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Abstract. Random uncertainties and vertical error correla-
tions are estimated for three independent data sets. The three
collocated data sets are (1) refractivity profiles of radio occul-
tation measurements retrieved from the Metop-A and B and
COSMIC-1 missions, (2) refractivity derived from GRUAN-
processed RS92 sondes, and (3) refractivity profiles derived
from ERA5 forecast fields. The analysis is performed using
a generalization of the so-called three-cornered hat method
to include off-diagonal elements such that full error covari-
ance matrices can be calculated. The impacts from various
sources of representativeness error on the uncertainty esti-
mates are analysed. The estimated refractivity uncertainties
of radio occultations, radiosondes, and model data are stated
with reference to the vertical representation of refractivity in
these data sets. The existing theoretical estimates of radio
occultation uncertainty are confirmed in the middle and up-
per troposphere and lower stratosphere, and only little depen-
dence on latitude is found in that region. In the lower tropo-
sphere, refractivity uncertainty decreases with latitude. These
findings have implications for both retrieval of tropospheric
humidity from radio occultations and for assimilation of ra-
dio occultation data in numerical weather prediction models
and reanalyses.

1 Introduction

In variational estimation of geophysical parameters from
satellite observations, the obtained accuracy relies on the va-
lidity of the underlying uncertainty and error correlation as-
sumptions of the observation and of the model background

fields. The three-cornered hat (3CH) method (Grubbs, 1948;
Barnes, 1966; Levine, 1999) provides an empirically based
uncertainty estimate of three independent data sets, all repre-
senting a series of measurements of the same physical prop-
erty. A historical overview of the applications of 3CH, and
related methods, is given by Sjoberg et al. (2020). The 3CH
method was introduced independently by multiple authors;
the earliest was by Grubbs (1948) and (often referenced)
Gray and Allan (1974). The method has in several cases been
used for meteorological applications, sometimes under other
names, see, e.g. O’Carroll et al. (2008).

In numerical weather prediction (NWP), the method de-
veloped by Desroziers et al. (2005) is being widely adopted
for empirically based adjustment of observation error covari-
ance matrices, e.g. Bormann et al. (2016). However, the 3CH
method has not been adopted as a tool in operational assim-
ilation of satellite data into NWP models. This is probably
because in NWP data assimilation, all the model representa-
tiveness errors, including forward modelling errors, are con-
sidered a part of the observation error. The 3CH method is
not targeted specifically at NWP applications. This means
that all three data sets involved are treated equally as a start,
thus they are all assumed to contain representativeness errors
with respect to the underlying truth. In order to use results
obtained from the 3CH analysis it is necessary to consider,
for each particular application, how representativeness errors
are distributed among the involved data sets, and this is not
always possible to find out.

To distinguish error correlations between data sets from
vertical error correlations within each data set, we will refer
to the former as error cross correlations. Such error cross
correlations can, for instance be due to similarities in mea-
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surement methods and processing or they can, for example
arise as a result of similarity in resolution among the data
sets. Error cross correlations can cause the 3CH method to
misrepresent uncertainties (Rieckh and Anthes, 2018). If er-
ror cross correlations and representativeness issues are prop-
erly considered and accounted for, the 3CH method can serve
as an alternative to – or a validation reference for – uncer-
tainty estimates based on instrument characteristics and mea-
surement geometry.

Recently Rieckh et al. (2021) applied the 3CH method
to refractivity, temperature, and humidity profiles from ra-
dio occultations (RO), combined with radiosondes and model
analysis. The results of that study yielded relatively large un-
certainty estimates (see Discussion, Sect. 5), and the study
leaves the problem of error cross correlations unresolved.

In this paper the 3CH method is generalized to include off-
diagonal elements of the error covariance matrices. We apply
the generalized 3CH (G3CH) to three data sets where the ran-
dom error components can be assumed not to be interdepen-
dent, meaning that their error cross correlations are assumed
to be negligible. The refractivity error covariance matrices of
RO measurements are estimated and compared with current
vertical correlation assumptions, used in 1D-Var retrieval of
specific humidity and temperature from RO refractivity. The
main objective of this study is to assess refractivity random
uncertainty and vertical error correlations, expressed as the
refractivity error covariance matrix, to be used in 1D-Var re-
trieval of temperature and specific humidity (Healy and Eyre,
2000; Kursinski et al., 2000; ROM SAF, 2021b). The three
data sets are treated on equal terms such that none of them
are considered more or less representative for the truth a pri-
ori, thus the analysis will also provide estimates of the ERA5
refractivity error covariance matrix and of the GRUAN pro-
cessed RS92 refractivity error covariance matrix.

The remainder of the paper is organized as follows:
Sect. 1.1 and 1.2 contain definitions of the terminology used
throughout the paper. Next, the three data sets are introduced
in Sect. 2, and the G3CH method is presented in Sect. 3,
which includes a derivation of the G3CH equations. Results
are presented in Sect. 4 along with interpretation of the differ-
ent collocation and filtering experiments. In the Discussion,
Sect. 5, the results are related to previous studies and appli-
cations. The results are finally collected in the Conclusions,
Sect. 6.

