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Additional Information for Proof of Concept for the Time-of-day PMF Approach 

Note: To refer to PMF runs corresponding to specific time windows in the Supplement, we use the nomenclature “Season” + 

“Year” + “Period” in the format “SYYTTTT”. For example, W171115 corresponds to the 1100–1500 LT of Winter 2017.  

 
 5 

Figure S1 Diurnal profiles of meteorological parameters (temperature, relative humidity, wind speed, wind direction, PBLH, VC, 
rain, and SWR flux) by season. Mean (+) and median (—) values by season and hour of the day are presented. We retrieved visibility 
and relative humidity (RH) data from the Indira Gandhi International Airport (IGIA). To obtain mesoscale data for hourly wind 
speed, direction, temperature (10m above ground level), SWR flux, and planetary boundary layer height (H), we used the NASA 
meteorological reanalysis dataset (MERRA2). Precipitation data for Delhi was retrieved from the European Centre for Medium-10 
Range Weather Forecasts' reanalysis dataset, ERA-Interim (Gani et al., 2019). The ERA-Interim 12-hour long assimilation windows 
for precipitation data are from 0600-1800 LT and 1800-0600 LT. The discontinuities in precipitation data occur where windows 
change. Similar discontinuities have been reported elsewhere as well (ResearchGate, 2021). 
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Table S1 Seasonal summary of PM1 species—arithmetic mean (AM) for hourly concentrations.  

 Winter Monsoon 
Org 112 23 
NH4 20 4.6 
Chl 23 0.4 
NO3 24 3.6 
SO4 16 10 
BC 15 11 
NR-

 
195 41 

 

Table S2 Seasonally averaged meteorological variables in monsoon and winter 2017 (day-D/night-N) 

Season  
T (K)  
(D/N) 

RH (%) 
(D/N) 

VC (m2/s) 
PBLH (m) 
(D/N) 

WS (m/s) 
(D/N) 

WD (°N) 
(D/N) 

W17 
290/28

6 
 60/78 707/188 920/340  2.7/2.6 300/300 

M17 
305/30

2 
 71/81 

3870/379

0 
1600/460  3.4/2.5 250/190  

S1 Steps for conducting PMF, criteria for factor selection, and R code 

The first step to conducting PMF is the identification of strong, weak, and bad variables. Traditionally, average signal-to-noise 20 

ratio (SNR) is used as criteria for down-weighting species (Paatero and Hopke, 2003). However, selections based only on SNR 

are subjective and do not account for the ability of the model to fit the data. For example, data with SNR 1 may fit better than 

the data with SNR of 2. Here, we utilized data trimming prior to running PMF to account for the down-weighting of noisy or 

weak variables. We hypothesize that application of PMF will extract fewer than 8–9 factors. This is not surprising: most 

AMS/ACSM studies report fewer than four factors (Jimenez et al., 2009). Even recent studies utilizing constraints report not 25 

more than 6 factors (Fröhlich et al., 2015; Canonaco et al., 2020). Thus, as pilot runs, we went to 9 factor solutions. In these 

pilot runs, a high Q/Qexp can arise from few data points in the dataset (Q/Qexp >50 but going as high as O (1000)), biasing 

the overall Q/Qexp. These time series points led to very high Q/Qexp for specific m/zs as well. A representative figure from 

the PMF analysis of winter 2017 is shown in Fig. S2a–S Thus, we removed time points with Q/Qexp>20. 

Our results suggested that removing these time series points prior to reweighting m/zs led to a dramatic reduction in 30 

the Q/Qexp corresponding to the m/zs and therefore the number of m/zs that need to be down-weighted. Representative results 

for a single pass of data trimming at this decision step are shown in Fig. S3a–S In total, less than 15% of the data was removed 

before conducting PMF analysis for factor identification. Such data trimming is also considered standard procedure in PMF 
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analysis on data collected and analyzed at federal and state monitoring agencies (Dave Sullivan, personal communication). 

Interestingly, the removed time series points were not necessarily associated with high concentrations. Histogram analysis 35 

suggests that while time series points with organic concentrations greater than 180 µg m−3 account for ∼10% of the raw data, 

they account for ∼1% of the removed points. Thus, the time series points at which PMF fails to fit appropriately are not 

necessarily associated with high concentrations. After removing data points that could not be fit by the PMF analysis even at 

8–9 factor solutions, we utilized two criteria to identify “strong” and “weak” m/zs. The criteria used in the order of decreasing 

importance were Q/Qexp at an m/z (<10 for strong m/z) and, the slope and the correlation of modeled versus measured mass 40 

for contributions at an m/z (slope, R > 0.7). SNR of 1 was used as a check. The use of SNR of 1 is in line with the traditional 

definition since EPA PMF defines signal as data above noise (Norris et al., 2014). Only one m/z, m/z 12, was selected as a 

“bad” variable due to negative signals; this has been observed elsewhere as well (Fröhlich et al., 2015; Schlag et al., 2016). A 

full list of weak m/zs in each PMF run are shown in Table S3. 

