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Abstract. Present methodologies for source apportionment
assume fixed source profiles. Since meteorology and human
activity patterns change seasonally and diurnally, application
of source apportionment techniques to shorter rather than
longer time periods generates more representative mass spec-
tra. Here, we present a new method to conduct source appor-
tionment resolved by time of day using the underlying ap-
proach of positive matrix factorization (PMF). We call this
approach “time-of-day PMF” and statistically demonstrate
the improvements in this approach over traditional PMF. We
report on source apportionment conducted on four example
time periods in two seasons (winter and monsoon seasons of
2017), using organic aerosol measurements from an aerosol
chemical speciation monitor (ACSM). We deploy the EPA
PMF tool with the underlying Multilinear Engine (ME-2) as
the PMF solver. Compared to the traditional seasonal PMF
approach, we extract a larger number of factors as well as
PMF factors that represent the expected sources of primary
organic aerosol using time-of-day PMF. By capturing diur-
nal time series patterns of sources at a low computational
cost, time-of-day PMF can utilize large datasets collected us-
ing long-term monitoring and improve the characterization
of sources of organic aerosol compared to traditional PMF
approaches that do not resolve by time of day.

1 Introduction

Air pollution is considered the greatest current environmen-
tal health threat to humanity, with an estimated mortality bur-
den of 7 million per year (World Health Organization, 2018;
Schraufnagel et al., 2019; Health Effects Institute, 2020).
Air pollutants also cause climate forcing and environmental
damages to ecosystems and biodiversity (Intergovernmental
Panel on Climate Change, 2019, 2021). Apart from physi-
ological and environmental effects, air pollution is associ-
ated with negative psychological, economic, and social ef-
fects (Lu, 2020). High race-, ethnicity-, income-, region-, and
nationality-based disparities exist in air pollution exposure,
making air pollution exposure an important environmental
justice issue (Hajat et al., 2015; Goodkind et al., 2019; Tes-
sum et al., 2019; Thind et al., 2019; Health Effects Institute,
2020; Pandey et al., 2020; Chakraborty et al., 2021). These
disparities are associated with a wide variety of sectors, activ-
ities, processes, and pollutants (Thakrar et al., 2020). Policy
solutions targeting specific pollutants have led to nonuniform
reductions of air pollution contributions of different sectors
(Tschofen et al., 2019). Thus, reduction of air pollution is es-
sential to global health and can be expected to generate long-
term societal benefits (Tessum et al., 2019; Goodkind et al.,
2019; Tschofen et al., 2019; Organization for Economic Co-
operation and Development, 2020). However, more than half
the world’s population is exposed to increasing air pollution
(Shaddick et al., 2020). Most of this population lives in de-
veloping nations. Moreover, economic resources are limited,
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and reduction of air pollution alongside continued economic
growth requires investment in abatement measures for older
technologies and adoption of cleaner technologies (Lei et al.,
2021). Thus, sources of air pollution need to be prioritized to
appropriately focus limited resources on the most effective
abatement measures. This prioritization should be based on
the contributions of different emission sources to air pollu-
tion in a region.

Source apportionment is the practice of attributing air
pollution to different causes such as sectors (residential,
industrial), activities (traffic, biomass burning), and atmo-
spheric processes (oxidation). Several approaches have been
developed to conduct source apportionment studies (Belis
et al., 2014). Broadly, these approaches can be categorized
into emission inventories, receptor-oriented modeling, and
source-oriented modeling. These approaches have been ac-
cepted by regional, national, and international agencies for
use in air quality policy and planning (Belis et al., 2014;
Environmental Protection Agency, 2017; California Air Re-
sources Board, 2018; Wayland, 2018). Source-oriented mod-
els and emission inventories together capture the emissions,
chemical transformation, transport, and dispersion of pollu-
tion. However, they have heavy computational burden, re-
quire extensive data collection, and are subject to cumula-
tive uncertainties from model inputs as well as the different
computational components (Hopke, 2016). Receptor mod-
els are mathematical tools with relatively lower computa-
tional requirements that use mass balance analysis to out-
put source contributions (time series of source concentra-
tions) and source profiles (relative strength of different pollu-
tants) for identified sources of air pollution (Belis et al., 2013;
Hopke, 2016). Positive matrix factorization (PMF) has been
identified as an appropriate receptor modeling technique that
can be deployed for quantifying source contributions for air
quality management (Belis et al., 2015).

Three tools are currently in active use for application of
PMF to atmospheric datasets: the Igor PMF Evaluation Tool
(PET) (Ulbrich et al., 2009), the EPA PMF tool (Brown et
al., 2012), and Source Finder (SoFi) (Canonaco et al., 2013).
The Igor PET tool uses the PMF2 program to resolve fac-
tors from 2-D matrices (Paatero and Tapper, 1994; Ulbrich
et al., 2009). Further details on the statistical basis of this
method are available elsewhere (Ulbrich et al., 2009; Zhang
et al., 2011, and references therein). Both SoFi and EPA
PMF are based on the Multilinear Engine (ME-2), which al-
lows for the application of factor profile constraints to ex-
tract specific sources (Paatero, 1999; Paatero et al., 2002;
Canonaco et al., 2013; Crippa et al., 2014; Norris et al.,
2014). PMF2 does not allow for the application of factor
profile constraints, and it often results in greater uncertainty
in solutions, poorer source separation, and fewer identified
sources compared to ME-2 (Ramadan et al., 2003; Amato
et al., 2009; Amato and Hopke, 2012). A further important
advantage of the EPA PMF tool over Igor PET and SoFi
is its error estimation techniques, which systematically ac-

count for both random error and rotational ambiguity using
bootstrapping, displacements, and bootstrapping enhanced
with displacements, as explained in more detail in Sect. 2.5
(Paatero et al., 2014; Brown et al., 2015). Currently, the Igor
PET and the SoFi tools only use bootstrapping to account for
random errors and, partially, rotational ambiguity (Ulbrich et
al., 2009; Canonaco et al., 2021).

PMF tools have been applied to identify sources using
long-term datasets spanning multiple years (Zhang et al.,
2019; Heikkinen et al., 2020) and seasonal datasets account-
ing for seasonal variability (Amil et al., 2016; Bikkina et al.,
2019; Bhandari et al., 2020; Patel et al., 2021a), for studying
special events (Reyes-Villegas et al., 2018; Rai et al., 2020,
Patel et al., 2021b) and spatial variability (Crippa et al., 2014;
Robinson et al., 2018), as well as for connecting sources
to health effects (Daellenbach et al., 2020). Several studies
have analyzed the influence of meteorology after conduct-
ing source apportionment on a larger dataset (Venturini et
al., 2014; Pauraite et al., 2019; Bhandari et al., 2020). Some
studies have quantified the effect of meteorological variables
on the performance of the source apportionment approach
for the identification of sources, with or without stratifica-
tion. One such study stratified data based on mean tempera-
ture and showed that accounting for temperature variability
using gas–particle partitioning before conducting source ap-
portionment improved the stability of the solution (Xie et al.,
2013a, b). Similar data-segmentation schemes have been de-
ployed for wind direction, wind speed, and precipitation, and
these techniques resulted in a larger number of and more rep-
resentative PMF factors (Park et al., 2019).

A major limitation of PMF is the assumption of constant
factor profiles throughout the modeling period – while the
contribution of each factor is modeled to change over time,
its profile (e.g., mass spectrum, when PMF is applied to
mass spectrometer data) stays constant, which leads to mod-
eling uncertainty (Ulbrich et al., 2009). Previous studies have
tested the limitation of constant mass spectral profiles for
seasonal and weekly changes in meteorology and activity
patterns (Canonaco et al., 2015, 2021; Reyes-Villegas et al.,
2016). These studies found that annual and seasonal datasets
from an aerosol chemical speciation monitor (ACSM; Aero-
dyne Research, Billerica, MA) show high variations in mass
spectral contributions, which cannot be sufficiently captured
when PMF is conducted on the complete dataset. These stud-
ies recommended conducting PMF analysis on shorter time
frames (weeks–months) with limited variability of emissions
and meteorology. However, meteorological conditions influ-
ence source apportionment on hourly and smaller timescales;
for example, changes in ventilation (Dai et al., 2020) and
photochemistry (Lelieveld and Crutzen, 1991) affect source
apportionment results. Human activity patterns also vary
with time, leading to changes in source cocktails – for ex-
ample, we expect higher cooking emissions during cooking-
influenced periods (Abdullahi et al., 2013; Patel et al.,
2021a), higher traffic emissions during rush hour (Zhang and
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Batterman, 2013), and time-of-day, day-of-week, and month-
of-year patterns for other emission sources (Crippa et al.,
2020). These changes in meteorology, photochemistry, and
sources lead to diurnal variability in mass spectra (MS). For
example, Canonaco et al. (2015) showed that the mass spec-
tra of secondary organic aerosol (SOA) changed with con-
centrations of OX (O3+NO2), which shows high diurnal
variability due to monotonic association with ambient tem-
perature. Finally, diurnal variability of time series patterns is
frequently used for PMF factor selection and representation
(Zhang et al., 2011). As an example, using data from 11 d of
PMF runs, Williams et al. (2010) presented bi-hourly diur-
nal variability of PMF factor time series contributions. Rec-
ognizing the importance of variability of source influence at
receptor sites, previous research has examined the influence
of sampling periods, sampling time resolution, and time se-
ries variability of source emissions on the final PMF result
(Tian et al., 2017; Wang et al., 2018). Results from these
studies suggest that, given the assumption of constant fac-
tor profiles in PMF, PMF analysis should be conducted on
time-resolved datasets. Additionally, to capture source emis-
sion and meteorological variability over the day, data from all
times of day should be collected. Thus, an ideal PMF tech-
nique would make the most of the high time resolution of
datasets while assuming constant factor profiles for periods
with limited variability in emissions and meteorology.

One such approach is conducting different PMF runs for
different times of the day across long-term datasets. A key
advantage of such sub-setting is that it captures the diurnal
variability in source apportionment using PMF while keeping
computational load to a minimum. Differences in factor pro-
files between the seasonal PMF and time-of-day PMF runs
may indicate the effect of diurnal process changes and/or re-
activity (Norris et al., 2014). Conducting PMF on smaller
time windows is expected to improve results for another rea-
son. Positive matrix factorization approaches have influence
functions that are designed to account for the influence of
outliers on the solutions (Paatero, 1997; Paatero and Tapper,
1994; Ulbrich et al., 2009). These outliers depend on the time
window on which the factorization is being applied (Paatero,
1997). A shorter time window for analysis is influenced by
outliers present in that time window only and not any other
period. Thus, a shorter time window can be expected to give
higher factor resolution, given that the influence of many out-
liers in the dataset is removed. At the same time, the number
of zeros in the dataset also assists with the quantification of
PMF factors (Paatero, 1997). Thus, shortening time windows
can also decrease the extraction of factors via PMF, as has
been reported previously (Tian et al., 2017).