1.1 Definitions

The terms random uncertainty and systematic uncertainty are
used as defined in the Guide to the Expression of Uncer-
tainty in Measurement (GUM; Joint Committee for Guides
in Metrology, 2008). We adopt the concept of error covari-
ance (matrix) and error correlation (matrix) from NWP ter-
minology (Bormann et al., 2016; Merchant et al., 2019) to
describe vertically correlated random uncertainties, and we
use the terms error variance and error standard deviation to

refer to the diagonal of an error covariance matrix and its
square root.

The term vertical footprint of a data set is used here in the
same way as in Semane et al. (2022): The vertical scale that
an observation value represents. The word resolution may
be used to describe this property, but we shall avoid this term
because in the NWP community it is used in the meaning
of sampling density – the number of data points per spatial
interval (e.g. in Hersbach et al., 2020). The vertical footprint
will typically be larger than the distance between the vertical
height levels which the data values refer to.

1.2 Error components

For a given refractivity data profile, x, we consider the ob-
servation error ε as the deviation from the unknown truth t ,
ε = x− t . The G3CH does not make any assumptions about
exactly what the true profile t is. t may be thought of as
defined with respect to a given but unknown finite vertical
footprint, which may differ from the vertical footprints of all
three data sets.

The quantity ε is a sum of the measurement error εI and
a representativeness error εR. Both terms may contain ran-
dom and systematic error components, but for each subset of
collocated triplets being analysed, we remove systematic er-
ror differences between the three involved data subsets prior
to the analysis. The measurement error εI acts as a superim-
posed noise, possibly correlated in space and time. εI may
for instance include instrument errors, radio noise from ex-
ternal sources, and also some errors arising during data pro-
cessing steps. The εR component represents the distortion of
the underlying truth in a data set, as it is being mapped to the
vertical observation grid. εR contains errors associated with,
for instance sampling, interpolation, and mismatch between
the observation grid and measurement resolution in time and
space. Especially εR contains a geometric error component,
εG, representing the departure of the ERA5, RO, and RS92
vertical or skewed profiles in time and space from the un-
known true profile at the RO reference coordinates. The RO
reference coordinate is the point at which a straight line be-
tween the GNSS satellite and the receiving Low Earth Or-
biter tangents the Earth ellipsoid. The ERA5 profile is strictly
vertical, interpolated to the RO reference time and position,
while the RO profile is a weighted average of the 3D atmo-
sphere in the plane of occultation (Syndergaard et al., 2005),
and the radiosonde follows the balloon trajectory. The for-
ward operator used estimates refractivity along a 1D assumed
vertical line, and this has an impact on the uncertainty esti-
mates. Thus, the RO observation errors estimated by the 3CH
method in this paper are applicable for variational assimi-
lation with a 1D operator, but not for 2D or 3D operators.
The time scale of an RO profile is in the order of 1 min and
the timescale of an radiosonde profile is in the order of 1 h.
The skew trajectories of the RO tangent points and RS92 bal-
loons are assumed not to be correlated with each other. Hence
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the εG term can be assumed to contain no cross correlations.
However, there are potentially error cross-correlation compo-
nents arising from spatial correlations between the data sets,
which we cannot assess. This could, for example be the case
for ERA5 and RO, because these are sampled on similar hor-
izontal scales.

Given the definition of t to be the actual profile at the
RO reference location and time, there are, in addition to εR

and εI, errors induced by the methods applied in this paper.
These are a collocation error, εC, due to the distance in time
and space between the radiosonde and the reference coor-
dinates, and a cross-correlation error, εX, representing error
cross correlations induced by the finite vertical footprints of
the three data sets. The raw G3CH uncertainty estimate for
one of the data sets will not represent the observation error,
but it will represent a combination of the observation error ε

and error components added by the G3CH:

εG3CH = εI
+ εR

+ εC
+ εX. (1)

We are able to remove εC and the εX components of the
three data sets, by adding the following additional analysis
steps to the G3CH. The εC covariance matrix, CC, is elimi-
nated by first calculating G3CH estimated covariance matri-
ces Ci for a series of collocation subsets, sampled from ar-
eas of decreasing size around the RO reference coordinates.
Next, the sequence of decreasing covariance estimates is ex-
trapolated to the virtual zero-area case C0, by assuming that
CC
i = Ci −C0. Subsequently the εX covariance matrix, CX,

is eliminated by smoothing all three data sets such that they
have the same vertical footprint, and then for each data set
a covariance matrix Cs is calculated with G3CH from the
smoothed data sets, such that CX

= C0−Cs. Thus, the ob-
servation error covariance matrices that we estimate in the
end include only measurement error εI and representative-
ness error εR.

