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Abstract. The vertical distribution of atmospheric aerosol
components is vital to the estimation of radiative forcing and
the catalysis of atmospheric photochemical processes. Based
on the synergy of ground-based lidar and sun-photometer
in Generalized Aerosol Retrieval from Radiometer and Li-
dar Combined data (GARRLiC), this paper developed a new
algorithm to get the vertical mass concentration profiles of
fine-mode aerosol components for the first time. Retrieval
of aerosol properties was achieved based on the sky radi-
ance at multiple scatter angles, total optical depth (TOD) at
440, 675, 870, and 1020 nm, and lidar signals at 532 and
1064 nm. In addition, the internal mixing model and nor-
malized volume size distribution (VSD) model were estab-
lished according to the absorption and water solubility of the
aerosol components, to separate the profiles of black carbon
(BC), water-insoluble organic matter (WIOM), water-soluble
organic matter (WSOM), ammonium nitrate-like (AN), and
fine aerosol water (AW) content. Results showed a reason-
able vertical distribution of aerosol components compared
with in situ observations and reanalysis data. The estimated
and observed BC concentrations matched well with a cor-
relation coefficient up to 0.91, while there was an evident
overestimation of organic matter (OM=WIOM+WSOM,
NMB= 0.98). Moreover, the retrieved AN concentrations
were closer to the simulated results (R= 0.85), especially
in polluted conditions. The BC and OM correlations were
relatively weaker, with a correlation coefficient of ∼ 0.5. Be-

sides, the uncertainties caused by the input parameters (i.e.,
relative humidity (RH), volume concentration, and extinction
coefficients) were assessed using the Monte Carlo method.
The AN and AW had smaller uncertainties at higher RH.
Herein, the proposed algorithm was also applied to remote-
sensing measurements in Beijing with two typical cases. In
the clean condition with low RH, there were comparable AN
and WIOM, but peaking at different altitudes. On the other
hand, in the polluted case, AN was dominant and the maxi-
mum mass concentration occurred near the surface. We ex-
pected that the algorithm could provide a new idea for lidar
inversion and promote the development of aerosol compo-
nent profiles.

1 Introduction

Atmospheric aerosols play a key role in the radiation budget
and energy balance (Andrews and Forster, 2020; Hasekamp
et al., 2019). The aerosols with different optical and physi-
cal properties have diverse radiative forcing effects (Boucher
et al., 2013). For example, the soot dominated by black car-
bon (BC) has the most significant effect on cloud cover and
precipitation due to its strong absorption (Gu et al., 2006;
Xia, 2014), while the negative radiative forcing of sulfate
and nitrate is more prominent (Myhre et al., 2013). Espe-
cially, different aerosol components can even cause opposite
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radiation changes vertically (Jiang et al., 2013). On the other
hand, aerosols can affect the atmospheric oxidation capacity
by changing the photolysis rate of trace gases (Bian et al.,
2003; Lou et al., 2014; Xing et al., 2017). Liao et al. (1999)
once found that nonabsorbent aerosols generally enhanced
photolysis rates, contrary to the soot aerosols. Moreover, the
ability of aerosols to reduce the photolysis frequency of O3
decreases with altitude on a regional scale (Li et al., 2011).
Therefore, the vertical distribution of atmospheric aerosol
components is of vital importance to reduce the uncertainty
of radiative forcing estimation and understand the impact of
haze on atmospheric photochemical processes.

At present, there are many studies focusing on the aerosol
components on the ground (Han et al., 2015; Huang et al.,
2014; Zhao et al., 2013). However, the ways to get the aerosol
components in the atmosphere are finite. Although the field
campaigns often launched aircraft (Chen et al., 2009; Zhang
et al., 2009) or tethered balloons (Li et al., 2015; Ran et
al., 2016) to detect the atmospheric structure, there are still
many limitations in the resolution and representation due to
the restricted aircraft control. In such a situation, continu-
ous remote-sensing technology with high temporal resolu-
tion, such as sun-photometer and lidar, provides a powerful
tool for the identification of aerosol components. Besides, the
establishment of ground-based networks, e.g., AERONET
(Dubovik et al., 2002, 2000), AD-Net (Shimizu et al., 2017;
Nishizawa et al., 2017), and MPLNET (Chew et al., 2013;
Huang et al., 2011), also improves the spatial detection reso-
lution.

So far, the algorithms that use instantaneous remote-
sensing measurements to retrieve atmospheric aerosol com-
ponents have been greatly developed. The available aerosol
parameters from sun-photometer make it possible to dis-
tinguish the components. Schuster et al. (2005) proposed a
three-component model constrained by the refractive index
to infer BC, ammonium sulfate, and water. Subsequently, the
absorbing organic carbon (OC) and dust were supplemented
to the model by Arola et al. (2011) and Wang et al. (2012), re-
spectively. By joint use of the refractive index, single scatter-
ing albedo, sphericity, and other measurements, Van Beelen
et al. (2014) and Xie et al. (2017) greatly increased the iden-
tifiable aerosol components. Besides, internal mixing and hy-
groscopic growth of aerosols were also considered in the al-
gorithms to reproduce the real state (Schuster et al., 2016;
Zhang et al., 2018a, 2020).

