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Abstract. Understanding the uncertainties in the retrieval of
aerosol and surface properties is very important for an ade-
quate characterization of the processes that occur in the at-
mosphere. However, the reliable characterization of the error
budget of the retrieval products is a very challenging aspect
that currently remains not fully resolved in most remote sens-
ing approaches. The level of uncertainties for the majority of
the remote sensing products relies mostly on post-processing
validations and intercomparisons with other data, while the
dynamic errors are rarely provided. Therefore, implementa-
tions of fundamental approaches for generating dynamic re-
trieval errors and the evaluation of their practical efficiency
remains of high importance.

This study describes and analyses the dynamic esti-
mates of uncertainties in aerosol-retrieved properties by the
GRASP (Generalized Retrieval of Atmosphere and Surface
Properties) algorithm. The GRASP inversion algorithm, de-
scribed by Dubovik et al. (2011, 2014, 2021), is designed
based on the concept of statistical optimization and provides
dynamic error estimates for all retrieved aerosol and sur-
face properties. The approach takes into account the effect
of both random and systematic uncertainties propagations.
The algorithm provides error estimates both for directly re-
trieved parameters included in the retrieval state vector and
for the characteristics derived from these parameters. For ex-

ample, in the case of the aerosol properties, GRASP directly
retrieves the size distribution and the refractive index that are
used afterwards to provide phase function, scattering, extinc-
tion, single scattering albedo, etc. Moreover, the GRASP al-
gorithm provides full covariance matrices, i.e. not only vari-
ances of the retrieval errors but also correlations coefficients
of these errors. The analysis of the correlation matrix struc-
ture can be very useful for identifying less than obvious re-
trieval tendencies. This appears to be a useful approach for
optimizing observation schemes and retrieval set-ups.

In this study, we analyse the efficiency of the GRASP error
estimation approach for applications to ground-based obser-
vations by a sun/sky photometer and lidar. Specifically, di-
verse aspects of the error generations and their evaluations
are discussed and illustrated. The studies rely on a series
of comprehensive sensitivity tests when simulated sun/sky
photometer measurements and lidar data are perturbed by
random and systematic errors and inverted. Then, the re-
sults of the retrievals and their error estimations are analysed
and evaluated. The tests are conducted for different obser-
vations of diverse aerosol types, including biomass burning,
urban, dust and their mixtures. The study considers obser-
vations of AErosol RObotic NETwork (AERONET) sun/sky
photometer measurements at 440, 675, 870 and 1020 nm and
multiwavelength elastic lidar measurements at 355, 532 and
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1064 nm. The sun/sky photometer data are inverted alone or
together with lidar data.

The analysis shows overall successful retrievals and er-
ror estimations for different aerosol characteristics, includ-
ing aerosol size distribution, complex refractive index, sin-
gle scattering albedo, lidar ratios, aerosol vertical profiles,
etc. Also, the main observed tendencies in the error dynamic
agree with known retrieval experience. For example, the
main accuracy limitations for retrievals of all aerosol types
relate to the situations with low optical depth. Also, in sit-
uations with multicomponent aerosol mixtures, the reliable
characterization of each component is possible only in lim-
ited situations, for example, from radiometric data obtained
for low solar zenith angle observations or from a combina-
tion of radiometric and lidar data. At the same time, the total
optical properties of aerosol mixtures are always retrieved
satisfactorily.

In addition, the study includes an analysis of the detailed
structure of the correlation matrices for the retrieval errors in
mono- and multicomponent aerosols. The conducted analysis
of error correlation appears to be a useful approach for opti-
mizing observation schemes and retrieval set-ups. The appli-
cation of the approach to real data is provided.

1 Introduction

Remote sensing is one major tool for monitoring atmosphere
and surface properties at large scales. These observations
have a nondestructive character and allow for dynamic lo-
cal, regional or global monitoring of the ambient atmosphere.
Correspondingly, diverse remote sensing observations are
employed for routine observations and characterization of
the Earth atmosphere. One of the key challenges in imple-
menting remote sensing is the development of the retrieval al-
gorithms. While remote sensing retrievals have substantially
evolved during the last few decades, a significant need for
further advancing various aspects of the retrieval algorithms
remains. One of the most challenging and important, while
underdeveloped, aspects is the evaluation of the errors in the
retrieval products. For example, the review by Sayer et al.
(2020) emphasizes that, for most aerosol satellite retrievals,
the quality of the retrieval uncertainty estimates has not been
routinely assessed.

Here we discuss and analyse the approach implemented in
the GRASP (Generalized Retrieval of Atmosphere and Sur-
face Properties) retrieval algorithm. The GRASP concept is
based on the statistical optimization fitting designed for the
retrieval of detailed aerosol properties from diverse obser-
vations (Dubovik et al., 2011, 2014, 2021). This algorithm
uses statistical estimates of random error propagation and
provides the dynamic error estimates for both retrieved pa-
rameters (such as the size distribution, refractive index, etc.)
and characteristics derived from those parameters (total scat-

tering, extinction, single scattering albedo, etc.). Specifically,
in this work, we discuss and analyse the error estimates of
the aerosol properties by GRASP for aerosol retrievals from
ground-based observations by sun/sky radiometers and li-
dars.

One of the most visible data sets of ground-based ra-
diometric observations is provided by AERONET (AErosol
RObotic NETwork; Holben et al., 1998), a network of
more than 500 operational sites distributed over the world.
AERONET provides column-integrated aerosol properties of
the different sites distributed over the world. AERONET pro-
vides column-integrated aerosol properties originally pro-
vided by the Nakajima et al. (1996) algorithm and later by
the Dubovik and King (2000) retrieval. Several studies access
the AERONET retrieval errors. First, Dubovik et al. (2000)
provided a rather comprehensive analysis of retrieval uncer-
tainties caused by both random measurement errors and sys-
tematic errors originating from potential biases in the mea-
surements and imperfections in the modelling aerosol prop-
erties. This analysis was revisited by Torres et al. (2017),
whose studies overall confirmed most of the uncertainty ten-
dencies revealed by Dubovik et al. (2000). Recently, Sinyuk
et al. (2020) published a concept for uncertainty in aerosol
retrievals that have been adapted in the version 3 aerosol op-
erational product of AERONET (Giles et al., 2019). In the
frame of this concept, the uncertainties are estimated using
the spread of retrieved parameters generated by 27 distinct
combinations of retrieval implemented with perturbed input
data (aerosol optical depth (AOD), sky radiances, solar spec-
tral irradiance and surface reflectance). A somewhat similar
concept for the estimating error was employed earlier in the
LiRIC (Lidar and Radiometer Inversion Code) approach for
the synergetic processing of co-located lidar and AERONET
sun/sky photometer observations (Chaikovsky et al., 2016).
LiRIC provided some uncertainty, which was simulated us-
ing a series of retrievals with the perturbed input data. A
large number of factors affect the retrievals, whose variation
is complex and nonlinear. Indeed, modelling all the factors
and circumstances that can affect the retrieval in all situa-
tions is theoretically impossible, and practically challenging,
within the limited series of perturbed runs, especially for sit-
uations when a large number of parameters is retrieved. In
these situations, the error propagation approaches based on
statistical estimation theory and described in numerous text-
books (e.g. Edie et al., 1971; Fourgeaud and Fuchs, 1967;
Rodgers, 2000) provide asymptotically comprehensive esti-
mates for random retrieval errors. At the same time, it should
be noted that both the result of perturbation tests and sta-
tistical estimates of propagated error relying on the forward
model employed may not fully represent the inaccuracies re-
lated to the limitations of this model. Some additional evalu-
ations and considerations are always desirable for accessing
the adequacy of the chosen forward model and its potential
limitations.
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The GRASP is a state-of-the-art, highly versatile inversion
algorithm of a new generation that can be applied to a vari-
ety of remote sensing and laboratory observations. For ex-
ample, GRASP has been applied for several satellite instru-
ments (Dubovik et al., 2019, 2021; Li et al., 2019; Chen et
al., 2018, 2019, 2020; Puthukkudy et al., 2020) and demon-
strated the capability to provide accurate information about
detailed properties of aerosol and underlying surface re-
flectance. The GRASP has been successfully used for re-
trieving aerosol properties from polar nephelometer data (Es-
pinosa et al., 2017, 2019; Schuster et al., 2019). The appli-
cations of the GRASP algorithm for retrieving aerosol prop-
erties from sun/sky photometer and radiometer observations,
either alone or in combination with lidar observations, have
been employed and discussed in numerous studies (e.g. Tor-
res et al., 2017) as the synergy of sun/sky photometer plus li-
dar (Lopatin et al., 2013, 2021; Torres et al., 2017; Benavent-
Oltra et al., 2017, 2019, 2021; Hu et al., 2019; Tsekeri et al.,
2017; Román et al., 2018; Herreras et al., 2019; Titos et al.,
2019). The successful application of GRASP has been illus-
trated for the interpretation of terrestrial observations with a
celestial camera (Román et al., 2017). Recent studies by Tor-
res et al. (2017) and Torres and Fuertes (2021) demonstrated
the high potential of the GRASP retrieval concept for invert-
ing only direct sun photometric observations.

The evaluation of the retrieval accuracy in all those studies
was realized by comparing and validating the retrieval results
with independent reliable data. It should be noted, however,
that practically none of these studies discuss the retrieval er-
ror estimates, while the formalism of the error estimate has
been realized in GRASP for a while. As a result, the valid-
ity of the retrieval error estimates provided by the GRASP
approach remains unattended and unverified. Therefore, in
order to address this issue, the current work proposes a dis-
cussion of the main aspects of the GRASP error generation
and attempts to provide an evaluation of the retrieval error
estimates provided by GRASP. The study is focused on the
considerations of aerosol retrieval from sun/sky photometers
and lidar ground-based observations.

2 Modelling of error estimates in the GRASP
algorithm

As mentioned in the introduction, in this work we make
use of the GRASP (Generalized Retrieval of Atmosphere
and Surface Properties) algorithm. It is a rigorous, versa-
tile and open-source algorithm capable of providing informa-
tion of aerosol properties from the measurements of differ-
ent instruments and dynamic error estimates (Dubovik et al.,
2011, 2014, 2021). It is a flexible, generalized algorithm that
relies on two independent modules, i.e. the forward model
and the numerical inversion. The forward model contains
the full description of the physical model, including vari-
ous interactions of electromagnetic solar radiations, such as

aerosol scattering, surface reflectance and gaseous absorp-
tion. The multiple scattering interactions in the atmosphere
are accounted for by solving the vector of radiative trans-
fer equation. Thus, the GRASP forward model is capable of
simulating diverse measurements in the laboratory and at-
mospheric remote sensing, including passive and active ob-
servations from space and the ground. On the other hand, nu-
merical inversion is not directly related to any physical prob-
lem and realizes the formal inversion of the measurements
using a statistical estimation approach. Specifically, GRASP
employs the multiterm least squares method (LSM) that al-
lows for a flexible utilization of multiple a priori constraints.
This approach is very convenient for designing diverse re-
mote sensing retrievals, as discussed in detail by Dubovik et
al. (2021).

The retrieval error estimates in GRASP are calculated by
modelling the propagation of measurement errors based on a
statistical estimation approach. In addition, the formulation
used for estimating errors accounts for some contribution of
the systematic errors that could originate from biases in the
measurement or some modifications implemented in the al-
gorithm for improving the retrieval convergence of nonlin-
ear solutions. Below, the descriptions of the overall concept
and specific key implementations of the error estimation in
GRASP are provided.

2.1 The numerical inversion based on a statistical
optimization concept

The multiterm LSM employed in GRASP searches for the
solution using statistically optimized fitting under multi-
ple a priori constraints (Dubovik, 2004; Dubovik et al.,
2011, 2021). It considers both measurements and a priori
data in a similar manner by considering them as being data
from different and independent data sources, as follows:

f ∗k = f k(a)+1f ∗k , (1)

where f k(a) is the physical forward model, a is the vec-
tor of unknown parameters, 1f ∗k represents the uncertainty
associated with the measurement f ∗k and k denotes differ-
ent data sets that are not correlated and may have different
levels of uncertainties described by different covariance ma-
trices Ck . Such an explicit differentiation of the input data
makes the retrieval more transparent because it clearly iden-
tifies the different data sets used. Correspondingly, the joint
probability density function (PDF) of independent data sets
f ∗1, f ∗2, . . .,f

∗

K can be obtained by the simple multiplication
of the PDFs of data from all K sources, as follows:

P(f (a)|f ∗) = P
(
f 1(a), . . .,fK(a)|f

∗

1, . . .,f
∗

K

)
=

K∏
k=1

P(f k(a)|f
∗

k). (2)

It can be noted that Eq. (1) does not assume any rela-
tion between the forward models f k(a), i.e. forward mod-
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els f k(a) can be the same or different. In the frame of the
LSM approach, i.e. under the assumptions of a normal PDF
of the error 1f ∗k , the solution of the Eq. (1) corresponds to
the minimum of the following functional:

29̂(a)=
1
2

K∑
k=1
(f k(a)−f ∗k)

TC−1
k (f k(a)−f ∗k)=min. (3)

It can be noted that, if any of correlation coefficients are 1
or −1, the covariance matrix is degenerated with det(Ck)=
0.

For the general case of nonlinear functions f k(a), the so-
lution of Eq. (3) is sought iteratively, as follows:

ap+1
= ap −1ap , (4)

where 1ap is the solution that can be found by solving the
system of so-called normal equations. This is as follows:(

K∑
k=1

KT
k,pC−1

k Kk,p

)
1ap =

K∑
k=1

KT
k,pC−1

k 1f
p
k , (5)

where 1f p = f (ap)−f ∗, and Kp is a Jacobean matrix at
the pth iteration of the functions f k(a) in the vicinity of ap

with the elements
{
Kk,p

}
j,i
=

∂f k,j (a)

∂ai

∣∣∣
a=ap

.
The asymptotic limit of the minimized quadratic form, for

most applications, can be written as follows:

29(a)=min→
K∑
k=1

Nk − n, (6)

where Nk is a number of measurements (inputs) in the kth
data set, and n is the number of retrieved unknowns (param-
eters).

It should be noted that the LSM solution of Eq.(3) cor-
responds to the minimum of the quadratic form 9̂(a) and
does not depend on the value of this minimum. Considering
this fact, in a practical application it is often convenient to
renormalize the minimized quadratic 9̂(a), and in situations
when only one data set is inverted, it is convenient to use
a weighting matrix W= C/ε2

1 and minimize the quadratic
form 29 ′(a)= 2ε2

19(a). In such an approach, one does not
need to know the exact value of the variance ε2

1 . Moreover,
ε2

1 can be estimated from asymptotic LSM expectations pro-
vided by Eq. (9), as shown below.

In the frame of a multiterm approach, the use of weight-
ing matrices additionally allows for making the contribution
of different data sources more explicit. Indeed, using the
weighting matrices Wk instead of covariance matrices Ck in
Eq. (5) can be written as follows:(

K∑
k=1

γkKT
k W−1

k Kk

)
1ap =

K∑
k=1

γkKT
k W−1

k 1f
p
k . (7)

In this formulation, the relative contributions of the data
from different data sources are scaled by the corresponding
Lagrange parameters, γi , defined as follows:

Wi =
1
ε2
i

Ci and γi =
ε2

1

ε2
i

, (8)

where ε2
i is the first diagonal element of Ci , i.e. ε2

i = {Ci}11,
and γi is the ratio of the variances of scattered radiances and
variances of the corresponding data set. Evidently, γ1 = 1,
as discussed by Dubovik and King (2000); Dubovik (2004);
Dubovik et al. (2011) and others. This renormalization strat-
egy is especially convenient for a multiterm LSM approach
once some of data sets correspond to a priori information.
In addition, the renormalized definition of the minimized
quadratic function (or residual) is 9 ′(a)= ε2

19(a), and the
measurement error variance ε2

1 can be estimated from the
residual of the fit. Indeed, once the weighting matrices are
used in the solution, and taking into account that the values
of minimized quadratic form of 9(â) follow a χ2 distribu-
tion, Eq. (7) minimizes the quadratic form with the limit de-
pending on ε2

1 , as follows:

29 ′(a)= 2ε2
19(a)=min→ ε2

1

(
K∑
k=1

Nk − n

)

and ε̂2
1 ≈

29 ′(ap)∑
k=1,...,KNk − n

. (9)

Therefore, ε2
1 can be estimated from the minimum value

of the residual 9(â).

A priori constraints in a multiterm LSM approach and
in GRASP algorithm

As discussed in detail by Dubovik et al. (2021), the multi-
term LSM concept has been proposed as being a method-
ologically convenient approach for integrating different
types of a priori constraints in remote sensing applications
(Dubovik, 2004; Dubovik and King, 2000; Dubovik et al.,
1995, 2000, 2008, 2011). In the multiterm LSM, a priori es-
timates are considered to be equivalent to the measurements,
i.e. characterized by their PDF and treated equivalently to the
actual measurements. In this regard, Eqs. (1)–(7) do not show
any distinction between different f k(a).

