Lth iteration:

1x =
(

S−1
a +KT S−1

ε K
)−1(

KT S−1
ε 1yL+S−1

a 1xaL

)
(22)

=

(
S−1

a +KT S−1
ε K

)−1 (
KT S−1

ε KGDF1yL+S−1
a 1xaL

)
(23)

=1xaL+SaKT (KSaKT +Sε)−1 (1yL−K1xaL
)
, (24)

where 1xaL = xa− xL. Inserting In =
(KT S−1

ε K)(KT S−1
ε K)−1, an n× n identity matrix, in

front of the term KT S−1
ε 1yL in Eq. (22) yields Eq. (23).

At iteration L= 0, a state vector close to the actual one
is sought to be the initial state vector x0, and a frequent
selection is the a priori state vector: x0 = xa. This is a more
robust inversion scheme that works for m> n, m= n, and
m< n. Equation (24) is often used in the case of m< n, as
the inversion deals with an m×m (i.e., a smaller) matrix.

Equation (23) describes the difference between the current
and previous state vectors 1x as a combination of the di-
rect fitting solution GDF1yL (see Eq. 20, which is derived
without any a priori constraint) and the difference between
the a priori and the previous state vectors 1xaL weighted by
matrices KT S−1

ε K and S−1
a , respectively. For the state vector

component with a strong a priori constraint, i.e., a small vari-
ance in Sa, the retrieved result gravitates towards the value
of the a priori state vector, while for the one with a weak
constraint, i.e., a high variance in Sa, its retrieved value is
primarily determined from the measurements.

The variance of a retrieved parameter is equal to the corre-
sponding diagonal element of the covariance matrix (S−1

a +

KT S−1
ε K)−1 (see Eq. 23) and is thus less than or equal to

the corresponding a priori variance in the a priori Sa matrix.
In other words, the change magnitude of a retrieval parame-
ter at each iteration is usually smaller than its a priori stan-
dard deviation. Consequently the OE method can be used as
an inversion scheme to ensure retrieval stability and preserve
the dependence of the retrieved results on the measurements
through a careful construction of the a priori covariance ma-
trix Sa. To further reduce the dependence on the a priori state
vector, it is updated at each iteration with the linearization
point, setting xa = xL, and hence Eq. (22) becomes

1x = (S−1
a +KT S−1

ε K)−1KT S−1
ε 1yL =G1yL, (25)

where G=
(
S−1

a +KT S−1
ε K

)−1KT S−1
ε is the optimal esti-

mation gain matrix. This setting floats the anchor point of
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the retrieval, allowing the measurements to drive the itera-
tion to its final state, with the a priori covariance to limit the
deviation from the anchor.

By relaxing the a priori constraints through increasing the
diagonal terms (i.e., the variances) of Sa such that S−1

a → 0,
G becomes GDF and Eq. (22), as well as Eq. (25), becomes
Eq. (20). In other words, the direct fitting inversion is a spe-
cial case of the OE inversion scheme, which is more appro-
priately called the regulated direct fitting inversion. Using
the knowledge of their variances (Sa) to limit some of their
ranges while allowing others to change freely, the DVCF al-
gorithm with the regulated inversion scheme is suitable for
retrieving multiple parameters from discrete measurements .
It is applied to EPIC UV observations for simultaneous O3
and SO2 retrievals.

5 Retrieval from EPIC UV bands

EPIC has four UV channels (see Fig. 2), referred to
as B1, B2, B3, and B4, characterized by wavelengths
λ1 = 317.5 nm, λ2 = 325.0 nm, λ3 = 340.0 nm, and λ4 =

388.0 nm, respectively. The radiance measurements from
shorter UV channels, EPIC B1 and B2, are sensitive to both
O3 and SO2 absorptions (see Fig. 13), containing informa-
tion that allows the retrieval of total O3 and SO2 vertical
columns, provided that the reflectivity of the underlying sur-
face is known. This knowledge is obtained from the radiance
measurements of EPIC B3 and B4, the longer wavelength
channels. These channels provide information about the sur-
face reflection and particle backscattering and have very low
sensitivities to O3 and SO2 absorption such that changes in
O3 and SO2 amounts result in little difference in the radi-
ance measurements of these two bands. The reflectivity de-
termined from B3 and B4 is used to estimate the reflectiv-
ity at the shorter wavelength (O3 sensitive) channels, accom-
plished with the rsfc extrapolation scheme (see Sect. 2.3).
The reflectivity spectral slope cl of this extrapolation is pro-
portional to the AI (see Eq. 11). The reflectivity parameter
(R) is either the LER value rs estimated from Eq. (6) or the
MLER cloud fraction fc from Eq. (9) depending on the value
of fc (R = rs when fc = 0, R = fc when fc > 0), and its
spectral slope is calculated as cl = (R4−R3)/(λ4− λ3).

In this section, we describe the application of the DVCF al-
gorithm to EPIC UV measurements, the scheme to solve the
difficulty arising from the non-coincidence among the differ-
ent EPIC spectral observations, and examples to illustrate the
success of this application.

5.1 Reflectivity correction by spatial optimal
estimation (SOE)

The estimation of the O3 column from EPIC radiance mea-
surements requires accurate reflectivity information on the
underlying surface, which is extrapolated from the reflec-

Figure 13. EPIC bandpass-averaged cross-sections σ for O3 and
SO2 at 280 K and their ratio, ρ = σ (SO2)/σ (O3).

tivity determined at the longer wavelength bands (B3 and
B4), but the uncertainty of this extrapolation becomes large
due to EPIC’s asynchronous spectral measurements. Unlike
most spaceborne UV instruments which provide coincident
measurements from different spectral bands, EPIC takes the
spectral images sequentially, separated by a time delay of
∼ 30 s between adjacent UV bands. Due to the Earth’s self-
rotation and spacecraft jitter, different spectral images record
slightly different (i.e., rotated) sunlit hemispheres. The ge-
olocation procedure of EPIC (Blank, 2019) aligns different
spectral images and further refines the band-to-band regis-
tration using the image correlation technique (Yang et al.,
2000), which is estimated to provide better than 0.1 pixel
(a pixel refers to an IFOV) registration accuracy for EPIC
bands. Despite this high registration accuracy, rsfc extrapo-
lation (see Sect. 2.3) becomes less accurate for a significant
fraction of EPIC IFOVs as substantial reflectivity changes
may occur with small shifts in viewing and solar zenith an-
gles since near the direct backscattering direction the parti-
cle scattering phase functions have a high angular sensitiv-
ity and the shadow areas of structured scenes change nonlin-
early with viewing illumination geometry. This difficulty is
unlikely to improve even with better alignment and requires
a new approach to correct the extrapolated reflectivity.

The basic idea to obtain a more accurate reflectivity at an
O3-sensitive band is to derive it from the radiance measure-
ment of this band with an optimally estimated total O3 col-
umn from the nearby O3 distribution. This O3 estimation is
attainable because an actual spatial distribution of the total
O3 column is a smooth function of geolocation and exhibits
a high degree of close-range correlation (Liu et al., 2009).
Algebraically, the spatial optimal estimation (SOE) method
finds the reflectivity (RB) at EPIC band B by minimizing the
cost function that embodies the a priori knowledge of RB and
O3 spatial distribution. The first part of cost function supports
a smooth (i.e., homogeneous) O3 distribution, while the sec-
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ond part penalizes the difference between RB and its a priori
value, which is the extrapolated reflectivity (RE) from the
longer wavelength EPIC bands. Hence the cost function is
written as

ϒ = α

n,n∑
i=1
j=1

wt(i,j)
[
�(i)−�(j)

〈�〉

]2

+β

n∑
i=1

[
RB(i)−RE(i)

RE(i)

]2

(26)

=

n∑
i=1

(
α

n∑
j=1

wt(i,j)
[
�(i)−�(j)

〈�〉

]2

+β

[
RB(i)−RE(i)

RE(i)

]2)
=

n∑
i=1

ϒi, (27)

subject to the measurement constraints {IM(λB , i)=

ITOA(�(i),RB(i),λB), and IOFV index i = 1. . .n, the size
of the IFOV group}, which is linearized to become

�=�(RE)+

(
∂ lnITOA

∂RB

∣∣∣
RB=RE

/
∂ lnITOA

∂�

∣∣∣
�=�(RE)

)
(RB−RE)�(RE)+

∂�

∂RB

∣∣∣∣
RB=RE

(RB−RE)

=�(RE)+ S (RB−RE) ,

(28)

where S = ∂�
∂RB

∣∣∣
RB=RE

. The IFOV index i is dropped in

Eq. (28) without losing clarity. Here j is also an index la-
beling the pairing (or other) IFOV in the group, and wt(i,j)
is the weighting factor that depends on the distance between
the i–j pair. 〈�〉 is the average O3 column for the group.
Given RE, which is the band-B reflectivity extrapolated from
the longer wavelength bands, the total O3 column �(RE) is
retrieved from band-B radiance measurement using the exact
solution method (see Sect. 4.1), and the associated O3 pro-
file is the column-dependent M2TCO3 climatological profile
Xm (�). The equation of measurement constraint (Eq. 28)
describes a positive (since S > 0 usually) linear relationship
between total O3 column � and the surface reflectivity (in
the neighborhood of RE), increasing RB requires more O3
absorption to maintain IM = ITOA.