However, the aerosol vertical distribution is not available
from the sun-photometer, which can be made up by the
ground-based lidar with its vertical resolution of meters. Bur-
ton et al. (2012) and Groß et al. (2011) found the charac-
teristics of different aerosol types in lidar parameters, prov-
ing the feasibility of lidar. Nishizawa et al. (2007) made use
of dual-wavelength elastic lidar but only separated water-
soluble aerosol from dust or sea salt. After that, the applica-
tion of Raman lidar and more wavelengths made it possible
to get the profiles of sea salt, soot, dust, and water-soluble

aerosols (Nishizawa et al., 2011, 2017; Hara et al., 2018).
Mamouri and Ansmann (2017) refined the fine and coarse
dust and separated them from maritime and anthropogenic
aerosols based on a polarization/Raman lidar. However, lim-
ited by the available lidar information, there has been no
breakthrough in the aerosol types identified by lidar mea-
surements. Therefore, how to use limited lidar channels to
distinguish more atmospheric aerosol components is what we
need to investigate. And considering the advantages and lim-
itations of sun-photometer and lidar, it may be a good choice
to combine them.

In this study, based on the synergy of ground-based Mie
lidar and sun-photometer in Generalized Aerosol Retrieval
from Radiometer and Lidar Combined data (GARRLiC),
a new algorithm to get the vertical profiles of fine-mode
aerosol components, including BC, water-insoluble organic
matter (WIOM), water-soluble organic matter (WSOM), am-
monium nitrate-like (AN), and fine aerosol water (AW) con-
tent, is proposed for the first time. The details about the al-
gorithm and the measurement data applied to the algorithm
will be described in Sect. 2. Section 3 will present the evalu-
ation, uncertainty analysis, and application of our algorithm
to confirm the validity of inversion results.

2 Methodology and data

2.1 Methodology

2.1.1 Aerosol microphysical characteristics

Atmospheric aerosol is a complicated mixture of different
components, which have different size distributions and com-
plex refractive indexes (CRIs). This makes it possible to
separate aerosol components by remote sensing. However,
we should note that the aerosol components in the remote-
sensing model are not completely equivalent to the chemi-
cal compositions traditionally, and there are some limitations
in identifying compositions compared with surface chemi-
cal measurements. For example, distinguishing sulfate and
nitrate seems to be beyond the scope of remote sensing due
to their similar optical properties in light scattering, parti-
cle size, and shape. Despite all of this, the common remote-
sensing components, including black carbon (BC), brown
carbon (BrC), dust, organic matter (OM), ammonium nitrate-
like (AN), sea salt, and water uptake, are close to the species
defined in the Intergovernmental Panel on Climate Change
(IPCC) 2013 (Boucher et al., 2013) and enough to satisfy the
need for climate change and environmental monitoring. In
fact, there are often different aerosol definitions and classi-
fication schemes focusing on some key components, which
depend on the limited inputs and specific research purposes.
Generally, sea-salt aerosol is considered as coarse particles
and neglected in Beijing (Li et al., 2013). Dust and OM
have similar light-absorbing characteristics due to the pres-
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ence of hematite (Formenti et al., 2014). Therefore, they are
usually separated by particle size since OM and dust are
mostly present in fine- and coarse-mode aerosols, respec-
tively (Schuster et al., 2016; Zhang et al., 2018a). Certainly,
fine-mode dust will also be taken into account with sufficient
constraints. By assuming the dust volume concentration ra-
tio of fine to coarse mode, Xie et al. (2017) further separated
fine- and coarse-mode dust with the aid of spectra refrac-
tivity at four wavelengths, sphericity, and single scattering
albedos. Besides, they also defined OM as non-absorbing and
hydrophobic aerosols to be separated from inorganic salt and
absorbing carbon (BC and BrC), while Zhang et al. (2018a)
divided the OM into two categories (WIOM and WSOM) to
better model complex liquid systems, and BrC is considered
as a part of WIOM.

In this paper, considering the limited lidar constraints
(only two wavelengths), we only focus on fine-mode aerosol
and treat it as a mixture of five components like Zhang et
al. (2018a): BC, OM (WIOM+WSOM), AN, and AW, and
omit the presence of dust in fine mode to optimize the algo-
rithm performance, although it seems to not cover all possi-
ble aerosol types in the atmosphere. Exactly as in Table 1, BC
has the largest CRI at different wavelengths, which indicates
its strong optical absorption (Mueller et al., 2007; Burton et
al., 2012). On the contrary, AN (denoting the inorganic salt
such as nitrate and sulfate) is mainly characterized by scat-
tering with the smallest CRI, except for AW (Zhang et al.,
2012; Xu and Penner, 2012). Generally, AW content directly
depends on the hygroscopic AN at a certain ambient relative
humidity (RH), especially in heavy haze episodes (Zhang et
al., 2015). With the properties of spectral absorbing, WIOM
is significantly different from BC in water-insoluble matter.
While in water-soluble ones, hygroscopicity is the key to dis-
tinguishing WSOM and AN. According to the summary in
Zhang et al. (2018a), the growth factors of inorganic salts are
all above 1.5, much larger than that of WSOM. Thus, it is
considered that the aerosol hygroscopicity only comes from
AN rather than WSOM in this algorithm to separate them.

Based on the distinct aerosol microphysical characteris-
tics, we retrieve the profiles of the fine-mode aerosol compo-
nents by constructing the aerosol model and microphysical
parameterization schemes. Figure 1 shows the flowchart of
our algorithm proposed in this study and the details will be
described below.

2.1.2 Fine-mode aerosol properties from GARRLiC

In fact, there have been developed algorithms that combine
the sun-/sky- photometer with lidar. For pursuing an even
deeper synergy of lidar and sun-photometer, GARRLiC was
created by modification of AERONET algorithms to adapt
them for inclusion of lidar data (Lopatin et al., 2013). As a
part of the extensive Generalized Retrieval of Atmosphere
and Surface Properties (GRASP), it can get the property pro-
files separately for fine- and coarse-mode particles. So far, Ta
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Figure 1. Flowchart of the algorithm proposed in this paper.