At the same time, in practice, there are always two dif-
ferent types of data sets, i.e. measurements and the a priori
constraint on the unknowns a. Therefore, the vector of the
measurement (f ∗)T = (f ∗1,f

∗

2, · · ·,f
∗

K)
T can be written as

follows:

(f ∗)T = (f ∗1,f
∗

2, . . .,f
∗

K ,f
a
1,f

a
2, . . .,f

a
N )
T , (10)

where f ∗i = f ∗i (a) represent K directly measured character-
istics, and f a

i = f a
i (a) representN a priori known character-

istics of unknowns a. Correspondingly, the right-hand side of
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Eq. (2) can be formally split into the following two groups:

P(f (a)|f ∗)=

K∏
k=1

P(f k(a)|f
∗

k)

N∏
n=1

P(f a
n(a)|f

a,∗
n ). (11)

Therefore, Eq. (7) can also be formally arranged to iden-
tify the contribution of measurements and a priori terms, as
follows:( K∑
k=1

γkKT
k,pW−1

k Kk,p+

N∑
n=1

γa,nKT
a,n,pW−1

a,nKa,n,p

)
1ap

=

K∑
k=1

γkKT
k,pW−1

k 1f
∗,p
k

+

N∑
n=1

γa,nKT
a,n,pW−1

a,n1f
a∗,p
n , (12)

where the two groups of the terms on left and right parts of
the equation represent the contributions of the set of K mea-
sured characteristics f k(a) and the set of N a priori f a

n(a)

characteristics, and the Lagrangian parameters are defined as
follows:

γk =
ε2
k=1

ε2
k

and γa,n =
ε2
n=1
ε2
a,n

. (13)

As discussed by Dubovik (2004) and Dubovik et al.
(2021), the multiterm approach is a simple rearranging of
the base LSM formulation, while the resulting Eq. (7) pro-
vides a solid basis for unifying many known formulas of the
constrained inversion in a single formalism and is practical,
convenient and efficient for developing remote sensing algo-
rithms using diverse complementary observations and a pri-
ori constraints.

While the multiterm LSM concept allows flexible utiliza-
tions of nearly arbitrary a priori constraints, the GRASP al-
gorithm is fully adapted for using the most popular and phys-
ically transparent a priori constraints, such as direct a priori
estimates of unknowns a and smoothness constraints in situ-
ations when the unknown vector a or any group of unknowns
included in this vector represent continuous smooth function.
For example, if vector a represents an aerosol size distribu-
tion that is known to be rather smooth, the system given by
Eq. (1) can be explicitly written as follows:

f ∗k=1 = f ∗k=1(a)+1f ∗k=1

f
a,∗
n=1 = f

a,∗
n=1(a)+1f

a,∗
n=1

f
a,∗
n=2 = f

a,∗
n=2(a)+1f

a,∗
n=2 =



f ∗1 = f ∗k=1(a)+1f ∗1

f
a,∗
1 = f

a,∗
1 (a)+1f

a,∗
1

f
a,∗
2 = f

a,∗
2 (a)+1f

a,∗
2

=



f ∗1 = f ∗k=1(a)+1f ∗1

a∗ = a+1a∗

0∗ =Ga
m+1g∗ . (14)

The a priori constraints defined by the second line a∗ =

a+1a∗ represent the most common constraints of the so-
lution by direct a priori estimates of unknowns a∗, where
1a∗ are the uncertainties in the estimates a∗ and are gen-
erally considered to be unbiased random errors within the
covariance matrix Ca∗ . These constraints can be easily in-
cluded in Eq. (12) by defining the Ka = 1 unity matrix,
i.e. KT

a W−1
a Ka =W−1

a and KT
a W−1

a f
a,∗
1 =W−1

a a. The uti-
lization of a priori estimates a∗ was introduced in the pio-
neering studies by Twomey (1963) and later evolved and dis-
cussed in detail in the Rodgers (2000) textbook on inversion.
The third line represents another common type of a priori
constraint known as the smoothness constraints that limit the
variability in retrieved functions by using a priori knowledge
about limitations on derivatives of those functions. For ex-
ample, a priori knowledge limits high-frequency variations
in continuous functions v(x), such as the aerosol size distri-
bution. In GRASP, the smoothness constraints are related to
a priori known limited values of the derivatives, i.e. with their
mth derivative deviations from zero, as follows:

∂mv(x)

∂xm
≈ 0. (15)

For the vector of unknowns a = (a1,a2, ·,an)T that contain
discrete elements describing the continuous function v(x),
the knowledge on the smoothness of function v(x) can be de-
fined using a vector–matrix linear system (e.g. see Dubovik
et al., 2021). 0∗ =Ga

m+1g∗ , where Gm is the Jacobean ma-
trix of the matrix of themth derivatives Ga

m. In practice, these
are often approximated by matrices of the mth finite differ-
ence estimated in point a. The errors 1g∗ reflect the uncer-
tainty in the knowledge of the deviations of y(x) from the as-
sumed constant (m= 1), straight line (m= 2), parabola (m=
3) and so on. Under the assumption that the 1g∗ have a nor-
mal distribution, with mean zero and covariance matrix Cg ,
these constraints can be easily included in Eq. 12 by defining
Ka,2 =Gm and f

a,∗
2 = 0∗, i.e. KT

a W−1
a Ka =GT

mW−1
1gGT

m

and KT
2 W−1

2 1f
a,∗
2 =GT

mW−1
1g(a

p
−0∗)=GT

mW−1
1ga

p. Uti-
lization of such smoothness constraints was suggested by one
of the first formulations of constrained inversion by Phillips
(1962) and was also considered in an article by Tikhonov
(1963) and his later studies.

Thus, for a case where only direct a priori estimates and
smoothness constraints are used, Eq. (12) can be explicitly
written via weighting matrices as follows:(

KTW−1
f K+ γaW−1

a + γg�m

)
1ap

=KTW−1
f 1f p + γaW−1

a (ap − a∗)+ γg�map, (16)

where �m denotes the smoothness matrix. This is defined as
follows:

GT
mW−1

1gGT
m =�m, (17)

and the explicit formulation of �m can be found in the
paper by Dubovik et al. (2011). Equation (14) generalizes
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the commonly used base equations of constrained inversion
by Phillips (1962), Twomey (1975, 1977), Tikhonov (1963)
and Rodgers (1976, 1990, 2000). It should be noted that
Eq. (14) is written for the simplest situation, when the vec-
tor a represents only one continuous function v(x), while, in
many GRASP applications, the vector of unknowns includes
several components aT = (aTsd,a

T
n(λ),a

T
k(λ),a

T
h , . . .)

T , where
each component is relevant to continuous functions repre-
senting such physical characteristics as the aerosol particle
size distribution (asd), spectral dependence of real (an(λ))
and complex (ak(λ)) parts of refractive index, vertical dis-
tribution (ah), etc. Each of those characteristics is continu-
ous function and therefore, in retrieval, the smoothness con-
straints can be applied on each of corresponding component
of the vector of unknowns. Evidently, direct a priori con-
straints can be applied to each single element of the vector a,
while, from a practical viewpoint, separating and outlining
the contribution of a priori estimates for each component,
e.g. (a∗)T = ((a∗sd)

T , (a∗n(λ))
T , (a∗k(λ))

T , (a∗h)
T , . . .)T . Simi-

larly, the inverted measurements may come from different
sources and therefore have different levels of accuracy and
different weighting matrices. As a result, in practice, all the
first, second and third terms in Eq. (14) may have many quite
different components, and therefore, the actual formulation
of the solution can be significantly more complex. Some of
the explicit equations can be found in the paper by Dubovik
et al. (2011).

The realization of the inversion in GRASP, in principle, is
based on the general Eq. (7), while for convenience there is a
logical separation, as indicated in Eq. (12), into actual mea-
surements and a priori constraints. For each measurement
data set f ∗k , two types of errors can be set, i.e. the relative
or absolute, and the magnitude of the errors is defined by
the standard deviation and a weighting matrix Wi . The stan-
dard deviation is used inside the code to calculate the corre-
sponding Lagrange parameters γi . The weighting matrix Wi

is assumed as being the unity matrix by default, while it can
also be set as diagonal, with different values at the diagonal,
and in a more general way with non-zero non-diagonal val-
ues too. For applying the a priori constraints, as discussed
above, there are two main possibilities, namely using direct a
priori constraints or applying smoothness constraints for the
parameters that define continuous functions.

The direct a priori estimates a∗i for each of value ai in
the vector of unknowns a = (a1,a2, . . .,an)T can be provided
with the corresponding Lagrangian parameters γai . There is
also a possibility of assuming a vector a∗ of a priori esti-
mates for all the retrieved parameters or for selected groups
(e.g. parameters describing size distribution) with the com-
mon Lagrangian parameter γa. In this case, the weighting
matrix Wa is also provided that is assumed to be the unity
matrix by default, or it can be set as diagonal, with different
values at the diagonal, or in more general way with non-zero
non-diagonal values.

The smoothness a priori constraints can be applied for
each group of parameters describing a continuous function
(e.g. aTsd,a

T
n(λ),a

T
k(λ),a

T
h , . . .) by defining the order m of lim-

ited derivatives (m= 0 is a constant; m= 1 is a straight line;
m= 2 is a parabola, etc.), and the strength of the applied a
priori smoothness constraints is defined by Lagrangian pa-
rameters γn. The smoothness matrix �m is defined as in
Eq. (15), where the weighting matrix W1g is the unity matrix
by default and can be set as diagonal with different values on
the diagonal in case the retrieved continuous function has a
different level of variability for different ordinates.

It should be noted that GRASP considers two types of a
priori constraints, namely the single-pixel a priori constraints
for the retrieved parameters that correspond to simultaneous
and co-located observations, and the multipixel constraints
that limit the variability for unknowns in different groups of
similar parameters when several such groups of unknowns
are retrieved simultaneously from coordinated but not fully
coincident or not fully co-located observations (see details in
Dubovik et al., 2011, 2021). In the current paper, only single-
pixel constraints are used.

2.2 Nonlinear inversion in GRASP using the
Levenberg–Marquardt optimization

Since most of atmospheric remote sensing applications are
strongly nonlinear, the Levenberg–Marquardt optimization
(Press et al., 1992; Ortega and Rheinboldt, 1970) is realized
to optimize the convergence of GRASP solutions. Specifi-
cally, as described by Dubovik et al. (2021), in GRASP it is
assumed that the correction of the solution at the pth itera-
tion1ap should be limited, especially at the initial iterations
when the linearization error is the largest. For such cases, in
GRASP, for the determination of 1ap in the iterative proce-
dure, an additional constraint on the correction1ap is added
at each iteration, as follows:

1ap,∗ = 0∗+1a. (18)

Correspondingly, using this additional requirement, an ad-
ditional term will be introduced in Eq. (7), as follows:(

K∑
k=1

γkKT
k (Wk)

−1Kk +Dp1a

)
1ap

=

K∑
k=1

γkKT
k (Wk)

−11f
p
k , (19)

where the matrix D1a is a diagonal matrix. This has the fol-
lowing elements:

D1a ii = γ1ai =
ε2

1

ε2
1ai

. (20)

The variance ε1ai can be determined, for example, assum-
ing that whole known range of each parameter ai variability
should be covered by 3ε1ai , i.e. ai,max− ai,min ≈ 3ε1ai .
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Also, following the common Levenberg–Marquardt pro-
cedure, the impact of the correction 1ap is always scaled by
a factor tp in Eq. (4), as follows:

ap+1
= ap − tp1ap , (21)

where tp is in the range 0< tp ≤ 1. It is selected empirically
to provide convergence, by decreasing tp = tp/2, until the
decrease in the residual 9 ′(ap)≤9 ′(ap−1) is achieved (see
Dubovik et al., 2011).

Thus, in the case of nonlinear f k(a) and/or f a
i (a), the in-

version in GRASP includes Levenberg–Marquardt-like op-
timizations and is implemented in the frame of Eqs. (4)
and (5). While this optimization certainly helps to achieve a
successful convergence of the solution in practice, it should
also be considered to be one of possible sources of uncer-
tainties, as pointed out by Dubovik et al. (2021), and will be
discussed below.

2.3 Error propagation estimates in GRASP

Estimations of the retrieval errors in GRASP are based on
LSM equations expressed for the case of multiterm solutions
written via weighting matrixes (Dubovik et al., 2021). Both
the contribution of random and systematic error components
are estimated as follows:

Câ = C1â(ran) + (âbias)(âbias)
T , (22)

where, in the following,

C1â(ran) =<1â(ran)1âT(ran) >

≈

(
K∑
k=1

γkKT
k W−1

k Kk

)−1

ε̂2
1 (23)

âbias =

(
K∑
k=1

γk

(
KT
k W−1

k Kk

))−1

(
K∑
k=1

γk

(
KT
k W−1

k b∗k

))
, (24)

where b∗k denotes the bias vector in the kth data set f k , and
ε̂2

1 is estimated from the resulting misfit of the data using
Eq. (9).

The estimation of not only the random retrieval error but
also the error retrieval bias abias is important for the ad-
equate evaluation of retrieval uncertainty, especially in the
case when multiple a priori constraints are used. For exam-
ple, for the case of the retrieval given by Eq. (14), C1âran is
expressed as follows:

C1âran ≈

(
KTW−1K+ γaW−1

a + γg�m

)−1
ε̂2

1. (25)

A rather obvious tendency can be seen from the analysis
of this equation because the higher the contributions of the

second and the third terms, the smaller the random errors
are, i.e. the stronger a priori constraints used, the lower the
random errors will be in the retrieval. However, in practice,
a priori constraints can be unintentionally inadequate and
therefore introduce some systematic uncertainties, i.e. bi-
ases. In principle, there is no guaranteed approach for detect-
ing those biases unless a comprehensive analysis and vali-
dation of the retrievals have been done. Nonetheless, some
biases can manifest themselves via misfit of measurements
1f bias

k = f k(a
solution)−f ∗k or the misfit of a priori con-

straints. For example, for Eq. (14), the bias can be introduced
by a priori estimate a∗bias = asolution

−a∗ or unsmoothed fea-
tures in the retrieved solution, i.e. asmooth

bias =�masolution
6= 0.

Correspondingly, the bias for single-pixel retrieval is esti-
mated as follows:

âbias ≈
(

KTW−1K+ γaW−1
a + γg�m

)−1

(
KT W−11f bias

+ γaW−1
a a∗bias+ γg�masmooth

bias

)
. (26)

In this equation, the contribution of a priori estimates to
bias is probably the most significant in many applications,
since it is never possible to have fully accurate a priori val-
ues (widely used in optimum estimation approaches) for con-
straining. In a similar way, the a priori biases are estimated
in the case when multipixel a priori constraints are used.

The Levenberg–Marquardt optimization of the conver-
gence, discussed in Sect. 2.2, may also introduce bias. In-
deed, this optimization makes the iterations converge from a
given initial guess to fit the data, even if the basic linear sys-
tem is singular. Therefore, once the Levenberg–Marquardt
optimization is used, there is an evident dependence on the
initial guess that can bias the solution. In order to take this
into account, Eqs. (23) and (24) are modified as follows:

C1âran ≈

(
K∑
k=1

γkKT
k W−1

K Kk +Dp1a

)−1

ε̂2
1, (27)

and

âbias =

(
K∑
k=1

γkKT
k W−1

K Kk +Dp1a

)−1

(
K∑
k=1

γkKT
k W−1

K b∗k +Dp1a(a
solution

− ap=0)

)
. (28)

Note that, from fundamental viewpoint, the a priori in-
formation is used in order to make solution unique, and if
it is fully and adequately added, no dependence on the ini-
tial guess should be observed. At the same time, in prac-
tice, such a dependence often appears to some extent, espe-
cially in cases when the state vector includes a large number
of unknowns. Moreover, if the retrieval is not optimally set,
such a dependence can be rather significant, while unnoticed,
because the retrieval continues to converge to local minima
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once the Levenberg–Marquardt optimization of the retrieval
convergence is used. Therefore, in order to account for such
an effect, the Levenberg–Marquardt contribution was added
into the formalism for accounting possible biases. According
to our evaluation, this term is nearly negligible if there is no
dependence on the initial guess, while it increases if such a
dependence appears.

Equations (27 and 28) allow one to obtain the error es-
timates for the retrieved parameters. That is, for example,
when the configuration is from sun photometer and lidar
measurements, then the expected retrieved parameters are
dV/dln(r), and the real and imaginary part of refractive in-
dex, sphericity fraction and aerosol volume concentration are
vertically distributed.

Also, in practice, the users may not directly need the re-
trieved parameters â but rather their functions m(â) that
can be calculated from the retrieved parameters. For exam-
ple, GRASP retrieves the parameters of aerosol microphysics
(particle sizes, refractive indices, etc.), but users need aerosol
optical depth (AOD). For such a situation, GRASP provides
a set of such diverse indirect characteristics with the possi-
bilities of providing the uncertainties that are calculated as
follows:

C1m̂ ≈M
(

C1âran + âbiasâ
T
bias

)
MT

=MC1âran MT
+Mâbias(Mâbias)

T (29)

= C1m̂ran + m̂biasm̂T
bias,

where M− is the is the matrix of first derivatives Mji =

∂mj
∂ai

∣∣∣
asolution

.
Finally, the effect of biases in the measurements on the so-

lution bias âbias is accounted for in Eq. (26), based on the
assumption that the presence of biases is manifested in the
non-zero misfits 1f bias

k . Indeed, this is true in many cases
when systematic errors are present in the inverted measure-
ments or the accurate fit of inverted data cannot be achieved
(e.g. see the illustrations provided by numerical sensitivity
tests for AERONET retrievals by Dubovik et al., 2000). At
the same time, there are many situations in which the biases
in the measurements may not significantly affect the residual
(Eq. 9) and the misfits 1f bias

k . For example, the retrievals
of aerosol single scattering albedo (SSA) from AERONET
ground-based measurements are highly sensitive to the cali-
bration biases in the direct sun measurements, while the fit-
ting of these direct measurements is always quite accurate
(see the discussion by Dubovik et al., 2000). The effects of
such measurement biases can be estimated by implementing
proxy numerical tests applied to the measurements perturbed
by possible biases. For example, the recent approach for eval-
uation retrieval errors in AERONET operational products is
estimated using a series of ∼ 27 numerical proxy inversion
tests with the sets of perturbations in both the input measure-
ments and auxiliary input parameters (Sinyuk et al., 2020). A
similar strategy can be used for the evaluation of the poten-

tial effects of undetected biases. Specifically, the bias term
(âbias)(âbias)

T in Eq. (22) can be estimated as follows:

(âbias)(âbias)
T
→

〈
(âbias)(âbias)

T
〉
bias proxy set

, (30)

where the values of the retrieval biases are estimated as being
an average effect from a preselected set of possible biases in
measurements and auxiliary inputs. Therefore, if we assume
a positive and negative bias in the equation for the systematic
component, then the contribution to Eq. (26) can be written
as follows:

âbias ≈
(

KT W−1K+ γaW−1
a + γg�m

)−1

(
KT W−1bf bias + γaW−1

a a∗bias+ γg�masmooth
bias

)
, (31)

where the vectors bf bias represent the new bias related to the
measurement.