 45 

 
Figure S2 Q/Qexp at (a) relevant time series points and (b) m/zs for raw organic data 

As shown in Table S3, we identified important m/zs as either strong or weak in both the time-resolved and the seasonal PMF 

runs; thus, modeling error can be quantified by taking the difference of Q/Qexp between two models (Paatero and Hopke, 
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2009). We used the default fragmentation table, and as a result, higher weight was given to mass spectral contribution at m∕z 44, 50 

with which data at m∕z values 16–18 is proportionally related. Accordingly, we down-weighted contributions at these m∕z values 

and marked them as “weak”. To be consistent, identical trimmed parent organic data and error matrices were used between 

time-of-day PMF and seasonal PMF analyses. We conducted PMF runs for one to seven factors, explored the solution space 

using the tools FPEAK, seeds, and constraints, and conducted error analysis on the dataset. The IGOR PET tool, based on 

PMF2, provides extensive information on different aspects of the residual structure in the tool itself (Ulbrich et al., 2009). 55 

However, the EPA PMF tool only generates .csv files that need to be individually analyzed for further analysis (Norris et al., 

2014). An R package was developed to automate the process of data visualization and processing for subjective decision 

making by the PMF user (R Core Team, 2019). The package was based on libraries tidyverse (Wickham et al., 2019), openair 

(Carslaw et al., 2012), lubridate (Grolemund and Wickham, 2011), and MASS (Venables and Ripley, 2002). 

 60 

 
Figure S3 Q/Qexp at relevant time series points and m/zs for trimmed organic data 

 

Table S3 List of weak m/zs in PMF runs 
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Period m/zs 

W171115 13, 16–18, 24–25, 37–38, 44, 48–49, 62, 66, 75, 76, 80, 88–90, 92, 94, 100–104, 106, 108, 110, 112–114, 116–120  

W172303 13, 15–18, 24, 37–38, 44 

W17 13, 16–18, 24, 37–38, 44 

M171115 13, 16–18, 24, 37, 44, 48–49, 61–62, 66, 72, 75, 80, 86–90, 92, 94, 98, 100–104, 106, 108, 110–114, 116–120 

M172303 13, 16–18, 24–25, 37, 44, 48–49, 61–62, 75–76, 80, 87–90, 94, 100–104, 112–114, 116, 118, 120 

M17 13, 16–18, 24, 37, 44, 48–49, 62, 66, 72, 75, 76, 80, 86–90, 94, 100–104, 108, 110, 112–114, 116, 118, 120 

 65 
 

Table S4 Analyzed aspects of residual structure and criteria of factor selection 

Aspect studied Criteria of factor selection 

Overall Q/Qexp as a function 

of the number of factors 

Q/Qexp decreases as more factors are added. Here, we look at the rate of the drops as new 

solutions are added. After a few factor additions above two factors, the drops begin to stagnate 

to a constant. This is the point when new factors added explain minimal information in the 

residual structure. 

Statistics of residual and 

scaled residual data 

Mean values of Q/Qexp may not be representative of other central tendencies and range of the 

Q/Qexp distribution. Here, we look at the minimum, maximum, median, and histograms of 

Q/Qexp to observe changes in residual structure. Small changes in the parameters and bleeding 

on the lower end of the histogram suggests optimal factor solution has likely been reached. 

Correlogram of residual and 

scaled residual MS with 

reference MS profiles 

The residual might be dominated by the influence of a specific PMF factor. Here, we look at 

correlations of residual MS with reference profiles to check if a specific type of factor dominates 

the residual MS, suggesting the addition of new factors might be needed. 

Correlogram of residual TS 

with reference TS profiles 

Mass spectral correlation of the residual MS with reference MS is not sufficient to attribute 

residual to a specific factor (Ulbrich et al., 2009). Here, we look at correlations of residual TS 

with external tracers to check if the specific type of factor identified in residual MS has relevant 

TS correlations with tracers. 

Time series variations in 

residual and scaled residual 

patterns 

Often, time series patterns by season, month of season, day of week, and hour of day can reveal 

information about factors due to similarity with human-activity patterns (Crippa et al., 2020). 

Here, we look at these patterns to identify changes in residual time series structure. As an 

example, a residual with minimal diurnal structure would be considered as more suitable than a 

residual with significant diurnal structure. 

Q/Qexp at different m/zs 
Contributions at all m/z fragments are not equally fit. Here, we plot average Q/Qexp at all m/zs 

and use the plot to identify transition points for fitting of data at m/zs, particularly those typically 

considered tracers, such as m/zs 29, 43, 44, 55, 57, 60, 73, and 115. 
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Time series variations in 

Q/Qexp 

Average values of overall Q/Qexp cannot provide detailed information on the time series patterns 

of Q/Qexp by season, month of season, day of week, and hour of day. These plots can reveal 

information about factors due to similarity with human-activity patterns (Crippa et al., 2020). 

Here, we look at these patterns to identify changes in Q/Qexp time series structure. As an 

example, Q/Qexp with minimal diurnal structure would be considered as more suitable than a 

residual with significant diurnal structure. 