This paper improves upon the seasonal source apportion-
ment previously employed in Delhi (Bhandari et al., 2020).
The Delhi Aerosol Supersite (DAS) study provides long-term
chemical characterization of ambient submicron aerosol in
Delhi, with near-continuous online measurements of aerosol
composition (Gani et al., 2019, 2020; Arub et al., 2020;

Bhandari et al., 2020; Patel et al., 2021a). In that study
(Bhandari et al., 2020), PMF was conducted on six sea-
sons of highly time-resolved speciated nonrefractory sub-
micron aerosol (NR-PM1) organic (Org) mass spectrometer
data from an aerosol chemical speciation monitor (ACSM)
in the PMF receptor model at a time resolution of 5–6 min.
Then, we deployed the Igor PET tool on seasonal datasets,
and two to three PMF factors were extracted. The extraction
of a low number of factors implies low rotations, and there-
fore quantitative error estimation was not conducted in that
study (Paatero and Tapper, 1994).

Here, we apply the approach of conducting PMF on long-
term datasets where each day was separated into six 4 h pe-
riods with limited variability in emissions and meteorology.
To our knowledge, no study has systematically assessed the
use of PMF on data resolved by time of day. In this paper,
we report on PMF conducted on ACSM organic aerosol data
from the winter and monsoon seasons of 2017 – collected
as a part of the Delhi Aerosol Supersite (DAS) study – after
resolving by time of day. Thus, the factor MS are expected
to vary in these time-of-day windows. The winter and mon-
soon seasons are selected for this analysis as they capture
two extremes in seasonal concentrations, precipitation, and
meteorology, especially in terms of temperature, ventilation
coefficient, wind direction, and wind speed (Tables S1 and
S2 and Fig. S1 in the Supplement). In addition, winter expe-
riences extremely high organic and inorganic concentrations
and high pollution episodes dominated by primary emissions
(Gani et al., 2019; Bhandari et al., 2020). We use the EPA
PMF tool to apply constraints, extract a larger number of fac-
tors, and quantify errors in PMF solutions.

2 Methods

2.1 Statistical basis of approach

ME-2 is a multilinear unmixing model that can be used to
perform bilinear deconvolution of a measured mass spectral
matrix (X) into the product of positively constrained mass
spectral profiles (F) and their corresponding time series (G),
as shown in Eq. (1). In Eq. (1), E corresponds to the data
residual not fit by the model. Given that time series and mass
spectra are deconvoluted, the model mass spectral profiles
are assumed to remain constant in time. The mass balance
equation underlying the bilinear implementation of the factor
analytical model and the optimization problem in the EPA
PMF tool can be represented as shown in Eqs. (1)–(3).

X=GF+E (1)

xij =
∑n

p=1
gip.fpj + eij (2)

Equation (2) is an elemental notation of Eq. (1). For ACSM
data analyzed here, xij represents an element of the m× n
data matrix X, where i represents a single time point, and

https://doi.org/10.5194/amt-15-6051-2022 Atmos. Meas. Tech., 15, 6051–6074, 2022



6054 S. Bhandari et al.: Improved deconvolution of primary sources using time-of-day PMF

j represents a measured ion or m/z. n corresponds to the
number of factors in the PMF solution. Thus, gip refers to
the time series contribution of the pth factor at the ith time
point, and fpj represents the mass spectral contribution of
the j thm/z in the pth factor profile.

To derive factor time series and mass spectra in an itera-
tive fitting process, ME-2 lowers the residual by minimizing
the quality-of-fit parameter Q, using the gradient approach
(Norris et al., 2014; Eq. 3). Thus, PMF attempts to achieve
a global minimum for the optimization problem. Q is the
weighted least-squares error (sum of squares of model er-
ror normalized to measurement error) or the summation of
squares of scaled residuals of the fit at each data point. We
do not expect the norm of the actual error matrix to be zero
but instead close to the ACSM measured uncertainty (an el-
ement of the measured uncertainty is represented as σij in
Eq. 3). The quality-of-fit parameter corresponding to this un-
certainty is called Qexp (Ulbrich et al., 2009). While Qexp is
precisely equal to mn−p(m+ n), for large m and n, it sim-
plifies to ∼mn. Usually, PMF solutions start from very high
Q/Qexp and converge to 1 as more factors are added. We
refer to the Q for the entire dataset as Q0.

Q0 =MinF,GQ=
∑m

i=1

∑n

j=1

(
eij/σij

)2 (3)

For this discussion, we assume that Eq. (3) is subject to a con-
stant mass spectrum F0 and variable time series G0. A key
limitation of PMF is that it assumes constant MS profiles,
even though source signatures can change over the course of
the day. To address this limitation, we divide our data into
time segments to conduct PMF analysis resolved by time of
day. We refer to this time-resolved organic MS-based PMF
as “time-of-day PMF” and the traditional approach as “sea-
sonal PMF” in the paper. In the time-of-day PMF approach
presented here, we minimize Q separately in each of these
time-of-day windows.

2.2 Mathematical formulation of the time-of-day PMF
approach

The mathematical formulation of the time-of-day PMF ap-
proach is introduced in Eqs. (4)–(17). To provide an example
for splitting of data by time of day, we modify Eq. (3), divid-
ing the data matrix X into Xday (time, t ∈ [00:00, 12:00]) and
Xnight (time, t ∈ [12:00, 00:00]) (Eq. 4). Here, we demon-
strate that splitting the data by time of day will result in a
better solution. Thus,

X=
{
Xday,Xnight

}
(4) . (4)

The mathematical representation of the objective functions
for conducting PMF separately for Xday and Xnight periods is
shown in Eqs. (5) and (6) respectively. We call Q for these

data subsets Q1 and Q2.

Q1 =MinF,G

(∑m

i=1

∑n

j=13 time ∈Xday

(
eij/σij

)2) (5)

Q2 =MinF,G

(∑m

i=1

∑n

j=13 time ∈Xnight

(
eij/σij

)2) (6)

For this discussion, we assume that Eq. (5) is subject to a
constant mass spectrum F1 and variable time series G1 for
dataset Xday, and Eq. (6) is subject to a constant mass spec-
trum F2 and variable time series G2 for the dataset Xnight.
For simplification,

A(F,G)=
∑m

i=1

∑n

j=13 time ∈X day

(
eij/σij

)2 (7)

B (F,G)=
∑m

i=1

∑n

j=13 time ∈X night

(
eij/σij

)2
. (8)

Thus, Q1 (F1,G1)=MinF,G (A)∧Q2 (F2,G2)=MinF,G (B).

(9)

Using these definitions, we can also redefine Q0 as shown in
Eq. (10).

Q0 (F0,G0)=MinF,G (A+B) (10)

Clearly, Q0 minimizes the sum of two functions A and B.
Thus, Q0 is a multi-objective optimization problem attempt-
ing to achieve a global minimum for the combined dataset X
(Gunantara and Ai, 2018; Eq. 10). The two functions A and
B are globally minimized separately at (F1, G1) in Eq. (5)
and at (F2, G2) in Eq. (6), respectively. Thus, by definition,
Eqs. (5) and (6) can be written as

MinF,G(A)≤ A for all (F,G) (11)
MinF,G(B)≤ B for all (F,G) . (12)

Adding the inequalities in Eqs. (11) and (12), we get

MinF,G (A)+MinF,G (B)≤ A+B for all (F,G) . (13)

Since this is true for all (F, G), this is also true for (F, G) that
gives the minimum of A+B. Thus,

MinF,G (A)+MinF,G (B)≤MinF,G (A+B),∨ (14)
Q1+Q2 ≤Q0,∨ (15)
Q1+Q2 ≤Q01+Q02 . (16)

In Eq. (16), Q01 and Q02 are Q contributions to Q0 in the (F,
G) space corresponding to Q1 and Q2 respectively. Thus, we
can see that if solutions to Q0 will attempt to minimize er-
ror in the (F, G) space corresponding to Q1 (minimize Q01),
the obtained solution will likely worsen the error in the (F,
G) space corresponding to Q2 (and therefore not minimize
Q02). This property of solutions to multi-objective optimiza-
tion problems is inherent to a large class of solutions known
as Pareto solutions, which are used for source apportionment
and air quality planning (Gunantara and Ai, 2018; Angelis et
al., 2020). This limitation can also be viewed as a limitation
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on the mass spectral profiles – Q0 assumes constant mass
spectral profiles for both day and night periods and likely fits
both periods worse than the scenarios of Q1 and Q2, where
separate mass profiles for the two periods were developed.
Thus, in the traditional approach, varying time series (TS) on
non-varying MS can only capture changes as a linear TS scal-
ing factor for all MS contributions. In the time-of-day PMF
approach, both MS and TS vary, and we can expect new MS
and TS patterns. For the special case of the day–night data
split, where an equal number of points are collected in Xday
and Xnight, Qexp (∼mn) corresponding to the two matrices is
equal (we call itQexpdn), whereasQexp corresponding to the
matrix X would be double that value (2 Qexpdn ). Using these
Qexpdn values, Eq. (16) can be written as

Q1/Qexpdn +Q2/Qexpdn ≤Q01/Qexpdn

+Q02/Qexpdn . (17)

Clearly, using the day–night split, we show that the sum of
Q1 and Q2 (and the equivalent sum in Q/Qexp) would be
lower than Q0 (and the equivalent sum of Q/Qexp compo-
nents). By inference, dividing the time series into periods of
similar length (six 4 h segments in this paper) should result in
a similar relationship as Eq. (17). Overall, conducting PMF
on each such time-of-day period challenges the assumption
of diurnally non-varying MS factors in typical PMF.

2.3 Sampling site and measurements

As a part of the DAS study, an ACSM (Aerodyne Research,
Billerica, MA) was operated at ∼0.1 L min−1 at ∼1 min
time resolution in a temperature-controlled laboratory on
the top floor of a four-story building at IIT Delhi (Ng et
al., 2011b). Additionally, BC, ultraviolet-absorbing partic-
ulate matter (UVPM), and their difference 1C were mea-
sured using a seven-wavelength aethalometer operated at the
1 L min−1 flow rate and 1 min time resolution (Magee Sci-
entific Model AE33, Berkeley, CA) (Drinovec et al., 2015).
These instruments were on separate sampling lines, both of
which had a PM2.5 cyclone followed by a water trap and a
Nafion membrane diffusion dryer (Magee Scientific sample
stream dryer, Berkeley, CA). Full details of sampling site, in-
strument setup, operating procedures, calibrations, and data
processing are described in a separate publication (Gani
et al., 2019).

