

Supplement of

A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure

Stuart N. Riddick et al.

Correspondence to: Stuart N. Riddick (stuart.riddick@colostate.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material Section 1 – Pasquill-Gifford Stability Class look up table

Estimating the stability class from wind speed and sunlight conditions (Pasquill, 1975; Seinfeld and Pandis, 2016).

Stability Class	Day			Night	
Wind Speed (m s ⁻¹⁾	Strong	Mod	Light	Overcast	Clear
2	а	а	b		
3	b	b	С	е	f
4	b	С	С	d	е
5	с	с	d	d	d
6	С	d	d	d	d

Table S1 Estimating the stability class from wind speed and sunlight conditions (Pasquill, 1975; Seinfeld and Pandis, 2016).

Supplementary Material Section 2 – Single measurement data

Method	Theoretical	Volume	Accuracy,	Accuracy,	Accuracy,
	accuracy (%)	(m³)	small source	small source medium source	
			~40 g CH ₄ h ⁻¹	~100 g CH ₄ h ⁻¹	~200 g CH ₄ h ⁻¹
			(%)	(%)	(%)
Dynamic chamber	± 7 [#]	0.1	-21	-15	-11
HiFlow	± 10 ⁺	-	-15	-14	-16
Gaussian Plume	± 30 [‡]	-	56	104	33
bLs model	± 24§	-	-4	-21	-11

$Table \ S2 \ {\rm Accuracy} \ (\%) \ of \ single \ measurements \ using \ each \ of \ the \ measurement \ methodologies$

[#] (Riddick et al., 2019a)

10 ⁺ (Pekney et al., 2018)

⁺ (Edie et al., 2020; Riddick et al., 2019b)

§ (Flesch et al., 1995; Riddick et al., 2017)

15 SM3.1 Dynamic chamber

V	Rate	Average SS	Av Q	Av A
		chamber conc	(g hr⁻¹)	(%)
(m³)	(g hr⁻¹)	(mg m ⁻³)		
0.12	47.7	10,155	40.8	-14.4
0.12	47.7	10,600	42.6	-10.6
0.12	47.7	11,202	45.0	-5.5
0.12	94.9	22,521	90.5	-4.6
0.12	94.9	19,386	77.9	-17.9
0.12	65.6	16,310	65.6	-0.5
0.12	183.3	38,308	153.9	-7.9
0.12	146.9	37,052	148.9	1.4
0.12	146.9	33,038	132.8	-9.6

Table S3 Chamber volume (V, m^3), known CH₄ release rate (*Rate*, g hr⁻¹), average steady state (SS) CH₄ concentrations in the chamber at the end of each experiment and the average of the emission as calculated in each experiment.

SM3.2 GP model & bLS Model

20 Table S4 Data used to derive emission estimates for the Gaussian plume and bLS approach for the three known emission rates from a point source.

Em	WS	PGSC	$[CH_4]_b$	х	Z	$\overline{[CH_4]}_m$	GP Em	bLS Em
(g hr-1)	(ms ⁻¹)		(mg m ⁻³)	(m)	(m)	(mg m⁻³)	(g hr⁻¹)	(g hr⁻¹)
31	1.46	С	1.32	5	1.5	1.49	46.9	28.7
36	1.84	С	1.25	5	1.5	1.47	75.3	34.7
38	1.87	С	1.25	5	1.5	1.46	73.4	47.9
101	1.94	С	1.32	5	1.5	1.40	204.1	78.4
114	1.76	С	1.25	5	1.5	1.45	146.9	98.9
114	1.48	С	1.25	5	1.5	1.50	155.7	133.6
181	2.74	D	1.25	5	1.5	1.59	207.8	197.3
181	1.99	С	1.25	5	1.5	1.35	250.9	148.1
198	4.28	D	1.32	5	1.5	1.66	267.4	178.2