Range of scaled residuals at 

different m/zs 

A large range of scaled residuals at different m/zs would suggest several time series points where 

the data does not fit contributions at these m/zs. We use this test as a check that the 25th and the 

75th percentile of the scaled residuals at all m/zs are within ±3.  

 
At the first step of analysis, we analyzed the improvement in the ability of the PMF solution to explain residual structure with 

the addition of factors. We selected an initial range of factors based on analysis of the residual structure. In this range, we 70 

selected an initial number of p factors based on correlations with the factors at the selection p−1. Specific aspects of the 

analyzed residual structure are included in Table S4. The next criteria employed for factor selection was the correlation of 

factor mass spectral profiles with reference mass spectra. We used as reference mass spectra the average mass spectral profiles 

developed by Ng et al. (2011) and cooking organic aerosol (COA) and coal combustion organic aerosol (CCOA) profiles in 

the AMS spectral databases (Ulbrich et al., 2017, 2018), and the one with the highest correlation with the mass spectrum of 75 

the PMF-generated factor (generally, Pearson R≥0.9) is used for naming the obtained factor (Ng et al., 2011). Other criteria 

employed to select the number of factors include the correlations of factor time series with external tracers, and time series 

patterns by season, month of season, day of week, and hour of day. As an example, we expected that the time series patterns 

would suggest high concentrations of BBOA in colder months and higher HOA at traffic hours in diurnal patterns.  We 

extracted CO, NO2, and O3 data using the OpenAQ Platform (openaq.org, last access: 1 August 2019). The OpenAQ data 80 

originate from a fixed regulatory monitoring location, R.K. Puram, maintained by the Central Pollution Control Board (CPCB), 

government of India, about ∼ 3–4 km aerial distance from the measurement site. This analysis marks the end of the second 

round of factor identification, with a selected number of factors. For correlations, we used the Pearson correlation coefficient 

(Pearson R) for mass spectral data and Spearman correlation coefficient (Spearman R) for time series patterns. This 

differentiation was recommended in the peer review of Ulbrich et al (2009), due to the limitation of Pearson R for slowly 85 

varying time series concentrations. 

In previous work, differences between plausible factor solutions in the FPEAK–SEED 2-D space were considered 

representative of the uncertainty of the final selected solution (Ulbrich et al., 2009, Bhandari et al., 2020). We observed 

unreasonable MS, weak time series correlations, or rotational ambiguity on changing FPEAK and/or SEED from the default 

selection of FPEAK = 0 and SEED = 0. Therefore, default parameter values were used (Chapter 2; Bhandari et al., 2020). In 90 

EPA PMF, quantitative error estimation (EE) of random error and rotational ambiguity is conducted using BS, DISP, and BS-
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DISP (Sect. 3.2.5). If the PMF factor solution passes all tests, BS, DISP, and BS-DISP, the solution was regarded as final. The 

statistical basis of these EE techniques is discussed in detail elsewhere (Paatero et al., 2014). 

However, sometimes, the base PMF solutions did not pass uncertainty tests. To address the inability of the solution 

to pass the PMF tests, we changed the SEED value while keeping the number of factors constant. Changing the SEED value 95 

initializes the PMF algorithm with different pseudorandom starts. We changed the SEED value at least once and run 10 runs 

each time, leading to at least 20 random starts. If changing the SEED value did not lead to an improved base run, we either 

used FPEAK or applied constraints. Changing the FPEAK value allows exploring rotations of solutions of a given number of 

factors. We recalculate BS on running FPEAK to account for random errors; thus, FPEAK is particularly useful to improve 

base solutions that pass the DISP test but fail BS. However, DISP and BS-DISP error evaluations are biased when FPEAK is 100 

used (Norris et al., 2014). Therefore, we rely on DISP of the base run; if the recalculated BS passes the threshold, we assumed 

that the issues associated with BS in BS-DISP would be fixed as FPEAK is used. We allow a 5% change in Q (or 5% dQ) 

relative to the base run in the solution obtained using FPEAK. 

If changing FPEAK did not result in a better solution, we applied constraints on the solutions. Since reference profiles 

are available, we used the “ratio” form of expressions for applying constraints. Application of constraints is very subjective; 105 

constraints were obtained from reference profiles, a cleaner factor in other periods, or a cleaner factor in a higher number of 

factors. Similar approaches have been used previously as well (Canonaco et al., 2015; Zhu et al., 2018; Tobler et al., 2020). 

To apply constraints, we identified the m/zs with the least uncertain contributions (Ng et al 2011). We combined the list of 

these m/zs with key m/zs such as m/z 29, 44, 43, 55, 57, 60, and 73. Application of constraints on some of these select m/zs 

was sufficient to reach more optimal solutions, e.g., in some PMF runs, constraining the m/z 60 MS contribution to mean of 110 

the contribution in the reference profile moved the entire profile to a clean BBOA factor. We allowed a 5% change in Q (or 

5% dQ) relative to the base run in the solution obtained by applying constraints. Despite the large dQ% allowed, factor profiles 

moved in the direction of the constraint but did not necessarily reach the exact value. This subjective movement of the profile 

allows generation of local profiles with tendencies reflected as similar to global profiles for the same factors. 