Minimizing only the first rhs term of Eq. (26) leads to the
same O3 column for all the IFOVs (i.e., {�(i)= 〈�〉, i =
1. . .n}), while minimizing only the second term makes RB =

RE for each IFOV. The constants α and β are weights to
respectively emphasize the smoothness of O3 spatial distri-
bution and the closeness of reflectivity between extrapola-
tion and estimation. In the SOE scheme, weights are α = 0
and β = 1 for the traditional O3 retrieval, also referred to
as independent-pixel retrieval, while for optimized retrieval,
equal weights α = β = 0.5 are used.

For optimized retrieval, the minimization of the cost func-
tion ϒ (Eq. 26) can be accomplished by iteratively finding
RB(i) to minimize each component ϒi . The solution RB(i)

that minimizes ϒi is found by solving this equation:

∂ϒi

∂RB(i)
= β

RB(i)−RE(i)

R2
E(i)

+α

n∑
j=1

wt(i,j)

(
�(i)−�(j)

)
Si

〈�〉2
= 0, (29)

which yields

RB(i)= RE(i)

−

αR2
E(i)Si

(
n′�(i,RE(i))−

∑n′

j=1�(j)
)

β〈�〉2+αn′R2
E(i)S

2
i

. (30)

From Eqs. (29) to (30), only the n′ nearby IFOVs are in-
cluded, i.e., wt(i,j)= 1 for i–j separation within a few
(< 4) adjacent IFOVs; otherwise, wt(i,j)= 0. At the start
of iteration, {�(j)=�(j,RE),1. . .n}, and they are then up-
dated using Eq. (28) with RB(i) from Eq. (30) for the next
iteration, which stops until changes in {RB(i), i = 1. . .n} be-
come sufficiently small. In practice, no more than a couple
of iterations are needed to reach convergence.

Figure 14 shows an example of simultaneous retrieval
from the IFOVs of an EPIC hemispheric view using the
SOE method. The high-variability O3 map (Fig. 14e) from
the independent-pixel retrieval contains many artifacts (high
spikes and low dips in O3 columns), which are substantially
reduced using the SOE method, resulting in a much more
realistic (smooth) O3 map (Fig. 14f). The O3 differences
(1�) between optimized and independent-pixel retrievals
(see Fig. 14c, d, and h) illustrate the quantitative improve-
ments, with a small mean O3 difference (mean 1� within
±0.5 DU) and a sizable reduction in O3 noise level (stan-
dard deviation of 1�≈ 7 DU). The corresponding reflec-
tivity corrections are quite significant at ∼ 0.02 on average,
with a maximum of ∼ 0.1 deviation from the rsfc extrapola-
tions.

In summary, the SOE method performs single-band (B1 or
B2) multiple-IFOV (or image-based) retrieval, yielding re-
flectivity (R) and total O3 column (�), with the associated
profile determined by the O3 model (Eq. 12) that retains only
the column-dependent M2TCO3 climatological profile Xm.
The a priori knowledge of the O3 distribution, which is spa-
tially smooth, provides the extra information to correct the
initial reflectivity estimation extrapolated from the charac-
terization based on the longer wavelength bands.

5.2 Total O3 column

Radiance measurements of EPIC B1 and B2 radiances have
O3 profile sensitivity, which is higher at B1 than at B2, es-
pecially at high zenith (SZA, VZA, or both) angles (as illus-
trated in Fig. 3). Compared to the measurement of a single
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Figure 14. Retrieved O3 from EPIC measurements of bands B1, B3, and B4 on 3 December 2015. (a) Optimized (i.e., α = 0.5, β = 0.5) O3
map based on the SOE method; (b) a comparison of optimized (orange) and independent-pixel (blue, α = 0, β = 1) O3 along the horizontal
line (left to right) across the middle of the O3 map in (a); (c) the O3 difference map:1O3 = O3 (optimized)−O3 (independent pixel); (d) the
O3 difference along the horizontal line across the middle of the map in (c); (e) a zoom-in of the independent-pixel O3 map; (f) the optimized
O3 corresponding to the rectangle in (a); (g) cloud fraction fc corresponding to (e) and (f); (h) O3 difference (optimized− independent pixel),
with a zoom-in corresponding to the rectangle in (c).

O3-sensitive band, both bands jointly provide more informa-
tion that allows the refinement of climatological representa-
tion of the O3 profile. This refinement is performed by adjust-
ing the climatological profile with the most probable modal
profile (e1, see Eq. 12) so that both B1 and B2 yield the same
total O3 column.

For retrieval from EPIC, the full state vector to be inverted
is x = {�0,γ1,4,R1,R2}, where �0 is the total O3 column,
γ1 the O3 profile adjustment factor, 4 the total vertical SO2
column, and R1 and R2 the MLER parameters at EPIC B1
and B2. The regulated direct fitting of EPIC B1 and B2 radi-
ances is applied to obtain retrieved full state vector x .

For each IFOV of EPIC, the O3 vertical column is esti-
mated first assuming there is no SO2. The iteration starts with
an initial state vector x0 = {�0 =�c,γ1 = 0,4= 0,R1 =

RS1 ,R2 = R
S
2 }, where �c is the climatological total column

selected from the M2TCO3 climatology based on time and
location. RS1 and RS2 are the corrected MLER parameters
at B1 and B2, respectively, using the SOE method (see
Sect. 5.1).

Since EPIC radiance measurement errors between any
two bands are not correlated, the measurement error covari-
ance matrix is diagonal: Sε = diag(σ 2

B1 = 0.003452, σ 2
B2 =

0.003452), as estimated from the random errors of the ra-
diance (IM) measurements (see Sect. 6.2).

There is no correlation among retrieval parameters: total
O3 column (�0), the deviation (ω1) of the O3 profile from
the mean, SO2 column (4), and the MLER parameters R,

except between R1 and R2. The diagonal elements of the a
priori covariance matrix are Sa = diag(ε2

�0
= 102 DU2, ε2

γ1
=

22 DU2, ε2
4 = 0.00012 DU2, ε2

R1 = 0.0012, ε2
R2 = 0.0012).

The off-diagonal elements are equal to zero, {Sa(i,j)= 0,
when i 6= j}, except for the elements associated with R1 and
R2, which may be set at Sa(4,5)= Sa(5,4)= 0.98εR1 εR2 =

0.00992, representing a high degree of correlation (0.99)
between R1 and R2. This Sa essentially limits the ad-
justments at each iteration: |1�0|. ε�0(10 DU), |1ω1|.
εγ1(2 DU), |14|. ε4(10−4 DU), |1R1|. εR1(0.001), and
|1R2|. εR2(0.001). The strong constraint on SO2 ensures
that its column 4 never deviates far (> 0.01 DU) from its
initial value of 0 during the iteration, essentially enforcing an
SO2-free retrieval. The strong constraints on R1 and R2 also
ensure that they remain nearly the same as their initial values
RS1 andRS2 . The constraints on O3 parameters are quite loose.
Especially towards the convergence of the iteration, the ab-
solute adjustment of each component is much smaller than
the corresponding standard deviation, i.e., the square root of
the corresponding diagonal element of Sa.

With the setup of error and a priori covariance matrices
Sε and Sa, the initial state vector x0 is updated (Eq. 17) iter-
atively using 1x from Eq. 25 until the exit of the iteration
when |1�0|< 0.5 DU and |1γ1|< 0.5 DU. The retrieved
total O3 column (�) is obtained by integrating the profile
X= Xm(�0)+γ1e1(�0). In processing EPIC data, the initial
O3 column �c of x0 for an IFOV may be set to the column
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� of a previous (or nearby) IFOV to improve the speed of
convergence of the iteration.