GARRLiC has been applied for the characterization of atmo-
spheric aerosols (Lopatin et al., 2013; Tsekeri et al., 2017;
Bovchaliuk et al., 2016) and evaluated by airborne in situ
measurements (Benavent-Oltra et al., 2021, 2017). Although
GARRLiC was able to quantitatively retrieve aerosol com-
ponents (L. Li et al., 2019), it still stayed on the columnar
level and cannot get the flexible volume proportion of differ-
ent components vertically.

Note particularly that the volume concentration profiles
provided by GARRLiC build a bridge between the retrieval
of sun-photometer and lidar. In previous lidar algorithms, li-
dar parameters such as lidar ratio (the ratio of extinction to
backscattered coefficients) were employed to avoid the use
of volume concentration. But now, due to the accessible vol-
ume concentration, complex refractive index (CRI) and vol-
ume size distribution (VSD) can be directly used to construct
the aerosol model in lidar algorithms based on the Mie the-
ory (Bohren and Huffman, 1998). Consequently, the combi-
nation of ground-based remote-sensing technology not only

enriches the inversion output but also provides a new idea for
lidar inversion.

However, the Mie theory is only applicable to spherical
particles, which is in contradiction with the irregular shape
of dust aerosols (Mamouri and Ansmann, 2014; Sugimoto et
al., 2002). In retrieval algorithms, it is generally assumed that
the aerosol size distribution is bimodal and the dust aerosol
is distributed in the coarse mode (Nishizawa et al., 2007,
2011; Schuster et al., 2016; Xie et al., 2017; Zhang et al.,
2018a). Therefore, in this study, we only focus on the profiles
of fine aerosol components based on the outputs of GAR-
RLiC, which include the aerosol extinction and volume con-
centration profiles in the fine mode. Similar to AERONET
(Dubovik and King, 2000), the radius of 0.576 µm was used
as a separation point in GARRLiC. According to the field
experiments, the retrieved fine-mode aerosol components,
including BC, WIOM, WSOM, and AN, were almost dis-
tributed in PM1 (particles with the aerodynamic diameter less
than 1 µm) (Liu et al., 2020; Reddington et al., 2013; Zhang
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et al., 2018b). To some extent, the fine modal truncation ra-
dius of 0.576 µm is reasonable for inversion.

2.1.3 Aerosol modeling

In the actual atmosphere, the internal mixing of aerosols is
very common due to aerosol collision, condensation, and
chemical reactions. Generally, the Maxwell Garnett (MG)
mixing rule is more appropriate for the mixture of water-
insoluble matter embedded in the host environment (Choi
and Ghim, 2016; Dey et al., 2006; Schuster et al., 2005). The
effective permittivity of the mixture εmix can be expressed as
follows:

εmix (λ)= εhost+ 3εhost

 ∑
j

εj (λ)−εhost(λ)

εj (λ)+2εhost(λ)
fj

1−
∑
j

εj (λ)−εhost(λ)

εj (λ)+2εhost(λ)
fj


j = BC and WIOM, (1)

where fj is the volume fraction of water-insoluble compo-
nents: BC and WIOM. Here, the host environment represents
the mixture of water-soluble matter, including AN, WSOM,
and AW. The effective permittivities of the host environment
and insoluble matter are εhost and εj , respectively, which can
be calculated from the corresponding CRIs by Eq. (2):

m=

√
|ε(λ)| +Re(ε(λ))

2
+ i

√
|ε(λ)| −Re(ε(λ))

2
, (2)

where m and ε are the CRI and effective permittivity, re-
spectively. For the CRI of the host environment mhost, which
refers to the water-soluble matter, can be obtained by the
volume-averaged (VA) mixing rule to strengthen the physical
constraints between multi-component liquid systems (Zhang
et al., 2018a).

mhost (λ)=

∑
jmj (λ)fj∑

jfj

j = AN, AW, and WSOM, (3)

where mj and fj are the CRI and volume fraction of sol-
uble components, respectively. Then the CRI of the aerosol
mixture mmix can be acquired by combining Eqs. (1)–(3).

In addition to CRI, VSD is the other requirement for the
Mie theory. Here, the normalized VSD of each component
can be simulated according to the lognormal distribution pa-
rameters in Table 1, which are all in the dry state. Consid-
ering the hygroscopicity of AN, the growth factor is intro-
duced to fit the AN normalized VSD under ambient RH (AW
is taken into account at the same time). Then, we can model
the normalized VSD of the aerosol mixture based on the as-
sumed component volume fraction fj as follows:

dVN (lnr)
dlnr

=

4∑
j=1

fj
dVj (lnr)

dlnr

j = AN, BC, WIOM, and WSOM, (4)

where dVN (lnr)
dlnr is the normalized VSD of the aerosol mixture

and dVj (lnr)
dlnr is the normalized VSD of component j . It can be

expressed by Eq. (5):

dVj (lnr)
dlnr

=
1

√
2π
∣∣lnσj ∣∣ exp

[
−

1
2

(
lnr− lnrj

lnσj

)2
]
, (5)

where σj and rj are the geometric standard deviation and
mean radius of component j , respectively, which are listed
in Table 1.

Combining the fine-mode volume concentration profiles
V (h) from GARRLiC, the extinction coefficients at different
wavelengths and levels σm (λ,h) can be modeled according
to the Mie theory:

σm (λ,h)=

∫
3

4r2Qext(λ,r,m)
dV (lnr)

dlnr
dlnr, (6)

whereQext is the Mie efficiency factor, which is related to li-
dar wavelength, particle size, and CRI (Bohren and Huffman,
1998); dV (lnr)

dlnr can be obtained by V (h) dVN (lnr)
dlnr .