In addition, in this work we also study the structure of the
covariance matrix for different aerosols and configurations.
Apparently, such a matrix provides interesting information
about the error estimates (focusing on the diagonal elements)
and the relation between the retrieval parameters (from the
covariance values, i.e. non-diagonal elements). The represen-
tation of the covariance matrix for the parameters has the fol-
lowing structure:

Cov(a)=


σ 2

1 σ1σ2ρ12 σ1σ3ρ13 · · ·

σ2σ1ρ21 σ 2
2 σ2σ3ρ23 · · ·

σ3σ1ρ31 σ3σ2ρ32 σ 2
3 · · ·

...
...

...
. . .

 , (32)

where, in the diagonal, one finds the variance of each ele-
ment, and the non-diagonal elements represent the covari-
ance of each retrieved element ai with the others. The vari-
ances, i.e. diagonal elements, are always used for estimat-
ing retrieval errors and providing the error bars. The non-
diagonal elements are rarely considered, while they provide
the very interesting and less-than-obvious information about
error correlations.

In order to study the error correlation structure of the er-
ror, the following correlation matrix will be considered in
this work that can be obtained from the covariance matrix
(Eq. 32), as follows:

Corr(a)=


1 ρ12 ρ13 · · ·

ρ21 1 ρ23 · · ·

ρ31 ρ32 1 · · ·

...
...

...
. . .

 , (33)

where each diagonal element corresponds to the correlation
with itself which is equal to 1, and the non-diagonal elements
are the correlations related to each parameter that can vary
between −1 and 1.
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3 Methodology of error analysis

The calculation of retrieval estimates in GRASP is based
on rigorous formulations of statistical estimations described
above. At the same time, a practical evaluation of the devel-
oped error formalism and possible tuning is desirable for a
comprehensive evaluation of the approach and gaining full
confidence in the practical efficiency of the approach. In this
regard, one can probably state that the error estimate always
tends to be less accurate than the retrievals themselves. In-
deed, in remote sensing, the retrieval relies on the formalism
of the electromagnetic light interaction theory that is funda-
mentally very accurate and well established, while the factors
contributing to the uncertainties can be very diverse, not fully
formalized and often not even fully understood. For example,
the forward model is nonlinear, while the error propagations
are usually (and in this work specifically) estimated in linear
approximations, as commented previously, and the retrieval
can be affected by not fully predicted biases in the measure-
ments or by impercipient of aerosols or surface models (in
our applications). Therefore, an important part of establish-
ing error estimates is their evaluation and validation.

As mentioned above, in this study, we attempt to evaluate
the GRASP estimations based on an extensive series of the
numerical tests with added random noise that covers a wide
range of practical situations. Moreover, we complement this
study, assuming different biases, in order to see how the error
estimates are represented in the cases with both random noise
and bias. This section describes the design of the numerical
experiment, including the following:

– the instruments and retrieval scenarios used,

– the description of the overall experiment,

– the assumed atmospheric properties and covered dis-
tinct specific situations of interest, and

– the assumptions made for generated random errors,
the considered retrieved parameter, the considered error
characteristics and so on.

As mentioned earlier, this study evaluates the GRASP er-
ror estimates produced for the aerosol properties retrieved
from ground-based observations. The details of the used ob-
servations and considered aerosol retrieval scenarios are pro-
vided in the next sections.

3.1 Observations and aerosol retrieval approaches
considered

The analysis is focused on two widely known, and probably
the most popular, retrieval scenarios used for deriving de-
tailed aerosol optical properties.

i. Retrieval of columnar properties of aerosol from the
measurements by ground-based sun/sky-scanning ra-
diometers alone.

ii. Simultaneous retrieval of both columnar aerosol prop-
erties and their vertical distribution from the combined
observations by sun/sky-scanning radiometers and mul-
tiwavelength lidar.

3.1.1 Aerosol retrieval from sun/sky radiometers alone

All the tests and analyses in this study include the spectral
observations by the ground-based sun/sky-scanning radiome-
ters. These radiometers were used for more than 30 years
by the worldwide AERONET project (https://aeronet.gsfc.
nasa.gov, last access: 17 August 2022; Holben et al., 1998)
that unities a federation of a large number of ground-based
remote sensing aerosol international networks. At present,
AERONET observations are widely recognized as being a
benchmark validation data set for satellite aerosol retrieval
and as source of some unique information about detailed
aerosol properties that are used in diverse studies on moni-
toring and predicting regional and global pollution evolution
and climate change. The standard set of AERONET obser-
vations includes spectral direct sun measurements and spec-
tral measurements of angular sky radiance obtained from sky
scans by the radiometer. The direct sun observations provide,
with rather straightforward processing, spectral aerosol op-
tical depth (AOD) that is itself highly valuable for satellite
product validation and diverse aerosol studies (e.g. Eck et
al., 1999). The combination of spectral AOD and sky radi-
ances at four wavelengths, 440, 675, 870 and 1020 nm (see
Table 1), are used for the retrieval of detailed aerosol size
distributions (the aerosol concentration in 22 logarithmically
equidistant-sized bins in the range from 0.05 to 15 µm) to-
gether with spectral dependence complex index of refrac-
tion (Dubovik and King, 2000). The retrieval also provides
aerosol absorption characterized by single scattering albedo
(SSA), the parameters of fine- and coarse-mode size distribu-
tion and other diverse detailed properties of columnar aerosol
(e.g. see Dubovik et al., 2002b). In addition, based on the
concept developed by Dubovik et al. (2002a); Dubovik et
al. (2006), AERONET retrieval considers aerosol as being a
mixture of two components, spherical and nonspherical, and
provides a fraction of spherical particles as an additional pa-
rameter. The nonspherical fraction is modelled as a mixture
of randomly oriented spheroids using fixed-axis ratio distri-
bution, equal to the one retrieved by Dubovik et al. (2006),
by inverting the full-phase matrices of the K-feldspar dust
sample measured in the laboratory by Volten et al. (2001).
A rather complete description of this retrieval concept is also
provided in the paper by Dubovik et al. (2011). The set of the
aerosol parameters retrieved in the AERONET standard op-
erational processing is shown in Table 1, where the number
of the retrieved parameters is 31 (22 size bins, with four val-
ues for the real refractive index (RRI) and imaginary refrac-
tive index (IRI) at each wavelength and one value related to
the sphericity fraction). In addition, the parameters obtained
for the case of mixed aerosol properties are also shown, in
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which the properties for each mode, fine and coarse, are re-
trieved. For this last case, the number of the retrieved pa-
rameters is 43 (25 size bins, four values for RRI and IRI for
each mode, i.e. fine and coarse, and the sphericity fraction).
The AERONET operational retrievals were mainly provided
for solar almucantar geometry, while the AERONET has re-
cently also provide retrievals for more complex hybrid ob-
servational geometries (Sinyuk et al., 2020). These studies
are focused on retrievals in the solar almucantar only, while
the GRASP algorithm provides the error calculations for any
geometry. Thus, in this study, the direct sun measurements
and sky radiances at four different wavelengths, 440, 675,
870 and 1020 nm, for both are used in the inversion tests.
These sky radiances measurements are measured in the solar
almucantar (fixed-view zenith angle equal to the solar zenith
angle, SZA) with a varying azimuth angle ranging from±3.5
to ±180◦ (Table 1).

The detailed aerosol properties in the total atmospheric
column provided by the AERONET inversion of sun/sky-
scanning radiometers has been widely recognized as being
rather unique, reliable data. For example, AERONET re-
trievals provided the first reliable data about aerosol spectral
absorption and other detailed aerosol optical characteristics
(e.g. see Dubovik et al., 2002b; Giles et al., 2012, and oth-
ers). These detailed data are of vital importance for evaluat-
ing the impact of aerosol on such important aspects as a cli-
mate change and diverse pollution effects and can be reliable
as they are estimated nearly uniquely from remote sensing
observations (Kaufman et al., 2002). Therefore, this retrieved
aerosol information has been proven to be very useful for the
assessment of climate change dynamics in the Intergovern-
mental Panel on Climate Change (IPCC) reports (Boucher et
al., 2013; IPCC, 2021) and other high-profile analyses.

As mentioned in earlier sections, the evaluations of the ac-
curacy of retrieved aerosol parameters mainly relied on ex-
tensive sensitivity studies by Dubovik et al. (2000). The re-
sults were used for providing quality assurance criteria and
expected accuracy estimation (see Dubovik et al., 2002b;
Holben et al., 2006). Sinyuk et al. (2020) recently pre-
sented the approach to estimate retrieval uncertainties used
in AERONET version 3 data. The approach estimates the er-
ror using the variability in retrieved parameters generated by
27 perturbations in both input measurements and auxiliary
input parameters. In comparison with these previous efforts,
this study evaluates the dynamic error estimates generated
by the GRASP approach for each retrieval based on the mea-
surement error propagation and bias estimations. This study
estimates the complete covariance matrices of retrieval er-
rors. In addition, the analysis of retrieval errors and their cor-
relations conducted here also aims at demonstrating the value
of the obtained estimates for understanding the retrieval error
tendencies and optimizing the retrieval approaches.

3.1.2 Aerosol retrieval from a combination of sun/sky
radiometers and lidar data

The inversion of co-located observations by sun/sky ra-
diometers and lidar is another popular retrieval approach in
the aerosol community. Indeed, radiometer direct sun and
multiangular polarimetric observations of diffuse Sun radi-
ation transmitted through the atmosphere have a significant
sensitivity to the atmospheric aerosol amount, its particles
size, shape and morphology; however, they have practically
no sensitivity to the vertical variability in aerosols. The li-
dar observations, on the other hand, provide the information
about the vertical distribution of aerosol, while their sensi-
tivity to other aerosol properties is more limited compared
to radiometer observations. Therefore, the information from
co-located photometric measurements and lidar systems is
complementary and always desirable for the enhanced char-
acterization of aerosol properties. This complementarity is
well recognized by the research community, and a large num-
ber of joint observational sites with both radiometer and li-
dar observations have been established in last decade. In
these regards, the European ACTRIS (Aerosols, Clouds and
Trace gases Research Infrastructure Network) infrastructure
(https://www.actris.eu, last access: 12 August 2022) is one
of the good examples of networks emphasizing the acquisi-
tion of diverse complementary observations at each site. All
ACTRIS observational supersites possess both sun/sky radio-
metric and complex multiwavelength lidar systems.

GRASP retrieval has been successfully adapted by Lopatin
et al. (2013) for processing such combined observations in an
algorithm initially known as Generalized Aerosol Retrieval
from Radiometer and Lidar Combined data (GARRLiC).
This algorithm has been used in numerous studies (e.g.
Granados-Muñoz et al., 2014; Granados-Muñoz et al., 2016;
Tsekeri et al., 2017; Benavent-Oltra et al., 2017, 2019, 2021,
and others) and was also adapted for the operational process-
ing of lidar/radiometer observations in the frame of ACTRIS
infrastructure. Later, the capabilities of GARRLiC/GRASP
were significantly extended by Lopatin et al. (2021) for pro-
cessing diverse, vertically resolved observations alone in a
diverse combination with radiometric observations.

In these studies, we consider the aerosol retrieval from
the base GARRLiC/GRASP input data set that includes
AERONET sun/sky-scanning observations in the solar almu-
cantar at four wavelengths and the lidar backscattering atten-
uation profile at three wavelengths at 355, 532 and 1064 nm
(see Table 1). Thus, for the synergy of sun/sky radiometers
and lidar measurements, we considered the same sun/sky
radiometer input data combined with the correlative range-
corrected signal (RCS) values at 355, 532 and 1064 nm. The
lidar signal provided in GRASP as input data is normalized
at 60 log-spaced bins at different heights, as in Lopatin et al.
(2013, 2021), giving minimum and maximum heights. It is
because all lidars provide observations within a certain dis-
tance range, which varies from instrument to instrument, and
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Table 1. Summary of general input data and the set of parameters retrieved by the GRASP algorithm used in this work for two configurations,
i.e. sun/sky radiometer only and sun/sky radiometer plus lidar.

Sun/sky radiometer only Sun/sky radiometer plus lidar

Input Input
– AOD∗ – Sun/sky radiometer data
– Calibrated radiances∗ – AOD∗

– Calibrated radiances∗

– Lidar data
– Range-corrected profiles (RCS∗∗) normalized at 60 log-spaced bins

∗ At 440, 675, 870 and 1020 nm at different heights
∗∗ At 355, 532 and 1064 nm

Retrieved aerosol properties in the total Retrieved aerosol properties (column integrated and
atmospheric column∗∗ vertical distributions∗∗)
– dV (ri)/dlnri – dV (ri)/dlnri (in total atmospheric column)
– Csph – Csph (in total atmospheric column)
– n(λi) – n(λi) (in total atmospheric column)
– k(λi) – k(λi) (in total atmospheric column)

– CV(h) (vertical distribution)
Retrievals provided for total, fine and coarse modes. Retrievals provided for total, fine and coarse modes.

∗ Azimuth angles, for sky radiances in the almucantar geometry, relative to the Sun (in ◦): 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0,
35.0, 40.0, 45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0, 140.0, 160.0 and 180.
∗∗ Number of retrieved parameters is different for the different situations, and it is specifically described for each case in the text.

it is limited by emitter/receiver field of view overlap in the
lower part and by the signal-to-noise ratio in the upper part.
The GRASP inversion of these data derives, in addition to
columnar aerosol properties provided from radiometer only
inversion, the vertical profile of aerosol concentration. More-
over, the aerosol can be considered to be an external mixture
of two aerosol components (fine and coarse). In such a case,
all retrieved parameters are provided for both aerosol modes,
as shown in the Table 1, where the number of the retrieved
parameters in this case is 174 (120 values of the aerosol ver-
tical concentration for fine and coarse modes, 25 size bins,
seven values of RRI and IRI at each wavelength and for each
mode, fine and coarse, and the sphericity fraction).

3.2 Analysis of the structure of different error
parameters

As was already mentioned, GRASP has a capability to pro-
vide the full covariance matrix of the retrieval errors, and this
study aimed to evaluate and illustrate the efficiency of these
estimated covariance matrices. At the same time, retrieval er-
ror evaluations in most of the practical applications rely on
the consideration of mainly diagonal elements of the covari-
ance matrices, while non-diagonal elements of covariance
matrices are much less common. Indeed, in spite of the fact
that non-diagonal elements of covariance matrices provide
valuable and interesting information about retrieval error cor-
relations, these non-diagonal elements are not often available
in practice, and the analysis of error correlations requires
more sophisticated considerations compared to straightfor-
ward analysis diagonal elements only, and therefore, it is less

popular. Considering these aspects, in the present study, as a
first step, we make a more detailed and extensive analysis of
the error variances, and then, as a second step, we illustrate
the usefulness of obtained non-diagonal elements.

The performance of the GRASP error variances estimated,
provided by Eqs. (25)–(27), is studied using a series of nu-
merical tests. Figure 1 illustrates the general scheme of the
organization of these tests.

First, as showed in Fig. 1, the parameters aassumed for the
assumed detailed aerosol properties (dV (ri)/dlnri , n(λi),
k(λi), Csph and CV(h) in the case of lidar) are used to obtain
the synthetic observations using the GRASP forward model.
These synthetic observations include the spectral AOD, sky
radiances and range-corrected signals (RCSs) of lidar. These
data are used then in the inversion tests where the aerosol
parameters and their errors are estimated from these syn-
thetic observations using the GRASP algorithm. In order to
study the effects of the different uncertainties, both random
and systematic errors are added to the synthetic measure-
ments before the inversion, and then the retrieved parame-
ters âretr are compared with aassumed (see Fig. 1). Therefore,
from the retrieved parameters, the retrieval errors provided
by the GRASP algorithm and actual retrieval errors can be
compared. Thus, these actual errors are calculated compar-
ing aassumed and âretr as follows:
1âabs = âretr− aassumed

1ârel =
1âabs

aassumed
· 100%,

(34)
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Figure 1. General scheme for the validation of the error estimates.

where âretr is the retrieved parameter by the GRASP algo-
rithm, and aassumed is the parameter assumed in the input
data for the generation of the synthetic observation. Equa-
tion (34) is used for each retrieved parameter, including the
size distribution value at each size bin, the values of complex
refractive index at each wavelength, the values of aerosol ver-
tical profile at each altitude and the values of spherical par-
ticle fraction. We also implemented the evaluations of the
errors for aerosol SSA and other parameters that are not part
of the directly retrieved parameter while it is a function of
the retrieved parameters, and it is estimated based on âretr.
Thus, the retrieval error variances estimated by GRASP can
be compared with the calculated actual retrieval errors. It
should be noted here that we have always verified that the
errors in the retrieval realized by GRASP from the error-free
synthetic data (i.e. with no error specifically added) are neg-
ligibly small.