ε = εI
+ εR. (2)

The final estimate of ε will be stated with reference to a com-
mon vertical footprint of the three data sets, which is de-
termined by the data set with the largest vertical footprint,
ERA5. These general definitions of measurement error and
representativeness error are thought to be applicable for all
three data sets.

2 Data

Three data sets are combined in the analysis. The RO data set
includes refractivity profiles from the Metop and COSMIC-1
missions (Gleisner et al., 2020), interpolated to 247 levels.
These are downloadable as part of the ROM SAF CDR v1.0
and ICDR v1 data sets. The CDR v1.0 (Gleisner et al., 2022)
consists of RO data from several satellite missions, which
have been reprocessed by the ROM SAF, using lower-level

input data from both EUMETSAT and UCAR as input. The
ICDR v1 (Gleisner et al., 2019) consists of RO data from
the Metop mission, which have been reprocessed by the
ROM SAF, using input data from EUMETSAT. Secondly
the radiosondes (RS92) are taken from the RS92-GDP.2 data
set, provided by the GCOS Reference Upper-Air Network,
GRUAN, (Dirksen et al., 2014; Sommer et al., 2012). From
these two data sets a collocated subset has been selected,
from the criterion that the GRUAN central time and position
must be within 3 h and 300 km of the RO reference point. In
effect this ensures that the location criteria are met in the up-
per troposphere while measurements can be sampled further
apart at both higher and lower altitude. The RO data have
been subject to the ROM SAF quality control described in
Steiner et al. (2020), and the GRUAN data have been pruned
for a few extreme outliers. The third data set (ERA5) con-
tains model forecast from the ERA5 data set (Hersbach et al.,
2020) on model levels, retrieved from the ECMWF MARS
archive. The forecast verification time has in each case been
chosen such that the RO has not been within the assimilation
window used for initialization of the given forecast. Effec-
tively this implies that the verification times used run from 3
to 15 h, and the ERA5 uncertainty is assumed to be constant
in this time range.

The ERA5 forecast is prepared at model levels and inter-
polated in time (3 h grid) and horizontal space (1× 1◦ grid)
to the RO reference points. These interpolated ERA5 pro-
files are also provided as part of the ROM SAF CDR v1.0
and ICDR v1 data sets. The data span a time interval from
2006 to 2020. A total of 15 597 collocations were found for
this analysis. The RS92 temperature, humidity, and pressure
variables have been interpolated with cubic splines to the 137
ERA5 model levels, hereafter the ERA5 and RS92 variables
have been forward modelled to refractivity at the RO vertical
grid of 247 levels (Lewis, 2009). The refractivity calculation
is made with the method described in the ROPP user guide
(ROM SAF, 2021a).

3 Method

3.1 The generalized three-cornered hat method

The 3CH method has historically been applied to triplets of
data without considering vertical error correlations, meaning
that the data sets have effectively been treated as scalar prop-
erties (Sjoberg et al., 2020). A straightforward generalization
of the method allows us to also infer internal error correla-
tions for each data set. In the generalized 3CH (G3CH) it is
assumed that we have three independent variables x,y, and
z, which are composed of four stochastic vectors; the truth t ,
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and three independent error terms εx , εy , and εz, such that

x = t + εx ,

y = t + εy ,

z= t + εz . (3)

In the present paper x,y, and z may represent atmospheric
refractivity profiles obtained from different sources. εx,εy ,
and εz represent the random observation error vectors. In the
following the bracket notation, 〈〉, is used to denote expecta-
tion values.

The error vectors εx,εy , and εz may have internal correla-
tions, expressed as error covariance matrices X= 〈εxεxT

〉,
Y= 〈εyεyT

〉, and Z= 〈εzεzT
〉, but we assume no cross-

correlation components; i.e. 〈εxεT
y 〉 = 〈εxε

T
z 〉 = 〈εzε

T
y 〉 = 0.

We may allow that the error is correlated with the physical
property t ; e.g. 〈tεT

x 〉 6= 0. Besides this, no assumptions are
made about the particular shape of error distribution func-
tions. In the present paper we only estimate the random un-
certainties. In practice we remove biases in each subset of
collocations where G3CH is to be applied by subtracting the
subset mean of each of the three data sets prior to the anal-
ysis. Thus, in the following derivation we can assume that
all data are bias-free. In the absence of bias, the covariance
matrices of each subtraction pair can be written as

〈(x− y)(x− y)T〉 = 〈xxT
+ yyT

− xyT
− yxT

〉 ,

〈(x− z)(x− z)T〉 = 〈xxT
+ zzT

− xzT
− zxT

〉 ,

〈(y− z)(y− z)T〉 = 〈yyT
+ zzT

− yzT
− zyT

〉 . (4)

Expanding the right-hand side of, for instance the first line of
Eq. (4) we obtain