We collected the data used in this paper in win-
ter (January–February 2017) and the monsoon (July–
September 2017). Definition of the seasons comes from the
Indian National Science Academy (2018) (Table 2 from
Bhandari et al., 2020). Diurnal plots of meteorological vari-
ables are shown in Fig. S1. We conduct seasonal PMF runs
for the winter and monsoon seasons of 2017 and time-of-day
PMF runs for two periods (11:00–15:00 and 23:00–03:00 LT)
in the two seasons. We used the dataset obtained by aver-
aging every five consecutive measurements for the seasonal

PMF runs. We selected organic spectral data at a specific set
of m/z values between m/z 12 and m/z 120. This approach
is the commonly used approach, and the reasons for the se-
lection of the specific set of m/z values have been described
previously (Zhang et al., 2005). Spring, summer, and autumn
(mid-September to November) periods are not included in
the analysis here, but seasonal PMF analysis has been pre-
sented in previous publications (Bhandari et al., 2020; Patel
et al., 2021a).

2.4 PMF tool and runs

Here, we used two alternative approaches for conducting
PMF. In one approach, we apply PMF by splitting the data
into six 4 h time windows each day to illustrate the use of
our time-of-day PMF method. The choice of the 4 h window
was based on a preliminary PMF analysis conducted in the
monsoon that allowed us to identify the influence of cook-
ing organic aerosol, based on the ratio of contributions at
m/z 55:57 (Robinson et al., 2018). We started from 12 h time
windows and kept decreasing the window size until the ratio
was substantially greater than 1.6, suggesting the presence of
a cooking organic aerosol (COA) factor in at least one such
time window (in this case, it was monsoon 23:00–03:00 LT;
Table 2). We also conduct seasonal PMF runs for the winter
and monsoon seasons of 2017 and time-of-day PMF runs for
two periods (11:00–15:00 and 23:00–03:00 LT) in the two
seasons. Thus, we conduct four time-of-day PMF runs in to-
tal. The two time-of-day periods in each season are selected
to differentiate between the influence of primary sources,
changing MS due to reaction chemistry, and the effect of
meteorology (Table 1, Fig. S1). As shown in the compan-
ion paper, these periods represent the two extremes in total
NR-PM1) concentrations (Tables 1–2, Bhandari et al., 2022).
Results from PMF analysis for all times of the day are pre-
sented in a companion paper (Bhandari et al., 2022), and a
brief summary of those results is also provided in the Sup-
plement of this paper (Sect. S5). In the monsoon and winter,
traffic is expected to be a dominant source at night due to
low cooking-related emissions and overlap with high night-
time traffic on major traffic corridors (Mishra et al., 2019).
At midday in the monsoon, high temperatures and solar flux
imply high photochemical processing of aerosols; therefore,
we expect to see more oxidized aerosols (Table 1, Fig. S1).
At winter in the nighttime, biomass burning for heating is
an expected source. To refer to PMF runs corresponding to
specific time windows, we use the nomenclature “season” +
“period” in the format “S-TT-TT” (Table 1). For example,
W-11-15 corresponds to 11:00–15:00 LT of winter 2017. Us-
ing data presented in this paper, we also compare the Q (and
Q/Qexp) values from the seasonal PMF runs corresponding
to the periods of the time-of-day windows (Sect. 3.5). While
this work addresses the diurnal variations in MS patterns, fu-
ture work could investigate the optimal length of the time
window to sufficiently represent the finer diurnal variations
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Table 1. Summary of meteorology in the time-of-day PMF periods.

Season and period T (K) RH (%) VC∗ (m2 s−1) PBLH* (m) WS (m s−1) WD (◦ N) Nomenclature

W17 11:00–15:00 LT 294 93 3870 (3790) 1353 (1356) 2.9 −14.0 W-11-15
W17 23:00–03:00 LT 286 62 707 (188) 273 (64) 2.5 −49.0 W-23-03
M17 11:00–15:00 LT 308 82 6179 (6222) 2022 (2061) 3.1 6.9 M-11-15
M17 23:00–03:00 LT 302 73 1182 (237) 428 (84) 2.5 68.0 M-23-03

∗ Median values for ventilation coefficient (VC) and planetary boundary layer height (PBLH) are reported in parentheses. T – temperature, RH – relative
humidity, WS – wind speed, and WD – wind direction.

(less than 4 h) in mass spectral profiles while managing com-
putational burden.

The EPA PMF v5.0 tool was used to conduct ME-2 analy-
sis on this dataset and interpret its results (Norris et al., 2014).
Further details on the statistical basis of this method are
available elsewhere (Paatero, 1999; Paatero et al., 2002). For
the base run, the iterative PMF technique does not make any
assumptions for source or time profiles. If factors extracted
in the base run were not clearly associated with a source type
but suggestive of the presence or mixing of specific sources,
constraints were applied on the factors in the base run to ex-
tract cleaner source profiles (Brown et al., 2012, 2015). An
R package was developed to automate the process of data
analysis of EPA PMF outputs (R Core Team, 2019). We read-
justed the results from PMF analysis to account for underesti-
mation of factor mass based on the selectedm/z values only.
To account for particle losses, we applied transmission and
collection efficiencies after conducting PMF analysis (Gani
et al., 2019).

Details of the steps for conducting PMF, R code, and cri-
teria for factor selection are discussed in detail in the Sup-
plement (Sect. S1). Briefly, for selection of PMF solutions,
we started by analyzing the different statistics of Q/Qexp (a
measure of fit), correlogram of residual TS and correlation
with external tracers, time series patterns in residuals, and
PMF fits at different m/zs (Table S4). We also considered
the correlation of factor mass spectral profiles with reference
mass spectra since MS of different factors are characterized
by different spectral signature peaks (Zhang et al., 2011).
For example, hydrocarbon-like organic aerosol (HOA) is a
proxy for fresh traffic and combustion emissions and shows
prominent peaks at m/z values 55 and 57 and a higher frac-
tional organic signal at m/z 43 than m/z 44. For separation
of cooking organic aerosol (COA) and to distinguish it from
HOA in this study, we used the Robinson et al (2018) ra-
tio of contributions at m/z 55:57 of 1.6 as a preliminary
test for relative positioning of the HOA and COA profiles
(COA factors with the ratio close to or greater than 1.6 and
HOA profiles with the ratio substantially lower than 1.6). We
also validated obtained PMF factors by correlation of fac-
tor time series with external tracers. We use two tracers for
HOA influence: CO and the fossil-fuel component of black
carbon, BCFF, estimated using the model of Sandradewi et

al. (2008). For the time series of biomass burning organic
aerosol (BBOA) factors, we use three tracers: (i) chloride
(under the influence of agricultural and other open-waste-
burning-related contributions (Li et al., 2014a, b; Kumar et
al., 2015; Fourtziou et al., 2017); (ii) 1C, defined as the dif-
ference between UVPM (370 nm) and BC detected by the
aethalometer (Wang et al., 2011; Olson et al., 2015; Tian et
al., 2019); and (iii) the biomass-burning component of black
carbon, BCBB, estimated using the model of Sandradewi et
al. (2008). COA-related factors often exhibit weak correla-
tions with external tracers (Huang et al., 2010; Sun et al.,
2011, 2013; Liu et al., 2012; Hu et al., 2016; Stavroulas et
al., 2019). Additionally, the EPA PMF tool provides detailed
uncertainty analysis tools to validate how representative the
chosen PMF solutions are of the respective time windows.
Here, we use the uncertainty analysis to select PMF solu-
tions and only finalize solutions that pass the EPA PMF tests
of random error and rotational ambiguity, as described be-
low in Sect. 2.5. The application of these detailed uncertainty
analyses to select a PMF solution for each time window, in-
cluding the consideration of three- to eight-factor solutions,
is documented in Table S6, with supporting information in
Tables S5 and S7–S10.

2.5 Uncertainty estimation

In EPA PMF, quantitative error estimation (EE) of random
error and rotational ambiguity was conducted using boot-
strapping (BS), displacement (DISP), and bootstrapping en-
hanced with displacement (BS-DISP). This detailed uncer-
tainty analysis ensures that the identified MS and TS are rep-
resentative of the 4 h time windows by fitting hundreds to
thousands of PMF-like model runs to data subgroups within
the 4 h time windows (Paatero et al., 2014). Detailed sum-
mary statistics from running these uncertainty analyses are
presented as mappings onto the PMF solution for the entire
time domain (Tables S8–S10). The algorithms and compu-
tational workload of these techniques are described in detail
elsewhere (Paatero et al., 2014). The application of these EE
techniques leads to several orders of magnitude increase of
computational time and memory requirements in conducting
PMF runs (Paatero et al., 2014).

Bootstrapping or BS estimates “disproportionate effects of
a small set of observations on the solution”. In the process,
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Figure 1. Hourly averaged seasonally representative concentration time series of time-of-day PMF (a) primary and (b) secondary factors
for winter 2017 (in µg m−3). POA PMF factors show stronger variability than OOA PMF factors. (Chopped lines are due to the analysis
conducted on two 4 h periods each day.)

BS accounts for random error and to a limited extent rota-
tional ambiguity (Norris et al., 2014). EPA PMF automati-
cally identifies BS datasets using the parameter “block size”
that is based on the principle of stationarity and accounts for
underlying serial correlations (Politis and White, 2004). The
default calculation of the “block size” in EPA PMF is based
on incorrect calculations, and updated calculations have been
published (Patton et al., 2009) but not implemented in the
EPA PMF tool. We used the corrected block size estimation
procedure as shown in the Supplement (Sect. S2, Table S5).
BS factors are then mapped to base factors using the parame-
ter “minimum correlation R value”, which is the minimum
Pearson correlation coefficient used for BS factor assign-
ment. We use the default value of 0.6 and conduct 100 BS
runs for each PMF solution. Specification of too many fac-
tors in the base model may create artificial PMF factors (Ul-
brich et al., 2009). BS factors with rotational ambiguity may
also get mapped to other base factors. This scenario is called
factor swapping and occurs for not-well-defined (NWD) so-
lutions. These factors will likely have low BS mapping with
their equivalent base run factors (Paatero et al., 2014). We
only finalize PMF factor solutions with approximately 80 %
or more BS mapping for all PMF factors.