The GRASP-generated variances of the retrieval errors are
evaluated in the presence of random errors and analysed us-
ing a series on the numerical tests conducted for a statisti-
cally representative set of random error realizations. These
results are then summarized for the whole series of the tests
by figures and tables. The tests with added systematic errors
are discussed for most of the separate systematic error types,
while some overall summaries are also provided.

As was mentioned before, in addition to the standard devi-
ation, the non-diagonal elements of covariance matrices pro-
vide additional important insight about the retrieval quality.
This additional information mainly relates to non-zero corre-
lation coefficients. Therefore, in order to illustrate the corre-

lation structure, in this work we also analysed the correlation
matrix that contains the covariance matrix elements normal-
ized by the respective variances, as shown by Eq. (33). Our
studies are not attempting to evaluate correlation matrices
provided by the GRASP algorithm, since this would require
the efforts exceeding the scope of this paper. Instead, we try
to provide several demonstrations of how the structure of the
correlation matrix may help to understand several interesting
observations in the existing retrieval experience.

3.3 Aerosols models and realizations used in the tests

The synthetic tests were performed for several preselected
realizations of aerosol in the atmosphere. These realizations
were selected based on extensive experience with aerosol re-
trieval from sun/sky radiometer data and their combination
with co-located lidar data. It is expected that the selected
aerosol realization scenarios are representative of the major-
ity of distinct actual observations of atmospheric aerosols.

Two main observational scenarios are considered for dif-
ferent total aerosol optical depth at 440 nm.

i. Single aerosol, such as biomass burning (BB), urban
and dust for different aerosol loads τ(440)= 0.3, 0.6
and 0.9.

ii. The mixture of dust with BB and with urban (BB–
Dust and Urban–Dust) is given. For each mixture, we
have selected nine different scenarios that correspond
to three different aerosol loads, τ(440)= 0.2, 0.5 and
1.0, where the different cases of the partition between
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the fine and coarse mode were as follows: τf/τc = 4.0,
τf/τc = 1, and τf/τc = 0.25.

The single-aerosol and aerosol mixture observational sce-
narios are used in the generation of synthetic tests with
sun/sky-photometer-only observations. By considering both
a single-aerosol and two aerosol types, in this work we eval-
uated how the accuracy of the retrieved data evolves once a
larger number of parameters are derived from the same in-
formation content. In contrast, the retrieval based on the syn-
ergy between lidar and sun/sky photometers aimed for the re-
trieval of the properties of two fine- and coarse-mode aerosol
components; therefore, the numerical tests for this type of the
retrieval rely on the mixed aerosol observation scenario. At
the same time, the error estimation is also checked in the case
when the joint radiometer and lidar observations of single
aerosol are analysed. The aerosol properties description used
for the synthetic cases can be founded in Table 1 of Torres
et al. (2017). They were modelled using the climatology of
aerosol retrievals from AERONET observations described by
Dubovik et al. (2002a). The dynamic climatological model
from Mongu (Zambia) was used for BB aerosol, the model
from the Goddard Space Flight Center (GSFC, Maryland,
USA) for urban aerosol and the model from the Solar Vil-
lage (Riyadh, Saudi Arabia) for dust aerosol. The real re-
fractive index (RRI) and imaginary refractive index (IRI) for
λ= 355, 532 and 1064 nm (lidar measurements) were ob-
tained by the extrapolation of the values from Dubovik et al.
(2002a), as was suggested by Torres et al. (2017). All sce-
narios were simulated assuming a solar zenith angle (SZA)
equal to 75◦.

The retrieval settings were used similar to those that con-
ventionally used in the retrieval of aerosol from AERONET
sun/sky radiometer observations by Dubovik and King
(2000) and from combined observations by sun/sky radiome-
ter observations and lidar by Lopatin et al. (2013, 2021).
Specifically, in the retrievals from sun/sky-radiometer-only
observations, the size distribution (SD) was simulated us-
ing 22 logarithmically equidistant size bins between 0.05
and 15 µm. In the retrieval of the aerosol mixture from com-
bined observations by sun/sky radiometers, the size distri-
bution is modelled using 10 logarithmically equidistant bins
between 0.05 and 0.58 µm for the fine mode and 15 loga-
rithmically equidistant bins between 0.33 and 15 µm for the
coarse mode. A similar approach was employed in the re-
trieval from sun/sky-radiometer-only observations when bi-
component aerosol model was retrieved.

As mentioned above, in the case of the joint processing of
AERONET radiometer and lidar data, we considered the ap-
proach developed earlier by Lopatin et al. (2013). In frame of
this approach, the aerosol is modelled as an external mixture
of two components. These components are characterized by
height-independent microphysical properties, including the
size distribution (represented by several size bins) and spec-
trally dependent complex refractive index. Moreover, each

component is described by the detailed vertical profile of
the volume concentration. Therefore, the retrieval provides
height-independent columnar properties of each component
(size distribution and complex refractive index) and two pro-
files of fine- and coarse-mode volume concentrations. It is
expected that this model is sufficient to adequately describe
both radiometric and lidar observations.

4 Test results

Several tests were realized to evaluate the error estimates re-
liability and usefulness in the presence of both random and
systematic uncertainties for aerosol retrievals from the obser-
vations of sun/sky radiometers alone and in combination with
lidar. In this section, the results for the following two scenar-
ios are presented: (i) a simpler case when only one type of
aerosol is present and (ii) a more complex case in which two
distinct types of aerosol are present at the same time. More-
over, we estimates the correlation matrices for both scenarios
and illustrate their usefulness for understanding retrieval er-
ror tendencies, thus optimizing the retrieval approach.

4.1 Random error analysis

In a series of these tests of all inverted the synthetic measure-
ments, we added random noise with a standard deviation of
ε1τ (λ)= 0.01 for AOD, ε1I

I
(λ)= 5 % for radiances in order

to model realistic uncertainties in AERONET observations
(Holben et al., 1998; Eck et al., 1999; Dubovik et al., 2000;
Sinyuk et al., 2020), ε355 = 0.2, ε532 = 0.15 and ε1064 = 0.1
for lidar attenuation measurements that vary with the alti-
tude, as explained by Lopatin et al. (2013, 2021).

4.1.1 Retrieval of the single-aerosol component from
radiometer measurements

This section describes the evaluation of the error estimates,
assuming the presence of only one type of aerosol, i.e. BB,
urban or dust. As mentioned before, the retrieval aerosol
properties under the assumption of the presence of a single-
aerosol type composed of homogeneous particles is a well-
established approach for deriving detailed aerosol proper-
ties from ground-based observations by a sun/sky radiome-
ter that is adapted by the operational AERONET retrievals
by Dubovik and King (2000). The detailed error analysis
of AERONET inversion aerosol product was provided by
Dubovik et al. (2000), Torres et al. (2017) and by the recent
study of Sinyuk et al. (2020) that described the uncertainty
approach adapted in for AERONET version 3 retrieval prod-
ucts.

Figures 2–4 illustrate the error variances estimated by
GRASP for all retrieved aerosol parameters in the selected
synthetic tests for the observation of BB, urban and dust with
different aerosol loads, i.e. τ(440)= 0.3, 0.6 and 0.9. The
displayed error bars for the standard deviation are calculated
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from the diagonal elements of the covariance matrix (Eq. 32).
Some tendencies can be seen from these illustrations. For ex-
ample, the errors in the SD in the extremes (for the largest
and smallest particles) are the biggest. This is an expected
tendency, since these particles typically have a lower contri-
bution to the measured signal (radiances and aerosol optical
depths) compared to the particles of intermediate radius.

The retrievals improve and the errors decrease when the
aerosol load increases, specially for IRI and SSA (absorption
information). For BB and urban, the SSA error increases with
the wavelength. On the other hand, SSA error decreases with
the wavelength for dust. This is an expected behaviour, since
the scattering efficiency is more pronounced at short wave-
lengths for small particles, while it is somewhat increasing
with wavelength for large particles. Furthermore, as shown
in Fig. 2a, the observed underestimation in the SD fine mode
seems to be related to an overestimation in RRI.

To evaluate the error estimates in the presence of random
noise, a set of the simulations for 300 different realizations of
noise modelled using a random number generator has been
analysed in this work. The results of such numerical tests
conducted with a statistically representative set of random
errors are summarized and illustrated, using box plots of the
errors, as demonstrated in Fig. 5 for SSA(675) values. In the
upper part of the figure, the box represents 50 % of the data,
with the whiskers representing 5th and 95th percentiles of the
data, the solid line in the box plot representing the median,
and the points are the mean values.

Figure 6 shows the distributions of the error estimates pro-
vided by GRASP (in red) and the calculated errors (in blue)
for the cases when τ(440)= 0.6 and the following conver-
gence criteria are satisfied: 1τ ≤ 0.01 % and 1I/I ≤ 5 %.
It can be seen that, overall, the error estimates provided by
GRASP capture the actual error tendencies, with some over-
estimation of their values, quite well. Thus, the retrieved er-
rors can be considered to be the upper estimates of actual
errors. This observed general overestimation can be, at least
partially, explained by the fact that the error estimates by
Eqs. (23) and (24) rely on a linear approximation. In this
respect, it is known from practice that the nonlinear effects
often lead to some saturation, while that cannot be captured
by linear estimates. Some interesting tendencies can be ap-
preciated in the obtained illustrations. For example, errors in
SSA increase with the wavelength for BB and urban and de-
crease for dust.

On the other hand, the RRI errors seem to be similar at the
different wavelengths. This is likely related to the fact that,
spectrally, RRI retrievals rely on rather strong smoothness
constraints on spectral variability in RRI (e.g. Dubovik and
King, 2000). In contrast to the RRI, a large variability in the
calculated errors is observed in the distribution of the errors
for the IRI. Indeed, in order to capture the possible real spec-
tral variability in IRI as being that of dust (e.g. see Dubovik
et al., 2002a), the IRI is retrieved under milder smoothness
constraints on the spectral variability (see Dubovik and King,

2000). Some of the aforementioned and other tendencies in
the retrieval errors will be further discussed and evaluated in
Sect. 4.3.1, which deals with error correlation matrices.

Table 2 summarizes the evaluation of the error estimates
represented in the box plots. It provides the mean values
for each parameter (RRI, IRI and SSA) at different wave-
lengths. These values correspond to the situation with a solar
zenith angle equal to 75◦. The obtained estimates compare
reasonably with the corresponding values provided by in Ta-
ble 4 in the paper by Dubovik et al. (2006). Specifically, the
RRI error at 440 nm provided by GRASP for BB is 0.079
(0.04), where the values in parenthesis are from Dubovik et
al. (2000), and for urban it is 0.056. The IRI error at 440 nm
is 24 % (30 %) for BB, 54.1 % for urban and 24.4 % (50 %)
for dust. The values of the SSA errors are 0.028 (0.03) for
BB, 0.013 for urban and 0.014 (0.03) for dust. At the same
time, the RRI error at 440 nm provided by GRASP for dust
is 0.201 (0.04) and is quite different, although Dubovik et al.
(2000) considered only spherical particles. Moreover, the er-
ror estimates for SSA are consistent with the U27 estimates
provided by Sinyuk et al. (2020). For example, at 440 nm
for AOD= 0.6, the corresponding value for GSFC is 0.017,
while GRASP provides values of 0.013; for Mongu, it is
0.023, while GRASP provides the error as 0.028.

4.1.2 Retrieval of mixed aerosol properties from
measurements of a radiometer only

As already mentioned, most conventional aerosol retrievals
from ground-based radiometer measurements (e.g. Dubovik
and King, 2000; Nakajima et al., 2020) assume that aerosol is
represented by homogeneous polydisperse particles with the
size-independent refractive index. At the same time, this con-
dition is not always correct in reality. Moreover, it is likely
somewhat incorrect in the majority of the cases. Dubovik et
al. (2000) showed that in some cases the retrieval assum-
ing homogeneous particles would provide an effective index
of refraction that allows the reproduction of the scattering
properties of mixed aerosol rather adequately. Nonetheless,
the assumption of homogeneous particles is often questioned
and revisited (Xu et al., 2015); therefore, considerations of
aerosol inhomogeneity are also included in the present study.
In this regard, while the retrieval of the multicomponent
aerosol is not a part of the standard AERONET inversion,
the GRASP algorithm allows the retrieval of several aerosol
components from diverse remote sensing observations, in-
cluding the case of aerosol retrieval from radiometer mea-
surements only.

At the same time, since the retrieval of multicomponent
aerosol from radiometers only is not often used and not em-
ployed for operational retrievals, the tests in this section are
limited to several illustrations only, and no statistical eval-
uation is performed. The illustrations are produced for the
observations of a mixture of Urban–Dust and BB–Dust (see
Sect. 3.3) for three cases of total τ(440)= 0.2, 0.5 and 1.0.
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Figure 2. Aerosol properties retrieved from simulated sun photometer data, with random noise added for BB aerosols for τ(440)= 0.3,
0.6 and 0.9 (left to right). The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved
parameters. The shaded areas indicate error estimated by GRASP algorithm.

Figure 3. Aerosol properties retrieved from simulated sun photometer data, with random noise added for urban aerosol for τ(440)= 0.3,
0.6 and 0.9 (left to right). The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved
parameters. The shaded areas indicate error estimated by GRASP algorithm.
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Figure 4. Aerosol properties retrieved from simulated sun photometer data, with random noise added for dust aerosol for τ(440)= 0.3,
0.6 and 0.9 (left to right). The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved
parameters. The shaded areas indicate error estimated by GRASP algorithm.

Table 2. Errors provided by GRASP for the RRI, IRI and SSA are represented by the mean values of each box plot for their respective
wavelength. Absolute errors are given for RRI and SSA and relative errors for IRI. Mean values of actual errors are provided in parenthesis.

BB Urban Dust

RRI IRI (%) SSA RRI IRI (%) SSA RRI IRI (%) SSA

440 0.079 24.0 0.028 0.056 54.1 0.013 0.201 24.4 0.014
(0.014) (6.66) (0.005) (0.016) (17.6) (0.004) (0.03) (11.52) (0.006)

675 0.082 10.9 0.033 0.053 33.3 0.014 0.17 24.2 0.008
(0.018) (7.8) (0.005) (0.015) (19.8) (0.005) (0.013) (11.36) (0.004)

870 0.084 11.29 0.042 0.051 31.55 0.017 0.17 28.2 0.008
(0.019) (11.61) (0.009) (0.015) (28.57) (0.009) (0.011) (14.3) (0.003)

1020 0.081 13.17 0.043 0.052 35.1 0.021 0.167 30.4 0.007
(0.017) (13.52) (0.014) (0.015) (27.3) (0.011) (0.011) (11.7) (0.002)

In particular, we illustrate the case for τ(440)= 1.0, with
τf = 0.8 and τc = 0.2, τf = τc = 0.5 and τf = 0.2, and τc =

0.8, anticipating more potential for the adequate retrieval of
multicomponent aerosol since the effect of AOD errors de-
creases for higher AOD. The analysis is focused on the pos-
sibilities of the differentiation between the properties of fine-
and coarse-mode aerosol parameters such as complex refrac-
tive indices, size distributions, single scattering albedo.

Figures 7 and 8 illustrate the results of bicomponent re-
trievals and their error estimates from observations of the
sun/sky radiometers of mixed aerosol. In the same figures, we
also show a magnified plot for the effective RRI and IRI and
the total SSA with their errors. Several retrieval tendencies
are evident from the figures. For example, in the presence of
one mode dominating in optical thickness, the retrievals and
error estimates of the dominating component are more accu-
rate. For example, in Fig. 7c for τf = 0.2 and τc = 0.8, the re-
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Figure 5. Comparison of the variance SSA(675) values estimated
by the GRASP algorithm with actual errors obtained for extensive
tests with randomly added modelled errors. In the upper panel, the
box represents 50 % of the data, with the whiskers representing 5th
and 95th percentiles of the data, and the solid line in the box plot
representing the median value.

trievals of the coarse-mode properties are more accurate. An
opposite behaviour can be seen in Fig. 7a for τf = 0.8 and
τc = 0.2, when the predominance is in the fine mode. The
clear trend can be observed in spectral dynamic of the error
values for SSA because the error increases with the wave-
lengths in the fine mode and decreases for the coarse mode.

The most obvious difficulties in the separation of modes
are evident when the properties of each mode are not very
different. For example, such a situation can be seen for IRI
of the Urban–Dust mixture (Fig. 7) and for RRI of the BB–
Dust mixture (Fig. 8). In such situations, the error variances
of each parameter are large and likely correlated (more de-
tails are provided in the discussion of covariance matrices).
However, it is very important to note that, while the discrim-
ination of some parameters of each component separately is
not evident, most of the total and effective properties (mag-
nified plots) can be estimated rather accurately.