〈(x− y)(x− y)T〉 = 〈εxεx
T
− εxε

T
y − εyε

T
x + εyεy

T
〉 . (5)

If we keep in mind that error cross correlations between data
sets are set to zero, the three subtraction pair covariances re-
duce to

〈(x− y)(x− y)T〉 = 〈εxεx
T
+ εyεy

T
〉 ,

〈(x− z)(x− z)T〉 = 〈εxεx
T
+ εzεz

T
〉 ,

〈(y− z)(y− z)T〉 = 〈εyεy
T
+ εzεz

T
〉 . (6)

Finally, by solving these three equations for the error covari-
ance matrices X= 〈εxεxT

〉, Y= 〈εyεyT
〉, and Z= 〈εzεzT

〉

for the variables x,y, and z, we get

X= 〈εxεxT
〉 =

1
2
〈(x− y)(x− y)T+ (x− z)(x− z)T

− (z− y)(z− y)T〉 ,

Y= 〈εyεyT
〉 =

1
2
〈(y− x)(y− x)T+ (y− z)(y− z)T

− (x− z)(x− z)T〉 ,

Z= 〈εzεzT
〉 =

1
2
〈(z− x)(z− x)T+ (z− y)(z− y)T

− (x− y)(x− y)T〉 . (7)

The above G3CH model is applied to the three data sets de-
scribed in Sect. 2. In this analysis the mean is subtracted from
each data set prior to applying the G3CH. The biases are not
the focus here, but for reference the global means of RS92
and RO refractivity differences to ERA5 for all collocations
used in the analysis are plotted in Fig. 1.

3.2 Handling collocation uncertainty

In order to compensate for the impact of collocation uncer-
tainty εC on the obtained refractivity error covariance matri-
ces, the G3CH analysis is applied to a series of data sub-
sets with increasing collocation distances between 50 and
300 km. The collocation uncertainty is removed from the un-
certainty estimates by extrapolating the covariance matrices
to zero collocation distances. This procedure, which is also
performed by Hollingsworth and Lönnberg (1986) in another
context, also allows one to track how the G3CH method par-
titions the collocation uncertainty among the three data sets
(see Sect. 4.2).

3.3 Error correlations between data sets

The 3CH algorithm cannot distinguish between true physi-
cal variability and mutual positive error correlations (Sjoberg
et al., 2020). In cases where errors of two data sets (x and y)

are positively correlated, the discrepancy between the third
data set, z and (x,y) will be attributed as an uncertainty of
z, because the term 〈(x− y)(x− y)T〉 would be reduced in
such cases.

In this study the measurement error cross correlations be-
tween the chosen data sets are assumed to be negligible, since
the three data sets at hand are obtained by completely inde-
pendent techniques. In particular the ERA5 model forecast
data are chosen such that no information from either a given
RO or an RS92 profile can have been passed to the forecast
being used in a given collocation triplet. However, if two data
sets have similar vertical footprints, or if they are sampled at
similar horizontal scales, these two data sets may have cross-
correlated errors, and possibly biases. All biases are removed
prior to application of G3CH, but the error cross correlations
introduced by finite vertical footprints or similar horizontal
scale may influence the result of G3CH.

3.4 Handling differences in vertical footprints

The three data sets differ in their vertical footprints. The
RS92 radiosonde has a vertical footprint of around 50 m
(Dirksen et al., 2014). This vertical footprint is increased
through the interpolation to the common grid (Lewis, 2009),
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Figure 1. Global biases of RS92 and RO refractivity, with ERA5
used as reference, based on all collocation triplets (collocated
ERA5, RO, and RS profiles) used in this study, evaluated at the
RO reference location. See also Sect. 2. Percentages are calculated
relative to the mean of ERA5 forecasts.

and through the procedure for correcting for collocation er-
ror. The RO refractivity has been shown to have a vertical
footprint of about 200 m under optimal conditions in the
lower troposphere (Xie et al., 2012). In the RO data used
here, the processing has removed some small-scale infor-
mation, and thus the RO vertical footprint is expected to be
larger than 200 m. In Fig. 2 two examples of refractivities
of triple collocations are shown. The plots illustrate the abil-
ity of resolving vertical structures in the middle troposphere
and lower stratosphere of the three data sets. Even though the
highly resolved ERA5 has 137 vertical levels, shown on the
right vertical axis, it provides a somewhat smoother repre-
sentation of the vertical structures compared to the RO. The
RO profiles and RS92 profiles show more vertical structure
than ERA5.

Uncertainty estimates for any vertically represented vari-
able must refer to a specified vertical footprint to be mean-
ingful. Thus, the G3CH analysis has to be accompanied by
an assessment of the vertical footprints of the data sets. In
our approach the data set with the largest vertical footprint
determines the common vertical footprint to be used for all
three data sets. In other words, if one of the data sets does
not contain information below a certain length scale, there is
not enough information in the data triplet to apply the G3CH
method to estimate uncertainties related to variability below
that length scale.