S2 Corrections to the EPA PMF code 115 

The EPA PMF tool references the work of Politis and White (2004) for estimating the bootstrap block size. However, in 2009, 

they published a correction to their bootstrap estimates (Patton et al., 2009). Updated source code for implementing the 

calculation of block size is also available (Hayfield and Racine, 2008). The code generates a block size based on each variable; 

thus, a subjective decision to select a single block size needs to be made. We base our decision for block size on the work of 

Hemann and co-workers (2009). They apply the stationary block bootstrap approach for identification of block lengths. As a 120 

part of the process, we sum up the mass of all m/zs, find the optimal block length for that total mass, and compare the block 

length for total mass to block length for different percentiles of individual species. Next, we pick a block length that accounts 

for the total mass but also most of the individual species. Details of the block size calculations are shown in Table S5. In all 

cases, the used block size accounts for the total mass in PMF runs as well as more than 75% of contributions at different m/zs. 



8 
 

Table S5 Details of block size calculations for all PMF runs 125 

Period 
Mean  
Block Size 

Median  
Block Size 

Block Size for  
total organics 

Percentile Calculations Used  
Block Size Percentile Block Size 

W171115 36 36 42 90 43 43 

W172303 53 53 53 100 54 54 

M171115 94 94 97 90 98 98 

M172303 98 99 100 75 100 100 

M17 296 296 309 75 310 310 

W17 160 160 161 90 162 162 

 
Table S6 Steps for solution identification for specific EPA PMF runs 

Period Solution Identification 

W171115 
Residual analysis suggested 4–6 factor solutions. Factor swaps occurring in 5 and 6 factor solutions. Application of 

constraints at 5 and 6 factor solutions resulted in unreasonable MS or weak time series correlations. Base 4 factor 

solution fails BS test. Rotating the solution to FPEAK of 1 led to BS test resolution.  

W172303 

Residual analysis suggested 6–8 factor solutions. Attempted rotations and constraints for solutions with 6 or more 

factors but failed BS and DISP repeatedly. Base runs of 5 factor solutions fail DISP and show factor swaps at two or 

more factors, despite the application of rotations and constraints. Base runs of 4 factor solution fail BS at a semi-

volatile oxidized OA factor, that shows mixing with HOA and BBOA factors. Constraining primary factors did not 

solve the problem. Rotations of the 4 factor solution allowed passing of the BS test but failed DISP. Finally, 

constraints based on the SVOOA reference profile were applied on the semi-volatile oxidized OA factor. Application 

of these constraints led to passing of all three tests. 

W17 
Residual analysis suggested 4–6 factor solutions. 5 and 6 factor solutions resulted in unreasonable MS or weak time 

series correlations. 4 factor solution fails BS-DISP test and shows factor swaps of BBOA, HOA, and local OOA 

factors. Constraining BBOA led to BS-DISP test resolution as well as improves BS mapping.     

M171115 
Residual analysis suggested 3–5 factor solutions. 4 and 5 factor solution resulted in unreasonable MS or weak time 

series correlations. 3 factor solution base run passes all tests. 

M172303 
Residual analysis suggested 3–5 factor solutions. 5 factor solutions resulted in two factors with no time series 

correlations. 4 factor solution passes DISP and BS-DISP tests but fails BS test. Rotating solution to FPEAK 15 led 

to the necessary improvement in BS mapping.     

M17 Residual analysis suggested 3–5 factors. 4 factors and above gave identical TS correlations at multiple factors. 

 
Table S7 Details of number of factors, seed, constraints, rotations applied in EPA PMF 

Period Solution Identification 
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W171115 4 factor solution at seed 83 was rotated to FPEAK 1 

W172303 4 factor solution at seed 6 was constrained with SVOOA presence at factor 3 

W17 4 factor solution at seed 5 was constrained with BBOA presence at factor 1 

M171115 3 factor solution at seed 76 with no constraints or rotations applied 

M172303 4 factor solution at seed 54 was rotated to FPEAK 15 

M17 3 factor solution at seed 83 with no constraints or rotations applied 

 130 

Table S8 BS mapping results (reported in terms of BS mapping observed in period) 

Period Factors Separated in EPA PMF BS Mapping (out of 100) 

W171115 SFC-OA, BBOA, Local OOA, Regional OOA 100, 92, 100, 95 

W172303 HOA, BBOA, Local OOA, Regional OOA 100, 99, 97, 100 

W17 HOA, BBOA, Local OOA, Regional OOA 100, 100, 100, 100 

M171115 POA, Local OOA, Regional OOA  95, 77, 100 

M172303 HOA, COA, Local OOA, Regional OOA 100, 100, 96, 99 

M17 POA, Local OOA, Regional OOA NAa 
aTest terminated prematurely due to large computational size of data 
 