Here we list the algorithmic procedure (see the flowchart
in Algorithm 1), titled EPIC total ozone retrieval, that is ap-
plied to each EPIC level-1b (L1B) granule, which contains
spectral measurements, as well as geolocation and angular
information for all the IFOVs of a snapshot of the sunlit side
of the Earth, to produce the level-2 (L2) O3SO2AI prod-
uct. The contents of a sample O3SO2AI granule are dis-
played in Fig. 15, including total O3, LER, and AI, which
are respectively shown in Fig. 15c, e, and f. For compari-
son, the MERRA-2 assimilated O3 total columns, interpo-
lated to the time and location of EPIC IFOVs, are included
in Fig. 15d, their differences O3(EPIC)−O3(MERRA-2)
in Fig. 15g, and the histogram in Fig. 15h. This compar-
ison reveals excellent agreement between MERRA-2 and
EPIC total O3, showing nearly identical O3 spatial dis-
tributions with similar highs and lows. Quantitatively, the
differences for samples with VZA≤ 70◦ are characterized
by a low mean offset (µ(EPIC)=−0.2 %) and a narrow
spread (standard deviation σ(EPIC)= 2.52 %). Figure 15 in-
cludes the intermediate results of the EPIC total O3 pro-
cessing (see the procedure in Algorithm 1), showing the to-
tal O3 columns retrieved from B1 in panel (a) and from
B2 in panel (b) using the SOE method. Both B1 and B2
total columns closely resemble the MERRA-2 (panel d)
and EPIC (panel c) total O3 fields, with difference statis-
tics showing slightly worse offsets (µ(EPIC B1)= 0.25 %
and µ(EPIC B2)=−0.41 %) and higher standard deviations
(σ(EPIC B1)= 2.68 % and σ(EPIC B2)= 2.68 %). The im-
proved agreement with MERRA-2 is significant, reducing
the B1 O3 spread by

√
σ 2(EPIC B1)− σ 2(EPIC)= 0.9 %

(or 2.8 DU) and the B2 O3 spread by a similar amount.
These better agreements are consistent over time and lo-
cation, substantiating the improved retrieval with both O3-
sensitive bands over a single one, which is adopted by the
TOMS-V8 algorithm. Since the MERRA-2 O3 field from the
assimilation of independent measurements of the Aura OMI
and Aura Microwave Limb Sounder (MLS) provides highly
realistic spatiotemporal O3 representation, the smaller spread
between the two-band (B1 and B2) EPIC and MERRA-2
total O3 columns indicates that the inclusion of more O3-
sensitive bands enables more accurate retrievals.

5.3 Volcanic SO2

EPIC B1 and B2 radiances respond to both O3 and SO2 ab-
sorptions, but with very different (see Fig. 13) sensitivities:
SO2 is more than twice as UV-absorbent as O3 at B1; in
contrast, it is significantly less at B2 and about 70 % as ab-
sorbent as O3. Consequently, the estimate of O3 absorption
signals at these two bands would result in an error due to
the presence of SO2 in the atmosphere: 1 DU of SO2 would
usually yield more than 2 DU O3 error at B1, but only about
0.7 DU error at B2. This big difference in absorption sen-

sitivities facilitates the detection of SO2 in the atmosphere.
Given a radiance signal-to-noise ratio (SNR) of 290 : 1, the
theoretical minimum detectable level of SO2 enhancement
is ∼ 0.5 DU in the upper troposphere and above. However,
it is difficult to distinguish SO2 at this minimum level from
other changes, such as the O3 profile or surface spectral re-
flectance, since they can induce similar changes in the mea-
sured radiances. This difficulty is increased by EPIC’s asyn-
chronous spectral measurements, which may yield spectral
variation similar to the response to adding SO2 in the atmo-
sphere. Consequently, low levels of SO2 elevation cannot be
reliably detected in EPIC observations. For significant SO2
elevations, typically those from volcanic eruptions, B1 O3
is much higher than B2 O3 (i.e., �1 >�2) from the total
O3 retrieval (described in Sect. 5.2). Adjusting the O3 profile
shape or changing the spectral reflectance of the underlying
surface usually cannot eliminate this large O3 discrepancy
between the two bands. Therefore, a high positive value of
1� can be used to flag the presence of SO2. Furthermore,
a volcanic plume usually occupies a contiguous area with a
limited spatial extent. Thus, 1� and �1 enhancements re-
sulting from volcanic SO2 plume occur over a large group of
connected IFOVs instead of isolated or a small group of dis-
connected IFOVs. Based on these characteristics of volcanic
SO2 plumes, we next describe an algorithmic procedure to
flag IFOVs with SO2 enhancements.

For reliable SO2 detection, the following procedure is ap-
plied to identify the presence of SO2 in an IFOV. First, IFOVs
of likely SO2 elevations are flagged through spatial analysis
of the differential O3 field (i.e., 1�=�1−�2, EPIC B1
and B2 O3 difference), accomplished through contour map-
ping to find closed areas of local 1� enhancements, i.e.,
areas within closed contours with �1 considerably higher
(≥ 7 DU) than the�2 values (see, e.g., Fig. 16b). The IFOVs
within this 1� contour likely have SO2 elevation around
5 DU or above. Next, contour mapping of �1 is performed
to find the longest closed contour line in the area that ex-
tends 150 pixels off the extrema of the 1� contour (i.e.,
an image rectangle with a minimum of 300× 300 IFOVs or
3000× 3000 km2 that covers the 1� contour). Within this
closed�1 contour, IFOVs with likely SO2 enhancements are
flagged when �1 >�2. This flagging is then extended to the
adjacent areas outside the two contours to identify IFOVs
with possible SO2 contamination. For most volcanic plumes,
these two contours overlap each other greatly. Including ar-
eas within the �1 contour and the adjacent outside regions is
designed to capture plumes with lower SO2 elevations.

Once detected, the SO2 quantification follows the DVCF
retrieval with the initial state and a priori covariance set-
ting described next. For the IFOV identified with SO2 con-
tamination, the initial O3 values are spatially interpolated
from the background �1 field, γ1 = 0, and initial SO2 col-
umn 40 =�1−�2, integrated from a vertical profile speci-
fied by a generalized distribution function (GDF; Yang et al.,
2010) with a width and a center altitude appropriate for the
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plume. The corresponding elements of the a priori covariance
matrix are Sa = diag(ε2

�0
= 102 DU2, ε2

γ1
= 22 DU2, ε2

4 =

40
2 DU2), i.e., the variances associated with O3 are the same

as those for total O3 retrieval, while the SO2 column variance
is equal to the square of the initial SO2 estimate (40), which
is a weak constraint to allow 4 to change freely responding
to the measurement. Other retrieval settings are kept the same
as in the total O3 retrieval described in the previous section.
We list the complete algorithmic procedure in Algorithm 2,
titled EPIC total SO2 retrieval, for SO2 detection and quan-
tification from EPIC UV observations.

The algorithmic procedure (listed in Algorithm 2) ap-
plies to regions where EPIC observes volcanic plumes to
produce the EPIC volcanic SO2 product. Figure 16 illus-
trates the detection and quantification of volcanic SO2 from
EPIC observations. Spatial analyses (i.e., contour mappings)