Because ERA5 is missing some fine-scale physical fea-
tures, seen in the better resolved RO and RS92 data set, we

Figure 2. Refractivity of two selected triple collocations exem-
plifying differences in vertical footprint. (a) ERA5, RS92, and
COSMIC-1 RO (40.1◦ N, collocation distance: 18.6 km (0.2 h))
and (b) ERA5, RS92, and Metop RO (52◦ N, collocation distance:
25.5 km (1.6 h)). RS92 and ERA5 have been interpolated to the 247
RO height levels. The refractivity has been normalized by division
with the mean of the ERA5 data set refractivity. The thinned refrac-
tivity levels and the 137 ERA5 model levels are printed on the right
vertical axis.

are forced to state the uncertainty on the common scale de-
termined by ERA5. This means that the RO and RS92 data
must be smoothed to match the ERA5 vertical footprint prior
to the G3CH analysis. If this smoothing is omitted, the G3CH
may give a biased estimate of uncertainties. By smoothing
the data sets to a common scale we remove both the phys-
ical features and the errors on scales shorter than the com-
mon vertical footprint. Therefore the estimated uncertainties
of RO and RS92, which are correct on the common scale
found, may be viewed as lower uncertainty boundaries for
these variables on their native scales. The vertical footprints
of the three data sets are examined in Sect. 4.3.

4 Results

In this section the G3CH results are presented, first as raw un-
filtered uncertainty estimates, then with corrections for col-
location mismatch (εC terms) and corrections for cross cor-
relations due to finite vertical footprints (εX terms), to assess
the uncertainty limits for each data set.

4.1 Raw uncertainty estimates

Figure 3 shows the raw estimates of the mid-latitude refrac-
tivity uncertainty expressed as error standard deviation of the
three data sets, obtained by applying the G3CH directly to
the raw data sets. Generally the G3CH attributes a big part
of the collocation error (εC

x ) to the RS92 uncertainty. The
reason is that the collocation is performed by interpolating
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Figure 3. Raw estimate of refractivity random uncertainty (standard
deviation) of ERA5, RO, and RS92 at middle latitudes.

ERA5 to the RO reference point, such that ERA5 and RO are
closely collocated, while RS92 is chosen such that it is within
300 km of the RO reference point; thus, naturally RS92 will
stand out from the two other data sets in many cases.

4.2 Collocation uncertainty

The most striking feature in Fig. 3 is the bulge of RS92
around the tropopause. The main part of this bulge is re-
moved along with the collocation uncertainty by the proce-
dure described in Sect. 3.2. We calculate the G3CH estimates
of covariance matrices for a sequence of collocation criteria
(between 50 and 300 km) and use these to extrapolate all co-
variance matrices to 0 km collocation distance, with a linear
fit to the full covariance matrices as a function of the squared
collocation distance. The effect of varying the temporal col-
location window is small, and therefore we have excluded
that from the analysis.

The impact on RS92 of changing collocation distance is
shown as an example in Figs. 4 and 5 where a few exam-
ples of extrapolations are presented. The result of this pro-
cedure is summarized for all three data sets in Fig. 6. The
RS92 uncertainty estimate is reduced considerably, while the
uncertainty estimates for the two other data sets are slightly
changed. In the subsequent analysis the 0 km estimates of co-
variances are used for evaluation of covariance matrices and
difference terms in the G3CH equations.

Figure 4. Estimate of refractivity uncertainty (standard deviation as
percent of ERA5 mean refractivity) of RS92 for a series of collo-
cation criteria. The dashed black line shows the STDV obtained by
extrapolation of the variance to zero collocation distance.

Figure 5. Examples of extrapolation of refractivity error variance
of RS92, i.e. diagonal elements of covariance matrix, to zero collo-
cation criterion at five different altitudes. The variances are divided
by the mean ERA5 refractivity.
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Figure 6. 3CH estimates of refractivity error standard deviations are shown for 300 and 0 km collocation criterion for each of the ERA5,
RS92, and RO data sets at low (a), middle (b), and high (c) latitudes. Smoothing has not been applied.

4.3 Vertical filtering

In Fig. 7 the impact of smoothing on error standard devia-
tions estimated with G3CH (Eq. 7) is shown for middle lat-
itudes. The smoothing is applied as a sequence of Gaussian
filters of increasing widths. For each data set, filtering has
been performed, not on the data set itself, but on the two
other complementary data sets (see figure legends). The idea
is basically to probe the vertical footprint of one data set with
two other data sets of varying vertical footprint. The G3CH
analysis was performed at the sequence of such prepared
triplets of data sets with increasing filter width. The impact
of applying sequences of Gaussian filters is best viewed near
the tropopause. We note that all variances eventually start to
grow at some filter width, but the ERA5 error standard devi-
ation drops in most cases at small filter widths, and does not
start to increase until the width of the filter, applied on the RO
and RS92 data, exceeds a certain threshold. We interpret this
threshold as the ERA5 vertical footprint. The ERA5 vertical
footprint was estimated for each altitude, as the minimum of
a second-order polynomial, fitted to σERA5 as a function of
filter width. These vertical footprints are plotted in Fig. 8, for
middle and high latitudes. At low latitudes the result is un-
stable, and therefore that plot has been omitted. We use these
results to identify a common ERA5 vertical footprint to be
applied globally as the mean of the middle- and high-latitude
vertical footprints, shown as a dashed line in Fig. 8.