Table S9 DISP swap performance results for lowest dQ-max 

Period Factors Separated in EPA PMF DISP Swaps 

W17111

5 
SFC-OA, BBOA, Local OOA, Regional OOA 0, 0, 0, 0 

W17230

3 
HOA, BBOA, Local OOA, Regional OOA 0, 0, 0, 0 

W17 HOA, BBOA, Local OOA, Regional OOA 0, 0, 0, 0 

M171115 POA, Local OOA, Regional OOA  0, 0, 0 

M172303 HOA, COA, Local OOA, Regional OOA 0, 0, 0, 0 

M17 POA, Local OOA, Regional OOA 0, 0, 0, 0 
 135 

 
Table S10 BS-DISP swap performance results for lowest dQ-max 

Period Factors Separated in EPA PMF Accepted Cases BS-DISP Swaps 

W171115 SFC-OA, BBOA, Local OOA, Regional OOA 82 2, 1, 0, 3 

W172303 HOA, BBOA, Local OOA, Regional OOA NAa 0, 0, 0, 0 
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W17 HOA, BBOA, Local OOA, Regional OOA 83 11, 7, 4, 0 

M171115 POA, Local OOA, Regional OOA  98 0, 0, 0 

M172303 HOA, COA, Local OOA, Regional OOA 93 1, 1, 0, 0 

M17 POA, Local OOA, Regional OOA NAb NA 
aTest terminated prematurely due to unknown cause 
bTest terminated due to large computational size of data 

 140 
Figure S4 shows mass spectrum of seasonal PMF primary organic aerosol (POA) factor in winter 2017. The whiskers in the graphs 
represent ±1 standard deviation (SD) of the reference spectra. The mass spectrum resembles the reference HOA profile. 

 

 
Figure S5 shows mass spectrum of seasonal PMF primary organic aerosol (POA) factor in monsoon 2017. The whiskers in the graphs 145 
represent ±1 SD of the reference spectra. The mass spectrum resembles the reference HOA profile. 
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Figure S6 shows the time series correlations of the seasonal PMF factors’ TS and their fractions’ TS with external tracers for the 

season of monsoon 2017 (for expanded figure, see Supplementary File-FigS6). 

 150 
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Figure S7 shows mass spectrum of seasonal PMF biomass burning organic aerosol (BBOA) factor in winter 2017. Whiskers in the 
graphs represent ±1 SD of the reference spectra. The mass spectrum resembles the reference BBOA profile. 

 155 
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Figure S8 shows the time series correlations of the seasonal PMF factors’ TS and their fractions’ TS with external tracers for the 
season of winter 2017 (for expanded figure, see Supplementary File-FigS8). 

 

 160 
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 165 
Figure S9 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for BBOA, 
chloride, BCBB, and ΔC for the seasonal PMF run of winter 2017. 
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Figure S10 shows the mass spectrum of seasonal PMF oxidized organic aerosol (OOA) factors: (a) local OOA and (b) regional OOA 170 
in winter 2017. Both MS are similar to the reference OOA factor. The whiskers in the graphs represent ±1 SD of the reference 
spectra. The two MS are at the two extremes for the range of contributions at m/z 44, pointing to the different oxidation state of 
aerosols. 

 

 175 
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Figure S11 shows the mass spectrum of seasonal PMF oxidized organic aerosol (OOA) factors: (a) local OOA and (b) regional OOA 
in monsoon 2017. Both MS are similar to the reference OOA factor. The whiskers in the graphs represent ±1 SD of the reference 
spectra. The two MS are at the two extremes for the range of contributions at m/z 44, pointing to the different oxidation state of 180 
aerosols. 

 

 

 

 185 
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Figure S12 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 
OOA and regional OOA for the seasonal PMF run of winter 2017. Clearly, regional OOA is less variable diurnally than local OOA. 

 

 190 
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Figure S13 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 
OOA and regional OOA for the seasonal PMF run of monsoon 2017. Clearly, regional OOA is less variable diurnally than local 
OOA. 195 

 

 

 

 

 200 
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S3 Detailed 15 min time series patterns of seasonal PMF factors at midday and nighttime  

Time series patterns exhibit contrasting behavior in winter and monsoon. In winter, seasonal PMF POA time series patterns 205 

exhibit strong variability midday but remain relatively stable at nighttime (Fig. S14a–f). At winter midday, concentrations of 

both HOA and BBOA exhibit a monotonically decreasing pattern. In this period, winter peak HOA and BBOA concentrations 

are ∼6 and ∼3 times the period minimum, respectively (Figs. S14b–c). At winter night, concentrations of HOA and BBOA 

are higher than midday by a factor of ∼14 and ∼4, respectively, and are comparatively stable; peak concentrations at night are 

only ∼2 times the period minimum (Figs. S14e–f). In contrast, monsoon POA exhibits relatively stable midday (peak POA∼2 210 

times the period minimum) and variable nighttime (peak POA∼3 times the period minimum) patterns, with nighttime 

concentrations higher than midday by a factor of ∼3.5 (Fig. S15a, c). These dynamics could be explained by the differences 

in ventilation coefficient, source strength, reaction chemistry, and the effect of temperature on partitioning (Bhandari et al, 

2020). The large mean–median difference in POA factors suggests the influence of episodes. Compared to POA, OOA time 

series patterns are relatively stable (Figs. S14c, f). In winter midday, the local OOA factor (peak OOA∼2.5 x period minimum) 215 

has a stronger variability than the regional OOA factor (peak OOA∼2 x period minimum), but the OOA factors both show a 

similar monotonically decreasing trend (Fig. S14c). At winter night, we observe no trends in OOA factors (Fig. S14f). 