of the intermediate results (Fig. 16a and b) of the total O3
processing (see Algorithm 1) provide reliable detection of
SO2 elevations. The SO2-flagged IFOVs are then processed
with the DVCF algorithm to retrieve total vertical O3 and
SO2 columns simultaneously, with results shown in Fig. 16c
and d, respectively. Comparison of the two O3 fields in
Fig. 16 shows that the initial O3 elevations (Fig. 16a) due to
the presence of SO2 are nearly entirely removed in the final
O3 field (Fig. 16c), demonstrating that the combined retrieval
of O3 and SO2 achieves consistent O3 values inside and out-
side the plumes. The achieved internal consistency indirectly
validates the SO2 columns. In Fig. 16e, we show maps of
DVCF-retrieved SO2 columns from a series of eight consec-
utive EPIC observations of the Raikoke plume in Fig. 16e,
with the maximum SO2 value, the total SO2 mass, and the to-
tal area covered by elevated SO2 displayed in each snapshot.
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Figure 15. An L2 O3SO2AI granule contains the total O3 vertical columns (c), LER at 340 nm (e), and AI (f) retrieved from EPIC
UV measurements at 03:53:57 UTC on 3 April 2017. (a) Total O3 column (referred to as B1 total O3 column) retrieved from EPIC
B1, B3, and B4. (b) Total O3 column (referred to as B2 total O3 column) retrieved from EPIC B2, B3, and B4. (c) Total O3 from all
four bands. (d) Coincident MERRA-2 total O3 columns. (g) The total O3 difference: O3(EPIC)−O3(MERRA-2). (h) The histogram of
the O3 differences with SZA ≤ 70◦, i.e., samples within the circle in (g), with a mean difference µ(EPIC)=−0.20 % (or −0.35 DU)
and a standard deviation σ(EPIC)= 2.52 % (or 7.4 DU). Similarly, the O3 difference, O3(EPIC B1)−O3(MERRA-2), has a mean of
µ(EPIC B1)= 0.25 % (or 1.03 DU) and a standard deviation σ(EPIC B1)= 2.68 % (or 7.9 DU), and O3(EPIC B2)−O3(MERRA-2) has a
mean µ(EPIC B2)=−0.41 % (or −1.08 DU) and a standard deviation σ(EPIC B2)= 2.68 % (or 7.8 DU).

These results illustrate the high-cadence observing capability
and high-quality SO2 measurements of EPIC.

6 Error analysis

We describe in this section how algorithm physics treatments
and various sources contribute to the retrieval uncertainties
and provide error estimates of the EPIC O3 and SO2 prod-
ucts.

6.1 General expression

The spectral measurements, represented by a column vector
y of length m (the number of wavelength bands), are written
explicitly with all the dependent parameters and possible er-
rors and then expanded with respect to the linearization point
(xL):

y = lnIm = lnITOA(ω,ξ ,b)+ εm (31)

= lnITOA(ωL,ξL,bL)+kω(ω−ωL)

+kξ (ξ − ξL)+kb(b−bL)+ εf+ εm, (32)

where the column vectors of length nl (the number of at-
mospheric layers), ω, and ξ respectively represent the actual
vertical profiles for O3 and SO2, while ωL is the climato-
logical O3 profile equal to Xm(�L)+ γ1e1(�L) and ξL the
prescribed SO2 profile specified by a GDF layer with an in-
tegrated vertical column equal to 4L. The profile weighting
functions, kω = −∂ lnITOA

∂ω
|ω=ωL and kξ = −∂ lnITOA

∂ξ
|ξ=ξL , are

m× nl matrices, with each of the rows equal to the prod-
uct of absorber cross-sections at one spectral band and the
layer AMFs (i.e., the mean photon path lengths through the
atmospheric layers). Likewise, b and bL are respectively a
set of the exact forward model parameters and those used
in the linearization, with the corresponding sensitivity ma-
trix kb = −∂ lnITOA

∂b
|b=bL . These forward model parameters

may include the spectral-dependent MLER parameters, the
ground surface and the OCP cloud pressures, the atmospheric
temperature profile, the absorption cross-sections of O3 and
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SO2, and the parameters that specify the ISRFs of the spec-
tral bands. The column vector εf is the forward modeling er-
rors of the spectral bands, such as the approximate radiative
transfer through Earth’s spherical atmosphere and the incom-
plete accounting for RRS contributions. The last term εm is
a column vector representing the spectral radiance errors of
the instrument, including random noises and radiometric cal-
ibration biases.

Using the definition1x = x−xL and putting Eq. (32) into
residual 1yL, Eq. (25) is rewritten as

x− xL =G
[
kω (ω−ωL)+kξ

(
ξ − ξL

)
+kb (b− bL)

+εf+ εm] (33)

= Aω (ω−ωL)+Aξ
(
ξ − ξL

)
+Gkb (b− bL)

+Gεf+Gεm, (34)

where Aω =Gkω and Aξ =Gkξ are the averaging kernels
(AKs) for O3 and SO2, respectively. Equation (34) describes
how various error sources, from mismatches in absorber pro-
files to errors in model and measurement, propagate into the
final result (x). The rows associated with the O3 and SO2
columns can be extracted from the vector equation (Eq. 34)
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Figure 16. EPIC observation of the volcanic plume on 23 June 2019 from the previous day’s eruption of Raikoke volcano (represented by
1 in each panel) in the central Kuril Islands of Russia. (a) B1 O3 column (�1) from EPIC total ozone retrieval and the elevated O3 contour.
(b) B1 and B2 O3 column difference (1�=�1−�2) and elevated 1� contour. (c) Vertical O3 column from EPIC total SO2 retrieval (see
Algorithm 2). (d) Vertical SO2 column from EPIC total SO2 retrieval. (e) SO2 vertical column retrieved from a series of eight consecutive
EPIC observations of the Raikoke plume, represented by a 1.5 km thick GDF layer centered at an altitude of 13 km above sea level.

and written as

�−�T = (A�− 1)(ω−ωL)+G�ε�, (35)
4−4T = (A4− 1)

(
ξ − ξL

)
+G4ε4, (36)

after subtracting �T−�L and 4T−4L from the row equa-
tions, respectively. Here �T and 4T are the true O3 and SO2
columns, integrated from the corresponding true O3 (ω) and
SO2 (ξ ) profiles. A� and G� are the row vectors associated
with the retrieved O3 column � from the corresponding ma-
trices Aω and G. Analogously, A4 and G4 are the row vec-

tors related to the retrieved SO2 column 4 taken from the
matrices Aξ and G, respectively. The constant row vector 1
contains the value 1 for all its elements. Thus, its dot product
with a vertical profile (a column vector) is equivalent to the
summation of all the individual layer amounts, yielding the
total column. The column vector ε� represents the total error
combined from various sources impacting the total O3 accu-
racy, including errors in model parameters kb(b− bL), for-
ward modeling εf, spectral measurements εm, and the other
absorber kξ (ξ − ξL). Similarly, ε4 represents the combined
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total error affecting total SO2 accuracy with the other ab-
sorber term being replaced by kω(ω−ωL).

Retrieval errors can be characterized using Eqs. (35)
and (36), provided errors from various sources are suffi-
ciently small that forward modeling responds linearly to
these deviations. However, substantial retrieval errors usually
result from simplified physics treatments, which constrain
the forward model to be radiative transfer in a molecular
atmosphere over Lambertian surfaces. These errors may be
called the AMF errors because the simplified physics treat-
ments cannot, in general, reproduce the paths of photons
through the observed atmosphere, even though they enable
radiance matching between measurement and modeling. The
deviations of mean paths lead to retrieval errors in O3 and
SO2 because the interpretation of measured radiance through
radiance matching requires accurate modeling of mean pho-
ton paths (i.e., the AMFs). The retrieval errors from the sim-
plified physics treatment can be estimated using closed-loop
tests (i.e., realistic forward modelings and then inverse re-
trieval with simplified physics treatments). Next, we provide
uncertainty estimates of O3 and SO2 retrievals contributed
from various error sources and simplified physics treatments.

6.2 Uncertainty estimates

6.2.1 Measurement errors

Errors in EPIC spectral measurements contribute to uncer-
tainties in retrieved O3 and SO2 columns (� and 4). Tak-
ing the terms associated with radiance errors from Eqs. (35)
and (36), retrieval errors are written as

1�=G� (εm+kR1R) , (37)
14=G4(εm+kR1R). (38)

These equations specify how measurement errors (εm) of the
O3-sensitive bands and the MLER parameter errors (1R)
due to the measurement errors in the weak absorption bands
propagate into retrieved vertical columns.

Biases in radiance measurements lead to systematic errors
in retrieved vertical columns. While the actual radiance bi-
ases are unknown, they are likely less than 1 % for EPIC UV
bands. For radiance biases within ±1 %, the systematic O3
and SO2 column errors are within ±∼ 15 and ±∼ 8 DU,
respectively, as estimated from Eqs. (37) and (38). These re-
trieval column errors are primarily controlled by the relative
differences of spectral errors without significant dependence
on the column amounts or surface reflectance. The retrieval
biases vary with observing conditions given the same per-
centage radiance errors due to gain matrices (G� and G4)
significantly depending on viewing and illumination angles.