A similar analysis cannot be performed for the RO or
RS92 data sets, because these appear to have small verti-
cal footprints which happen to lie close to each other. There
is not a finite filter length which minimizes the refractivity
error standard deviation for RO and RS92 (the filters being

applied to the complementary data sets in each case). There-
fore the RO and RS92 vertical footprints cannot be inferred
from these three data sets alone, but it can be concluded that
their vertical footprints are smaller than the ERA5 vertical
footprint since the ERA5 estimated error standard deviation
decreases if either the RO or RS92 is smoothed. This is il-
lustrated in Fig. 9: The impact of smoothing RS92 on the
ERA5 variance is shown in Fig. 9a. Generally σ 2

ERA5 de-
creases as the RS92 data are brought closer to the ERA5 data
by smoothing, consistent with RS92 having a smaller verti-
cal footprint than ERA5. The RO error variance, σ 2

RO, on the
other hand increases as a result of smoothing the RS92 data
(see Fig. 9b). This is consistent with the RS92 vertical foot-
print being close to the RO vertical footprint and the RS92
data moving closer to the ERA5 data as smoothing is applied
to RS92. In Fig. 9c σ 2

ERA5 is seen to decrease as the RO re-
fractivity is brought closer to ERA5 refractivity, as smooth-
ing is applied to RO.

To estimate the final G3CH uncertainties with reference
to the common vertical footprint determined by ERA5, all
three raw data sets were smoothed with a Gaussian filter with
the width of the ERA5 vertical footprint prior to the G3CH
analysis. In Fig. 10 the final G3CH inferred uncertainties are
shown for each data set for low, middle, and high latitudes.
For all data sets the unfiltered uncertainty is also plotted, for
later discussion.

4.4 Error covariances

In Figs. 11 and 12 the G3CH-based error covariance matrices
for ERA5, RO, and RS92 are shown for rising and setting oc-
cultations for middle and high latitudes. These matrices have
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Figure 7. Effect of smoothing on error standard deviations of ERA5 (a), RO (b), and RS92 (c) estimated by 3CH. Note that the x axis is
shifted by 0.2 % in panel (c). All plots are for middle latitudes. The standard deviations are divided by the mean ERA5 refractivity. The
filtering width is defined as 2 times the standard deviation of the Gaussian filter function. The single curves are most easily identified at a
given altitude by counting the curves from one side. For each data set, the smoothing is only applied on the two other data sets.

Figure 8. Estimates of the ERA5 vertical footprint for middle and
high latitudes. The effect of filtering of RO and RS92 on the esti-
mated ERA5 error standard deviation, σERA5, is shown in Fig. 7a.
The ERA5 vertical footprint is found for each altitude as the filter
width which minimizes σERA5.

been calculated without any vertical filtering applied. The
tropics are not shown because of insufficient number of data
in that region. The fine-scale off-diagonal structures must be
attributed to statistical noise, but there are certainly larger-
scale vertical correlation structures especially in the RO and
RS92 data.

Generally the vertical correlations are divided into two
separable regimes: Close to the diagonal we see a short-range
correlation with standard deviation of approximately 0.5 km,
and a long-range correlation component of varying shape and
amplitude. The short-scale vertical correlations are very sim-
ilar for all data sets. Rising occultations are found to have
larger vertical error correlations (and slightly larger stan-
dard deviation where correlations are broader) than setting
occultations in this data set, which is seen when comparing
panel (b) with panel (e) in Fig. 11 and panel (b) with panel (e)
in Fig. 12. This is believed to be due to the ionospheric cor-
rection in the RO processing for rising occultations, where
the L2 GPS signal is often not available below 20 km, and
extrapolation from above is necessary. In the CDR v1.0 data
set, it is in particular the rising occultations for Metop after
instrument firmware upgrades in 2013 that suffer from miss-
ing L2 data below 20 km (Gleisner et al., 2020), and conse-
quently there are broader vertical error correlations in the re-
trieved refractivity profiles for Metop after 2013 (not shown).