Experiment	Date	Time	Target Flow Rate (g/hr)	Chamber size (m ³)
Static Chamber	7/8/2020	9:00	40	0.12
Static Chamber	7/8/2020	9:00	200	0.5
Static Chamber	7/8/2020	9:30	40	0.12
Static Chamber	7/8/2020	9:30	200	0.5
Static Chamber	7/8/2020	10:00	200	0.5
Static Chamber	7/8/2020	10:00	40	0.12
Static Chamber	7/8/2020	10:30	100	0.12
Static Chamber	7/8/2020	11:00	100	0.12
Static Chamber	7/8/2020	11:30	100	0.12
Static Chamber	7/8/2020	12:00	200	0.12
Static Chamber	7/8/2020	13:00	200	0.12
Static Chamber	7/8/2020	13:30	200	0.12
Dynamic Chamber	7/9/2020	9:00	40	0.12
Dynamic Chamber	7/9/2020	10:30	40	0.12
Dynamic Chamber	7/9/2020	11:00	40	0.12
Dynamic Chamber	7/9/2020	14:00	100	0.12
Dynamic Chamber	7/9/2020	14:30	100	0.12
Dynamic Chamber	7/9/2020	15:00	100	0.12
Dynamic Chamber	7/9/2020	16:00	200	0.12
Dynamic Chamber	7/10/2020	9:00	200	0.12
Dynamic Chamber	7/10/2020	10:30	200	0.12
Static Chamber	7/22/2020	12:00	40	0.5
Static Chamber	7/22/2020	12:30	40	0.5
Static Chamber	7/22/2020	13:00	40	0.5
Static Chamber	7/22/2020	13:30	100	0.5
Static Chamber	7/22/2020	14:00	100	0.5
Static Chamber	7/22/2020	14:30	100	0.5
Downwind measurements	7/30/2020	9:34	40	
Downwind measurements	7/30/2020	10:00	100	
Downwind measurements	7/30/2020	10:24	200	
Hi-Flow	8/3/2020	9:00	100	
Hi-Flow	8/3/2020	9:10	200	
Hi-Flow	8/3/2020	9:20	40	
Hi-Flow	8/3/2020	9:30	100	
Hi-Flow	8/3/2020	9:50	40	
Hi-Flow	8/3/2020	10:00	100	
Hi-Flow	8/3/2020	10:20	40	
Hi-Flow	8/3/2020	10:30	200	
Hi-Flow	8/3/2020	10:40	200	

References

35

40

Edie, R., Robertson, A. M., Field, R. A., Soltis, J., Snare, D. A., Zimmerle, D., Bell, C. S., Vaughn, T. L., and Murphy, S. M.: Constraining the accuracy of flux estimates using OTM 33A, Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, 2020.

30 Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions, J. Appl. Meteor., 34, 1320–1332, https://doi.org/10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2, 1995.

Kang, M., Kanno, C. M., Reid, M. C., Zhang, X., Mauzerall, D. L., Celia, M. A., Chen, Y., and Onstott, T. C.: Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania, 111, 18173–18177, https://doi.org/10.1073/pnas.1408315111, 2014.

Pasquill, F.: Limitations and Prospects in the Estimation of Dispersion of Pollution on a Regional Scale, in: Advances in Geophysics, vol. 18, Elsevier, 1–13, https://doi.org/10.1016/S0065-2687(08)60568-3, 1975.

Pekney, N. J., Diehl, J. R., Ruehl, D., Sams, J., Veloski, G., Patel, A., Schmidt, C., and Card, T.: Measurement of methane emissions from abandoned oil and gas wells in Hillman State Park, Pennsylvania, Carbon Management, 9, 165–175, https://doi.org/10.1080/17583004.2018.1443642, 2018.

Riddick, S. N., Connors, S., Robinson, A. D., Manning, A. J., Jones, P. S. D., Lowry, D., Nisbet, E., Skelton, R. L., Allen, G., Pitt, J., and Harris, N. R. P.: Estimating the size of a methane emission point source at different scales: from local to landscape, 17, 7839–7851, https://doi.org/10.5194/acp-17-7839-2017, 2017.

Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., Bressler, K., Chu, C., and Gum, C. D.: Measuring methane emissions from
abandoned and active oil and gas wells in West Virginia, 651, 1849–1856, https://doi.org/10.1016/j.scitotenv.2018.10.082, 2019a.

Riddick, S. N., Mauzerall, D. L., Celia, M., Harris, N. R. P., Allen, G., Pitt, J., Staunton-Sykes, J., Forster, G. L., Kang, M., Lowry, D., Nisbet, E. G., and Manning, A. J.: Measuring methane emissions from oil and gas platforms in the North Sea, 1–14, https://doi.org/10.5194/acp-2019-90, 2019b.

50 Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, Third edition., John Wiley & Sons, Inc, Hoboken, New Jersey, 1120 pp., 2016.