Finally, the residual between modeled extinction σm and
fine-mode extinction from GARRLiC σc is quantified by the
iterative kernel function χ2 to find the optimal combination
of component volume fractions:

χ2
=

∑
λ

(σm (λ,h)− σc (λ,h))
2

εg(λ,h)(σc (λ,h))
2

λ= 532, 1064nm, (7)

where εg(λ,h) is the relative fitting residual between lidar
measurement and modeled lidar signal from GARRLiC at
different wavelengths, which is added to avoid the interfer-
ence of the uncertainty resulting from GARRLiC modeling.
Further, the component volume fractions can be transformed
to the mass concentrations Mj (h) by the density (ρj ) of
aerosol component j :

Mj (h)= fj (h)×V (h)× ρj

j = AN, AW, BC, WIOM, and WSOM. (8)

2.1.4 Microphysical parameterization scheme

The matched number of input parameters and the output
aerosol types is the prerequisite for a reasonable aerosol
model. Due to the limitation of lidar wavelengths, the in-
put parameters of lidar are not as many as sun-photometer.
Therefore, the aerosol parameterization scheme should be
constructed to establish the relationship between aerosol
components, thereby reducing the number of unknowns.
In our algorithm, we separated water-soluble and water-
insoluble aerosols firstly by the parameterization scheme of
Zhang et al. (2018a), which was re-parameterized with RH
based on Schuster et al. (2009). The volume ratio of water-

https://doi.org/10.5194/amt-15-6127-2022 Atmos. Meas. Tech., 15, 6127–6144, 2022



6132 F. Wang et al.: Retrieval of the aerosol components profiles

insoluble to water-soluble matter can be expressed as fol-
lows:

fi

fs
= ϕ(RH)

∫
ε(D)dD (9)

ϕ (RH)= 5.74(1−RH)3+ 0.01 (10)

ε (D)= ε0+ εv × exp

[
−

(
log(D/d0)

σlog

)2
]

(11)

where fi and fs are the water-insoluble and water-soluble
volume fractions respectively. ϕ (RH) is the re-parameterized
part of the function with RH. ε (D) is the climatological func-
tion of water-soluble volume fraction andD is the aerosol di-
ameter. ε0, εv , d0 and σlog are the average fitting parameters
in Kandler and Schuetz (2007), which can represent the gen-
eral aerosol properties. Moreover, fi+fs = 1 is an important
guarantee for the success of retrieval.

For the water-soluble matter, we assumed that AN was
the only hygroscopic component as mentioned in Sect. 2.1.1.
For enhancing the interaction between AN and AW, the re-
lationship between solute mass concentration and water ac-
tivity was applied in our algorithm, which was investigated
in Tang (1996). And the volume ratio of AN to AW can be
obtained by combining the Eqs. (12)–(15):

aw = 1+
4∑
k=1

Ckx
k (12)

RH= aw/100 (13)

ρs = 0.9971+
4∑
k=1

Akx
k (14)

fAN

fAN+ fAW
= x

ρ(x)

ρ(100)
(15)

where aw is the water activity, which can be approximately
regarded as RH due to the lower curvature effect (Tang,
1996). ρs is the density of solution and x is the weight percent
of AN. Ck and Ak are the polynomial coefficient of ammo-
nium nitrate from Tang (1996), which is considered as the
representative of inorganic salt. fAN and fAW are the volume
fractions of AN and AW respectively. With that, the growth
factor (GF) of AN can also be acquired, which plays a vital
role in the aerosol normalized volume distribution model of
Sect. 2.1.3.

GF(RH)=
rwet (RH)
rdry

=
3

√
fAN+ fAW

fAN
(16)

where rdry is the dry particle radius; rwet is the particle radius
under the ambient RH.

Fine-mode aerosols are categorized into water-insoluble
aerosols and water-soluble aerosols according to the above
relationship, which can be quantified with the help of the cli-
matological parameterization scheme in Eq. (9). For water-

insoluble aerosols (BC and WIOM), once the volume frac-
tion of one is known, the volume fraction of other is de-
termined. Meanwhile, for water-soluble aerosols (AN, AW,
and WSOM), the relationship between AN and AW is es-
tablished by Eq. (15), so that AN and AW can be consid-
ered as a whole. Thus, only two unknowns, one from water-
soluble species and the other from water-insoluble species,
are enough to achieve our requirement. In our algorithm,
we iteratively changed the volume fractions of WIOM and
WSOM and those of AN, AW, and BC can be correspond-
ingly obtained. What’s more, we also constrained the rela-
tionship between WSOM and WIOM to ensure the reliability
of inversion. The ratio of WSOM mass concentration to the
total OM is limited to 0.44 to 0.77, which has been applied in
Zhang et al. (2018a) according to the statistics of observation
experiments.

In summary, as presented in Fig. 1, if the volume fractions
of WIOM and WSOM are initialized, the other species would
be determined with the aid of parameterization schemes.
Then the extinction coefficient can be calculated by the con-
structed aerosol model. Through multiple iterations and the
constraints of fine-mode extinction coefficients from GAR-
RLiC, the optimal combination of volume fractions will be
found. Subsequently, the optimal mass concentration results
are compared with surface components measurements and
model products, including OM, BC, and AN, which verifies
the inversion performance of our algorithm. Besides, the pos-
sible sources of error are discussed and the uncertainties from
these sources are assessed in Sect. 3.2.