Displacement or DISP estimates rotational ambiguity in
PMF solutions by identifying the range of allowable MS
profile contributions in the PMF factors. Bootstrapping en-
hanced with displacement or BS-DISP combines the boot-
strap and displacement techniques to simultaneously esti-
mate random error and rotational ambiguity in PMF solu-
tions. In BS-DISP, BS resamples explore the solution space
randomly, and DISP explores the rotationally accessible
space around each BS resample. The ranges in DISP are ob-

tained corresponding to four limits on changes in theQ value
(dQ-max): 4, 8, 15, and 25. BS-DISP also reports ranges for
contributions at different m/zs to MS profiles of PMF factors.
These ranges correspond to four limits on changes in the Q
value (dQ-max): 0.5, 1, 2, and 4. The obtained PMF factors
using both approaches are then mapped to base factors, and
the number of cases of factor swaps is noted. Sometimes,
DISP and BS-DISP runs are terminated when encountering
large changes in the Q value, which suggests the base case
solution is not close to the global minimum. Generally, small
changes in Q suggest PMF solutions are close to the global
minimum. Additionally, a small number of factor swaps sug-
gests low rotational ambiguity and robustness of the PMF so-
lution. We only finalize PMF solutions with very few swaps
at the smallest dQ-max value. Some DISP and BS-DISP runs
terminated due to computational limits or encountering high
dQ-max. For these cases, we used the number of factor swaps
at termination as an estimate of total factor swaps. Finally,
even when solutions with factor swaps are encountered, only
solutions with swaps among the lowest number of factors are
considered interpretable (Norris et al., 2014). All other solu-
tions are rejected.

3 Results and discussion

In this paper, we focus on the implementation of the time-
of-day PMF technique on organic aerosol measured during
monsoon midday and night periods and winter midday and
night periods (Table 1). We report average concentrations
of PMF factors in Table 2. For reference, data from sea-
sonal PMF analysis are also presented. We find that time-

https://doi.org/10.5194/amt-15-6051-2022 Atmos. Meas. Tech., 15, 6051–6074, 2022



6058 S. Bhandari et al.: Improved deconvolution of primary sources using time-of-day PMF

Figure 2. Hourly averaged seasonally representative concentration time series of time-of-day PMF (a) primary and (b) secondary factors
for the 2017 monsoon season (in µg m−3). POA PMF factors show stronger variability than OOA PMF factors. (Chopped lines are due to
analysis conducted on two 4 h periods each day.)

of-day PMF analysis (i) generates a larger diversity of pri-
mary factors than seasonal PMF, (ii) resolves mass spectra
of cooking-related factors such as cooking organic aerosol
(COA), mixed COA–HOA, and solid-fuel combustion or-
ganic aerosol (SFC-OA) in Delhi, which are relatively unex-
plored (Tobler et al., 2020), and (iii) resolves different kinds
of BBOA-related factors (two BBOAs, one SFC-OA) based
on MS and TS correlations (Sect. 3.3) (Table 2). Seasonal
monsoon PMF analysis represents primary organic aerosol
(POA) by a single hydrocarbon-like organic aerosol (HOA),
whereas monsoon time-of-day PMF analysis represents mid-
day POA as a mixed COA–HOA factor and nighttime POA
as separate HOA and COA. In winter, seasonal PMF analysis
separates POA into HOA and BBOA factors. Winter time-of-
day PMF analysis separates midday POA into an SFC-OA
factor and a BBOA factor, and nighttime PMF analysis gives
HOA and BBOA. All analyses generate two oxidized organic
aerosol (OOA) factors. Time series of the different time-of-
day PMF factors are shown in Figs. 1–2.

In Sect. 3.1, we discuss the mass spectral profiles (MS) and
time series patterns (TS) of factors obtained in seasonal PMF
analysis conducted for winter and monsoon. In Sect. 3.2, we
discuss the mass spectral profiles and time series patterns
of factors obtained in time-of-day PMF analysis conducted
for winter and monsoon midday and nighttime periods. In
Sect. 3.3, we contrast the mass spectra and time series pat-
terns of primary and secondary PMF factors obtained from
time-of-day and seasonal PMF analyses. The mass spectra

of POA, a proxy for primary OA, and OOA, a proxy for sec-
ondary OA, were calculated by adding the component factors
corresponding to each type (e.g., POA = HOA + BBOA +
COA), weighted by their respective time series contributions.
This estimation allows for a comparison between the results
from the time-of-day and seasonal analyses. In Sect. 3.4, we
compare the midday and nighttime POA and OOA MS pro-
file results from the seasonal PMF and the time-of-day PMF
approach. Our hypothesis is that the time-of-day PMF ap-
proach will show larger variability across the two time peri-
ods. In Sect. 3.5, we discuss period-specificQ (andQ/Qexp)
values for the time-of-day PMF approach and the seasonal
PMF approach. We also compare the Q/Qexp TS patterns
and Q/Qexp by m/z to identify periods and m/zs with par-
ticularly significant changes in Q/Qexp.

3.1 Seasonal PMF runs

The analysis in this section focuses on the PMF factors from
seasonal PMF analysis; since this work focuses on specific
times of day, the results are presented only for the 11:00–
15:00 LT and the 23:00–03:00 LT time windows. Due to dif-
fering meteorology, sources, and photochemistry, the factor
speciation, their mass spectra, and their time series patterns
are quite different in the two seasons. A comparison of POA
and OOA in different seasons has been previously presented
(Bhandari et al., 2020). In winter, seasonal PMF analysis
results in two factors representing POA, namely HOA and
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Table 2. PMF factor concentrations in seasonal PMF and time-of-day PMF analysis (in µg m−3).

Season Period PMF run type Factor type Factor concentrations

M17 11:00–15:00 Seasonal POA (HOA) 2.5 (2.5)
OOA (local OOA, regional OOA) 18.7 (5.4, 13.3)

Time-resolved POA (COA–HOA) 4.0 (4.0)
OOA (local OOA, regional OOA) 17.4 (6.4, 11.0)

23:00–03:00 Seasonal POA (HOA) 8.8 (8.8)
OOA (local OOA, regional OOA) 21.4 (10.7, 10.8)

Time-resolved POA (HOA, COA) 12.1 (7.7, 4.4)
OOA (local OOA, regional OOA) 17.8 (7.7, 10.0)

W17 11:00–15:00 Seasonal POA (HOA, BBOA) 13.3 (3.5, 9.7)
OOA (local OOA, regional OOA) 55.5 (13.0, 42.4)

Time-resolved POA (SFC-OA, BBOA) 23.0 (18.1, 4.9)
OOA (local OOA, regional OOA) 46.6 (37.6, 8.9)

23:00–03:00 Seasonal POA (HOA, BBOA) 86.3 (49.3, 37)
OOA (local OOA, regional OOA) 56.5 (22.3, 34.2)

Time-resolved POA (HOA, BBOA) 71.8 (35.5, 36.2)
OOA (local OOA, regional OOA) 70.9 (18.7, 52.2)

BBOA, whereas only HOA is obtained in monsoon seasonal
PMF analysis. In the two seasonal PMF runs, we also obtain
two OOA factors: local (less oxidized) OOA and regional
(more oxidized) OOA (Drosatou et al., 2019; Table 2).

The behavior of the HOA factor MS is in line with the
reference HOA factor MS, as suggested by the dominance
of hydrocarbon signatures in the HOA spectrum belonging
to the series CnH2n−1+ and CnH2n+1+ (Ng et al., 2011a;
Bhandari et al., 2020; Pearson R ∼ 0.95; Figs. S4, S5). In
the monsoon, the seasonal PMF HOA MS is also strongly
correlated with the reference COA factor MS (Ng et al.,
2011a; Pearson R ∼ 0.90; Fig. S5). However, the monsoon
seasonal POA factor MS had a m/z 55 to m/z 57 ratio of
1.2 (Fig. S5). Therefore, the seasonal monsoon POA factor
is presented as an HOA factor. This HOA factor has stronger
correlations with tracers CO (Spearman R: 0.73) and BCFF
(Spearman R: 0.91) than the OOA factors (Fig. S6). In win-
ter, the fractional contributions of the BBOA factor MS at
m/zs 60, 73, and 115 are in line with the reference BBOA
factor MS (He et al., 2010; Crippa et al., 2014; Bertrand et al.,
2017; Pearson R ∼ 0.90; Fig. S7). As expected, POA trac-
ers, carbon monoxide (CO) and black carbon (BC), correlate
more strongly with HOA and BBOA factor TS than with the
OOA factor TS (Figs. S6 and S8). Additionally, BBOA cor-
relates with chloride, particularly in the evening, suggestive
of agricultural and other open-waste-burning-related contri-
butions (Li et al., 2014a, b; Kumar et al., 2015; Fourtziou et
al., 2017; Spearman R ∼ 0.70; Figs. S8 and S9). We also ob-
serve strong correlations of the local OOA factor with chlo-
ride (Spearman R ∼ 0.65; Fig. S8). These results are con-
sistent with our previous seasonal organic–inorganic PMF

analysis, which suggested that chloride, associated with an
oxidized BBOA factor (likely a combination of local OOA
and BBOA) with weak BCBB and 1C correlations, might
be linked to an industrial source (Bhandari et al., 2020). In-
deed, chloride has weak correlations with BCBB (Spearman
R ∼ 0.45; Figs. S8 and S9).

OOA factors are principally associated with secondary or-
ganic aerosol (SOA; Zhang et al., 2011). Mass spectra of both
local OOA and regional OOA correlate strongly with the ref-
erence OOA factor (Figs. S10–S11a, b; Pearson R ≥ 0.95).
However, local OOA correlates more strongly with the ref-
erence semi-volatile oxidized organic aerosol (SVOOA) fac-
tor (Zhang et al., 2011; Drosatou et al., 2019; Figs. S10 and
S11; PearsonR ∼ 0.80). The time series of the regional OOA
factor correlates stronger with sulfate, whereas local OOA
correlates stronger with chloride and black (BC) and brown
carbon (UVPM) (Figs. S6 and S8). Overall, regional OOA
shows less diurnal variability than local OOA, in line with a
regional origin (Figs. S12 and S13). Detailed 15 min time se-
ries patterns of seasonal PMF factors for the midday (11:00–
15:00 LT) and nighttime (23:00–03:00 LT) periods in the two
seasons are discussed in the Supplement (Sect. S3).

3.2 Time-of-day PMF runs

The analysis in this section focuses on the PMF factors
from time-of-day analysis for the 11:00–15:00 LT and the
23:00–03:00 LT time windows. Here, we show that time-
of-day PMF analysis resolves mass spectra of cooking-
and biomass-burning-related factors (one COA, one mixed
COA–HOA, one SFC-OA, two BBOAs) based on MS and
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TS correlations. Only nighttime periods separate clean HOA
factors.