In addition to systematic errors, radiance measurement
noises add random errors to the retrieved columns. Re-
trieval errors due to random radiance noises (specified
with normal distributions) are unbiased, with mean val-
ues, µ(1�) and µ(14), close to zero and standard de-

Figure 17. Noise levels, i.e., standard deviations (σ ) of O3 and SO2
errors (1), contributed from the random noises in EPIC spectral
measurements. The SO2 noise estimate is for a layer at an altitude
11 km above sea level.

viations, σ(1�) and σ(14), proportional to standard de-
viations of radiance noises. The signal-to-noise ratios for
EPIC UV bands are 290 : 1 (Herman et al., 2018), equiv-
alent to a noise level (standard deviation) of 0.345 %
(1/290). This level is consistent with high-frequency radi-
ance fluctuations (with standard deviations equal to 0.373 %,
0.354 %, 0.354 %, and 0.368 % for B1 to B4, respectively)
within cloud-free scenes observed by EPIC. With a set-
ting of equal standard deviations for the four UV bands
(i.e., εm = {0.345%,0.345%,0.345%,0.345%}), the esti-
mated column O3 noise level is σ(1�)' 3.2 DU at low
viewing zenith angles, decreases gradually with higher zenith
angles, reaches a minimum of ∼ 1.5 DU at ∼ 75◦, and then
rebounds quickly with further increases in zenith angles (see
Fig. 17). The noise level of SO2 columns, σ(14), exhibits
a similar angular dependence as shown in Fig. 17, primarily
following the angular variation of the gain matrix G4. These
angular-dependent column noises are insensitive to the col-
umn amounts or the surface reflectance.

6.2.2 Model parameter errors

Retrieval errors due to uncertainties in model parameters, in-
cluding molecular absorption cross-sections (σ ) and atmo-
spheric temperature profiles (T), are estimated as

1�=G�

((
mz1σO3

)
ω+

(
mz

∂σO3

∂T

)
(ω1T)

)
, (39)

14=G4

((
mz1σ SO2

)
ξ +

(
mz

∂σ SO2

∂T

)
(ξ1T)

)
, (40)

where (mz1σO3,SO2) and (mz
∂σO3,SO2

∂T ) are m× nl matri-
ces with elements {mzj (λi)1σO3,SO2(λi,Tj ), i = 1. . .m,j =

1. . .nl} and {mzj (λi)
∂σO3,SO2 (λi ,T )

∂T
|Tj , i = 1. . .m,j = 1. . .nl},

respectively. Here mz (see Eq. 7) is the mean photon path
length through a layer at altitude z, 1σO3,SO2 represents er-
rors in O3 or SO2 cross-sections, and1T represents errors in
atmospheric temperature profiles.
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The BDM O3 cross-sections (Daumont et al., 1992; Brion
et al., 1993; Malicet et al., 1995, commonly abbreviated as
BDM) and the BW SO2 cross-sections (Birk and Wagner,
2018) are used in O3 and SO2 retrievals from EPIC. These
baseline cross-sections contain errors, which are not known
quantitatively but can be estimated by comparing with alter-
native cross-sections. Specifically, the BW O3 cross-sections
(Birk and Wagner, 2021) and the SO2 absorption cross-
sections of Bogumil et al. (2003) are the alternatives that can
replace the baselines for EPIC retrievals. The cross-section
errors, 1σO3 in Eq. (39) and 1σ SO2 in Eq. (40), are es-
timated based on the differences between the alternatives
and baselines, showing that alternative O3 and SO2 cross-
sections are slightly (about 0.1 % to 1.1 %) lower than the
corresponding baselines at EPIC B1 and B2. These biases in
cross-sections result in O3 column biases between 0.5 % and
2 % as well as SO2 column biases between 1 % and 2 % de-
pending on the effective cross-section differences. The tem-
perature dependence of the BW O3 cross-sections behaves
quite differently from the BDM (Bak et al., 2020), espe-
cially at EPIC B2, contributing to the high ends of O3 biases
(> 1.0 %), which occur predominantly at high (viewing or
solar) zenith angles when O3 retrieval becomes more sensi-
tive to EPIC B2 radiance.

Both O3 and SO2 cross-sections are significantly depen-
dent on temperatures. Thus, accurate temperature profiles are
needed to determine atmospheric absorption properties for
modeling of measured radiances. As mentioned in Sect. 3,
MERRA-2 climatological temperature profiles (Yang and
Liu, 2019) are used for retrievals from EPIC. Actual tem-
perature profiles differ from the climatological profiles. Over
a short period (e.g., a day), the spatial distribution of these
differences is not random, leading to retrieval errors that are
unevenly distributed spatially. However, actual temperature
profiles are normally distributed around the climatological
mean over a long period (e.g., a month) for a location. There-
fore, temperature profile mismatches add random compo-
nents, which average to zero over a long time, to the total er-
rors. The variances of these random errors are proportional to
the layer-column-weighted temperature error variances. Es-
timated from the variances of temperature profiles (Yang and
Liu, 2019), the random components, σ(1�), are ∼ 0.3 % in
the tropics, increase to∼ 0.7 % in the midlatitudes, and reach
∼ 1 % at high latitudes. Similarly, random errors, σ(14),
are ∼ 0.8 % in the tropics, ∼ 1.7 % in the midlatitudes, and
∼ 3.5 % at high latitudes.

6.2.3 Forward modeling errors

The MLER treatment adopted for the retrieval algorithm al-
lows the use of the vector radiative transfer code, TOMRAD,
as the forward model to simulate measured radiances and
weighting functions. TOMRAD implements Dave’s iterative
solution (Dave, 1964) with pseudo-spherical approximation
(Caudill et al., 1997) to the problem of the transfer of so-

lar radiation through a molecular atmosphere over a Lam-
bertian surface. The forward modeling with TOMRAD is ac-
curate for EPIC observations around the center of its hemi-
spheric view, with radiance errors (εf) of all EPIC UV bands
less than ±0.2 % for VZA< 50◦. Note that for EPIC obser-
vations, each of its IFOVs has similar VZA and SZA (see
Fig. 1) with differences VZA−SZA<±9◦. As EPIC obser-
vations move towards the edge, the pseudo-spherical model
atmosphere deviates more from Earth’s spherical atmosphere
in accounting for atmospheric attenuation and multiple scat-
tering, resulting in more significant errors in modeled radi-
ances, whose maximum errors increase to about±1 % at 75◦

VZA and about±2 % at 85◦ VZA (Caudill et al., 1997). RRS
corrections are included in the forward modeling, and they
are well within ±1 % for EPIC UV bands (see, e.g., Fig. 10).
Incomplete RRS corrections are expected to add less than
±0.1 % to the forward modeling errors.

Unlike the calibration biases being insensitive to observing
conditions and having no correlation among different bands,
the forward modeling errors vary with absorber amounts and
surface reflection, and they overestimate or underestimate
similarly for all the UV bands depending on the viewing and
illumination geometry. How these radiance errors propagate
into the retrieved columns can be estimated using Eqs. (37)
and (38), with error source terms replaced by εf and 1R due
to modeling errors in the long wavelength bands. With the ra-
diance errors estimated above, these equations yield retrieval
errors up to ±∼ 0.6 and ±∼ 0.3 DU when VZA< 50◦, in-
creasing to ±∼ 1.5 and ±∼ 1 DU at VZA= 75◦, as well
as±∼ 5 and±∼ 15 DU at VZA= 85◦, respectively, for O3
and SO2 vertical column errors. These are systematic errors
and vary between high and low biases spatially depending
on observing conditions, especially the viewing and illumi-
nation geometry.

6.2.4 Profile errors

As described in Sect. 3, a column-dependent O3 profile,
whose tropospheric integration matches the climatological
tropospheric column, is used to specify the vertical distri-
bution of a retrieved total O3 column. This retrieved profile
(ωL), which represents the likely vertical distribution of the
retrieved O3 vertical column, invariably differs from the ac-
tual profile (ω). The O3 error (1�) due to a profile errors
(ω−ωL) can be quantified using the first term on the rhs of
Eq. (35), which is regulated by the retrieval AK (A�). Exam-
ples of AKs for EPIC total O3 retrievals are shown in Fig. 18a
and c, illustrating how A� changes with viewing geometry.
For low VZAs (< 55◦), O3 AKs are close to 1 above the
upper troposphere, and therefore profile mismatches in this
altitude region result in insignificant retrieval errors. How-
ever, profile mismatches produce sizable retrieval errors for
high VZAs. In the troposphere, O3 AKs change with sur-
face reflectance in addition to angular dependence. Under
cloud-free conditions, O3 AKs drop quickly towards low-
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reflectivity surfaces, more so at high zenith angles (see, e.g.,
Fig. 18a). Above highly reflective surfaces (e.g., snow, ice,
or bright clouds), O3 AKs increase drastically (see Fig. 18c),
indicating enhanced sensitivity to tropospheric profile, es-
pecially at low zenith angles. Evidently, O3 errors due to
profile mismatches primarily come from the troposphere for
low zenith angles for both low- and high-reflectivity sur-
faces, though stratospheric contributions increase substan-
tially with higher zenith angles, more significantly for a low-
reflectivity surface. In general, errors due to the profile shape
are reduced for high-reflectivity surfaces.