2.2 Measurement data

2.2.1 The input data of GARRLiC

The input data of GARRLiC consist of sun-photometer sun
and sky radiance, and lidar signals. Here, the sun-photometer
measurements were from the Beijing station (39.977◦ N,
116.381◦ E) of the AERONET (Aerosol Robotic Network,
https://aeronet.gsfc.nasa.gov/, last access: 28 September
2022) in February of 2021. The sky radiance (raw almucantar
with 26 scattering angles) and the version 3 level 1.5 prod-
uct (i.e., automatically cloud cleared but may not have final
calibration applied) of total optical depth (TOD) at 440, 675,
870, and 1020 nm were applied to drive GARRLiC. Besides,
the AERONET products of fine aerosol optical depth (AOD)
and fine volume concentration were employed to validate the
outputs from GARRLiC.

For the available sky radiance sequence, the correlative li-
dar signal data were chosen from a dual-wavelength elastic
lidar in the corresponding ±15 min time window, which was
set up on the roof of a 28 m high building in the tower of the
Institute of Atmospheric Physics at the Chinese Academy of
Sciences (39.976◦ N, 116.378◦ E). The normalized lidar sig-
nals at 532 and 1064 nm were used to run the GARRLiC with
the sun-photometer data. In advance, the lidar signals were
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averaged for 15 min and computed for 60 log-spaced heights
between 150 and 6000 m above the ground to avoid the in-
strumental error just as the Eq. (17):

P ′k = Pk/

Zmax∫
Zmin

PkdZ, (17)

where P ′k is the normalized lidar signal and Pk is the raw
averaged lidar signal. The upper and lower height limits are
represented by Zmax and Zmin, respectively. Besides, for the
accuracy of GARRLiC, the cases with the relative residual
larger than 15 % in the inversion process have been elim-
inated according to Benavent-Oltra et al. (2021). Conse-
quently, there were 133 retrievals remaining in February of
2021.

2.2.2 Relative humidity data

The vertical profile of relative humidity (RH) data used in
our algorithm was interpolated linearly from the European
Centre for Medium-Range Weather Forecast (ECMWF) Re-
analysis v5 (ERA5) hourly data from 1000 to 300 hPa, which
has been verified by the sounding data from the University of
Wyoming (http://weather.uwyo.edu/upperair/bufrraob.shtml,
last access: 20 September 2022) in Fig. S1 of Supplement.

2.2.3 Components data

The mass concentrations of aerosol components near the sur-
face on 8–15 February 2021, including water-soluble inor-
ganic salt, BC, and OC, were provided by the China National
Environmental Monitoring Center to validate the results of
the retrieved components. Besides, the Nested Air Quality
Prediction Model System (NAQPMS), a three-dimensional
chemistry transport model developed by the Institute of At-
mospheric Physics (IAP; Li et al., 2012), was also employed
to verify the reliability of estimated component profiles. The
meteorology field was provided by the Weather Research and
Forecasting model (WRF), which is driven by Final Analy-
sis data (FNL) from the National Center for Environmental
Prediction (NCEP). The outputs of the NAQPMS used in this
paper have been assimilated through the Parallel Data Assim-
ilation Framework (PDAF) system, which has a fairly good
correlation with measurements (Wang et al., 2022).

For comparable aerosol components, we used the sum of
the water-soluble inorganic salt from surface measurements
and NAQPMS products, such as sulfate, nitrate, and ammo-
nium, were used to compare with AN. Due to the limited
available data, the mass concentration of OC multiplied by
the conversion factor of 1.7 (Bürki et al., 2020) was con-
sidered as the observed organics to compare with the total
retrieved OM (WIOM+WSOM). The estimated BC can be
directly validated by the observation data and model prod-
ucts. In this study, in addition to the correlation coefficient
(R), two statistics of root-mean-square error (RMSE) and

normalized mean bias (NMB) were introduced to evaluate
the algorithm performance, which can be expressed as fol-
lows:

RMSE=

√√√√√ n∑
i=1
(Xr−Xo)

2

n
(18)

NMB=

n∑
i=1
(Xr−Xo)

n∑
i=1
Xo

, (19)

where Xr represents different aerosol components of BC,
AN, and OM; n is the sample size; Xo is the correspond-
ing components from surface measurements and NAQPMS
products. As an index to measure the deviation from true val-
ues (Wang et al., 2021), NMB> 0 indicates the overestima-
tion of estimated results – the larger the value, the greater the
overestimation.

3 Results and discussion

3.1 Validation

3.1.1 Evaluation of the outputs from GARRLiC

Since GARRLiC provides the input and constraints for our
algorithm, whether the GARRLiC outputs are reliable di-
rectly determines the accuracy of the component inversion.
Therefore, the GARRLiC outputs have to be validated based
on the products of AERONET, which are widely used in the
validation of remote-sensing results (Che et al., 2009). Due to
the unavailable volume concentration profile of AERONET,
Fig. 2a presents the comparison of fine columnar volume
concentration between GARRLiC and AERONET. It’s clear
that the correlation coefficient can be up to 0.94 and RMSE
was only 0.017. The mean percentage error (MPE), which
is the average percent of error from the truth, was about
42 %. This deviation was acceptable since the estimated un-
certainty for CRI in the Level 2 AERONET products is about
50 % (Dubovik et al., 2000). Moreover, the extinction coef-
ficients from GARRLiC were also compared with the results
retrieved by the Fernald method (Fernald, 1984) with the li-
dar ratio of 50 sr (Wang et al., 2020). From Fig. 2b we can
see that the two results were highly consistent and the cor-
relation coefficient was close to 1. Figure 2c shows the ver-
tical distribution of extinction coefficients from GARRLiC
and lidar. Obviously, the extinction average and standard de-
viation profiles of the two almost coincided, confirming the
validity of the GARRLiC outputs. In fact, the extinction pro-
files from GARRLiC depend directly on the fine-mode AOD
and the aerosol vertical profiles (unit: km−1), which are re-
trieved by lidar signal. Therefore, we validated the fine-mode
AOD and fitting lidar signal with AERONET and lidar signal
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Figure 2. (a) The comparison of fine volume concentration between GARRLiC and AERONET; (b) the comparison of extinction coefficient
at 532 nm between GARRLiC and lidar; (c) the averaged vertical extinction profiles from GARRLiC and lidar in February of 2021. The
shadows with different colors represent the standard deviation of extinction profiles from GARRLiC and lidar.