3.2.1 Primary factor MS and TS

Winter 2017 primary factor MS

In winter at midday, PMF analysis results in two factors
representing POA, SFC-OA and BBOA, whereas at night-
time, HOA and BBOA are obtained (Table 2). The behav-
ior of the winter time-of-day PMF HOA factor MS is in line
with the reference HOA factor MS (Ng et al., 2011a; Pear-
son R > 0.95; Fig. S17a). The MS of the winter BBOA fac-
tors obtained are correlated with the reference profile but dif-
fer in contributions at key m/z values such as m/zs 29, 43,
and 44 (Pearson R ≥∼ 0.8; Figs. S16b, S17b). Both MS pro-
files show much larger m/z 29 contributions than the ref-
erence profile, suggesting a strong influence of wood burn-
ing (Bahreini et al., 2005; Schneider et al., 2006). The win-
ter midday BBOA is more oxidized (MS shows a higher ra-
tio of contributions at m/z 44 to m/z 43) and shows a low
m/z 60 contribution. It also has a high contribution atm/z 15
(Fig. S16b). Similar BBOA MS profiles with high m/z 15
have been observed previously as well (Crippa et al., 2013).
In contrast, the winter nighttime BBOA is less oxidized, and
BBOA MS show an m/z 60 contribution closer to the higher
end of the reference profile (Fig. S17b). At midday in winter,
we also obtain a mixed POA factor (Fig. S16a). We call it
solid-fuel combustion organic aerosol (SFC-OA) as the fac-
tor MS correlate with multiple reference MS profiles such
as BBOA, HOA, and COA (Pearson R > 0.8). This behav-
ior is similar to a seasonal PMF SFC-OA factor identified
recently in time-of-flight ACSM analysis for NR-PM2.5 in
Delhi. In that study, that factor was expected to be associated
with heating- and cooking-related domestic fuel combustion
and open-fire activities (Tobler et al., 2020; correlation at all
m/zs but m/z 44, Pearson R > 0.95; Fig. S18).

Monsoon 2017 primary factor MS

At midday in the monsoon, we see only one POA factor,
COA–HOA (Fig. S19). COA–HOA MS show similarities
with both the reference COA and HOA MS (ref. COA: Pear-
son R 0.90, ref. HOA: Pearson R 0.80; Fig. S19). The inabil-
ity to separate HOA and COA factors for mass spectral data
obtained in a major city in the Indo-Gangetic Plain has been
observed previously as well (Thamban et al., 2017; Bhandari
et al., 2020). However, a key difference of this factor com-
pared to the reference HOA and COA profiles is the large
contributions at m/z 44 in the monsoon midday COA–HOA.
These high contributions are likely a result of the highly ox-
idizing environment in the afternoon. The afternoon over-
laps with periods of high shortwave radiative flux (SWR) and
therefore high reactivity of the atmosphere (Fig. S1). In the
monsoon at nighttime, HOA and COA separate (Fig. S20a–

b). The behavior of the monsoon nighttime time-of-day PMF
HOA factor MS is in line with the reference HOA factor MS
(Ng et al., 2011a; Pearson R > 0.95; Fig. S20a). The mon-
soon nighttime COA factor MS are very similar to the refer-
ence COA factor MS (Pearson R 0.90; Robinson et al., 2018,
ratio of contributions at m/z 55 to m/z 57–1.66; Fig. S20b).
A key feature of this COA factor is the highm/z 41, a charac-
teristic feature of COA from heated cooking oils, especially
in Asian cooking (Allan et al., 2010; Liu et al., 2018; Zhang
et al., 2020; Zheng et al., 2020).

Primary factor TS

CO and BC serve as tracers for HOA, BBOA, and SFC-
OA (Figs. S21–S24). The winter midday SFC-OA profile
correlates strongly with chloride (Spearman R: 0.71), ni-
trate (Spearman R: 0.75), BCFF (Spearman R: 0.79), and
1C (Spearman R: 0.60), pointing to the mixing of HOA,
BBOA, and possibly COA in the factor (Fig. S21). In the
winter at nighttime, we separate an HOA MS profile that
correlates strongly with BCFF (Spearman R: 0.84) and CO
(Spearman R: 0.83) (Fig. S22). We obtain one BBOA factor
each for winter midday and winter nighttime. Among the two
BBOA obtained, winter midday BBOA correlates strongly
with chloride (Spearman R : 0.66) and CO (Spearman R:
0.67), suggesting an industrial source (Fig. S21, Sect. 3.1). At
nighttime, however, winter BBOA correlates strongest with
the wood burning component of BC (BCBB, Spearman R:
0.92) and weakly with chloride (Spearman R: 0.40), suggest-
ing at least two different origins of BBOA (Fig. S22). This is
consistent with our previous work, where we have separated
BBOA-like factors with different correlations with chloride
and BCBB in different seasons (Bhandari et al., 2020; Patel
et al., 2021a). In the monsoon at midday, we observe only
one primary factor, a COA–HOA factor, with strong correla-
tions with chloride (Spearman R: 0.75), suggesting the in-
fluence of landfill emissions, trash burning, and solid-fuel
sources (Fig. S23; Dall’Osto et al., 2015; Lin et al., 2017).
Otherwise, COA–HOA has weak correlations with external
tracers. Similar behavior of COA-dominated factors has been
seen previously as well (Huang et al., 2010; Sun et al., 2011,
2013; Liu et al., 2012 Hu et al., 2016; Stavroulas et al., 2019).
In the monsoon nighttime PMF run (M-23-03), we observe
stronger correlations of the HOA factor with CO (Spearman
R: 0.79) and BCFF (Spearman R: 0.86), compared to corre-
lations of these tracers with the COA factor (CO: Spearman
R: 0.70, BCFF: Spearman R: 0.71; Fig. S24).

3.2.2 Secondary factors’ MS and TS

Time-of-day PMF and seasonal PMF generate two OOA fac-
tors, local OOA and regional OOA, in each run (Figs. S25
and S26). Typically, regional OOA is more oxidized (shows
weaker correlations with reference SVOOA MS) and has
less diurnal variation, in line with its expected average
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lower volatility and contributions from long-range transport
(Drosatou et al., 2019). The time-of-day PMF OOA factors
show MS and TS behavior similar to the seasonal PMF OOA
factors, as shown in Sect. 3.3. Mass spectra of both local
OOA and regional OOA correlate strongly with the refer-
ence OOA factor (Pearson R > 0.80; Figs. S25 and S26).
Also, we consistently observe that the more oxidized regional
OOA factors have flatter diurnal time series patterns (smaller
range) than the less oxidized local OOA factors (larger range)
(Figs. S27–S30; Table S11). However, we see an overlap of
the 95 % confidence intervals of the normalized levels of the
local and regional OOA factors (Figs. S27–S30) and an over-
lap of external tracers, suggesting mixing of the two OOA
components (see Sect. S4). This is not surprising considering
the similarity of MS of the two OOA factors and a continuum
of the level of oxidation in the atmosphere (Drosatou et al.,
2019). Since we observe factor mixing of the two secondary
components, detailed analysis of the factor MS and TS (cor-
relations with external tracers, features of the mass spectra)
is only presented in the Supplement (see Sect. S4).

3.2.3 Time series patterns of time-of-day PMF factors

Time series patterns exhibit contrasting behavior in win-
ter and monsoon time-of-day PMF analysis, similar to the
seasonal factor contrast (Sect. S3; Figs. 3–4a, b). Midday
concentrations of all primary factors exhibit a monotoni-
cally decreasing pattern, likely due to increasing ventilation
(Figs. 3a, 4a, S1). In the midday period, winter peak SFC-
OA and BBOA concentrations are both ∼3 times the period
minimum (Fig. 3a). In the winter at night, peak concentra-
tions of HOA and BBOA are ∼2.5 times and ∼3 times the
period minimum (Fig. 3b). In contrast, monsoon primary fac-
tors exhibit lower variability at midday (peak COA–HOA
concentrations∼2 times the period minimum) and nighttime
(peak HOA∼ 2.5 times the period minimum; peak COA∼ 2
times the period minimum).

Additionally, the nighttime factors in both seasons show
larger differences between the mean and the median than
the corresponding midday factors in the same seasons, which
suggests episodic nature of factors. The presence of episodes
in these primary factors could be a consequence of the
temperature-related inversions at nighttime, which lead to
aerosol accumulation (Bhandari et al., 2020). These episodes
could also be a result of episodic sources contributing to
these factors. Generally, HOA shows the largest mean-
median differences, and episodic contributions could be from
heavy duty vehicles, brick kilns, and construction and road
paving activities (Guttikunda and Calori, 2013; Dallmann
et al., 2014; Mishra et al., 2019; Khare et al., 2020; Misra
et al., 2020). For BBOA, these sources could be associated
with burning events, as hypothesized previously (Bhandari
et al., 2020). Episodic events could also be due to precipita-
tion (Fig. S1). OOA factors experience mixing, so their time
series patterns are not discussed.

Figure 3. The 15 min averaged seasonally representative mean (+)
and median concentrations (lines) of time-of-day PMF primary fac-
tors for the periods (a) W-11-15 and (b) W-23-03 (in µg m−3).
Nighttime factors show evidence of episodes.

3.3 Comparisons of POA and OOA MS and TS
obtained using time-of-day PMF and seasonal PMF

Results from the previous sections show that time-of-day
PMF analysis generates a larger diversity of factors com-
pared to seasonal PMF analysis. In this section, we summa-
rize and compare the primary and secondary MS and TS con-
tributions of factors using PMF results from two approaches
– seasonal PMF and time-of-day PMF analysis. We show
that (i) seasonal PMF analysis significantly underestimates
primary concentrations at midday compared to time-of-day
analysis (Tables 2 and 3; Figs. 5–6a, b); (ii) midday shows
cleaner signatures in the POA factor MS in time-of-day PMF
analysis compared to the seasonal PMF analysis (Figs. 7–
8a, b); and (iii) nighttime OOA MS and TS show larger dif-
ferences between the two techniques than nighttime POA MS
and TS, whereas midday shows larger differences in POA
MS and TS than OOA MS and TS (Table 3, Figs. 7–8a, b,
S31–S36). Detailed MS and TS comparisons of time-of-day
PMF POA and OOA with the seasonal PMF results are dis-
cussed below.

Here, we show that the time-of-day PMF approach shows
strong similarities in time series patterns of primary fac-
tors compared to seasonal PMF analysis. However, the two
approaches show substantial time-of-day-dependent differ-
ences in detected mass spectra.
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Figure 4. The 15 min averaged seasonally representative mean (+)
and median concentrations (lines) of time-of-day PMF primary fac-
tors for the periods (a) M-11-15 and (b) M-23-03 (in µg m−3).
Nighttime HOA shows stronger episodes than COA.

Table 3. Time series correlations of time-of-day POA and OOA TS
with seasonal POA and OOA TS.