It should be noticed that the retrieval of the multicompo-
nent aerosol from radiometric observations was added here
to illustrate error transformation tendencies that are not ev-
ident. Indeed, the retrieval of multicomponent aerosol from
the AERONET observation is very uncertain, as was shown,
for example, by Dubovik et al. (2000). At the same time,
some sensitivity to the presence of multicomponent aerosols
exists, and the attempts of multicomponent retrievals dis-
tinguishing the two components are often encouraged by
the aerosol community, especially for favourable situations
when two aerosol components have comparable influence on
AERONET measurements (the situation used in our tests).
At the same time, such cases are very suitable for demon-
strating that, if constraints are not sufficient, the errors can

be unacceptably high and strongly correlated. At the same
time, one can see that when some estimates are highly uncer-
tain and strongly correlated, they still can be used for accu-
rate estimation of their functions. For example, we showed
that a property such as the total SSA of mixed aerosol can
be rather accurately obtained from the retrieved SSA of fine
and coarse modes. In the next section, we will also illus-
trate the improvements in multicomponent retrieval and er-
ror reduction when extra information is included, such as li-
dar measurements. In addition, the retrieval of the multicom-
ponent aerosol used often becomes robust when co-located
AERONET data are inverted together with data from co-
located lidar (Lopatin et al., 2013, 2021).

4.1.3 Retrieval of mixed aerosol properties from the
measurements of radiometers in combination
with lidar

The GRASP aerosol retrieval from combined sun/sky ra-
diometers and lidar observations were always designed for
the retrieval of bicomponent aerosol (Lopatin et al., 2013),
and the approach is employed for operational processing in
the frame of ACTRIS activities. Therefore, the evaluation of
the random error effect in the aerosol retrieval from radiome-
ter and lidar observations of aerosol mixtures includes both
the analysis of the selected illustrations and the statistically
representative series of numerical tests with random errors.
The considered synthetic data include synthetic observations
produced for the same examples of aerosol mixtures (Urban–
Dust and BB–Dust) as used in Sect. 4.1.2.

Figures 9 to 12 illustrate the retrievals and their error
estimates obtained for aerosol properties of both fine- and
coarse-mode aerosols. The good agreement of the actual
retrieved parameters (solid lines) with the assumed values
(dashed lines) can be seen for all cases. From a comparison
of Figs. 7–8 with Figs. 9–10, it is easy to see that the retrieval
error estimate is lower when lidar data are also used. The im-
provements (compared to the results from radiometer only
retrievals) are especially evident in the separation of the re-
trieved aerosols properties, especially when the contribution
of the aerosol load is lower (this will be shown in Sect. 4.2
when bias is also assumed). At the same time, the total prop-
erties are accurately estimated in both retrieval scenarios.

Figure 11 shows the lidar ratio of the fine mode, coarse
mode and total aerosol for the three aforementioned cases.
In general, good agreements of retrieved and assumed values
are obtained, especially for the total lidar ratio (LR). How-
ever, there are some discrepancies at short wavelengths for
fine-mode lidar ratios.

Figure 12 illustrates the retrieval of aerosol vertical profile
for each case. The agreement between the retrieved and as-
sumed values of the vertical profiles is good, mainly for the
coarse mode at the altitudes where it has maximum values
and dominates. At the altitudes where there is a superposi-
tion of aerosol layers with a comparable presence of both
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Figure 6. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from sun/sky-
photometer-simulated measurements (a case with τ(440)= 0.6). The distributions were obtained using 300 realizations of added random
errors. The median values of the errors are shown with a line in the box plot, along with the 25th–75th percentiles indicated by a box and the
5th–95th percentiles indicated using whiskers. The mean values are represented by the black dot. The red colour shows the error estimates
provided by GRASP, and the blue shows the calculated actual errors (Eq. 34).

aerosols, the retrieval struggles to discriminate the contribu-
tion of both modes, and a clear overestimation of the fine
mode (and, consequently, an underestimation of the coarse
mode) can be seen.

In order to evaluate the error estimates in the presence of
random errors, a set of simulations, adding 300 realization of
random noise values, is analysed. Figures 13 to 19 show the
comparisons of all retrieved aerosol parameters separately
for fine and coarse aerosol modes. In addition, the retrieval of
total SSA and LR are shown. The case for total τ(440)= 1.0
is shown more extensively, as in the previous section, due to
the interest in the retrieval of the situation with higher aerosol
loads. The main result that can be gained from illustrations
is that the GRASP error estimates are typically higher than
actual errors; this same result was obtained for the retrieval
of only sun/sky radiometer data.

Figures 13 and 14 illustrate the comparisons of distribu-
tions of the GRASP error estimates and actual errors for RRI

and IRI of fine and coarse aerosol modes for situations when
mixtures of Urban–Dust and BB–Dust are observed. It can
be seen that the accuracy of the refractive index retrievals for
each mode depends strongly on the contribution of the mode
to the signal, as was observed by Lopatin et al. (2013). For
example, if we analyse the performance of the fine mode,
the higher the contribution of the fine optical thickness, the
better the accuracy in the retrievals of fine-mode aerosol pa-
rameters.

Figures 15 and 16 show the situation for the error distribu-
tion for SSA of fine mode, coarse mode and total. Similar to
that observed in earlier tests for the retrieval of fine-mode pa-
rameters, the errors increase with the wavelength, while for
the retrieval of the coarse-mode parameters, the errors de-
crease with the wavelengths. Also, the results show that the
errors in the total SSA are rather small, even if the SSA of
fine and coarse modes are quite high.
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Figure 7. Aerosol properties retrieved from simulated sun photometer data with random noise added for a mixture of Urban–Dust aerosols.
The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The shaded areas
indicate the error estimated by the GRASP algorithm. The magnified plots represent the effective refractive index and total SSA.

Figure 8. Aerosol properties retrieved from simulated sun photometer data with random noise added for a mixture of BB–Dust aerosols. The
solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The shaded areas
indicate the error estimated by the GRASP algorithm. The magnified plots represent the effective refractive index and total SSA.
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Figure 9. Aerosol properties retrieved from simulated sun photometer and lidar data with random noise added for a mixture of Urban–Dust
aerosols. The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The
shaded areas indicate the error estimated by the GRASP algorithm. The magnified plots represent the effective refractive index and total
SSA.

The error evaluation for LR is represented in Figs. 17
and 18. In most of the cases, we see good agreements be-
tween the error estimations and actual error. The only excep-
tion is the errors in the LR of the fine mode at short wave-
lengths, where the actual errors are higher than the errors
provided by GRASP. This tendency seems to be anticorre-
lated with the results found for the coarse-mode LR error es-
timates, where the GRASP error estimates are notably higher
than the actual values.

The results illustrated by the figures are summarized in Ta-
bles 3 to 5. These tables show the mean values of the GRASP
error estimates for the cases when the total τ(440)= 1.0 and
τf = τc = 0.5, i.e. when there is no predominance of either
one of the modes. The values are provided for the aerosol
parameter considered at different wavelengths, both for the
simulation of Urban–Dust and BB–Dust observations calcu-
lated for a case of the SZA= 75◦.

For retrieval errors in fine mode in the case of urban
aerosol parameters, the mean values for RRI are around
0.05, and the values do not present much variability with the
wavelength. For the retrieval of IRI, the mean values of the
GRASP retrieval errors are at the level of around 73 %, show-
ing a pronounced underestimation with respect to the actual
error at short wavelengths. With respect to SSA errors pro-
vided by GRASP, a clear tendency is observed because the
error increases with the wavelengths from 0.024 to 0.061.

Finally, the mean values of LR errors provided by GRASP
decrease with the wavelength between 15 % and 10 %, with
notable underestimations with respect to the actual errors at
short wavelengths. In the case of the retrieval of fine-mode
BB parameters, the mean values for RRI errors provided by
GRASP are around 0.05. Some underestimations with re-
spect to the actual errors are observed at short wavelengths.
The mean values for IRI errors are around 60 %, and the
errors for SSA show a clear tendency to increase with the
wavelengths between 0.04 to 0.09. Mean values of LR errors
provided by GRASP decrease with the wavelength between
18 % and 14 %.

The mean values of the error estimates provided by
GRASP for dust present a good agreement in the case of both
mixtures. In general, the mean values for RRI error estimates
vary between 0.07 and 0.09, and they do not present much
variability with the wavelength, while smaller values of er-
rors are seen for the Urban–Dust mixture case. The mean val-
ues of IRI error estimates are around 50 %, while for the BB–
Dust mixture, we observe some underestimations of the ac-
tual errors by GRASP calculations. The errors in SSA show a
clear tendency that decreases with the wavelengths between
0.04 and 0.009. The mean values for the LR retrievals in-
crease with the wavelength from 37 % to 60 %, with bigger
errors observed for the BB–Dust mixture.
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Figure 10. Aerosol properties retrieved from simulated sun photometer and lidar data with random noise added for a mixture of BB–Dust
aerosols. The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The
shaded areas indicate the error estimated by the GRASP algorithm. The magnified plots represent the effective refractive index and total
SSA.

Once again, it is important to note that the errors in the
parameters characterizing the total aerosol are generally ac-
curately estimated. For both cases of Urban–Dust and BB–
Dust mixtures, the mean values of the total SSA error esti-
mates vary between 0.02 and 0.009, and the mean values of
the total LR error estimates range from 23 % to 55 %.

Figure 19 shows the relative errors in AVP retrievals for
fine and coarse aerosol modes for the Urban–Dust and BB–
Dust aerosols mixture. The errors estimated by GRASP are a
bit higher that the errors obtained by the simulations of ran-
dom errors; correspondingly, the GRASP errors can be safely
used as the upper estimates of actual retrieval uncertainties.
Table 5 summarizes the evaluation of the errors estimates for
all the scenarios discussed above. The GRASP estimates of
the retrieval errors for both mixtures are between 50 %–70 %
for the fine mode and 50 %–57 % for the coarse mode.

Finally, a lower sensitivity to the retrieval of fine-mode
properties can be observed as a clear tendency in the evalua-
tion of the retrieval errors for the cases when mixed aerosols
are analysed. In particular, quite high errors were obtained
for the complex refractive index. Then, these errors conse-
quently propagate to the errors in other optical properties,
such as the SSA of fine mode, as was found in the earlier
study by Lopatin et al. (2013).

4.2 Analysis of the retrieval in presence of the
systematic uncertainties

In Sect. 4.1, the evaluation and validation of the errors in
the different aerosol properties, considering propagation of
the random noise from measurements into retrieval, was pre-
sented. The analysis confirmed the rather satisfactory perfor-
mance of the approach adapted in GRASP for the estimation
of retrieval errors in the presence of random noise. This sec-
tion discusses the approach for estimating the possible contri-
butions of the systematic errors in the retrieval uncertainties.
In principle, each retrieval methodology assumes that there
are no systematic uncertainties in the measurements or in the
forward model used. If any systematic bias is identified, it
is corrected in the measurements or in their interpretation.
However, in practice, the systematic uncertainties may re-
main unidentified and make a significant contribution to the
retrieval uncertainties.

As mentioned above, in Eq. (24), the apparent misfit was
used as an indicator of bias; however, in real situations, not
all biases can be seen from the misfit. Thus, in this section,
the results are presented considering a possible solution to
this problem. Therefore, the contribution of potential bias is
commonly included in the estimation of the retrieval errors
(e.g. see Dubovik et al., 2000; Sinyuk et al., 2020). Using
similar logic, an extra term was added in the present method-
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Figure 11. The aerosol lidar ratio (LR) retrieved from simulated sun photometer and lidar data with random noise added for a mixture Urban–
Dust aerosols (above) and BB–Dust (below). The solid lines indicate the simulated properties (SD, RRI, IRI and SSA), and the dashed lines
are the retrieved parameters. The shaded areas indicate the error estimated by the GRASP algorithm. The magnified plots represent the results
for total LR retrievals.

ology, Eq. (31), and then that accounts for the propagation
of possible bias from the measurements. The propagation ac-
counted for the linear approximation in similar manner to the
systematic term in Eq. (28) that accounts for bias from mis-
fit. Thus, this section analyses the potential effect of realistic
biases and their overall importance for reliable estimations of
the retrieval errors in practice.

The potential effect of the systematic errors is analysed in
series of numerical tests with possible assumed systematic
errors. Following previous studies by Dubovik et al. (2000);
Torres et al. (2017); Sinyuk et al. (2020) in ground-based
photometric and radiometric data, we consider two types of
potential main biases in measured AOD and sky radiances.
These biases could originate from the miscalibration of direct
sun or diffuse sky sensors (Eck et al., 1999). The biases are
assumed to be wavelength independent, and since spectral
systematic deviations are easier to identify in a direct analy-
sis of the observation, they are likely to be manifested in the
misfit and may compensate for each other’s influence on the
retrievals. Specifically, two possible levels of biases, nominal
and maximum, are considered to be as follows:

i. In AOD, there is a nominal bias of±0.01 and maximum
bias of ±0.02.

ii. In radiances, there is a nominal bias of ±3 % and maxi-
mum bias of ±5 %.

To evaluate the effects of biases, the above values were
added to the synthetic direct measurements of AOD and
sky radiance by an AERONET-like ground-based radiome-
ter. These data were inverted by the GRASP code, and the
retrieved values of aerosol parameters were compared to the
values assumed in the synthetic simulation as a truth. In addi-
tion, the deviations in the retrieved values from the true ones
are compared to the errors estimates generated by GRASP
based on Eq. (31) using the known values of the added biases.
In a similar manner, the influence of the potential system-
atic errors in aerosol retrieval from the combined observa-
tions of a ground-based radiometer and lidar was analysed. In
these tests, the biases in the lidar attenuation measurements
were assumed for each wavelength following the studies by
Lopatin et al. (2013, 2021), with ε355 =±0.2, ε532 =±0.15
and ε1064 =±0.1. It should be noted that the conducted syn-
thetic tests not only allow the verification of the accuracy of
the systematic error estimates by GRASP but also allow us
to analyse the effects of biases on the retrievals for different
retrieval scenarios in diverse situations.
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Figure 12. The aerosol vertical profiles (AVPs) retrieved from simulated sun photometer and lidar data with random noise added for a mixture
of Urban–Dust aerosols (a, b, c) and BB–Dust (d, e, f). The solid lines indicate the simulated properties (AVP), and the dashed lines are the
retrieved parameters. The shaded areas indicate the error estimated by the GRASP algorithm.

4.2.1 Effects of measurement bias in the retrieval of
single-aerosol components from radiometer
measurements

In this section, the study is focused on the analysis of the ef-
fects of the biases and on estimating contribution of system-
atic errors in the retrievals of aerosol from ground-based ob-
servations by a radiometer. In a similar manner to the analysis
of random errors, we first considered the observations domi-
nated by two types of aerosols, i.e. BB and dust. The effect of
measurement biases is expected to be manifested in the situ-
ations with low and moderate aerosol loading; therefore, the
analysis is focused on the scenarios with AOD(440)= 0.1,
0.3 and 0.6.

The following two situations were considered:

i. when a single bias in AOD or radiances is present, and

ii. when the biases can be present in both AOD and ra-
diances simultaneously. In this case, the different com-
binations of positive and negative biases in AOD and
radiances are considered.

The estimations of the errors introduced by the biases were
calculated as follows:

σ 2
bias = σ

2
lm+ σ

2
misfit+

1
N

N∑
k=1

σ 2
k , (35)

where σ 2
lm corresponds to contributions from systematic er-

rors introduced by the Levenberg–Marquardt procedure, and
σ 2

misfit are the errors manifested by the misfit estimated by
Eq. (28), and each σ 2

k is the contribution adding + bias and
− bias in the measurements.

Figures 20 to 23 illustrate the results of the analysis for the
different retrieved properties for the situation with a bias of
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Figure 13. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of Urban–Dust aerosol. The distributions were obtained using 300 realizations
of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles indicated
by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour shows the
error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

±0.01 and ±0.02 in AOD only. These results show the spe-
cific effects from AOD bias. The figures have two blocks; on
the left are the retrievals with added positive bias in AOD,
and on the right, retrievals with negative bias are illustrated.
In both cases, the error bars represent the systematic com-

ponent adding the positive or negative bias, respectively. In
all the figures, the solid lines show the assumed value of the
parameters in the simulation, the dotted lines show the re-
trieved values, and the magnitudes of the estimated bias are
shown by the shaded areas. It should be noted that, for the
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Figure 14. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of BB–Dust aerosol. The distributions were obtained using 300 realizations
of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles indicated
by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour shows the
error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

case of BB with AOD(440)= 0.1, the results with negative
bias are not shown. This is because the AOD for BB de-
creases very strongly with the wavelength, and for the case
of AOD(440)= 0.1, the AOD at 1020 nm is ∼ 0.01.

The figures show different and clear tendencies, which are
in agreement with general expectations, and with the tenden-

cies already observed in previous studies by Dubovik et al.
(2000) and Torres et al. (2014). For example, it can be seen
that bias in AOD most strongly affects the estimate of the
parameters characterizing the aerosol absorption, such as the
imaginary part of the refractive index and single scattering
absorption. This is an anticorrelation, where the positive bias
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Figure 15. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of Urban–Dust aerosol. The distributions were obtained using 300 realizations
of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles indicated
by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour shows the
error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

results in the overestimation of absorption (higher RRI and
lower SSA) and the negative in the underestimation of ab-
sorption (lower RRI and higher SSA), respectively. The re-
sult was expected, since radiance values in this first expe-
rience do not vary. Thus, if we keep the scattering compo-
nent (which is derived from radiances) but we enlarge the ex-
tinction component (by enlarging the AOD) necessary, then
the retrieval understands that the absorption should be larger
(imaginary part of the refractive index). Conversely, if we re-
duce the value of extinction, then the retrieval would reduce
the value of absorption. Also, the strongest effect is observed
for optically thin situations when a small absolute error in the
optical thickness becomes comparable with the magnitude of
aerosol optical thickness. This is especially clear for BB ob-
servations, where AOD(1020) is always rather small as also
discussed earlier by Dubovik et al. (2000). For the observa-

tions of dust aerosol, the effect of biases in AOD are signifi-
cantly smaller than for BB. It can be explained since dust has
a small value of the Ångström exponent and therefore larger
values of AOD at longer wavelengths. For the retrieval of the
size distribution, the bias in AOD has a rather minor effect,
though we found a general overestimation for positive bias
values and an underestimation for negative values.