Figure 3. (a) The comparison of fine-mode AOD between GARRLiC and AERONET; the comparison of lidar signal between the fit from
GARRLiC and measurement at (b) 532 nm and (c) 1064 nm.

measurements, respectively. As shown in Fig. 3, not only the
fine-mode AOD but also the fitting lidar signal was in good
agreement with their respective reference, with the correla-
tion coefficient greater than 0.99. And the total MPEs of fine
extinction at two wavelengths were both about 14 %, largely
dependent on the fine-mode AOD due to the little error in
vertical lidar signal fitting. All of the above analyses indi-
cate that the fine volume concentration and extinction pro-
files from GARRLiC are reliable enough to drive the compo-
nent retrieval.

3.1.2 Comparison with surface observations

In order to validate the estimated mass concentration of com-
ponents, the comparison with observations on 8–15 Febru-
ary 2021 is presented here. During the test experiment pe-
riod, the number of samples was limited by the availability
of AERONET data. As shown in Fig. 4a, the fine volume
concentration between GARRLiC and AERONET matched
well, with a correlation coefficient of 0.89. The NMB of
0.031 indicated the credible results from GARRLiC; but
there was still a slight overestimation at high aerosol load-

ing. On 11–12 February 2021, the RH dropped from the
peak value companied with decreased extinction coefficients
(Fig. 4b–c), and the RH in the experiment period changed
from 20 % to 70 %, which was enough to reflect the general
atmospheric situation.

Due to the lack of observed component profile, the ob-
served mass concentrations of water-soluble inorganic salt,
BC, and OC near the surface were used to verify the remotely
sensed results preliminarily. The estimated components from
remote sensing at 150 m were employed for the verifica-
tion. Figure 5 gives the comparable results of AN, BC, and
OM between observation and retrieval results at the avail-
able time. An encouraging coherence in the variation trend
of AN between estimation and observation (R= 0.67) was
found although there was an underestimation on 12 Febru-
ary. Besides, there was a better consistency between the es-
timated and observed BC. The correlation coefficient can be
up to 0.91. However, the overestimation of BC was obvious
on 12 February, which was just the opposite of AN. This de-
viation can be attributed to the decreasing RH from 11 to
12 February, which influences the parameterization schemes
as mentioned in Sect. 2.1.4. Moreover, when the extinction
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Figure 4. (a) The fine volume concentration from GARRLiC and AERONET; (b) the fine-mode extinction at 532 and 1064 nm; (c) the RH
from ERA5 at the available time on 8–15 February 2021.

coefficients changed little (Fig. 4b), the decreased fine vol-
ume concentrations after 12 February also had responsibility
for the error, which led to the underestimated total mass con-
centration relative to observation. As shown in Fig. 5c, the
overestimation of OM was evident, and the mass concentra-
tions of WSOM were closer to the observation. We should
note that the components in the remote-sensing models are
not equivalent to the concepts in chemical research (Z. Li
et al., 2019), which is the primary error of comparisons. On
the other hand, there must be differences in the mass con-
centration of aerosol between the surface and 150 m due to
the influence of the atmospheric mixing state and emission
sources of different aerosol components.

3.1.3 Verification of estimated vertical profiles

Similar to the comparisons with surface observations, the
mass concentration of OC multiplied by 1.7 was chosen to
compare with OM, and the sum of the nitrate, sulfate, and
ammonium salt was used to compare with AN. The esti-
mated AN from remote sensing had the best correlation with

that from NAQPMS (R= 0.85 in Table 2), and there was
a slight underestimation (NMB=−0.19). The BC and OM
correlations were relatively weaker, with a correlation co-
efficient of ∼ 0.5, which corresponded to the relationship
of OM in Zhang et al. (2018a). The deviation can be ex-
plained by the different input RH data of our algorithm and
NAQPMS. Moreover, the differences in the results from two
different principles are reasonable. After all, our classifica-
tion of aerosol components is based on their optical charac-
teristics. Here, in order to evaluate the performance of ver-
tical profiles, we present two cases with lower and higher
aerosol loading in Fig. 6. It can be seen that the mass concen-
tration profiles of aerosol components from remote sensing
and NAQPMS were comparable. In the relatively clean con-
dition, OM had a higher mass concentration than AN, and the
vertical distribution of the estimated OM was similar to that
from NAQPMS, with the smallest deviation. There were fluc-
tuations in both estimated and simulated AN profiles< 1 km.
Subsequently, the maximum local concentration of the esti-
mated AN occurred at 2.5 km, while for simulated AN pro-
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Figure 5. The comparisons between observation and estimation results from remote sensing of (a) AN; (b) BC; (c) OM at available time on
8–15 February 2021.

files, it occurred at ∼ 2 km. The two BC profiles had similar
distributions. In the case of a higher aerosol load (Fig. 6d–
f), AN estimation performed best according to the simulated
AN profile from NAQPMS, but still with a little underesti-
mation. In comparison, the overestimation of OM and BC at
∼ 1 km was obvious. It is noteworthy that the vertical distri-
bution of different aerosol components was synchronous in
both remote sensing and NAQPMS. Therefore, the vertical
patterns of components depend largely on that of total ex-
tinction profiles, which is why the two results from remote
sensing and NAQPMS cannot match exactly.