Monsoon OOA factors show behavior similar to POA factors (Fig. S15b, d). Local and regional OOA midday and at nighttime 

exhibit very limited variability (peak OOA∼≤1.5 x period minimum). 

 220 
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Figure S14 shows 15 min averaged seasonally representative concentration time series of seasonal PMF factors for the periods: (a)-
(c) W171115 and (d)-(f) W172303. nighttime POA factors show stronger evidence of episodes (in µg m-3). 

 225 

 
Figure S15 shows 15 min averaged seasonally representative concentration time series of seasonal PMF factors for the periods: (a)-
(b) M171115 and (c)-(d) M172303. nighttime POA factors show stronger evidence of episodes (in µg m-3). 
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Figure S16 shows the mass spectrum of time-of-day PMF primary OA factors: (a) W171115 SFC-OA and (b) W171115 BBOA at 240 
winter midday in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. W171115 SFC-OA MS shares 
similarities with both reference HOA and BBOA MS. W171115 BBOA MS has higher m/z 29 and lower m/z 60 than reference BBOA 
MS. 
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 245 
Figure S17 shows the mass spectrum of time-of-day PMF primary OA factors: (a) W172303 HOA and (b) W172303 BBOA at winter 
nighttime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. W172303 HOA MS is similar to the reference 
HOA MS. W172303 BBOA MS is similar to reference BBOA MS. 
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Figure S18 shows the mass spectrum of time-of-day PMF primary OA factor W171115 SFC-OA at winter midday in 2017 and the 250 
SFC-OA profile from the work of Tobler and co-workers (2020). MS contributions are very similar except at m/z 44. 

 

 
Figure S19 shows the mass spectrum of time-of-day PMF primary OA factor M171115 mixed COA-HOA at monsoon midday in 
2017. The whiskers in the graphs represent ±1 SD of the reference spectra. M171115 COA-HOA MS shares similarities with both 255 
reference HOA and COA MS. 
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Figure S20 shows the mass spectrum of time-of-day PMF primary OA factors: (a) M172303 HOA and (b) M172303 COA at monsoon 
nighttime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. M172303 HOA MS is similar to the reference 260 
HOA MS. M172303 COA MS is similar to reference COA MS. 
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Figure S21 shows the time series correlations of the PMF factors’ TS with external tracers for the period of W171115 (for expanded 265 
figure, see Supplementary File-FigS21). 
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 270 
Figure S22 shows the time series correlations of the PMF factors’ TS with external tracers for the period of W172303 (for expanded 
figure, see Supplementary File-FigS22). 
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Figure S23 shows the time series correlations of the PMF factors’ TS with external tracers for the period of M171115 (for expanded 
figure, see Supplementary File-FigS23). 275 
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Figure S24 shows the time series correlations of the PMF factors’ TS with external tracers for the period of M172303 (for expanded 
figure, see Supplementary File-FigS24). 

S4 Details of time-of-day PMF oxidized organic aerosol MS and TS 

S4.1 Time series patterns of secondary PM 280 

In all time-of-day periods presented in the paper, POA and local OOA factors correlate more negatively with O3 compared to 

the regional OOA factor, indicating O3 co-production with regional OOA (Figs. S21–S24). Both midday and nighttime 

regional OOA factor TS correlate the strongest (among all PMF factors in their respective time periods) with O3+NO2, 

suggesting that daytime photochemistry and nighttime chemistry are the controlling processes for regional OOA production 

respectively, with high primary emissions available for oxidation and higher OOA observed in periods with higher oxidant 285 
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levels. At midday in winter, one OOA factor shares similar time series correlations as the SFC-OA factor, suggesting similar 

origin (Fig. S21). This OOA factor has the highest correlations with sulfate in this period. We call this factor the local OOA 

factor, even though sulfate is generally associated with regional OOA. The other OOA factor at midday has low correlations 

with external tracers. At night, the local OOA factor correlates with nitrate and chloride, and the regional OOA factor correlates 

with sulfate and nitrate (Fig. S22). These differing correlations also suggest that the association of factors with inorganic 290 

species might be due to volatility and not similar origin, especially at midday in winter (Zhang et al., 2011). At monsoon 

midday, the regional OOA factor correlates strongly with sulfate and the local OOA factor correlates with nitrate (Fig. S23). 

Additionally, the monsoon midday local (and regional) OOA factor TS correlate strongly with O3+NO2, suggesting that rapid 

radical chemistry is the controlling process for OOA production. At monsoon nighttime, OOA factors are both correlated with 

sulfate and nitrate, but the OOA factor with weaker inorganic tracer correlations is correlated stronger with CO (Fig. S24). 295 

This factor also has lower MS correlations with the reference OOA profile (Fig. S26). We use these differences to attribute the 

local and regional OOA nature to the two factors at monsoon nighttime.  