Overall, the estimated systematic error agrees well with
the actual manifestations of the bias in the retrieval. The
quantitative estimations are also quite convincing and shown
in Figs. 20 and 22 for biases of ±0.01. In some cases, some
underestimations of the bias effects can be observed. For ex-
ample, the largest differences are identified for the case of the
higher value of bias (±0.02), as shown in Figs. 21 and 23,
while a significant increase in the systematic component of
the retrieved error is also well captured by the error estimates.
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Figure 16. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of BB–Dust aerosols. The distributions were obtained using 300 realizations
of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles indicated
by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour shows the
error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

It can be seen that, among all considered aerosol param-
eters, the main differences between the bias effects and the
obtained error estimates are observed for the real part of the
refractive index (RRI). In these cases, the bias is not fully
covered by the systematic component of the retrieved error
results. Similarly, an apparent underestimation of the RRI er-
rors was also seen by Sinyuk et al. (2020), who attributed
these underestimations to different factors such as, for exam-
ple, the effect of not accounting for the pointing bias. In the
present simulations, there is no pointing bias considered, and
the discrepancy is likely coming from the fact that Eqs. (24)
and (31) rely on the derivatives estimated in the vicinity of
the solution and based on linear approximation. Indeed, the
dependence of both AOD and radiances scattered by aerosol
is very complex and nonlinear. Therefore, with both taking
derivatives in the vicinity of obtained solution instead of the

vicinity of the true values and the nonlinear character of AOD
and radiances may explain the differences. At the same time,
it is important to note that, as can be seen from the analy-
sis of the random component of the RRI error (Sect. 4.1),
the random error effect is likely to dominate over the effect
of AOD bias, and therefore, the estimation of the total error
(described below in this section) seems to allow us to make
an objective and complete observation on this parameter.

Figures 24 to 27 show the effects of the biases in the ra-
diances of the two magnitudes of ±3 % and ±5 % for the
observations of BB and dust. In general, it can be seen from
the results that, in both cases of BB and dust, the retrievals
are less affected by bias in the radiances than by the biases
in the AOD, even when the bias in the radiances is ±5 %. A
similar tendency was also reported in the studies by Dubovik
et al. (2000), Torres et al. (2014) and Sinyuk et al. (2020).
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Figure 17. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of Urban–Dust aerosols. The distributions were obtained using 300 real-
izations of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles
indicated by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour
shows the error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

At the same time, it should be noted that the present analysis
is focused on the measurement configuration corresponding
to solar almucantar when the SZA is 75◦ (see Table 1) and
when the measurements include are taken in a wide range
of scattering angles. In this respect, Dubovik et al. (2000)
showed that the effect of the sky radiance bias increases when
the range of observed scattering angles is limited, i.e. in al-
mucantar observation corresponding to a SZA of less than
60◦. Moreover, according to recent tendencies in observa-
tional practices, the use of such measurements is limited, and
most analyses are focused on observational scenarios with a
sufficient range of observed scattering angles. For example,
AERONET start to establish so-called hybrid observational
scenario during high SZA times (Giles et al., 2019). With re-
gard to the performance of the error estimation, the effect of

the bias in the sky radiances seems to be well captured by the
GRASP error estimates.

It should be also noted that we observe an anticorrelation
between the radiance bias and the retrieval of the imaginary
part of the refractive index. This effect is opposite to the one
observed in the case of AOD and with significantly smaller
differences. Thus, when the biases are positive (+3 % and
+5 %), there is a decrease in the imaginary part of the refrac-
tive index. The fact that the value of AOD remains the same
and that there is an increase in the value of the scattering is in-
terpreted by the code as a decrease in the aerosol absorption.
Conversely, the negative bias in the radiances produces an in-
crease in the imaginary part of the refractive index which can
be explained by the same reason.

Figure 28 shows the results of the analysis of the situation
when the systematic biases present in both AOD and radi-
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Figure 18. Comparison of estimated and actual error distributions for spectrally dependent aerosol parameters retrieved from measurements
by simulated sun/sky photometer values and lidar for a mixture of BB–Dust aerosols. The distributions were obtained using 300 realizations
of added random errors. The median values of the errors are shown by a line in the box plot, along with the 25th–75th percentiles indicated
by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are represented by the black dot. The red colour shows the
error estimates provided by GRASP, and the blue colour shows the calculated actual errors (Eq. 34).

ances are simultaneously assumed. The results for BB are on
the left and for dust on the right. The illustrations are shown
for the specific situation with two positive biases, namely
+0.01 in AOD and +5 % in radiances. It should be noted
that the tests were produced for both situations with the bi-
ases of the same and opposite signs. This case with the biases
of the same sign showed the most interesting results with the
strongest manifestation of bias effects, and therefore, they
are presented here. In the situation with biases of opposite
signs, the effects on the retrievals are rather minor due to the
internal compensations of the influences of the biases. Addi-
tionally, the misfit of the observations is more pronounced,
which helps to identify the issues and account for the biases
in the error estimates. Also, the analysis here is focused on
the simultaneous biases of moderate values (±0.01 in AOD
and ±5 % in radiances), since the appearance of simultane-

ous biases of the highest bias values (i.e. ±0.02 in the AOD
and ±5 % in radiancies) lead to very strong effects in the re-
trievals. Those situations can be easily seen and screened out
by quality filters (e.g. by the high value of the misfit). Also,
it is quite unlikely to have such strong systematic errors in
practical observations as those by AERONET.

As can be seen from Fig. 28, the biggest differences and
highest bias values in the retrieval are found for low AOD
(0.1). As seen earlier for this situation, the errors for the RRI
remain notably underestimated. As already mentioned, the
situation is expected to be improved once the effects of both
random and systematic errors are considered.

Figure 29 illustrates such a situation for the retrieval of
BB and dust for the three different aerosol loads (0.1, 0.3
and 0.6) when the total error estimate includes both random
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Table 3. The mean values of RRI, IRI, SSA and LR retrieval errors estimated by GRASP for the synthetic test for a mixture of the Urban–
Dust aerosol mixture. The mean values represent the distributions obtained using 300 realizations of the added random errors for the situation
with total τ(440)= 1.0, with τf = τc = 0.5 and SZA = 75◦. The absolute errors are provided for RRI and SSA and relative errors for IRI
and LR. Mean values for the actual errors are provided in parentheses.

Urban–Dust
355 nm 440 nm 532 nm 675 nm 870 nm 1020 nm 1064 nm

RRIf 0.050 0.049 0.048 0.045 0.045 0.045 0.045
(0.033) (0.030) (0.029) (0.031) (0.036) (0.036) (0.036)

RRIc 0.076 0.073 0.071 0.080 0.085 0.086 0.086
(0.028) (0.028) (0.028) (0.021) (0.017) (0.015) (0.015)

IRIf (%) 73.31 71.18 70.67 70.33 71.34 72.18 72.26
(103.03) (103.4) (94.19) (81.46) (76.62) (76.78) (76.79)

IRIc (%) 50.59 45.00 44.58 45.12 49.01 51.22 51.51
(36.17) (26.45) (22.32) (18.50) (18.23) (17.92) (17.89)

SSAf 0.024 0.026 0.029 0.033 0.045 0.057 0.061
(0.017) (0.019) (0.020) (0.022) (0.027) (0.034) (0.037)

SSAc 0.039 0.031 0.024 0.015 0.011 0.009 0.009
(0.042) (0.025) (0.014) (0.007) (0.004) (0.003) (0.003)

SSAT 0.017 0.015 0.014 0.010 0.008 0.008 0.008
(0.009) (0.004) (0.004) (0.005) (0.004) (0.003) (0.003)

LRf (%) 14.93 12.11 10.41 8.88 8.92 9.79 9.96
(40.45) (29.39) (15.37) (7.58) (8.44) (8.96) (8.63)

LRc (%) 37.04 35.71 35.23 42.39 47.77 48.99 49.32
(17.42) (12.01) (9.48) (11.81) (14.90) (15.17) (14.99)

LRT (%) 23.31 26.46 28.21 35.61 41.45 43.36 43.97
(9.01) (7.48) (6.85) (9.71) (13.3) (13.9) (13.9)

and systematic components as follows:

σtot =

√
σ 2

ran+ σ
2
bias, (36)

where σ 2
bias is calculated as indicated in Eq. (35).

It can be seen that the total error estimates capture the de-
viations for all parameters in the presence of random and sys-
tematic noise. These results confirm that the estimations us-
ing Eq. (31), based on the additional assumptions of potential
presence of bias in the measurements, improve the results of
the error estimated compared to the approach discussed in
Sect. 4.1, when the effects of biased were taken into account
only based on the value of the observation misfit. The ob-
served tendencies in the effects of biases on the retrieval are
consistent with all the results previously described in earlier
studies. The obtained results are expected to be representa-
tive of most practical situations, while some additional tests
and analysis could certainly be useful. Therefore, in the ex-
amples presented below, and for the real cases analysed, the
total error will be used as described in Eq. (36). This means
that the representation of the error will take into account
the contribution of the random and systematic component.
This last component contains the contribution of Levenberg–

Marquardt and the misfit and the measurements in which
the contributions of ± bias added in the measurements are
considered (Eq. 35). These values of the assumed biases in
our applications are consistent with AERONET as mentioned
previously, i.e. ±0.01 in AOD and ±5 % in radiances.

4.2.2 Effects of measurement bias in the retrieval of
mixed aerosol properties from measurements of
radiometers only

The present section tries to understand how the bias is af-
fected when inhomogeneous aerosol are observed. The ex-
ample is not commonly considered in practical application,
e.g. in AERONET operational processing. At the same time,
since GRASP can consider this type of bicomponent inver-
sion that is fundamentally of high interest, we are analysing
this situation in the presence of biases. In Sect. 4.2.1, we have
shown different examples, considering the bias in each mea-
surement separately, and we have also illustrated the com-
plete example with presence of both random errors and bias
in all the measurements. Here we directly illustrate the re-
sults, considering the presence of both random and bias in
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Table 4. The mean values of RRI, IRI, SSA and LR retrieval errors estimated by GRASP for the synthetic test for a mixture of the BB–Dust
aerosol mixture. The mean values represent the distributions obtained using 300 realizations of the added random errors for the situation with
total τ(440)= 1.0, with τf = τc = 0.5 and SZA= 75◦. The absolute errors are provided for RRI and SSA and relative errors for IRI and LR.
Mean values for the actual errors are provided in parentheses.

BB–Dust
355 nm 440 nm 532 nm 675 nm 870 nm 1020 nm 1064 nm

RRIf 0.052 0.050 0.048 0.044 0.045 0.046 0.046
(0.064) (0.067) (0.061) (0.052) (0.046) (0.047) (0.047)

RRIc 0.084 0.083 0.079 0.085 0.089 0.091 0.091
(0.019) (0.019) (0.019) (0.017) (0.016) (0.014) (0.014)

IRIf (%) 60.51 57.61 57.91 58.17 60.33 61.48 61.59
(35.65) (35.40) (37.56) (41.63) (43.74) (44.14) (44.13)

IRIc (%) 48.75 44.57 43.81 43.89 47.43 49.56 49.87
(33.75) (41.39) (48.20) (60.36) (62.61) (55.55) (55.44)

SSAf 0.041 0.044 0.048 0.052 0.067 0.085 0.089
(0.031) (0.031) (0.033) (0.040) (0.050) (0.057) (0.059)

SSAc 0.049 0.040 0.032 0.021 0.015 0.013 0.013
(0.032) (0.031) (0.027) (0.019) (0.013) (0.010) (0.009)

SSAT 0.022 0.016 0.016 0.011 0.010 0.009 0.009
(0.011) (0.004) (0.005) (0.004) (0.003) (0.003) (0.003)

LRf (%) 17.99 15.17 12.53 10.74 11.75 13.48 13.82
(33.43) (16.46) (11.29) (18.05) (21.76) (21.43) (21.30)

LRc (%) 49.38 48.73 47.91 54.82 58.57 59.54 59.76
(17.24) (13.65) (11.60) (15.04) (19.94) (22.16) (22.23)

LRT (%) 30.30 34.11 36.09 44.35 50.82 53.51 54.18
(8.83) (9.03) (10.52) (15.65) (20.38) (22.13) (22.14)

Table 5. The mean values of aerosol vertical profile (AVP) retrieval errors estimated by GRASP for the synthetic test for a mixture of the
Urban–Dust aerosol mixture. The mean values represent the distributions obtained using 300 realizations of the added random errors for the
situation with total τ(440)= 1.0, with τf = τc = 0.5 and SZA = 75◦. The shown relative errors for AVP (1 km) are represented by the mean
values for three layers. Mean values for the actual errors are provided in parentheses.

Up to 1.5 km 1.5–3.5 km Above 3.5 km

Urban–Dust

AVPf (%) 61.91 66.90 59.95
(25.79) (27.73) (22.06)

AVPc (%) 57.25 54.91 56.34
(14.43) (4.11) (23.51)

BB–Dust

AVPf (%) 61.46 68.50 59.17
(25.80) (30.53) (22.28)

AVPc (%) 55.74 53.90 55.30
(14.36) (4.08) (22.91)

all the measurements, since this is complete situation that is
closest to the most practical situation.

Different tests were performed for this study. In partic-
ular, we focus on the case of BB–Dust, since Sect. 4.2.1
has already demonstrated the bias affects when each type of
aerosol is observed separately. The effects of each bias sepa-

rately were analysed, while the corresponding illustrations
are not shown since the results presented similar tenden-
cies to those previously discussed and are observed for each
type of aerosol separately in the last section. Figure 30 illus-
trates the examples of BB–Dust when τ(440)= 1.0, for dif-
ferent aerosol loads (τf = 0.8 and τc = 0.2, τf = τc = 0.5 and
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Figure 19. Comparison of estimated and actual error distributions for AVP retrieved from measurements by simulated sun/sky photometer
values and lidar for a mixture of Urban–Dust aerosols (a, b) and BB–Dust (c, d). The distributions were obtained using 300 realizations of
added random errors. The mean values are represented by the black dot, and the median values of the errors are shown by a line in the box
plot, along with the 25th–75th percentiles indicate by a box, and 5th–95th percentiles are indicated using whiskers. The mean values are
represented by the black dot. The red colour shows the error estimates provided by GRASP, and the blue colour shows the calculated actual
errors (Eq. 34).

τf = 0.2 and τc = 0.8), assuming bias and random noise. The
shaded areas represent the estimated total errors, as shown
in Eq. (36). An important observation is that the error esti-
mates for all retrieved and derived parameters characterize
the actual errors well. As can be gained from the figure, the
retrieval of the properties of the minor component appears
to be the most challenging. As a matter of fact, the biggest
errors in the retrieval are observed for the fine-mode prop-
erties, particularly in the case of τf = 0.2 and τc = 0.8. The
largest discrepancies between estimated errors and the actual
ones are observed in this situation. On the other hand, the
properties of coarse mode are well represented in almost all
cases, showing a good accuracy compared to the properties
of the fine mode, even in the most challenging cases with the
smallest presence of the coarse mode. This can probably be
explained by the fact that desert dust AOD has rather moder-
ate spectral changes.

On the other hand, in this section, some illustrations for the
lidar ratio are also provided in order to demonstrate how the
retrievals and the error estimates are affected by the bias in
the measurements. Figure 30 illustrates the lidar ratios in this
situation of mixed aerosol. The retrieval results and estima-

tion of the LR errors are rather satisfactory, with exceptions
of low AOD cases, mainly in the case where the fine mode
has only a very minor presence (of τf = 0.2 and τc = 0.8).
Also, it should be emphasized that the errors estimated for
total SSA and refractive index (RI) are rather adequate, while
in Sect. 4.1, where only random errors were considered, the
results showed some apparent underestimations.

4.2.3 Effects of measurement bias in the retrieval of
mixed aerosol properties from observations of
radiometers in combination with lidar

This section considers the same example as in Sect. 4.2.2 and
analyses the effects of measurement biases in the synergy re-
trieval using coincident measurements from the sun/sky pho-
tometer and lidar measurements. At the same time, the results
are presented for the most practical situation when both ran-
dom and biased values are present in the measurements and
accounted in the error estimates.

Figure 31 shows the results for the example of BB–Dust
described in the previous section for τ(440)= 1.0 and as-
sumes the presence of both bias and random noise in all the
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Figure 20. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for BB aerosol for
τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.01 are represented in the block on the left and negative
bias −0.01 in the block on the right. The case for τ(440)= 0.1 is not represented on the right side, since the AOD at 1020 nm is ∼ 0.01. The
solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The shaded area indicates
the systematic errors estimated by the GRASP algorithm.

synthetic measurements for AOD, radiometers and lidar. As
can be seen, the results of these different tests illustrate the
positive influence of using radiometer and lidar synergy. The
error estimates seem to be rather accurate too. For example,
the most notable enhancement is in the lidar ratio accuracy,
especially when the fine mode is the smallest, i.e. for the case
with the following: τf = 0.2 and τc = 0.8. This behaviour
was also seen by Lopatin et al. (2013), who explained that
these were expected results, since the lidar ratio has a high
sensitivity to the lidar signal. Nevertheless, we can see some
improvements in the retrieval of complex refractive index us-
ing both lidar and photometer data.