3.2 Uncertainty assessment of component estimation

In fact, the uncertainties of component retrieval mainly come
from the errors of input parameters, i.e., RH, volume concen-
tration, and extinction coefficients. Among them, RH influ-
ences the component estimation indirectly by the parameter-
ization schemes, which are closely related to RH. Zhang et
al. (2018a) discussed the uncertainty of fi

fs
caused by ϕ (RH)

and the mean error is about 31.6 % when the RH is no more

Table 2. The correlation coefficient (R), the root mean square error
(RMSE), and the normalized mean bias (NMB) of AN, BC, and OM
between remote sensing and NAQPMS are presented.

R RMSE NMB
(µg m−3)

AN 0.85 14.4 −0.19
BC 0.54 5.2 −0.18
OM 0.50 15.9 0.78

than 85 %. Since the influence of RH on a parameterization
scheme always exists, here, we take 55 % as the critical point
of higher and lower RH to evaluate the uncertainty from in-
put microphysical parameters. In this paper, the Monte Carlo
method was employed based on the random generation of in-
put parameters by a Gaussian distribution with the original
values and errors as mean and standard deviation, respec-
tively. The error of RH was considered as about 10 % ac-
cording to the uncertainty from ERA5 (Gamage et al., 2020).
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Figure 6. The averaged mass concentration profiles of (a) AN; (b) OM; (c) BC from 11:00 to 13:00 LT on 9 February, 2021; (d–f) same as
(a)–(c) but averaged from 09:00 to 12:00 LT on 11 February, 2021. The solid lines and dashed lines represent the results from remote sensing
and NAQPMS, respectively.

Additionally, MPEs of the fine volume concentration and ex-
tinction coefficient mentioned in Sect. 3.1.1 were applied in
the Monte Carlo method. Each input parameter was sampled
with 30 iterations at different heights (Mattis et al., 2016).
Relative uncertainty was characterized by the ratio of stan-
dard deviation to mean values of 30 iteration results.

The uncertainties of AN, AW, WSOM, BC, and WIOM
from RH are given in Fig. 7a, with the mean values of 34.5 %,
48 %, 16.5 %, 40 %, and 7 % under the low-RH condition,
and 24.7 %, 40 %, 57 %, 68.8 %, and 65.8 % under the high-
RH condition, respectively. For other parameters, there were
similar quantitative relationships of the component estima-
tion uncertainties. The uncertainties of AN and AW at higher
RH were smaller than those at lower RH for all parame-
ters. That is because the parameterization scheme described
in Sect. 2.1.4 is closer to the actual condition at higher RH
(Tang, 1996). On the contrary, the higher RH made the larger
uncertainties for WIOM, BC, and WSOM, which may be
due to the increasing error of fi

fs
caused by ϕ (RH) below the

RH of 85 % (Zhang et al., 2018a). As shown in Fig. 7b, the
larger error of fine volume concentration with 42 % brought

greater uncertainty to component estimation. Similarly, with
the input CRI varying by more than 1 order of magnitude,
Schuster et al. (2016) found that the uncertainty of BrC can
change from 50 % to 440 %. Obviously, the estimation of BC
was more sensitive to the input parameters. This may be at-
tributed to the smaller amount of BC, the volume fraction
of which is 1–2 orders of magnitude less than that of other
components. The uncertainties caused by the constraints of
the extinction coefficients were mainly below 50 % for dif-
ferent components, which is comparable with the uncertainty
of retrievals by remote sensing (Li et al., 2013). It should be
noted that the uncertainty of aerosol components, such as BC
in emission inventories, can be 200 % and more (Schuster et
al., 2005). Therefore, it is valuable to retrieve by our algo-
rithm.

In fact, some errors exist exactly but are difficult to quan-
tify realistically. Just as the assumption of internal mixing
does not apply to all situations, so do the microphysical pa-
rameters. Cheng et al. (2012) observed that the number frac-
tion of internally mixed soot in total soot particles had pro-
nounced diurnal cycles. When the aging process converts
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Figure 7. The uncertainty of component retrieval from (a) RH with the error of 10 %; (b) volume concentration with the error of 42 %;
extinction coefficient with the error of 14 % at (c) 532 nm; (d) 1064 nm.

externally mixed soot into internally mixed ones, emissions
tend to emit more fresh and externally mixed soot particles.
Another unquantifiable error is from the Mie theory based
on the spherical hypothesis, which idealizes aerosol parti-
cles. However, the uncertainties related to assumptions are
endemic to all retrievals by remote sensing, as well as the
chemistry transport models (Chen et al., 2019). We should
mention that field measurement also cannot avoid inconsis-
tent assumptions.