In all periods, time-of-day PMF OOA concentrations are within 25% of the seasonal PMF OOA concentrations, with 

lower concentrations in time-of-day PMF in all periods except winter nighttime (Figs. S31b and S32b). Unlike nighttime POA 

concentrations, nighttime OOA concentrations remain stable throughout. Also, unlike the large contrast in midday and 300 

nighttime POA concentrations, nighttime OOA concentrations are similar to midday OOA concentrations. The midday period 

is marked by higher atmospheric mixing, higher photochemical processing, and perhaps lower primary emissions than 

nighttime (Fig. S1). The nighttime periods are marked by inversions (Bhandari et al., 2020; Fig. S1). Together, these 

differences in meteorological variables and emissions likely lead to the stable nighttime OOA and similar midday and 

nighttime OOA concentrations. 305 

S4.2 Mass spectral features of secondary factors 

At winter midday, we observe higher contributions in time-of-day OOA at m/z 44, and lower contributions at m/zs 41 and 43, 

pointing to the higher oxidized nature of OOA (Fig. S33a). At monsoon midday, the only major difference is at m/z 43—higher 

contributions at m/z 43 lead to a lower oxidation state of OOA in time-of-day PMF (Fig. S34a). At nighttime in monsoon, we 

observe higher contributions at several m/zs ≤ 44 in time-of-day PMF analysis, suggesting a higher oxidation of OOA (Fig. 310 

S34b). The similarity of the OOA MS comparisons in monsoon midday and winter nighttime is accompanied by a similarly 

strong correlation of the local OOA MS in these periods with the reference SVOOA MS (Figs. S25 and S26). 

Here, we discuss in detail the comparison of lunch and nighttime OOA MS from the time-of-day PMF analysis and 

the seasonal PMF analysis (Sect. 3.4, Figs. S37–S38a–b). For both seasons, seasonal PMF analysis indicates more oxidized 

OOA at midday than nighttime, based on the higher contributions at m/z 44 (Zhang et al., 2011; Figs. S37a and S38a). In 315 

winter, this contrast is sharper in time-of-day PMF analysis and is in line with slower reaction chemistry at winter night (Fig. 

S37b). In monsoon, however, time-of-day PMF surprisingly suggests lesser oxidized OOA at midday than nighttime, with a 

higher contribution at m/z 43 and lower contribution at m/z 44 (Fig. S38b). The higher contributions of m/z 43 are likely caused 
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by the presence of semi-volatile compounds—monsoon midday local OOA profile shows the strongest correlation with the 

reference SVOOA MS among all OOA MS profiles presented in this paper (Fig. S26).  320 

 
Figure S25 shows the time series correlations of the secondary PMF factors’ MS with reference MS for the season of winter 2017. 
Regional OOA MS are more strongly correlated to reference OOA and LVOOA MS compared to local OOA MS. Local OOA MS 
are more strongly correlated to reference SVOOA MS compared to regional OOA.  

 325 
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Figure S26 shows the time series correlations of the secondary PMF factors’ MS with reference MS for the season of monsoon 2017. 
Regional OOA MS are more strongly correlated to reference OOA and LVOOA MS compared to local OOA MS. Local OOA MS 330 
are more strongly correlated to reference SVOOA MS compared to regional OOA.  

 

 

 

 335 
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Figure S27 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 
OOA and regional OOA for the PMF run of W171115. Clearly, regional OOA is less variable diurnally than local OOA. 
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Figure S28 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 340 
OOA and regional OOA for the PMF run of W172303. Clearly, regional OOA is less variable diurnally than local OOA. 
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Figure S29 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 
OOA and regional OOA for the PMF run of M171115. Clearly, regional OOA is less variable diurnally than local OOA. 345 
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Figure S30 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local 
OOA and regional OOA for the PMF run of M172303. Clearly, regional OOA is less variable diurnally than local OOA. 

 350 
 
 
 
 
 355 
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 360 
Table S11 Lowest and highest levels (relative to the normalization of 1) and the range (difference of the highest to the lowest levels) 
of local OOA and regional OOA (based on Figs. S27-S30) 

Period Lowest level Highest level Range (Highest − Lowest) 

 Local OOA 
Regional 

OOA 
Local OOA 

Regional 

OOA 
Local OOA Regional OOA 

W171115 0.86 0.82 1.21 1.08 0.35 0.26 
W172303 0.87 0.71 1.26 1.11 0.39 0.40 
M171115 0.81 0.89 1.18 1.15 0.37 0.26 
M172303 0.79 0.97 1.12 1.02 0.33 0.05 

 

  
Figure S31 shows 15 min averaged concentration time series of OOA for the periods: (a) W171115 and (b) W172303. 365 