Slope/intercept
with the corresponding

seasonal
Period Factor type Pearson R POA/OOA TS

W-11-15 POA 0.96 1.38/4.7
OOA 0.96 0.77/3.9

W-23-03 POA 1.00 0.94/−9.2
OOA 0.98 1.19/3.4

M-11-15 POA 0.86 1.04/1.4
OOA 0.99 0.99/−1.2

M-23-03 POA 0.99 1.12/2.3
OOA 0.99 0.86/−0.6

3.3.1 Comparison of POA time series

The behavior of POA is consistent with the individual com-
ponent primary factors. POA is monotonically decreasing in
all periods, concentrations are more variable during the day,
and nighttime concentrations are several times those of mid-
day concentrations (Figs. 5–6a, b). We observe striking sim-
ilarities of the 15 min averaged time series patterns of POA
between the two techniques across all periods (Table 3, Pear-
son R > 0.85). The strong linear correlations suggest that
time-of-day PMF analysis results in shifted (but correlated)
TS patterns.

Figure 5. The 15 min averaged seasonally representative diurnal
mean (+) and median (lines) concentration time series of POA for
the periods: (a) W-11-15 and (b) W-23-03 (in µg m−3). Nighttime
factors show evidence of episodes.

3.3.2 Comparison of POA mass spectra

The time-of-day PMF approach generates POA mass spectra
both similar and different from the seasonal PMF approach,
depending on the time of day (Figs. 7–8a, b). Two features
stand out in these comparisons: the midday POA MS are
dissimilar at key m/zs, whereas the nighttime POA MS are
nearly identical.

Figures 7–8 show the MS pattern of time-of-day PMF
POA and seasonal PMF POA for winter midday and
nighttime (Fig. 7a–b) and monsoon midday and nighttime
(Fig. 8a–b). In time-of-day PMF POA presented here, we ob-
serve a lower ratio of contributions at m/z 43 to m/z 44 than
seasonal PMF POA. This lower ratio is indicative of the more
oxidized nature of the POA factor compared to the seasonal
POA (Ng et al., 2010). At midday, we observe higher contri-
butions in time-of-day PMF POA at m/z 44, in line with the
high photochemical processing (SWR flux, Fig. S1). We also
observe a higher ratio of contributions at m/z 55 to m/z 57
and lower contributions at m/z 57 (Figs. 7a and 8a). These
observations are in line with a strong cooking influence (and
lower traffic influence) at midday (Ng et al., 2011a; Robinson
et al., 2018). In winter at midday, we also observe lower con-
tributions at m/zs 29, 60, and 73 in time-of-day PMF than
seasonal PMF (Bahreini et al., 2005; Schneider et al., 2006).
This observation is likely a consequence of the removal of
the influence of wood burning for nighttime heating on the
time-of-day PMF POA MS for midday, in contrast to the
seasonal PMF POA MS which are affected by the nighttime
heating. In the monsoon at midday, we observe a higher con-
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Figure 6. The 15 min averaged seasonally representative diurnal
mean (+) and median (lines) concentration time series of POA for
the periods (a) M-11-15 and (b) M-23-03 (in µg m−3). Nighttime
factors show stronger evidence of episodes.

Figure 7. Mass spectra of time-of-day PMF POA and seasonal PMF
POA for the periods (a) midday and (b) nighttime in winter 2017.
Midday MS show larger differences compared to nighttime MS.

tribution at m/z 41 than m/z 43 in time-of-day PMF POA,
which is indicative of the influence of cooking (Allan et al.,
2010; He et al., 2010). This POA also shows a higher con-
tribution at m/z 29, suggesting a higher influence of wood
burning, likely associated with midday cooking. At night-
time, the differences between the time-of-day and seasonal
profiles are much smaller. Overall, time-of-day PMF analy-
sis seems to capture very specific features of primary aerosol
behavior better than seasonal PMF analysis.

Figure 8. Mass spectra of time-of-day PMF POA and seasonal
PMF POA for the periods (a) midday and (b) nighttime in the 2017
monsoon season. Midday MS show larger differences compared to
nighttime MS.

3.4 Differences in midday and nighttime POA and
OOA MS within time-of-day PMF versus seasonal
PMF

We can also compare midday and nighttime POA MS from
the time-of-day PMF analysis separately and also conduct the
same comparison for midday and nighttime POA MS from
the seasonal PMF analysis (Figs. S35–S36a, b). For both sea-
sons, the two comparisons (seasonal PMF and time-of-day
PMF) of midday and nighttime POA MS indicate more pri-
mary nature at nighttime than midday, based on the higher
contributions at the m/zs corresponding to the alkyl hydro-
carbons associated with primary combustion (Zhang et al.,
2011). However, this contrast is sharper in time-of-day PMF
analysis in both winter (Figs. S35b; Fig. S40, winter midday
and nighttime POA MS: time-of-day PMF Spearman R 0.93,
seasonal PMF Spearman R 0.97) and monsoon (Fig. S36b;
Fig. S41, monsoon midday and nighttime POA MS: time-of-
day PMF Spearman R 0.81, seasonal PMF Spearman R 1.0),
in line with the ability of the approach to capture variable
MS. The seasonal PMF midday–nighttime comparison also
fails to capture the influence of cooking midday based on the
low and similar ratio of contributions at m/z 55 to m/z 57 at
nighttime, especially in the monsoon (∼ 1, Figs. S35a and
S36a). This contrast between midday and nighttime POA
MS is higher in time-of-day PMF in winter (midday ratio:
1.2, nighttime ratio: 1.0, Fig. S31b) and in monsoon time-
of-day PMF analysis (midday ratio: 1.4, nighttime ratio: 1.2,
Fig. S36b). While seasonal PMF analysis for monsoon sug-
gests no change in MS between midday and nighttime, time-
of-day PMF analysis suggests large shifts in contributions
at key m/zs such as 41, 43, 44, 55, and 57, in line with the
changing importance of cooking from midday to night. These
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differences demonstrate the ability of time-of-day PMF to
capture variable MS corresponding to the source influence of
those time-of-day periods (Sect. 3.3.2).

We can also compare OOA MS and TS as well as conduct
midday and nighttime comparisons for time-of-day PMF and
seasonal PMF analysis (Sect. S4; Figs. S37–S38a–b). Time-
of-day PMF OOA MS and TS are similar to seasonal PMF
OOA (Table 3, TS: Pearson R > 0.95; Figs. S25–S26, MS:
Pearson R ≥ 0.95). However, the mass spectra of the time-
of-day PMF OOA have major differences at m/z 44 relative
to the seasonal PMF OOA (Figs. S33–S34a, b). Comparisons
of midday and nighttime time-of-day PMF OOA MS show
interesting patterns not apparent in seasonal PMF analysis
(Figs. S37–S38a, b). For example, time-of-day PMF analysis
for the 2017 monsoon season suggests less oxidized OOA
at midday than nighttime, likely caused by the presence of
semi-volatile compounds (Fig. S38b). Similar behavior has
been observed elsewhere as well and was attributed to bio-
genic emissions (Canonaco et al., 2015).

Figure S39 shows all PMF factors obtained in this paper
in a triangle plot (Ng et al., 2010). We observe that factors
obtained in the time-of-day PMF analysis occupy a larger
spread compared to those obtained in seasonal PMF analysis.
For example, in time-of-day PMF POA factors, we observe
a spread of about 5 % in contributions at m/z 43. In contrast,
the spread of seasonal PMF POA factors is less than 3%.
Overall, because time-of-day PMF conducts PMF analyses
for each period independent of the influence of the variability
in the other periods, it generates more representative MS for
each time-of-day period (Sect. 3.3).

3.5 Quantification of quality of fit using Q and
Q/Qexp patterns

As discussed in the methods section, PMF iterates to iden-
tify minima in the Q value, a residual-based metric often
used as a measure of the quality of fit of the PMF solution
(Sect. 2.2). Here, we compare the time-of-day PMF and the
seasonal PMF approaches based on theirQ andQ/Qexp pat-
terns. We show that Q and Q/Qexp are lower in time-of-day
PMF analysis than seasonal PMF analysis. By allowing the
MS to change substantially relative to the seasonal profile at
specific times of day, the time-of-day PMF lowers the residu-
als and therefore theQ values. These improvements inQ are
(i) larger in winter compared to monsoon, (ii) larger at mid-
day than nighttime, and (ii) non-monotonic within the time-
of-day periods.

3.5.1 Comparison of average Q and Q/Qexp in
different time-of-day periods

In Table 4, we compare the average Q and Q/Qexp val-
ues obtained in the time-of-day PMF analysis and the sea-
sonal PMF results. Our results indicate that the time-of-day
PMF approach significantly improves Q by 6 %–55 % and

Q/Qexp by 5 %–30 % of the original Q and Q/Qexp values,
respectively. A part of the improvement in Q going from
seasonal PMF to time-of-day PMF is also due to the lower
number of points and, therefore, lower degree of freedom, as
well as a larger number of weak m/zs (Paatero et al., 1994,
1997; Ulbrich et al., 2009; Table S3). However, decreases
occurring in Q/Qexp are less affected by the different num-
ber of weak m/zs and validate the improvement (Table 4).
The winter midday period observes larger seasonal Q and
Q/Qexp values than the monsoon midday period despite a
lower number of time series points in the winter midday pe-
riod. This result is likely an effect of the larger diversity of
sources expected in winter and a limitation of seasonal PMF
to capture sources through static MS profiles (Paatero et al.,
2002). Drops in monsoon and winter midday Q/Qexp (go-
ing from seasonal PMF to time-of-day PMF) are likely an
outcome of the factor switching from only HOA to cooking-
related factors (COA–HOA and SFC-OA, respectively). Fur-
ther, even though seasonal Q/Qexp in the winter at night-
time is higher than in the monsoon at nighttime, time-of-day
Q/Qexp is similar. Improvements at nighttime come primar-
ily from a change in the OOA MS, as shown in Sect. 3.3.
Thus, time-of-day PMF results in large improvements in fit
relative to the seasonal PMF analysis.

3.5.2 Comparison of time series patterns of Q/Qexp in
different time-of-day periods

We can further explore the time periods and m/zs that
show improvement in fits in the time-of-day PMF approach.
In Fig. 9, we plot the percent change of 15 min averaged
Q/Qexp values from the seasonal PMF approach to the time-
of-day PMF approach in the midday and nighttime periods.
Monsoon results show limited variability, with the standard
deviation (SD) of the percent change less than 5 % from the
mean (excluding the edges). On the other hand, in winter, the
SD of the percent change is ≥ 15 % from the mean, and the
time-of-day PMF approach particularly improves the solu-
tion in the middle of the midday window (11:30–14:00 LT)
and the first half of the nighttime window (23:30–00:45 LT).
These selective improvements suggest that time-of-day PMF
likely accounts for period-specific sources better than the
seasonal PMF approach.