It is worth noting that the estimated vertical correlations
of RS92 are larger for setting than for rising RO at high
latitudes, especially between 6 and 22 km. Thus the G3CH
fails to give an independent estimate of the RS92 correla-
tions. The RS92 is expected to have long-ranging vertical
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Figure 9. Estimates of middle-latitude refractivity error variances based on smoothed data divided by refractivity error variance based on
un-smoothed data; (a) ERA5 error variance with smoothed RS92, (b) RO error variance with smoothed RS92, and (c) ERA5 error variance
with smoothed RO. The legends show the width of the different vertical Gaussian filters applied to the refractivity profiles mentioned in the
legend title; e.g. σERA5/σERA5,0 in panel (a) means uncertainty estimate of ERA5, given filtering of the data set mentioned in the legend –
in this case RS92, divided by the uncertainty estimate of ERA5, obtained without filtering. A total of 9722 collocated data triplets were used
in the G3CH analysis for these error covariance estimates.

Figure 10. Best estimate of refractivity uncertainties, shown as standard deviations in percent of the ERA5 refractivity for ERA5, RO, and
RS92 at low (a), middle (b), and high (c) latitudes. For all data sets the uncertainty is given with reference to the ERA5 vertical footprint,
which is achieved by filtering all data sets to match the ERA5 vertical footprint (thick curves). The uncertainties based on un-smoothed data
are also shown (thin curves). The standard deviation estimates found have been vertically smoothed with a 10 grid points box filter.
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Figure 11. G3CH estimate of ERA5 (a, d), RO (b, e), and RS92 (c, f) refractivity vertical error covariance matrices at middle latitude.
Rising occultations (a–c) and setting occultations (d–f). The covariance matrices are plotted as correlation matrices (diagonal= 1) with
superimposed standard deviation as a function of height (black line), plotted on the left and upper axes. The standard deviation is given
as percent of the mean ERA5 forecast refractivity. The covariance matrices have been truncated at 30 km where the RS92 data sparseness
starts to destabilize the results. A total of 9722 collocated profile triplets were used for these covariance estimates. For these estimates no
smoothing was applied on any of the data sets.

correlations due to corrections implemented in the GRUAN
processing, but the G3CH fails to attribute these correctly
when strong long-range correlations are also present in the
RO data. The estimated RS92 diagonals (standard deviations
superimposed vertically on correlation matrices) seem rea-
sonably consistent for rising and setting occultations.

The relative magnitude of the off-diagonal covariance
components can also be viewed in Fig. 13: Here the verti-
cal error correlation function of RO refractivity is exempli-
fied for two heights, approximately 5 and 20 km, at low, mid-
dle, and high latitudes. The correlation functions are slices of
the RO refractivity error correlation matrix at these altitudes.
For instance at high latitude there are pronounced long-range
correlations at these two heights. In the tropics the data are
too sparse to get an estimate of the correlation function. In
Fig. 13 the dashed curves show the three kilometre exponen-
tial correlation which is assumed in the current ROM SAF
1D-Var analysis (ROM SAF, 2021b). Given that the finer cor-
relation structures, around the 1 km scale, are influenced by
sparseness of data, the current correlation function appears

to be reasonably adequate at high latitudes at the selected al-
titudes. At middle latitudes there is a potential for decreasing
the error correlation length in future applications.

5 Discussion

It is evident from the results in Sect. 4.3 that uncertainty es-
timates for a data set must be stated with reference to scale
in space and time. We choose for all data sets to report the
estimated uncertainty boundaries with reference to the esti-
mated vertical footprint of the ERA5 data set. We identified
the vertical footprint of ERA5 for a range of altitudes, and
used these to find RO uncertainties in Fig. 10.

The unfiltered G3CH RO uncertainty estimates, also seen
in Fig. 10, include uncertainty associated with fluctuations
on shorter scales than the ERA5 vertical footprint. The unfil-
tered uncertainties are overestimated because they will in-
clude physical variability, falsely attributed as errors. We
cannot quantify the native vertical footprints of RO and
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Figure 12. Same as in Fig. 11, but for high latitudes.

Figure 13. Estimate of RO vertical error correlations at approxi-
mately 5 and 20 km for low, middle, and high latitudes (full curves).
The dashed lines show exponential correlation with three kilometre
decay length. No smoothing was applied on any of the data sets
before the G3CH was applied.

RS92, but it can be assumed that the unfiltered uncertainty
estimates mark upper boundaries for their uncertainties eval-
uated with reference to the native vertical footprint.

The estimated uncertainties of RO in the lower strato-
sphere are only slightly above 0.2 %, the theoretical estimates
found in Kursinski et al. (1997). Empirical uncertainty esti-

mates have previously been analysed, for instance by Rieckh
and Anthes (2018) and Scherllin-Pirscher et al. (2011). In the
empirical uncertainty analysis study by Scherllin-Pirscher
et al. (2011), the refractivity uncertainty is found to be 0.35 %
in the lower stratosphere. Scherllin-Pirscher et al. (2011)
used RO data in combination with ECMWF analysis, and
were therefore confined to make assumptions about mutual
correlation and partitioning of uncertainties among the two
data sets. By combining three independent data sets in a 3CH
analysis such assumptions may be avoided, and consequently
one is able to decrease the uncertainty estimates.