 
Figure S32 shows 15 min averaged concentration time series of OOA for the periods: (a) M171115 and (b) M172303.  
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 370 
Figure S33 shows the mass spectra of (a) winter midday OOA, and (b) winter nighttime OOA using the seasonal PMF approach and 
the time-of-day PMF approach. 
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Figure S34 shows the mass spectra of (a) monsoon midday OOA, and (b) monsoon nighttime OOA using the seasonal PMF approach 375 
and the time-of-day PMF approach. 
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Figure S35 shows the mass spectra of winter midday and nighttime POA using (a) the seasonal PMF approach and (b) the time-of-
day PMF approach. Both approaches indicate that the nighttime POA profiles show a stronger primary nature; however, the 380 
contrast is sharper in time-of-day PMF comparisons. 
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Figure S36 shows the mass spectra of monsoon midday and nighttime POA using (a) the seasonal PMF approach and (b) the time-
of-day PMF approach. Only time-of-day PMF comparisons indicate that nighttime POA profiles show a stronger primary nature. 385 
Seasonal PMF comparisons show identical profiles. 
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Figure S37 shows the mass spectra of winter midday and nighttime OOA using (a) the seasonal PMF approach and (b) the time-of-
day PMF approach. 390 

 

 

 

 

 395 
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 400 

 
Figure S38 shows the mass spectra of monsoon midday and nighttime OOA using (a) the seasonal PMF approach and (b) the time-
of-day PMF approach. 
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Figure S39 shows the obtained MS in this work plotted on the triangle plot (Ng et al., 2010) 405 
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Figure S40 shows the mass spectral correlations of the primary PMF factors’ MS with reference MS for the season of winter 2017. 
The time-of-day PMF midday and nighttime POA MS are less strongly correlated to each other than the seasonal PMF midday and 
nighttime POA MS. 

 410 
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Figure S41 shows the time series correlations of the secondary PMF factors’ MS with reference MS for the season of monsoon 2017. 
The time-of-day PMF midday and nighttime POA MS are less strongly correlated to each other than the seasonal PMF midday and 
nighttime POA MS.  415 
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S5 Summary of results from the companion paper 

 

  
Figure S42a-b show the diurnal time series patterns of POA and OOA factors obtained from seasonal PMF and time-of-day PMF 
for winter and monsoon of 2017. The shaded areas represent the 95% confidence intervals.    420 

(b) Monsoon 2017 

(a) Winter 2017 
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Results from PMF analysis for all times of the day are presented in a companion paper (Bhandari et al., 2022). Here, we share 

a brief summary of those results, focusing on diurnal patterns of POA and OOA in seasonal PMF and time-of-day PMF. Figure 

S41a-b show the diurnal time series patterns of POA (HOA+BBOA+COA) and OOA (Local OOA + Regional OOA) factors 425 

for winter and monsoon of 2017. Clearly, POA concentrations exhibit larger variability than OOA concentrations  in both 

seasons. Our results show that the time series (TS) concentrations of time-of-day PMF factors are broadly consistent with 

seasonal PMF factors . In winter, we separated BBOA or BBOA-like factors in all periods  but did not separate cooking organic 

aerosol (Table S3 in Bhandari et al., 2022). We also separated HOA or HOA-like factors in all time-of-day periods in winter. 

In monsoon 2017, we separated HOA or HOA-like factors, and COA or COA-like factors in all time-of-day periods but did 430 

not separate biomass burning organic aerosol above detection limits (Tables 2, S3 in Bhandari et al., 2022). The behaviour of 

POA and OOA TS obtained by combining all time-of-day PMF results suggests strong similarities to seasonal PMF POA and 

OOA TS, respectively (W17 POA: slope ∼ 0.83, intercept ∼ 1.6, R∼0.97; W17 OOA: slope ∼ 1.26, intercept ∼ −7.0, R ∼ 0.88; 

M17 POA: slope ∼ 1.15, intercept ∼ 1.5, R∼0.97; M17 OOA: slope ∼ 0.91, intercept ∼ −0.5, R ∼ 0.98). In winter, we observe 

largest differences in POA TS diurnal concentrations midday where primary concentrations are higher in time-of-day PMF by 435 

≥40%. Because of the low total OA concentrations in these periods, they likely have limited importance in seasonal PMF 

analysis with respect to determining the overall seasonal mass spectra and time series patterns, and thus conducting time-of-

day PMF analysis results in factors exhibiting substantial deviations from seasonal analysis. In monsoon, seasonal PMF 

analysis underestimates POA concentrations throughout the day. Finally, we also observe that winter time-of-day PMF OOA 

time series patterns exhibit significantly lower diurnal variability than time-of-day PMF POA but stronger diurnal variability 440 

than seasonal PMF OOA. For the time-of-day PMF approach, winter peak OOA diurnal concentrations in the morning (0900–

1000 hours) are ∼2.7 times the diurnal minimum (which occurs in the evening, 1800–1900 hours); substantially greater than 

the ∼2.2 observed for seasonal PMF winter OOA concentrations. This difference is driven by lower OOA concentrations 

midday (1100–1900 hours) and higher OOA concentrations at other hours. In monsoon, OOA concentrations show similar 

diurnal patterns between time-of-day PMF and seasonal PMF and OOA concentrations are almost always lower in time-of-445 

day PMF. Clearly, time-of-day PMF captures different aspects of diurnal variability better than seasonal PMF, and which is a 

major advantage of this new approach. 
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