3.5.3 Comparison of Q/Qexp by m/z in different
time-of-day periods

Instead of classifying improvements in Q/Qexp by time, we
can classify the improvements by m/zs. In Fig. 10, we plot
the percent change of Q/Qexp at different m/zs between the
seasonal PMF approach and the time-of-day PMF approach.
Our results show that the percent changes are either negative
or slightly positive at important m/z tracers in all periods.
In addition, the changes are largely negative at m/zs higher
than m/z 80, suggesting that the time-of-day PMF approach
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Table 4. Comparison of average Q and Q/Qexp in time-of-day PMF and seasonal PMF.

Seasonal Time-of-day Seasonal Time-of-day Percent change

Period PMF Qa PMF Q PMF Q/Qexp
a PMF Q/Qexp Q Q/Qexp

M-11-15 288 030 241 858 1.84 1.74 −16 % −5 %
M-23-03 333 134 313 170 2.16 1.93 −6 % −11 %
W-11-15 369452 164975 4.36 3.05 −55 % −30 %
W-23-03 197 984 161 468 2.37 1.95 −18 % −18 %

a The seasonal PMF Q (and Q/Qexp) values in these columns correspond to the Q (and Q/Qexp) values associated with the
solution space of the respective time-resolved windows only. For details, refer to Sect. 2.2 Eqs. (16)–(17).

particularly improves the fits at m/zs higher than m/z 80.
In particular, winter midday is accompanied by decreases at
importantm/zs such as 29, 41, 43, 44, 55, 57, and 60, as well
as m/zs higher than m/z 80.

We also observe that the fit quality reduced at some m/zs;
however, most of these m/zs are not tracers of specific PMF
factor types (Zhang et al., 2011). Future work could investi-
gate the deployment of the binned PMF (binPMF) approach,
selectively fitting important m/zs only to identify PMF fac-
tors (Zhang et al., 2019). Overall, the time-of-day PMF ap-
proach improves PMF fit dissimilarly at different m/zs com-
pared to the seasonal PMF approach.

4 Conclusions

This study introduces a new approach to conducting source
apportionment analysis – conducting positive matrix factor-
ization on long-term datasets with each day separated into
six 4 h periods with limited variability in emissions and me-
teorology. The statistical viability of this new source ap-
portionment approach is demonstrated, and the approach is
called time-of-day PMF. We apply the time-of-day PMF ap-
proach on two seasons of highly time-resolved speciated
nonrefractory submicron aerosol (NR-PM1) organics (Org).
This dataset was collected as a part of the Delhi Aerosol Su-
persite (DAS) study. This study improves upon the seasonal
source apportionment previously employed in Delhi. We use
the EPA PMF tool to apply constraints, extract a larger num-
ber of factors, and quantify errors in PMF solutions.

Time-of-day PMF analysis resolves a greater diversity of
factors compared to the traditional seasonal PMF approach.
In winter, time-of-day PMF separates a mixed SFC-OA fac-
tor and a BBOA factor at midday but separates clean HOA
and BBOA factors at night. Resolving by time of day allows
for the identification of different types of BBOA; the mid-
day BBOA is associated with chloride, and nighttime BBOA
is associated with black carbon. In the monsoon, a mixed
COA–HOA factor is obtained at midday, but separate clean
HOA and COA factors are obtained at night. Even the mixed
COA–HOA factor shows clear markers associated with influ-
ence of heated cooking oils, especially seen in Asian cook-
ing. Such markers are not seen in seasonal PMF. PMF analy-

Figure 9. Percent change of 15 min averaged seasonally represen-
tative Q/Qexp values between the seasonal PMF approach and the
time-of-day PMF approach in (a) midday and (b) nighttime periods.
Time-of-day PMF selectively improves Q/Qexp in specific periods
compared to the seasonal PMF approach.

sis also separates two OOA factors in each period, one more
local and the other more regional in nature. The two OOA
factors show signs of mixing and are therefore not discussed
in detail.

In the monsoon, the seasonal PMF approach underesti-
mates POA TS at all times of the day relative to the time-
of-day PMF approach. In winter, the seasonal PMF approach
underestimates POA TS at midday but overestimates POA
TS at night. Several differences also occur at key m/zs in
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Figure 10. Percent change ofQ/Qexp at differentm/zs between the
seasonal PMF approach and the time-of-day PMF approach in (a)
midday and (b) nighttime periods. Keym/zs show a lowerQ/Qexp
in the time-of-day PMF approach compared to the seasonal PMF
approach.

POA MS extracted from the two approaches. Time-of-day
PMF midday POA factors are more oxidized than the sea-
sonal PMF POA factors, in line with the high photochemical
processing at midday. Differences in nighttime POA MS pro-
files are small.

OOA TS show strong similarity between the two ap-
proaches. However, OOA MS show lower oxidation state in
the monsoon at midday and in winter at nighttime and higher
oxidation state in the monsoon at nighttime and in winter at
midday in time-of-day PMF analysis compared to the sea-
sonal PMF analysis. Presence of semi-volatile oxidized or-
ganics in the monsoon at midday and in winter at nighttime
could be attributed to semi-volatile biogenic emissions in
the monsoon and slow oxidation processes in winter respec-
tively.

Q/Qexp values of the PMF solutions are a measure of
quality of fit and show a decrease of 5 %–30 % going from
seasonal PMF analysis to time-of-day PMF analysis. These
improvements inQ/Qexp can be mapped out to specific time
points and m/zs. In winter, improvements in Q/Qexp are
particularly larger in specific time periods in the 4 h time
windows. In the monsoon, the improvements are, for the
most part, independent of time. In winter, improvements in
Q/Qexp are associated with improvements at key m/zs. Im-
provements in Q/Qexp for all periods are partially driven by
improvements in fits at m/zs higher than m/z 80.

Application of PMF on field monitoring datasets is a pow-
erful approach to separate the effects of contributing sources.
Typically, such analysis is conducted on datasets lasting from
a few weeks to a few months. However, in the last decade,
several long-term aerosol mass spectrometry deployments
have occurred, and one such deployment is the Delhi Aerosol
Supersite study. Long-term measurements are also conducted
for regulatory-level air pollution monitoring. In the coming
years, source apportionment strategies could become main-
stream policy tools, and organic mass spectrometry instru-
mentation may obtain regulatory-grade status. Given this
context, the time-of-day PMF approach combines the ben-
efits of large datasets collected using long-term monitoring
with the enhancement of time-resolving capability of source
apportionment approaches such as PMF at a lower computa-
tional intensity compared to the traditional approaches. Re-
sults in this paper demonstrate that the time-of-day PMF ap-
proach gives a greater number of factors as well as more rep-
resentative PMF factors compared to the traditional seasonal
PMF approach.
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Appendix A: Abbreviations

ACSM Aerosol chemical speciation monitor
BBOA Biomass burning organic aerosol
BC Black carbon
BCBB Wood burning component of BC
BCFF Fossil fuel component of BC
BS Bootstrapping
BS-DISP Bootstrapping enhanced with displacement
CO Carbon monoxide
COA Cooking organic aerosol
DAS Delhi Aerosol Supersite
DISP dQ-controlled displacement of factor elements
HOA Hydrocarbon-like organic aerosol
IIT Indian Institute of Technology
LT Local time
ME-2 Multilinear Engine
MS Mass spectra
NCR National Capital Region
NR-PM1 Nonrefractory submicron particulate matter
NR-PM2.5 Nonrefractory PM smaller than 2.5 µm

in diameter
OOA Oxygenated organic aerosol
Org Organic
PBLH Planetary boundary layer height
PET PMF evaluation tool
PM Particulate matter
PM1 Submicron particulate matter
PM2.5 Particulate matter smaller than 2.5 µm

in diameter
PMF Positive matrix factorization
POA Primary organic aerosol
SD Standard deviation
SFC-OA Solid-fuel combustion organic aerosol
SOA Secondary organic aerosol
SoFi Source Finder
SVOOA Semi-volatile oxygenated organic aerosol
SWR Shortwave radiative flux
T Temperature
TS Time series
UVPM Ultraviolet-absorbing particulate matter
VC Ventilation coefficient

Data availability. Data published in this main paper’s fig-
ures and tables are available via the Texas Data Reposi-
tory (https://doi.org/10.18738/T8/VIRK5O, Hildebrandt Ruiz and
Bhandari, 2022). Underlying research data are also available by re-
quest to Lea Hildebrandt Ruiz (lhr@che.utexas.edu).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-6051-2022-supplement.

Author contributions. LHR, JSA, GH, and SB designed the study.
SB and ZA carried out the data collection. SB carried out the data
processing and analysis. SB, JSA, and LHR assisted with the in-
terpretation of results. All co-authors contributed to writing and re-
viewing the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We are thankful to the Indian Institute of Tech-
nology (IIT) Delhi for institutional support. We are grateful to all
students and staff members of the Aerosol Research Characteri-
zation Laboratory (especially Prashant Soni, Nisar Ali Baig, and
Mohammad Yawar) and the Environmental Engineering Labora-
tory (especially Sanjay Gupta) at IIT Delhi for their constant sup-
port. We are thankful to Philip Croteau (Aerodyne Research) for al-
ways providing timely technical support for the ACSM and Penttti
Paatero, Phil Hopke (University of Rochester), and Dave Sullivan
(UT Austin) for insightful conversations about PMF. We would also
like to thank Nancy Sanchez (now Chevron; then at Rice University)
for discussions at the UT Austin Texas Air Quality Symposium that
inspired this work. Lastly, we thank Shahzad Gani (University of
Helsinki) for leading the instrument setup for the Delhi Aerosol Su-
persite study.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. 1653625) and the Welch Foun-
dation (grant nos. F-1925-20170325 and F-1925-20200401).

Review statement. This paper was edited by Mingjin Tang and re-
viewed by three anonymous referees.

https://doi.org/10.5194/amt-15-6051-2022 Atmos. Meas. Tech., 15, 6051–6074, 2022

https://doi.org/10.18738/T8/VIRK5O
https://doi.org/10.5194/amt-15-6051-2022-supplement


6068 S. Bhandari et al.: Improved deconvolution of primary sources using time-of-day PMF

References

Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison,
R. M.: Emissions and indoor concentrations of par-
ticulate matter and its specific chemical components
from cooking: a review, Atmos. Environ., 71, 260–294,
https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013.

Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn,
M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and
Coe, H.: Contributions from transport, solid fuel burning and
cooking to primary organic aerosols in two UK cities, Atmos.
Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-
2010, 2010.

Amato, F. and Hopke, P. K.: Source apportionment of the
ambient PM2.5 across St. Louis using constrained pos-
itive matrix factorization, Atmos. Environ., 46, 329–337,
https://doi.org/10.1016/j.atmosenv.2011.09.062, 2012.

Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A.,
Pey, J., Perez, N., and Hopke, P. K.: Quantifying road dust
resuspension in urban environment by Multilinear Engine:
a comparison with PMF2, Atmos. Environ., 43, 2770–2780,
https://doi.org/10.1016/j.atmosenv.2009.02.039, 2009.

Amil, N., Latif, M. T., Khan, M. F., and Mohamad, M.: Seasonal
variability of PM2.5 composition and sources in the Klang Valley
urban-industrial environment, Atmos. Chem. Phys., 16, 5357–
5381, https://doi.org/10.5194/acp-16-5357-2016, 2016.

Angelis, E. D., Carnevale, C., Turrini, E., and Volta, M.:
Source apportionment and integrated assessment mod-
elling for air quality planning, Electronics, 9, 1098,
https://doi.org/10.3390/electronics9071098, 2020.

Arub, Z., Bhandari, S., Gani, S., Apte, J. S., Hildebrandt Ruiz,
L., and Habib, G.: Air mass physiochemical characteristics over
New Delhi: impacts on aerosol hygroscopicity and cloud conden-
sation nuclei (CCN) formation, Atmos. Chem. Phys., 20, 6953–
6971, https://doi.org/10.5194/acp-20-6953-2020, 2020.

Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao,
S., Flagan, R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez,
J. L.: Measurements of secondary organic aerosol from oxida-
tion of cycloalkenes, terpenes, and m-xylene using an aerodyne
aerosol mass spectrometer, Environ. Sci. Technol., 39, 5674–
5688, https://doi.org/10.1021/es048061a, 2005.

Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke,
P. K.: Critical review and meta-analysis of ambient
particulate matter source apportionment using recep-
tor models in Europe, Atmos. Environ., 69, 94–108,
https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.

Belis, C. A., Larsen, B. R., Amato, F., Haddad, E., Favez, O., Har-
rison, R. M., Hopke, P. K., Nava, S., Paatero, P., Prévôt, A.,
Quass, U., and Vecchi, R.: European guide on air pollution source
apportionment with receptor models, https://publications.jrc.ec.
europa.eu/repository/handle/JRC83309 (last access: 10 March
2022), 2014.

Belis, C. A., Karagulian, F., Amato, F., Almeida, M., Artaxo, P.,
Beddows, D. C., Bernardoni, V., Bove, M. C., Carbone, S., Ce-
sari, D., Contini, D., Cuccia, E., Diapouli, E., Eleftheriadis, K.,
Favez, O., Haddad, I. E., Harrison, R. M., Hellebust, S., Hovorka,
J., Jang, E., Jorquera, H., Kammermeier, T., Karl, M., Lucarelli,
F., Mooibroek, D., Nava, S., Nøjgaard, J. K., Paatero, P., Pandolfi,
M., Perrone, M. G., Petit, J. E., Pietrodangelo, A., Pokorná, P.,
Prati, P., Prevot, A. S., Quass, U., Querol, X., Saraga, D., Sciare,

J., Sfetsos, A., Valli, G., Vecchi, R., Vestenius, M., Yubero, E.,
and Hopke, P. K.: A new methodology to assess the performance
and uncertainty of source apportionment models II: the results of
two European intercomparison exercises, Atmos. Environ., 123,
240–250, https://doi.org/10.1016/j.atmosenv.2015.10.068, 2015.

Bertrand, A., Stefenelli, G., Bruns, E. A., Pieber, S. M.,
Temime-Roussel, B., Slowik, J. G., Prévôt, A. S., Wortham,
H., Haddad, I. E., and Marchand, N.: Primary emissions
and secondary aerosol production potential from woodstoves
for residential heating: influence of the stove technology
and combustion efficiency, Atmos. Environ., 169, 65–79,
https://doi.org/10.1016/j.atmosenv.2017.09.005, 2017.

Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z.,
Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Sources and
atmospheric dynamics of organic aerosol in New Delhi, India:
insights from receptor modeling, Atmos. Chem. Phys., 20, 735–
752, https://doi.org/10.5194/acp-20-735-2020, 2020.

Bhandari, S., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt
Ruiz, L.: Contributions of primary sources to submicron organic
aerosols in Delhi, India, Atmos. Chem. Phys., 22, 13631–13657,
https://doi.org/10.5194/acp-22-13631-2022, 2022.

Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand,
H., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Ör-
jan Gustafsson: Air quality in megacity Delhi affected by
countryside biomass burning, Nat. Sustain., 2, 200–205,
https://doi.org/10.1038/s41893-019-0219-0, 2019.

Brown, S. G., Lee, T., Norris, G. A., Roberts, P. T., Collett Jr.,
J. L., Paatero, P., and Worsnop, D. R.: Receptor modeling of
near-roadway aerosol mass spectrometer data in Las Vegas,
Nevada, with EPA PMF, Atmos. Chem. Phys., 12, 309–325,
https://doi.org/10.5194/acp-12-309-2012, 2012.

Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Meth-
ods for estimating uncertainty in PMF solutions: examples
with ambient air and water quality data and guidance on re-
porting PMF results, Sci. Total Environm., 518–519, 626–635,
https://doi.org/10.1016/j.scitotenv.2015.01.022, 2015.

California Air Resources Board: AB 617 rec-
ommended source attribution technical ap-
proaches, https://ww2.arb.ca.gov/resources/documents/
ab-617-recommended-source-attribution-technical-approaches
(last access: 10 March 2022), 2018.

Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U.,
and Prévôt, A. S. H.: SoFi, an IGOR-based interface for
the efficient use of the generalized multilinear engine (ME-
2) for the source apportionment: ME-2 application to aerosol
mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661,
https://doi.org/10.5194/amt-6-3649-2013, 2013.

Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S.
H.: Seasonal differences in oxygenated organic aerosol composi-
tion: implications for emissions sources and factor analysis, At-
mos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-
15-6993-2015, 2015.

Canonaco, F., Tobler, A., Chen, G., Sosedova, Y., Slowik, J. G.,
Bozzetti, C., Daellenbach, K. R., El Haddad, I., Crippa, M.,
Huang, R.-J., Furger, M., Baltensperger, U., and Prévôt, A. S.
H.: A new method for long-term source apportionment with
time-dependent factor profiles and uncertainty assessment using
SoFi Pro: application to 1 year of organic aerosol data, Atmos.

Atmos. Meas. Tech., 15, 6051–6074, 2022 https://doi.org/10.5194/amt-15-6051-2022

https://doi.org/10.1016/j.atmosenv.2013.01.061
https://doi.org/10.5194/acp-10-647-2010
https://doi.org/10.5194/acp-10-647-2010
https://doi.org/10.1016/j.atmosenv.2011.09.062
https://doi.org/10.1016/j.atmosenv.2009.02.039
https://doi.org/10.5194/acp-16-5357-2016
https://doi.org/10.3390/electronics9071098
https://doi.org/10.5194/acp-20-6953-2020
https://doi.org/10.1021/es048061a
https://doi.org/10.1016/j.atmosenv.2012.11.009
https://publications.jrc.ec.europa.eu/repository/handle/JRC83309
https://publications.jrc.ec.europa.eu/repository/handle/JRC83309
https://doi.org/10.1016/j.atmosenv.2015.10.068
https://doi.org/10.1016/j.atmosenv.2017.09.005
https://doi.org/10.5194/acp-20-735-2020
https://doi.org/10.5194/acp-22-13631-2022
https://doi.org/10.1038/s41893-019-0219-0
https://doi.org/10.5194/acp-12-309-2012
https://doi.org/10.1016/j.scitotenv.2015.01.022
https://ww2.arb.ca.gov/resources/documents/ab-617-recommended-source-attribution-technical-approaches
https://ww2.arb.ca.gov/resources/documents/ab-617-recommended-source-attribution-technical-approaches
https://doi.org/10.5194/amt-6-3649-2013
https://doi.org/10.5194/acp-15-6993-2015
https://doi.org/10.5194/acp-15-6993-2015


S. Bhandari et al.: Improved deconvolution of primary sources using time-of-day PMF 6069

Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-
2021, 2021.

Carslaw, D. C. and Ropkins, K.: openair: an R package for air
quality data analysis, Environ. Modell. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.

Chakraborty, J. and Basu, P.: Air Quality and Environmental
Injustice in India: Connecting Particulate Pollution to Social
Disadvantages, Int. J. Environ. Res. Pub. Health, 18, 304,
https://doi.org/10.3390/ijerph18010304, 2021.

Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M.
F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di
Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi,
E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann,
S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S.
H., and Baltensperger, U.: Wintertime aerosol chemical compo-
sition and source apportionment of the organic fraction in the
metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981,
https://doi.org/10.5194/acp-13-961-2013, 2013.

Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Car-
bone, S., Capes, G., Ceburnis, D., Dall’Osto, M., Day, D. A., De-
Carlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz,
L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr,
A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah,
A. A., Mohr, C., Nemitz, E., O’Dowd, C., Ovadnevaite, J., Pan-
dis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K.,
Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and
Prévôt, A. S. H.: Organic aerosol components derived from 25
AMS data sets across Europe using a consistent ME-2 based
source apportionment approach, Atmos. Chem. Phys., 14, 6159–
6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.

Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E.,
Muntean, M., Schieberle, C., Friedrich, R., and Janssens-
Maenhout, G.: High resolution temporal profiles in the Emissions
Database for Global Atmospheric Research, Sci. Data, 7, 1–17,
2020.

Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z.,
Vlachou, A., Stefenelli, G. Canonaco, F., Weber, S., Segers, A.,
Kuenen, J. J., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S.,
Dommen, J., Baltensperger, U., Geiser, M., Haddad, I. E., Jaf-
frezo, J. L., and Prévôt, A. S.: Sources of particulate-matter air
pollution and its oxidative potential in Europe, Nature, 587, 414–
419, https://doi.org/10.1038/s41586-020-2902-8, 2020.

Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., and
Hopke, P. K.: Dispersion normalized PMF provides insights into
the significant changes in source contributions to PM2.5 after
the CoviD-19 outbreak, Environ. Sci. Technol., 54, 9917–9927,
https://doi.org/10.1021/acs.est.0c02776, 2020.

Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Wor-
ton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C.,
Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley,
R. A.: Characterization of particulate matter emissions from
on-road gasoline and diesel vehicles using a soot particle
aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599,
https://doi.org/10.5194/acp-14-7585-2014, 2014.

Dall’Osto, M., Paglione, M., Decesari, S., Facchini, M.
C., O’Dowd, C., Plass-Duellmer, C., and Harrison, R.
M.: On the origin of AMS “cooking organic aerosol”
at a rural site, Environ. Sci. Technol., 49, 13964–13972,
https://pubs.acs.org/doi/abs/10.1021/acs.est.5b02922, 2015.
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