Over a short period (e.g., 1 d), O3 errors due to profile
mismatches are local biases (reductions or enhancements)
that vary smoothly with location. However, they are ran-
dom errors since mismatches (ω−ωL) are normally dis-
tributed around their near-zero means over a long period
(e.g., 1 month). The variances of O3 errors (1�) can be writ-
ten as

Var(1�)= E
[
((A�− 1)(ω−ωL))

2
]

= (A�− 1)E
[
(ω−ωL)(ω−ωL)

T
]
(A�

−1)T = (A�− 1)Snl(A�− 1)T , (41)

where the expected values (i.e., the statistical means),
E
[
(ω−ωL)(ω−ωL)

T
]
, are O3 profile covariance matrices

Snl , which depend on total columns (�), season, and latitude.
This random component is estimated as a function of VZA
using the column-dependent Snl from the M2TCO3 climatol-
ogy (Yang and Liu, 2019). Figure 19 shows that the standard
deviation of this error component increases gradually with
higher VZA, from 1 % at nadir to 1.7 % at 75◦, then rapidly
with further elevated VZA.

Retrieval of SO2 requires knowledge of the altitude at the
center of the volcanic plume, which can be represented by
a narrow (e.g., a width of 1.5 km) GDF. Error in the plume
altitude leads to SO2 retrieval error, which can be estimated
using the retrieval AK. Figure 18b and d show sample AKs
and their variations with VZA for an SO2 plume center at
11 km altitude. The values of these AKs are equal to 1 at
11 km, meaning no retrieval error when the altitude used in
the retrieval is equal to the actual plume altitude. Here, we
examine the case of a low-reflectivity surface. The retrieved
SO2 column overestimates (underestimates) the actual col-
umn when the plume altitude is higher (lower) than the as-
sumed altitude (11 km). At low VZAs (< 35◦), AK values
are close to 1 above the assumed altitude (11 km), indicating
small (less than a few percents) errors for plumes at higher al-
titudes. Overestimation (up to 150 %) increases quickly with
larger VZAs when the plume is at higher altitudes. Underes-
timation is more severe with a lower altitude of the plume:
10 % to 20 % per 1 km lower than the assumed altitude.

6.2.5 Errors from Lambertian treatment of natural
surfaces

Reflections from surfaces are anisotropic but treated as
isotropic. To estimate errors in O3 and SO2 columns due
to this simplification, we performed DVCF retrieval from
simulated radiances. First, TOA radiances of the four EPIC
UV bands are modeled using a state-of-art radiative transfer
model, VLIDORT (Spurr, 2006), for a molecular atmosphere
with various O3 and SO2 profiles over a surface character-
ized by an anisotropic BRDF. Next, GLERs are determined
at the long wavelength bands (B3 and B4) and then linearly
extrapolated to the short wavelength bands (B1 and B2). Fi-
nally, retrieved O3 and SO2 columns from simulated B1 and
B2 radiances using the extrapolated GLERs are compared
with the column settings of the forward modeling to quantify
retrieval errors. Examples of O3 and SO2 errors determined
this way are shown in Fig. 20 for observing conditions de-
scribed in the Fig. 4 caption. In the closed-loop testing, sur-
face reflection is specified by the Cox–Munk BRDF, which
is highly anisotropic, more so than the land surface BRDFs
that are well-characterized by the combinations of Lamber-
tian, Ross, and Li kernels (Lucht et al., 2000; Schaaf et al.,
2011). Hence, the Cox–Munk BRDF selection provides error
ranges due to the Lambertian treatment of surface reflections.
Closed-loop tests are performed for a wide range of viewing
illumination geometries and vertical distributions of O3 and
SO2. Test results (see, e.g., Fig. 20) show that errors in total
O3 are mostly within ±1 DU, while SO2 errors are within
±5 % for SO2 layers above 5 km, and decrease (increase)
with higher (lower) layer altitudes. As shown in Fig. 5, the
AMF errors due to Lambertian treatment occur below 20 km
altitude. Consequently, a small fraction of the O3 profile is
affected by this approximation. Thus, O3 errors are propor-
tional to the tropospheric columns but are insensitive to the
total column amounts. Since a vast majority of volcanic SO2
clouds are located below 20 km altitude, SO2 errors are pro-
portional to the total SO2 columns. Higher SO2 clouds are
not affected by this treatment.

6.2.6 Errors from MLER treatment of clouds and
aerosols

The MLER model is adopted to treat atmospheric particles,
including clouds and aerosols, which predominantly reside in
the lower troposphere. The modeled light paths (especially in
the troposphere) based on this treatment differ significantly
from those for light transfer through the particle-laden at-
mosphere (see, e.g., Fig. 9). The retrieval errors due to this
simplification are again estimated using closed-loop testing.
First, TOA radiances of the EPIC UV bands are simulated
using VLIDORT for particle-laden atmospheres with various
O3 and SO2 profiles over Lambertian surfaces of different re-
flectivities. Then inversion from the simulated radiances with
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Figure 18. Examples of EPIC total O3 AKs (a, c) and SO2 AKs (b, d) as functions of geometric altitude (z) above seal level for several
VZAs (θv). These AKs are calculated for a molecular atmosphere at midlatitude with 275 DU total O3 and 30 DU of SO2 in a layer (1.5 km
thick) at 11 km altitude over low-reflectance (a, b) and high-reflectance (c, d) Lambertian surfaces. Observing conditions are listed at the top
of the panels.

the MLER treatment permits the identification of conditions
under which retrieval errors are significant.

Clouds

The error in total O3 due to the MLER treatment of a low-
lying (below 10 km) cloud is mostly within ±2 DU (e.g.,
Fig. 21a). This O3 error decreases slightly with a lower cloud
altitude (or higher cloud pressure) but is insensitive to the

cloud fraction or the total O3 column. In other words, the
MLER treatment does not contribute to large uncertainty in
the retrieved total O3 column, provided that an accurate OCP
for the cloud is used for the MLER cloud surface. However,
OCP has some uncertainty, contributing to additional uncer-
tainty in the O3 column: a low (high) bias in OCP results in a
positive (negative) error in total O3; quantitatively,±100 hPa
causes about ∓4 DU (see Fig. 21a). The OCP uncertainty is
estimated to be within ±50 hPa, thus contributing ∓2 DU to
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Figure 19. The standard deviation (σ ) of O3 errors due to profile
mismatches as a function of the viewing zenith angle (θv), esti-
mated using the M2TCO3 profile covariance matrix for the Decem-
ber midlatitude zone (40–50◦ N).

the total O3 uncertainty. Combining O3 uncertainties due to
the OCP error and the MLER treatment yields±4 DU uncer-
tainty in total O3 under cloudy conditions.

The error in the total SO2 column due to the MLER cloud
treatment is within ±2 % when the SO2 layer in the tropo-
sphere is well above the underlying cloud. This SO2 error in-
creases with a smaller separation between the SO2 layer and
the cloud, reaching ±15 % when the SO2 layer is just above
the cloud. These characteristics of SO2 error are illustrated in
Fig. 21b. In contrast to the MLER treatment O3 error, which
is insensitive to the total column, this SO2 error is propor-
tional to the total SO2 column. When the SO2 layer is below
or within the cloud, the uncertainty of SO2 quantification in-
creases drastically. Depending on the relative distributions of
SO2 and the cloud particles, the retrieved SO2 based on the
MLER treatment can be a fraction of or a few times the actual
column.