The RO uncertainty in the Upper Troposphere–Lower
Stratosphere (UTLS), where the uncertainty estimates are at
a minimum, does not vary much with latitude, except for a
small increase at the tropopause. The structure of the uncer-
tainty profiles is quite similar for all latitudes. The increase
of uncertainty in the troposphere is smaller at high latitude,
but the crossover between high and low uncertainty happens
at approximately the same altitude, 5–7 km, for all latitudes.
For the tropics, the noisy uncertainty estimates, due to an in-
sufficient number of data, do not allow us to safely read a
minimum above the tropopause from Fig. 10, but there is an
indication of uncertainty almost down to 0.2 % even between
7 and 10 km, well below the tropical tropopause layer.
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In Rieckh et al. (2021) the 3CH is applied to multiple
triplets of RO data and different model refractivity data.
Overall their uncertainty estimates are much higher, for in-
stance 0.55 % in the UTLS. This may be partly due to the
high noise level of the analysed RO data (COSMIC-1 and
COSMIC-2). But the data sets used by Rieckh et al. (2021)
are less well suited to 3CH analysis than the data sets used
here, because the errors of the ERA5 analysis fields used
must be expected to be correlated with errors of other data
sets, leading to a biased estimate of 3CH uncertainties. The
models applied have larger vertical footprint than the RS92
radiosonde data used here, and this will tend to yield an over-
estimate of RO uncertainties, which is indeed seen in Rieckh
et al. (2021). Their results show apparent uncertainty max-
ima near the tropopause, as must be anticipated according to
our analysis of the impact of vertical footprints in Sect. 4.3.

In the theoretical uncertainty analysis study by Kursinski
et al. (1997) the refractivity uncertainty in the lower tropo-
sphere tangents is 1 %, which is a little lower than the G3CH
estimate at middle latitudes, but quite consistent with the
G3CH estimate at high latitudes. The Kursinski et al. (1997)
estimate is dominated by the contribution from representa-
tiveness uncertainty arising from horizontal gradients along
the ray path up to 30 km, i.e. the contribution from the spheri-
cal symmetry assumption to the uncertainty. Retrospectively
seen, Kursinski et al. (1997) may have underestimated the
horizontal gradients in the troposphere since the effect of hor-
izontal variability was estimated from a model with 40 km
horizontal resolution. In a later study by Steiner and Kirchen-
gast (2005), even lower refractivity uncertainty estimates are
obtained, with a coarser model (60 km resolution and 50 ver-
tical levels). Steiner and Kirchengast (2005) find down to
0.1 % refractivity uncertainty in the UTLS.

The estimation of error correlation matrices with G3CH is
a novelty introduced in the present study. The method is able
to detect expected differences between rising and setting RO
long-range vertical error correlations, and long-range corre-
lations are also seen in RS92 data. The vertical correlation
estimates have limitations since the estimate of long-range
vertical error correlations of RS92 seems to be dependent on
whether the RO data used represent rising or setting occulta-
tions. However, this inaccuracy seems relatively small com-
pared to the difference between the RO vertical error corre-
lation estimates found and the vertical error correlation esti-
mates currently used in RO 1D-Var retrievals, and therefore
the correlation estimates will be useful in this context. Espe-
cially at middle latitudes there is a potential for decreasing
the vertical error correlation length in future applications.

The analysis of G3CH presented here may have conse-
quences for uncertainty parameterization in retrieval and as-
similation of RO refractivity. In particular the estimates of
RO refractivity uncertainty reveal a potential for deflating
tropospheric refractivity uncertainty in the ROM SAF 1D-
Var configuration. A reduction of assumed refractivity uncer-
tainty is of particular interest in the troposphere, where it can

improve the information content of water vapour retrievals.
There is a need to establish tropospheric water vapour cli-
mate data records for climate research, for instance as ex-
pressed in the objectives of the GEWEX water vapour assess-
ment (G-VAP; Schröder et al., 2018). The results presented
here promise a reduction in the uncertainty of RO-based tro-
pospheric water vapour retrieval.

6 Conclusions

The collocation-corrected G3CH random uncertainty esti-
mate provides full refractivity error covariance matrices for
three independent data sets. The method was applied to col-
located refractivity profiles from ERA5 forecasts, RO, and
radiosondes.

The RO refractivity uncertainty is between 0.2 % and
0.6 % in the UTLS at between 8 and 25 km at middle and
high latitudes, and between 0.2 % and 1.4 % below 8 km.
The G3CH method presented here also yields estimates of
the vertical error covariance matrices for refractivity.

The achieved refractivity uncertainty estimates are lower
than empirically determined uncertainties previously re-
ported in the literature. The results can be used to model un-
certainty assumptions used in NWP data assimilation and in
1D-Var calculations of atmospheric temperature and specific
humidity based on RO refractivity data.
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