With regard to the accuracy of the error estimation, in
Sect. 4.1, we have illustrated the retrieval of error estimates
for LR and showed some apparent underestimation when
only random errors were considered. Figure 31 illustrates an
important improvement in the estimation of the errors, once
both random noise and bias are considered and Eq. (31) is
used for accounting the effect of the systematic component.

Thus, using the synergy of both instruments can provide
more accurate retrievals of LR, and the error can be estimated
rather accurately using the developed methodology for both
aerosol components, even for an aerosol mode with a lower
presence. Figure 32 illustrates the retrievals of the vertical

aerosol profile in all three cases. The results show similar
tendencies to Sect. 4.1.

4.3 Illustration and description of the correlation
matrices

The values of non-diagonal elements of covariance provide
important and interesting information about the retrieved pa-
rameters. For example, if the values ρii′ 6= 0 are close to ±1,
the similitude of the influences of the parameters ai and ai′
on the inverted measurements f ∗ may explain the large vari-
ances in the retrieval error for these parameters. Also, knowl-
edge about ρii′ 6= 0 is highly useful for the situation when
several parameters from a set of simultaneously retrieved pa-
rameters ai need be jointly used in the applications. This can
be easily seen from Eq. (29). For example, let us consider
the estimates of two parameters, a1 and a2, which have er-
rors, 1a1 and 1a2, characterized by covariance matrix, as
follows:

C1 =

(
σ 2

1 σ1σ2ρ12

σ1σ2ρ12 σ 2
2

)
, (37)

where a is a vector defined as a = (a1,a2)
T . Correspond-

ingly, if in the application one needs to use the characteristic
m that is a liner function of m=K1a1+K2a2, then the vari-
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Figure 21. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for BB aerosol for
τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.02 are represented in the block on the left and negative
bias −0.02 in the block on the right. The case for τ(440)= 0.1 is not represented on the right side, since the AOD at 1020 nm is ∼ 0.01. The
solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The shaded area indicates
the systematic errors estimated by the GRASP algorithm.

Figure 22. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for dust aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.01 are represented in the block on the left and
negative bias −0.01 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are
the retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.
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Figure 23. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD simulated data for dust aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding positive bias +0.02 are represented in the block on the left and negative
bias −0.02 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the
retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.

Figure 24. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for BB aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.03 are represented in the block on the left and
negative bias −0.03 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are
the retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.
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Figure 25. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for BB aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.05 are represented in the block on the left and
negative bias −0.05 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are
the retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.

Figure 26. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for dust aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.03 are represented in the block on the left and
negative bias −0.03 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are
the retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.
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Figure 27. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD-simulated data for dust aerosol
for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding the positive bias +0.05 are represented in the block on the left and
negative bias −0.05 in the block on the right. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are
the retrieved parameters. The shaded area indicates the systematic errors estimated by the GRASP algorithm.

Figure 28. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD- and radiance-simulated data for
BB (left) and dust (right) aerosol for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding positive bias +0.01 in AOD and +5 %
in radiances are represented in both cases. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the
retrieved parameters. The shaded area indicates the systematic error estimated by the GRASP algorithm.
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Figure 29. Aerosol properties retrieved from simulated sun/sky photometer data with assumed bias in AOD- and radiance-simulated data for
BB (left) and dust (right) aerosol for τ(440)= 0.1, 0.3 and 0.6 (left to right). Retrievals after adding positive bias +0.01 in AOD and +5 %
in radiances are represented in both cases. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the
retrieved parameters. The shaded area indicates the systematic error estimated by the GRASP algorithm.

Figure 30. Aerosol properties retrieved from simulated sun/sky photometer data with assumed random noise and bias in AOD- and radiance-
simulated data for BB–Dust for τ(440)= 1.0. Retrievals after adding positive bias +0.01 in AOD and +5 % in radiances are represented
in both cases. The solid lines are the simulated properties (SD, RRI, IRI and SSA), and the dashed lines are the retrieved parameters. The
shaded area indicates the systematic error estimated by the GRASP algorithm.
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Figure 31. Aerosol properties retrieved from simulated sun/sky photometer and lidar data with assumed random noise and bias in AOD-,
radiance- and lidar-simulated data for BB–Dust for τ(440)= 1.0. Retrievals after adding positive bias +0.01 in AOD, +5 % in RAD and
+0.2, +0.15 and +0.1 for each lidar wavelength at 355 nm, 532 nm and 1064 nm, respectively. The solid lines are the simulated properties
(SD, RRI, IRI, SSA and LR), and the dashed lines are the retrieved parameters. The shaded area indicates the total errors estimated by the
GRASP algorithm.

Figure 32. Aerosol properties retrieved from simulated sun/sky photometer and lidar data with assumed random noise and bias in AOD-,
radiance- and lidar-simulated data for BB–Dust for τ(440)= 1.0. Retrievals after adding positive bias +0.01 in AOD, +5 % in RAD and
+0.2, +0.15 and +0.1 for each lidar wavelength at 355 nm, 532 nm and 1064 nm, respectively. The solid lines are the simulated properties
(SD, RRI, IRI, SSA and LR), and the dashed lines are the retrieved parameters. The shaded area indicates the total errors estimated by the
GRASP algorithm.
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ance σ 2
m can be obtained from Eq. (29) as follows:

σ 2
m =KC1aKT

=
(
K1 K2

)( σ 2
1 σ1σ2ρ12

σ1σ2ρ12 σ 2
2

)(
K1
K2

)
=K2

1σ
2
1 +K

2
2σ

2
2 + 2K1K2σ1σ2ρ12. (38)

From this equation, the importance of the correlation co-
efficient ρ12 is quite evident. Specifically, if ρ12 = 0, then the
variance σ 2

m is just a simple sum K2
1σ

2
1 +K

2
2σ

2
2 . Therefore,

the error propagation from1ai to1m is straightforward, and
only the values of the sensitivities K2

i determine the contri-
bution of 1ai (decreasing or increasing) to 1m.

When ρ12 6= 0, the situation is more complex. However,
the estimation of the main tendencies can be simplified in
some cases. For instance, in the following:

if σ 2
1 = σ

2
2 and K1 =K2,

then σ 2
m = 2K2

1σ
2
1 (1+ ρ12), (39)

or

if σ 2
1 = σ

2
2 and K1 =−K2,

then σ 2
m = 2K2

1σ
2
1 (1− ρ12). (40)

From these equations, it can be seen that if the correlation
coefficient ρ12→ 1 or ρ12→ (−1), then, depending on the
case in Eqs. (39) and (40), σ 2

m can be close to zero or up to
4K2

1σ
2
1 . Therefore, knowledge about the non-zero correlation

coefficients ρii′ 6= 0 is very important for understanding how
the error is propagated to derived parameters obtained from
the primary set a.

In practical cases, when the derived parameterm is a func-
tion of a large number parameters ai , the contributions to σ 2

m

increasingly become very complex with the increase in the
number of involved parameters ai . Therefore, unfortunately,
the general qualitative analysis, similar to the one demon-
strated by Eqs. (38)–(40), becomes very difficult and often
practically impossible. Nonetheless, as will be shown below,
the visualization of the correlation matrices in Eq. (33) can
be very useful for an analysis of the retrieval tendencies.

4.3.1 Retrieval of single-aerosol components from
radiometer measurements

Figure 33 shows the correlation matrices of random retrieval
errors for BB (spherical particles) and dust (nonspherical par-
ticles) for a conventional AERONET-like inversion. The first
22 parameters (22× 22) represent the SD. This is followed
by two blocks of 4× 4. These two blocks are related to the
RRI and IRI for four wavelengths (440 to 1020 nm). The last
parameter is the sphericity fraction (1× 1). The colours rep-
resent the values of the correlation coefficients, where the red

colour denotes positive correlations, and the blue colour in-
dicates negative correlations. The density of the colours indi-
cates the values of the correlation coefficients changing from
zero (the white colour) to dense red or blue colours corre-
sponding to values of 1 and −1 accordingly.

The correlation for biomass burning case is shown in
Fig. 33a. As can be seen, in general, size bin retrievals have a
rather moderate correlation between them, though large pos-
itive correlations between the retrieval errors in neighbours
can be observed. This is more evident for size bins at the
smallest and largest particle sizes. This indicates that the size
distribution values for those sizes have a tendency to be over-
estimated or underestimated together, which can mostly be
explained by the use of the typical smoothness constraints
imposed on the size distributions. The errors in RRI and IRI
are negatively correlated with the SD parameters. The cor-
relations seem especially pronounced between RRI and the
values of the size distribution for the fine mode. Correspond-
ingly, the overestimations of the size distribution values may
tend to be accompanied by an underestimation of RRI, and
vice versa. The errors in the fraction of spherical particle
seem to show a positive correlation with the SD retrieval er-
rors. This correlation is more evident when there is a fine-
mode-dominated aerosol, since the scattering of fine-mode
particles has a quite similar shape for spheres and spheroids.
Therefore, when there is fine-mode domination it is more
difficult to differentiate between spheres or spheroids. The
positive sign of the correlation can be explained by the fact
that extinction cross sections for the equivalent radii are a bit
higher for spheroids. Thus, a higher percentage of spheres
can be optically compensated by an increase in the volume
concentration without a big impact in the total residual. The
fraction of the spherical particle shows a negative strong cor-
relation with the errors in the refractive index. Strong positive
correlations can be seen between the spectral values of RRI.
The positive correlations are present but lower between spec-
tral values of IRI. As already noticed, this likely relates to the
use of the rather strong smoothness constraint of the spectral
variability in RRI and a weaker constraint of the spectral vari-
ability in IRI in the retrieval (Dubovik and King, 2000). The
essential positive correlation can also be noticed between er-
rors in RRI and IRI.

Figure 33b shows the correlation matrix for the retrieval
of dust aerosol. The structure of the correlation for SD ex-
hibits some differences compared to the BB case. Specifi-
cally, the positive correlations between the neighbouring size
bins for the smallest and largest particle sizes are even more
pronounced. Also, somewhat stronger negative correlations
can be seen in the intermediate-sized ones. The strong nega-
tive correlation between RRI and SD retrieval errors remains
only between concentrations of very small particles and the
values of RRI at shortest wavelengths. The notable positive
correlation is present only between the spectral values of RRI
at the shortest wavelengths and between the spectral values
of RRI at the longest wavelengths. At the same time, overall,
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Figure 33. Correlation matrices of the estimated errors for aerosol retrieval from sun/sky radiometer observations (a) for biomass burning
aerosols and (b) for desert dust using the GRASP algorithm. The values close to 1 or −1 mean stronger correlations between the properties,
positive or negative, respectively.

the correlation of retrieval errors in both RRI and IRI, be-
tween themselves and with other parameters, decreases com-
pared to the case of BB. The errors in the fraction of the
spherical particle for the dust case correlates much less with
the errors in the other parameter compared to BB case. This
can be explained by the fact that the light scattering of large
particles is significantly more sensitive to the deviation in
aerosol particles from spheres compared to spheroids than
the light scattering of fine fraction particles (Dubovik et al.,
2006). Therefore, when coarse particles dominate, the dis-
crimination between spheres and spheroids becomes more
evident.

Thus, the analysis of the correlation matrices itself provide
very useful insight that helps to understand and interpret re-
trieval results. For example, such artefacts as the appearance
of tails (unrealistically high concentrations) at extremes of
the size distribution have been noticed and widely discussed
(Dubovik et al., 2002a; Dubovik et al., 2006; Torres et al.,
2014). Such retrieval artefacts as the underestimation of RRI
accompanied by an overestimation in the size distribution of
very fine particles has been widely discussed in studies by
Dubovik et al. (2000); Dubovik et al. (2002b, a). These arte-
facts were strongly reduced by accounting for the particle
nonsphericity of desert dust particles (Dubovik et al., 2002b;
Dubovik et al., 2006), but nonetheless the less-pronounced
appearance of such artefacts remains in AERONET-like re-
trievals (Torres et al., 2014, 2017). These artefacts are clearly
related to the above-observed presence of the strong negative
correlation between the values of RRI and the size distribu-
tion of very fine particles. It should be noted that the presence
of high correlations is an indication that adding information

about one of the correlated parameters should improve the re-
trieval, not only for the constrained parameter itself but also
for the parameters that strongly correlated with this param-
eter. For example, the addition of polarimetric observations
to the traditional set of AERONET observations results in a
clear improvement in the retrieval of RRI and the size distri-
bution of very fine particles (Li et al., 2009; Fedarenka et al.,
2016). Indeed, the degree of linear polarization is known to
be very sensitive to the amount and especially the RRI of fine
particles (Dubovik et al., 2006). This is why the addition of
polarimetric observations helps to reduce the correlations be-
tween the errors in RRI and size distribution of fine particles
and helps the overall improvement in the retrieval accuracy
of these particles.

4.3.2 Retrieval of mixed aerosol components from
radiometer measurements only

In this section, the correlation matrix for bicomponent
aerosol retrieved from the synthetic observations of sun/sky
radiometers of two aerosol mixtures is illustrated in Fig. 34
for BB–Dust and Urban–Dust. The structure of this matrix
consists of 25 parameters related to the SD that are separated
into two blocks, with 10 parameters for fine mode and 15
parameters for coarse mode. The following four blocks of
4×4 are related to the RRI and IRI of fine and coarse modes
at four wavelengths. These blocks are followed by a single
value of the sphericity fraction.

The area of the correlation matrix that contains SD, RRI,
IRI and the sphericity fraction is quite similar to the corre-
lation matrix obtained for aerosol AERONET-like retrieval.
The main difference is the separation into two modes, since
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Figure 34. Correlation matrices of the estimated errors for mixed aerosol retrieval from sun/sky radiometer observations (a) for the mixture
of biomass burning and dust aerosols and (b) for the mixture of urban and dust aerosols using the GRASP algorithm. The values close to 1
or −1 mean stronger correlations between the properties, positive or negative, respectively.

strong negative correlations can be observed between the cor-
responding parameters of the fine and coarse mode. For ex-
ample, strong negative correlations can be observed between
IRI fine and coarse mode. These correlations mean that over-
estimating the amount or absorption of one aerosol mode is
likely compensated by underestimation of the amount or ab-
sorption of another aerosol mode. Another interesting anti-
correlation can be observed for the last three bins of SD fine
mode and the first three bins of SD coarse mode. Actually,
both volume distributions have these three bins in common.
This overlapping zone is never easy to properly separate for
the code, but at the same time, it coincides with a local min-
imum value of most size distributions found in the real re-
trievals.

4.3.3 Retrieval of mixed aerosol properties from
measurements of radiometers in combination
with lidar

Figure 35 shows the correlation matrix for the case when the
bicomponent aerosol retrieved from synthetic observations
for the sun/sky photometer and lidar of aerosol mixtures is
given. In the figure, the different blocks are identified. The
first 25 parameters represent the SD that are separated into
two blocks, with 10 parameters for fine mode and 15 param-
eters for coarse mode. The following four blocks of 7×7 are
related to the RRI and IRI of fine and coarse modes at seven
wavelengths. These blocks are followed by a single value
of the sphericity fraction. The two last and largest blocks of

Figure 35. Correlation matrices of the estimated errors for aerosol
retrieval from joint sun/sky radiometer and lidar observations for
a mixture of urban and desert dust using the GRASP algorithm.
The values close to 1 or −1 mean stronger correlations between the
properties, positive or negative, respectively.

60×60 parameters each correspond to the AVP values of the
two modes given at 60 different altitudes.

The area of the correlation matrix that contains SD, RRI,
IRI and the sphericity fraction is quite similar to the corre-
lation matrix described in the previous section, considering
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that the aerosol mixture retrievals are from AERONET-like
observations only.

As expected, the block of the correlations of AVP retrieval
shows strong negative correlations between the errors in the
retrieved parameters of fine and coarse mode. Thus, an over-
estimation of one mode is highly correlated with an under-
estimation of another AVP mode. Furthermore, strong posi-
tive correlations can be observed between AVP values corre-
sponding to the same fine or coarse mode, i.e. the AVP val-
ues of each mode have tendency to be simultaneously over-
estimated or underestimated. This is related to the limited
sensitivity of the used lidar data for distinguishing the contri-
butions of different modes and also to the use of smoothness
constraints on vertical variations in AVP of each fraction. On
the other hand, a near-zero correlation can be seen for AVP
parameters at altitudes with a significant presence of one or
both aerosol components. Correspondingly, there is a high
sensitivity of both lidar and radiometer observations to the
aerosol parameters at those altitudes. It should be noted that
all the above-discussed retrievals suggested from the anal-
ysis of the correlation matrices were actually observed in
the retrievals from real data, as discussed by Lopatin et al.
(2013, 2021).

4.4 Illustration of the GRASP error estimates with real
observations

This section illustrates the GRASP error estimates perfor-
mance for the retrieval from real data. For that purpose, the
lidar and sun/sky photometer measurements collected at the
Aeroparque (34◦33′51′′ S, 58◦25′02′′W) and Villa Martelli
(34◦33′21′′ S, 58◦30′23′′W) stations in Buenos Aires, Ar-
gentina, have been used. These instruments are part of
the LALINET (Latin America Lidar Network; Guerrero-
Rascado et al., 2016) and AERONET networks. Both sites
are located in an industrialized city dominated by continen-
tal and urban/industrial aerosols and are affected during win-
ter and spring by biomass burning from the north and centre
of the country and neighbouring countries (mainly Brazil).
The Aeroparque station is located at the Jorge Newbery In-
ternational Airport within the city limits. This station does
not have a co-located sun photometer, but its location is 7 km
from the Villa Martelli station where the sun photometer
is installed. On the other hand, the Villa Martelli station is
found in the limits of Buenos Aires in a highly populated
and industrialized area.