Aerosols

Besides clouds, the MLER treatment is applied to IFOVs
contaminated by aerosols, which primarily reside in the tro-
posphere and cover a significant portion of Earth’s surface.
These aerosols are suspended tiny (micron-scale) particles
that scatter and possibly absorb sunlight. The frequently ob-
served non-absorbing (or weakly absorbing) aerosols are sea
salt and sulfate (SLF), and UV-absorbing aerosols are smoke
(i.e., carbonaceous aerosols from biomass combustion, BIO),
mineral dust (DST), and volcanic ash. Moderate and high
positive AI values indicate the presence of UV-absorbing
aerosols in an IFOV, while negative and slightly positive AI
values indicate the presence of non-absorbing or weakly ab-
sorbing aerosols.

Closed-loop testing shows that MLER treatment of non-
absorbing and weakly absorbing aerosols in the lower tropo-
sphere (< 7 km) results in small (<±2 DU) errors in total

O3 retrievals, provided that the proper OCP for the elevated
cloud surface is used. This error range is nearly independent
of the total O3 column or the aerosol loading.

The MLER treatment errors for UV-absorbing aerosols
close to the surface (< 1 km altitude) are mostly within
±1 DU, similar to the error range associated with the LER
treatment of BRDF surfaces. For elevated UV-absorbing
aerosols, the MLER treatment and the linear rgfc extrapo-
lation scheme (see Sect. 2.3) result in a positive bias in the
retrieved total O3 columns (see, e.g., Fig. 22). This O3 bias
depends on the viewing illumination geometry and gener-
ally increases with stronger aerosol absorption (i.e., lower
single-scattering albedo, ω), larger aerosol optical thickness,
and higher altitude of aerosol layers. Regression analysis
of results from closed-testing with many combinations of
viewing illumination geometries, particle-laden atmospheres
(with various optical properties, optical thicknesses, and ver-
tical distributions), surface reflectivities, and O3 profiles re-
veals a positive correlation between column O3 error and
the UV AI. Quantitatively, this relationship can be written
as 1O3 = (1.5± 1)×AI DU for AI values greater than 0.5
and less than 8. This relationship provides a rough estimate
of O3 bias based on the observed AI. Typically, AI values fall
between 1 and 4 with a median value of 1.5 for EPIC obser-
vations of UV-absorbing aerosols, corresponding to a mean
O3 bias of about 3 DU for IFOVs contaminated with UV-
absorbing aerosols. The MLER treatment sometimes fails
when aerosol absorption is strong such that the derived LER
becomes negative. In this case, the explicit aerosol treatment
may be needed to reduce the retrieval uncertainty.

EPIC’s high-cadence observation has more chances to
view volcanic clouds during or soon after eruptions. These
young volcanic clouds contain mixtures of ash particles and
water or ice clouds, as eruptions inject ash and gases (includ-
ing SO2) into the atmosphere. Since ash particles strongly
absorb UV, the MLER treatment of volcanic plumes leads
to huge uncertainties in the retrieved SO2 columns, which
are often greatly overestimated or underestimated depending
on the relative distributions between SO2 and ash particles.
An explicit treatment of volcanic ash is needed for accurate
retrieval of SO2 when ash particles are co-located with or
slightly separated from the gas.

6.3 Error summary

Uncertainty estimates (Sect. 6.2) have detailed various con-
tributions to systematic and random errors in retrieved O3
and SO2 vertical columns. In this summary, these error types
are separately combined to estimate their total systematic and
random errors, respectively.

First, random errors from various sources, including mea-
surement noise and errors in temperature profiles and O3 ver-
tical profiles, are combined to estimate total random errors.
The random O3 error (characterized by its standard devia-
tion) is 1.5 % at low VZAs (< 45◦), increasing to 2.0 % at 75◦
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Figure 20. Errors in retrieved O3 and SO2 due to Lambertian surface treatment of an anisotropic surface. (a) O3 errors in DU for a midlatitude
O3 profile with total columns of 275, 375, and 475 DU. (b) SO2 errors in percent for an SO2 layer at altitudes of 5, 7, and 11 km above sea
level. See the Fig. 4 caption for the specification of surface BRDF and viewing and illumination geometry.

Figure 21. Errors in retrieved O3 and SO2 due to MLER treatment of clouds, which are represented by 1.5 km thick C1 particle layers with
an optical thickness τ = 15 at 340 nm. (a) O3 errors in DU for correct (pc = 545 hPa) and biased (pc = 545±100 hPa) cloud OCPs. (b) SO2
errors in percent for SO2 layers at three altitudes (5, 7, and 11 km) above a layer of cloud (at 3 km altitude). See the Fig. 4 caption for the
specification of viewing and illumination geometry.

for IFOVs without clouds and aerosols. Similarly for IFOVs
with clouds or non-absorbing aerosols, the random error in
the total O3 column is 1.8 % for low VZAs (< 45◦) and 2.5 %
at 75◦. Random SO2 error has two terms: one is independent
of the SO2 column (see Sect. 6.2.1), but the other is propor-
tional to this column (see Sect. 6.2.2). Hence, they are not
combined.

Next, the radiometric biases, forward radiance modeling
errors, and errors in molecular cross-sections are the primary
contributions to the systematic errors in the retrieved vertical
columns. The possible ranges due to these sources are pro-
vided earlier in this section, but their actual contributions are
unknown. We obtain the total systematic error by combining
the likely ranges (i.e., ∼ half of the possible ranges) of these
contributions and estimate the bias in the total O3 column to
be±2 % for VZA≤ 70◦ and±3.5 % for VZA≤ 85◦; the bias
in the total SO2 column high (> 10 km) in the atmosphere is
estimated to be ±1.5 % for VZA ≤ 70◦ and ±5 % for VZA
≤ 85◦. Some biases depend on geophysical conditions. For
instance, O3 has a positive bias for IFOVs with UV-absorbing
aerosols, increasing with a higher AI (see Sect. 6.2.6). Under-

estimation (overestimation) of an SO2 column occurs when
its layer altitude used in the retrieval is higher (lower) than
the actual altitude (see Sect. 6.2.3).

7 Validation of EPIC O3 and comparison of SO2

7.1 O3 validation

We validate the DVCF O3 retrievals from EPIC using
ground-based Brewer spectrophotometer measurements and
the assimilated O3 product from MERRA-2, the Modern-Era
Retrospective Analysis for Research and Applications Ver-
sion 2 (Gelaro et al., 2017).

We compare EPIC total O3 columns with the Brewer O3
data at 10 selected ground stations with high-cadence mea-
surements distributed in five latitude zones. At each of these
selected stations, a Brewer spectrometer makes a measure-
ment every few (∼ 10) minutes during the daylight hours
each day, thus providing total vertical O3 columns that are
coincident (within±15 min) with EPIC observations at these
stations. For intercomparison, Brewer O3 data are interpo-
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Figure 22. Errors in retrieved O3 due to MLER treatment of two common UV-absorbing aerosols, (a) BIO (ω = 0.921) and (b) DST
(ω = 0.900), with various optical thicknesses (τ = 0.25, 0.5, 1.0, and 2.0 at 340 nm) located at 5 km altitude. See the Fig. 4 caption for the
specification of viewing and illumination geometry. The AIs associated with each observation scenario are shown in (c) and (d).

lated to the times when EPIC observes these locations. Coin-
cident O3 data from these two independent sources are dis-
played in the upper panels of Fig. 23a–e, their differences in
the lower panels of Fig. 23a–e, and the EPIC vs. Brewer scat-
ter plots in the right panels of Fig. 23a–e. We include coin-
cident data with VZA≤ 70◦ only for statistical analysis due
to EPIC–Brewer IFOV differences that usually increase with
slant path lengths and EPIC’s footprint sizes as well as due to
calibration biases at large VZAs or SZAs. The mean differ-
ence and standard deviations in percent are displayed in the
difference plots, while those in DU and the correlation coef-
ficients are in the scatter plots. Time series of O3 difference
(see lower panels of Fig. 23a–e between EPIC and Brewer)
are highly stable with similar moving averages and standard
deviations from June 2015 to April 2021, showing that EPIC
O3 is consistent over time, without noticeable drift. The cor-
relations between EPIC and Brewer are very high with cor-
relation coefficients R ≥ 0.96 for most stations (except for
the Paramaribo station near the Equator, where R = 0.87),
demonstrating that EPIC captures O3 variability accurately.
EPIC O3 agrees with the Brewer measurements to better than
1 % with standard deviations of differences less than 3.5 %
for all the ground stations, validating the high accuracy of
EPIC total O3.