3.3 The application of retrieval algorithm

3.3.1 Optical closure test

Based on the measurement data of lidar and sun-photometer
in February of 2021, the mass concentration profiles of
aerosol components in Beijing were retrieved. Figure 8
shows a quantitative optical closure test under different RH
conditions to validate the consistency between recovered ex-
tinction and the constraints from GARRLiC. It can be seen
that the modeled extinctions at 532 and 1064 nm both had a
good correlation with the reference values. The correlation
coefficients were both close to 1. However, there were still
some large residuals at the two wavelengths, especially at the
RH between 70 %–80 %. It seems to underestimate the ex-
tinction when the RH was larger than 70 %. That is probably
because the water-insoluble fraction is limited at high RH,
and BC in water-insoluble matter tends to contribute greatly

to extinction. On the contrary, the overestimation of 532 nm
at the RH of about 30 % can be attributed to the larger propor-
tion of water-insoluble matter. We should realize that the pa-
rameterization scheme of water-soluble and water-insoluble
matter may have trouble in reflecting the real atmosphere sit-
uation. But for now, there are still not sufficient observation
experiments to construct a more realistic scheme. Moreover,
the added constraint of the relationship between WIOM and
WSOM can also limit the BC fraction, although ignoring the
constraint could bring about a well-matched closure result
but might lead to unreasonable component volume fractions.

3.3.2 Vertical profiles of aerosol components in Beijing

Figure 9 shows two typical cases under different situations.
It can be seen that the vertical distribution of aerosol com-
ponents can be quantified even with extremely low aerosol
loading (Fig. 9a). Under the clean condition, aerosols were
mainly distributed below 3 km with different patterns of com-
ponent profiles. There were similar peak values in the mass
concentrations of AN and WIOM but at different heights.
The mass concentration of AW was the smallest through-
out the vertical direction due to the low RH. As shown in
Fig. 9b, the two local maximums of RH being about 40 %
appeared at about 700 m and 2.4 km, respectively, which was
consistent with extinction profiles below 3 km. Besides, there
was a fairly good relationship between the optical fit extinc-
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Figure 8. The comparison between modeled extinction σm and extinction constraints from GARRLiC σc at (a) 532 nm and (b) 1064 nm.

Figure 9. (a) The mass concentration profiles of aerosol components retrieved from remote sensing at 09:00 LT on 7 February 2021, which
was under clean conditions; (b) the vertical distribution of relative humidity (RH) (green line) and extinction coefficients at 532 nm at
09:00 LT on 7 February 2021. The dotted red line represents the extinction profile recovered by the component results and the dark gray line
represents the input data from GARRLiC; (c) the vertical distribution of extinction coefficients at 1064 nm at 09:00 LT on 7 February 2021;
(d–f) same as (a)–(c) but for 12:29 LT on 26 February 2021, which was under polluted conditions.
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tions and inputs from GARRLiC with a mean relative error
of 4.63 % at 532 nm and −1.99 % at 1064 nm (Fig. 9c).

In the polluted case, aerosol components were concen-
trated below 1 km due to the weak atmospheric diffusion
capacity as shown in Fig. 9d. The maximum mass con-
centration of AN occurred near the surface, being about
125 µg m−3. Subsequently, there was a decreasing trend with
a fluctuation between about 300 to 600 m, while the mass
concentration of WIOM and WSOM peaked at 672 m and
were only about 10 µg m−3 near the ground. According to
Lou et al. (2017), sulfate and nitrate, transformed from SO2
and NO2, were mainly responsible for the fine particle pol-
lution at the RH of about 70 %, which explains the high pro-
portion of AN in Fig. 9d. Generally, pollution is usually ac-
companied by high RH. As shown in Fig. 9e, the maximum
RH matched the large value of extinction below 1 km well.
Moreover, the well-recovered extinction profiles at two lidar
wavelengths indicated the stability of our algorithm.

4 Conclusions

By combining ground-based lidar and sun-photometer, we
develop a new algorithm to get the vertical profiles of fine-
mode aerosol components, including black carbon (BC),
water-insoluble organic matter (WIOM), water-soluble or-
ganic matter (WSOM), ammonium nitrate-like (AN), and
fine aerosol water (AW) content, which increases the re-
trieved aerosol types from the dual-wavelength Mie lidar.
On this basis, the vertical profiles of aerosol components ob-
tained in February 2021 in Beijing are retrieved and com-
pared with in situ measurements and simulated results from
NAQPMS, proving the validity of our component estimation.
There is the best consistency between the estimated and ob-
served BC with a correlation coefficient up to 0.91. The trend
of AN between estimation and observation is accordant but
with a little underestimation. Meanwhile, compared with the
simulated results, the retrieved AN from remote sensing had
the best correlation (R= 0.85) with a slight underestimation
(NMB=−0.19). The BC and OM correlations were rela-
tively weaker, with a correlation coefficient of ∼ 0.5. The
vertical distribution of different aerosol components was syn-
chronous in both remote sensing and NAQPMS. Considering
the distinct principles, the differences between remote sens-
ing and simulated results are reasonable to some extent. In
addition, the reliability of the retrieval algorithm is also veri-
fied by the well-recovered extinction coefficients in the quan-
titative optical closure test.

Based on the products of AERONET, the mean errors ob-
tained with respect to the input parameters are introduced to
assess the uncertainty of component estimation by the Monte
Carlo method. The uncertainties caused by extinction coeffi-
cients are mainly less than 50 % for different components.
Additionally, increasingly better component estimation re-
sults can be obtained with the increasing accuracy of the in-

put parameters. However, errors from the assumptions, such
as internal mixing and spherical hypothesis, are difficult to
quantify realistically. Further, we should mention that the
assumptions are endemic to all retrievals by remote sens-
ing. Meanwhile, the parameterization schemes and aerosol
microphysical parameters used in the algorithm, which vary
over time and place, still need to be improved by conducting
sufficient observation experiments. In the future, the distin-
guishable aerosol types will be increased by upgrading pa-
rameterization schemes, employing more lidar wavelengths,
and considering the irregular shape of dust.
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