Observations from two different biomass burning events in
Argentina were selected for the illustrations. Specifically, 3 d
were chosen with different aerosol loads and SZA. The lidar
range-corrected signals (RCSs) corresponding to each event
are shown in Fig. 36. They have been calculated from the
lidar signal, with background and dark current corrections
and multiplied by the height squared. In addition, the back-
trajectories calculated from the HYSPLIT (Hybrid Single-
Particle Lagrangian Integrated Trajectory; Stein et al., 2015;

Rolph et al., 2017) models are presented in order to confirm
where the air masses come from (Fig. 37).

The two first cases selected correspond to an important
event of biomass burning that occurred in the bordering
countries to the north of Argentina in August 2014, partic-
ularly in the south of Brazil and Paraguay. It was detected
in Buenos Aires between 19 and 23 August. For illustration
purposes, the measurements corresponding to 19 August are
used, which present a low aerosol load at 440 nm (∼ 0.11)
and SZA> 50◦. Figure 36a indicated the presence of sev-
eral layers of aerosols up to 1.5 km. The lidar measurements
on 19 August were taken between 12:15 and 12:45 UTC,
and the AERONET measurements correspond to 11:25 UTC.
Figure 37 shows the HYSPLIT back trajectories that vali-
date the source of the air masses. The measurements corre-
sponding to 22 August are shown in Fig. 36b, where sev-
eral layers of aerosol up to 3 km are observed. For this day,
the aerosol load increases (AOD at 440 nm ∼ 0.31), and the
SZA is< 50◦. The inversion was realized with the average li-
dar data between 15:00 and 15:20 UTC, and the AERONET
measurements were considered at 16:59 UTC. The satellite
image corresponding to 22 August (Fig. 37a) shows the pres-
ence of aerosols that extend from the north of Argentina to-
wards the centre, passing through the province of Buenos
Aires. Moreover, MODIS hot spots are detected in the satel-
lite image. The source of the air masses can be validated from
the HYSPLIT back trajectories (Fig. 37c). The last selected
case corresponds to the biomass burning event on 25 Septem-
ber 2017, which occurred in the north of Argentina and in
the bordering countries (Fig. 36c). In this work, lidar mea-
surements from the Aeroparque station between 19:20 and
20:10 UTC and the AERONET measurements correspond-
ing to 19:20 UTC, whose AOD value at 440 nm is 0.57 and
SZA> 50◦, were used.

Figure 38 illustrates the retrieved columnar properties for
each day obtained by GRASP from a combination of ra-
diometer and lidar data and the comparison with the cor-
responding standard AERONET retrievals. The results pro-
vided by GRASP are represented in solid lines, with blue for
the fine mode and green the coarse mode. Shaded areas rep-
resent the error provided by GRASP for each retrieved and
derived property. Magnified plots represent the effective re-
fractive index and total SSA for GRASP (black solid line)
and AERONET (black dashed line). From the illustrations,
one can see that almost all the GRASP-retrieved properties in
the three cases present a good agreement with the AERONET
retrievals.

The error tendencies for SD that can be seen from Fig. 38
agree with those identified above in the present study and
with results presented in previous sections and also with the
results in some other works by Dubovik et al. (2000) and
Lopatin et al. (2013). For example, the retrieval errors clearly
increase at the extremes of SD. Moreover, one clear and
known tendency can be mentioned. The size distribution shift
towards higher radii in the three cases could be explained by
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Figure 36. RCSs at 1064 nm in arbitrary units from Villa Martelli, Argentina, on 19 August 2014 (a) and 22 August 2014 (b) and from the
Aeroparque station, Argentina, on 25 September 2017 (c). The two red lines indicate the analysed lidar data interval. The black solid line
indicates the sun photometer measurements.

the use of lidar data in the inversions that provide additional
information at scattering angles of 180◦ (Lopatin et al., 2013;
Bovchaliuk et al., 2016; Benavent-Oltra et al., 2017). As seen
in Fig. 38, these deviations, in almost all cases, are included
in the error (shaded areas).

The errors in RRI, IRI and SSA were retrieved for each
mode separately by GRASP, and they are significantly higher
than the error for RRI, IRI and SSA of the total components.
The effective RRI and IRI and the total SSA obtained by
GRASP are in the middle of the retrieved values for fine and
coarse mode separately. The total values shown in the mag-
nified plots agree well with the RRI, IRI and SSA provided
by AERONET.

On the other hand, the case corresponding to 25 Septem-
ber has an AOD> 0.4 and SZA> 50◦, allowing us to have
the uncertainty in the SSA provided by AERONET. Thus,
in Fig. 38, for this particular case, we can observe the com-
parison of the uncertainty in SSA from AERONET and the

SSA error provided by GRASP. Note that it is an advantage
of GRASP that it provides the errors for each parameter in all
the situations. Regarding the values of SSA and the tenden-
cies of their variability, the results show that SSA is repre-
sentative of biomass burning cases, namely that the values of
SSA decreasing with the wavelength agree with AERONET
climatology given by Dubovik et al. (2002a). As expected,
based on the results of previous studies by Dubovik et al.
(2000), Lopatin et al. (2013) and Tsekeri et al. (2017), the
best agreements are obtained as the aerosol load increases.
More specifically, we observe that the estimated errors in to-
tal SSA in the two first cases increase. This can be associ-
ated with unfavourable configurations of the observation. On
19 August the AOD at 440 nm is ∼ 0.11 (SZA is > 50◦) and
on 22 August the AOD at 440 nm is ∼ 0.31 (SZA is < 50◦).
Thus, the measurements in situations with a low amount of
aerosol and with small SZA may not contain enough infor-
mation to adequately retrieve the SSA (Dubovik et al., 2000;

Atmos. Meas. Tech., 15, 6075–6126, 2022 https://doi.org/10.5194/amt-15-6075-2022



M. E. Herrera et al.: Estimates of remote sensing retrieval errors by the GRASP algorithm 6119

Figure 37. (a) Satellite image with hot spots corresponding to 22 August 2014 (NASA Worldview), (b) air mass back-trajectories for the
Villa Martelli measurement site on 19 August 2014 and (c) air mass back trajectories for the Villa Martelli measurement site on 22 August
2014.

Lopatin et al., 2013; Torres et al., 2014). Therefore, the case
of 25 September corresponds to the most favourable situa-
tion for realizing reliable aerosol retrieval, since the AOD
at 440 nm value is > 0.4, and SZA is > 50◦. Indeed, the
GRASP and AERONET retrievals have the best agreement
for this day.

Figure 39 shows the retrieved vertical distributions of fine
and coarse modes. The vertical structure of the aerosols
of different types is clearly discriminated and shows good
agreements with the back-trajectory analysis for each day.
Furthermore, the error estimates show good agreements with
the previous results provided in the last sections for the sim-
ulated cases.

Moreover, Fig. 40 shows the retrieved LR and their error
estimates using the GRASP algorithm. The magnified plots
show the total LR provided by GRASP (black solid line) and
by AERONET (black dashed line). The associated errors are
represented in shaded areas for GRASP. As can be seen, it
is only possible to compare the values with AERONET re-
trieval for Fig. 40, which corresponds to higher aerosol load
and SZA> 50◦ on 25 September 2017.

Thus, the retrieved parameters and error estimates from the
GRASP application to the real data and their comparisons
to the AERONET retrieval results showed an encouraging
agreement between the columnar properties of aerosol. At
the same time, GRASP provide the error estimates for the re-
trieved properties in both the fine and coarse mode and also
for the total components. Moreover, GRASP has also the ad-
vantage of providing the dynamic error estimates in all con-
figurations. As seen above, AERONET error estimates are
only provided in some particular situations when the AOD at
440 nm is > 0.4, and SZA> 50◦.

5 Conclusions

In this work, we reviewed the approach realized in the
GRASP algorithm for estimating errors in the parameters
retrieved from remote sensing observations. The employed
approach relies on the rigorously realized concept of statis-
tical estimations and tends to account for the propagation
of both random and systematic errors. Then we evaluated
the performance of the GRASP error estimates for aerosol
parameters retrieved from ground-based observations. We
considered AERONET-like retrievals from observations by
sun/sky-scanning radiometers and GRASP synergy aerosol
retrievals from joint observations by radiometers and lidar.
GRASP generates the full covariance matrices that are ex-
pected to be used for generating error bars for retrieved pa-
rameters and provides an interesting insight for understand-
ing retrieval tendencies. Therefore, we studied the quantita-
tive reliability of the obtained covariance diagonal elements
and analysed the structure of correlation coefficient of co-
variance matrices.

The performance of the GRASP estimates of error vari-
ances in the presence of random errors was evaluated in a
series of numerical tests and illustrated the capabilities of
the GRASP algorithm to provide rigorous estimates of dy-
namic retrieval errors. In the frame of these tests, the syn-
thetic proxy observations perturbed by 300 random-noise-
generated realizations were inverted using the GRASP algo-
rithm. Then, the retrieved parameters were compared to those
used for the generation of the synthetic data, and the obtained
error estimates were compared with actual deviations in the
retrieved parameters from assumed values. This analysis was
realized for the synthetic observations for three different
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Figure 38. Comparison of columnar properties retrieved by GRASP from a combination of sun/sky photometer and lidar data and data
retrieved conventionally by AERONET. SD, RRI, IRI and SSA retrieved by GRASP are shown in solid lines of blue (fine mode) and green
(coarse mode). The shaded area in colours of blue and green represents the total error provided by GRASP, and black shaded areas are
the uncertainties provided by AERONET. Magnified panels show the RI effective and total SSA provided by GRASP (black solid line)
and AERONET (black dashed line). Their associated errors are represented in the grey shaded area for GRASP and with error bars for
AERONET.

types of aerosols and for the mixture of them. Observations
of dust were modelled using AERONET retrieval climatol-
ogy at the Solar Village (Riyadh, Saudi Arabia) site. The
AERONET retrieval climatologies from the African savanna
(Zambia) and the GSFC (Maryland, USA) were used to sim-
ulate urban and BB aerosol observations, respectively. The
Urban–Dust aerosols and BB–Dust mixture were considered
for modelling the properties of mixed aerosols. For each ob-
served aerosol type or mixture thereof, different aerosol loads
were tested. First, we modelled observations of aerosols of
only one type aerosol for τ(440)= 0.3, 0.6 and 0.9. For
aerosol mixtures, we also considered scenarios with differ-
ent aerosol loads, while we present most of the illustrations
of the situations with a large aerosol load (τ(440)= 1.0,
combining different aerosol loads for each mode τf = 0.2
and τc = 0.8, τf = τc = 0.5 and τf = 0.8, and τc = 0.2). The

data were perturbed by random noise before applying the re-
trieval algorithm. For all these simulations, the SZA at 75◦

was used.
The tests evaluated the situations when only radiome-

ter data were inverted, and then radiometer data were in-
verted jointly with coincident lidar data. Two GRASP re-
trieval set-ups were tested, where (i) the retrieval assumes
that aerosol is composed of homogeneous particles, and pa-
rameters of only one aerosol component are retrieved, and
(ii) then the aerosol is assumed to be an external mixture of
two aerosol components, and the parameters of each compo-
nent are retrieved separately. In the case when the lidar data
were used, the vertical profiles of the concentration were also
retrieved for each aerosol component. The illustrations for
aerosol retrieval from all simulated data sets were provided,
using both approaches. However, the full statistical analysis
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Figure 39. Retrieved aerosol vertical profiles (AVPs) by GRASP from a combination of sun/sky photometer and lidar data. The blue solid
line represents the AVP fine mode and green the AVP coarse mode. The shaded areas correspond to the total error provided by GRASP.

Figure 40. Retrieved LR by GRASP from a combination of sun/sky photometer and lidar data. The blue solid line represents the LR fine
mode and green the LR coarse mode. Magnified plots show, with black solid lines, the LR provided by GRASP and, with dashed lines, the
LR provided by AERONET. Their GRASP-associated errors are represented in shaded areas.

provided only the two conventional retrieval scenarios, i.e.
AERONET-like, single-component retrieval from radiomet-
ric observations and GRASP bicomponent aerosol retrieval
from combinations of radiometer and lidar data.

The results of the tests showed that the complete set of
aerosol parameters for each aerosol component can be ro-
bustly derived with acceptable accuracy in almost all con-
sidered situations. The retrieval of bicomponent aerosol was
evaluated using radiometer-only simulated measurements
and then adding lidar observations. These tests allowed us to
observe that, by using the synergy of two instruments, there
are some improvements in the retrieval of the aerosol proper-
ties of each component of the observed aerosol mixture and
in the estimations of the retrieval errors. The test for selected
cases with different presences of different aerosol compo-
nents (τf = 0.2, τc = 0.8 and τf = 0.8, τc = 0.2) showed that
optical properties of the dominant mode can be retrieved in a
significantly more accurate manner than expected. It is inter-
esting to note that in all situations that use only radiometer
data or add lidar-simulated measurements, properties such
as total SSA and effective refractive index can be retrieved
rather accurately, even in cases where the retrieval of the
properties of each mode separately is questionable.

The results of the statistical tests with randomly generated
noise showed that the GRASP error estimates, in most cases,
are comparable to or exceed the actual errors by 20 % to 30 %
and therefore can be safely used for assuring uncertainties
in the actual retrieval products. In addition, the observation
of typical error values was summarized for different situa-
tions and retrieval scenarios. Namely, the study confirmed
that the detailed properties of aerosol mixtures can be rather
reliably retrieved from a combination of radiometer and li-
dar data, provided that there is a sufficient amount of both
aerosol components. For example, for the case when the to-
tal τ(440)= 1.0 with a comparable presence of both com-
ponents τf(440)= τc(440)= 0.5, and SZA is 75◦, the mean
values for RRI errors are ∼ 0.05 for BB and urban and vary
between 0.07 to 0.09 for dust, and IRI errors are around 60 %
for BB, 75 % for urban and 50 % for dust. SSA errors vary
between 0.024 and 0.061 for urban, 0.042 and 0.086 for BB
and 0.04 and 0.009 for dust, showing a clear tendency to in-
crease with the wavelengths for values of fine mode and de-
crease for coarse mode. However, even for this case, the sep-
aration of the LR values for both modes showed high uncer-
tainties at short wavelengths, in particular for the fine mode,
while the values of the total LR errors were found to be rea-
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sonable in the range of 20 % to 55 %. The relative error es-
timates for AVP for both aerosol mixture (Urban–Dust and
BB–Dust) cases were ranging for fine mode between 50 %
and 70 % and for coarse dust mode between 50 % and 55 %.

The effects of the systematic errors in the retrievals were
also analysed in a series of limited dedicated numerical tests.
The results of the tests were used for adjusting the GRASP
retrieval estimates to the potential effects of the systematic
errors. The results show enhancements of total error esti-
mates from the assumption of bias in the equation of sys-
tematic components.

In addition to the evaluation of the error bar estimates
and the effects of systematic errors, in this paper we illus-
trated and discussed the correlation structures of the error co-
variance matrices for all main considered retrieval scenarios.
The results showed that analysis of the correlation structure
can be very useful for understanding the observed retrieval
tendencies and optimizing retrieval. For example, for con-
ventional AERONET-like aerosol retrievals from radiometer
data only, the strong negative correlation between errors is in
the real part of the refractive index and size distribution val-
ues for small sizes. This agrees well with the tendency com-
monly observed in actual retrieval when the underestimations
of the real part are coincident with the overestimation of the
fine-mode size distribution. Also, the presence of a high pos-
itive correlation between the errors in the size distribution for
extreme sizes and between the errors in the refractive index at
different wavelengths agrees well with the known possibili-
ties of possible overestimations of aerosol concentrations for
very small or very large particles and joint overestimation-
s/underestimations of the refractive value at different wave-
lengths. For bicomponent retrievals, strong negative correla-
tions can be observed between nearly all corresponding pa-
rameters of the fine and coarse mode. This means, for exam-
ple, that the overestimation of the amount or absorption of
one aerosol mode is likely compensated by underestimation
of the amount or absorption of another aerosol mode. The
decrease in some of these correlations was observed when
inverted radiometer data were inverted simultaneously with
the lidar data. The high positive correlations were seen for
the errors in the vertical profile of the fine and coarse con-
centrations, with the exception of the values for the altitudes
where one or both of the aerosol modes had substantial loads.
These and other less obvious, but quite interesting, corre-
lation structures and tendencies can be identified using the
analysis of the correlation matrix structure. Thus, the avail-
ability and analysis of not only the error variances but also
the correlation patterns appear to be a useful and promising
approach for optimizing observation schemes and retrieval
set-ups.

Finally, the utilization of GRASP for deriving detailed
aerosol properties and estimations of their errors was demon-
strated for the coincident lidar and sun photometer observa-
tions from Buenos Aires, Argentina. The GRASP retrievals
and the error estimates of the columnar aerosol properties

were shown to be fully adequate in a comparative analysis
with the aerosol products available from AERONET opera-
tional retrievals. The retrieval of the vertical profiles of fine
and coarse aerosol modes showed results consistent with the
expectation and the predictions of back-trajectory analysis.

Thus, the results presented in this work show promising
potential for the utilization of GRASP-retrieved dynamic er-
ror estimates for the detailed retrieved aerosol parameters
from measurements of ground-based radiometers and lidars,
considering different geometries and the presence of diverse
aerosol loads. These studies are expected to be completed in
future by a more extensive analysis of the error estimates for
such detailed parameters as vertical profiles of SSA and LR.
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