From October 2004, MERRA-2 O3 field is assimilated
from Aura MLS and OMI and provides highly realistic
global distributions of O3 in the stratosphere and upper tro-
posphere while inheriting the uncertainty characteristics of
its sources (Stajner et al., 2008; Wargan et al., 2015; Davis

et al., 2017). We compare the MERRA-2 synoptic O3 field
with the EPIC hemispheric view for the same observation
time to access EPIC’s capability of capturing the realistic
O3 distribution. For instance, strikingly similar O3 spatial
distributions are observed in EPIC measurements (Fig. 15c)
and the MERRA-2 assimilation (Fig. 15d), with agreement
at −0.20± 2.52 % (or −0.35± 5.6 DU; Fig. 15h). We ex-
pand this synoptic comparison to each EPIC hemispheric
view obtained from July 2015 to August 2021 and plot in
Fig. 24 the time series of daily statistics. This time series
shows that nearly the same level of agreement is achieved
for the entire period, with a mean bias and standard devia-
tion of 0.44± 2.19 % (or 1.16± 6.34 DU). Considering the
mean bias (about −1.2 %) of MERRA-2 total O3 (Wargan
et al., 2017), we estimate the accuracy of EPIC total O3 to be
−0.76± 2.19 %.

7.2 SO2 comparison

Volcanic eruptions occur sporadically and without warning,
but EPIC on DSCOVR, from the unique L1 vantage point,
usually provides multiple daily observations of volcanic SO2
and ash clouds once injected into the atmosphere. In con-
trast, ground-based instruments rarely detect volcanic clouds
unless they drift over one in operation. We thus rely on polar-
orbiting instruments, which may observe a volcanic cloud
once (or more at high latitude) per day to provide validation
measurements.
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Figure 23. Intercomparison of total O3 from EPIC and the ground-based Brewer spectrophotometers from July 2015 to April 2021 at 10
selected ground stations with high-cadence measurements: Alert (82.50◦ N), Eureka (79.99◦ N), Resolute (74.72◦ N), Churchill (58.75◦ N),
Edmonton (53.55◦ N), Goose Bay (53.31◦ N), De Bilt (52.10◦ N), Thessaloniki (40.63◦ N), Paramaribo (5.806◦ N), and the South Pole
(−89.99◦ N). EPIC and Brewer coincident pairs are used in the plots, and data with VZA ≤ 70◦ N only are included in the difference
statistics.
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Figure 24. Comparison of synoptic EPIC O3 with MERRA-2 assimilated O3: time series of mean daily differences and standard deviations
for EPIC observations with VZA≤ 70◦.

Figure 25. EPIC and OMPS observations of volcanic SO2 plumes on 17 June 2018 from the eruption of Fernandina volcano (1) in the
Galapagos Islands. This eruption injected a significant amount of SO2 into the troposphere at about 3.5 km above sea level. The mass loading
of an SO2 plume is obtained by summing the SO2 masses of all IFOVs with SO2 vertical columns ≥ 1 DU. The lower right panel plots the
EPIC and OMPS SO2 masses vs. the observation time (UTC).
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The OMPS-NM on SNPP provides high-quality hyper-
spectral measurements in the UV, from which highly accu-
rate retrievals of O3 and SO2 are achieved using the DVCF
algorithm. The DVCF algorithm can apply to both discrete
spectral measurements (e.g., TOMS and EPIC) and hyper-
spectral ones (e.g., OMI and OMPS-NM). The main differ-
ence is that more information can be extracted from hyper-
spectral measurements to improve the accuracy and preci-
sion of the retrieved geophysical parameters. For instance,
the altitude of an SO2 layer can be determined in addition to
its amount simultaneously using the DVCF algorithm (Yang
et al., 2010). Having the altitude information significantly
improves the accuracy of SO2 quantification because the
SO2 measurement sensitivity varies strongly with its altitude.
Thus, DVCF height-resolved SO2 retrievals from hyperspec-
tral instruments, such as OMI and OMPS-NM, provide the
most accurate quantification of SO2 vertical columns. To val-
idate DVCF SO2 retrievals from EPIC, we compare the SO2
mass loading of a volcanic plume integrated from EPIC ob-
servations with SNPP OMPS-NM for the same event.

Figure 25 compares the DVCF retrievals of the volcanic
plume from the explosive eruption of Fernandina volcano in
the Galapagos Islands on 17 June 2018. Seven plume expo-
sures about 65 min apart are taken by EPIC on this day. Soon
after the fifth EPIC exposure, the OMPS observed this plume
for the first time. For the exposures at 10 min apart, both in-
struments estimate the mass loading at 71 kt, validating the
EPIC SO2 result.

The lower right panel of Fig. 25 plots the plume mass vs.
the observation time, showing the mass loading peaks near
local noontime. The observed mass change results from the
continuing emission from the volcano, the conversion of SO2
into sulfate, and the changing measurement sensitivity with
viewing illumination conditions since low SO2 columns may
be missed at large (VZA, SZA, or both) angles due to lower
sensitivity. EPIC’s high-cadence observations allow better
identification of the peak loading of volcanic SO2 plume,
thus usually providing more accurate estimates of the lower
bound of SO2 emission compared to polar-orbiting instru-
ments.

We have conducted many mass loading comparisons be-
tween EPIC and OMPS and found that the agreements are
usually within 20 %. These findings indicate that DVCF SO2
retrieval from EPIC provides better than 20 % (an estimate of
the upper error bound) accuracy in total mass for eruptions
with greater than 50 kt emissions.

8 Conclusions

We present the algorithm for making the EPIC O3SO2AI
product in this paper. This algorithm is based on the DVCF
algorithm developed for retrieving trace gases, including
O3, SO2, and NO2, from Aura OMI and Suomi NPP as
well as NOAA-20 OMPS. Algorithm advances, including

the improved O3 profile representation and the regulated di-
rect fitting inversion technique, improve the accuracy of O3
and SO2 from the multi-channel measurements of DSCOVR
EPIC. The theoretical basis of the SOE approach, introduced
to reduce retrieval artifacts due to EPIC’s band-to-band mis-
registration, can be exploited for other applications, such as
the separation of a spatially smooth data field (e.g., strato-
spheric O3) from that (e.g., tropospheric O3) with higher spa-
tial variations.

A thorough error analysis is provided to quantify O3 and
SO2 retrieval uncertainties due to various error sources and
simplified algorithm physics treatments. Error analysis find-
ings indicate that the MLER treatment of UV-absorbing
aerosols leads to significant uncertainties in retrieved O3
and SO2 columns. Future improvements may include explicit
aerosol treatment or other schemes for radiance or product
corrections. The GLER treatment of anisotropic surface re-
flections introduces small errors in the retrieved total O3 and
SO2 columns, primarily because surface reflection is a mi-
nor component of measured radiance in the UV. However,
this GLER treatment does not generally provide a more ac-
curate tropospheric AMF. Hence, explicit BRDF treatment
of surface reflection is needed for accurate retrievals of tro-
pospheric gases.

The EPIC total O3 columns are validated against coinci-
dent ground-based Brewer measurements and compared with
coincident O3 data from MERRA-2 assimilation. The find-
ings show that EPIC total O3 is highly accurate, realistically
capturing the short-term O3 variability while maintaining
long-term consistency over the entire record. The EPIC SO2
loadings of volcanic plumes are evaluated against those from
hyperspectral measurements of the same eruptions, show-
ing that EPIC provides accurate SO2 quantifications from
large volcanic eruptions. EPIC’s high-cadence observations
allow better identification of the peak loading of volcanic
SO2 plumes compared to polar-orbiting instruments.

Data availability. The EPIC product, O3SO2AI (NASA/LARC/S-
D/ASDC, 2018), contains scene reflectivity, aerosol index (AI),
total vertical columns of ozone (O3), and vertical sulfur diox-
ide (SO2) columns when volcanic clouds are detected in the
EPIC field of view. This product is available from the NASA
Langley Atmospheric Science Data Center (ASDC), accessible
at this link: https://asdc.larc.nasa.gov/project/DSCOVR/DSCOVR_
EPIC_L2_O3SO2AI_03 (last access: 1 October 2022).

The BW O3 and SO2 cross-sections (Birk and Wag-
ner, 2021, 2018) are available at the Zenodo repository
with DOIs https://doi.org/10.5281/zenodo.4423918 and
https://doi.org/10.5281/zenodo.1492582, respectively.
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