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Abstract. Ambient fine particulate matter (PM2.5) pollution
is a major health risk. Networks of low-cost sensors (LCS)
are increasingly being used to understand local-scale air pol-
lution variation. However, measurements from LCS have un-
certainties that can act as a potential barrier to effective de-
cision making. LCS data thus need adequate calibration to
obtain good quality PM2.5 estimates. In order to develop cal-
ibration factors, one or more LCS are typically co-located
with reference monitors for short or long periods of time. A
calibration model is then developed that characterizes the re-
lationships between the raw output of the LCS and measure-
ments from the reference monitors. This calibration model
is then typically transferred from the co-located sensors to
other sensors in the network. Calibration models tend to be
evaluated based on their performance only at co-location
sites. It is often implicitly assumed that the conditions at the
relatively sparse co-location sites are representative of the
LCS network overall and that the calibration model devel-
oped is not overfitted to the co-location sites. Little work has
explicitly evaluated how transferable calibration models de-
veloped at co-location sites are to the rest of an LCS network,
even after appropriate cross-validation. Further, few studies
have evaluated the sensitivity of key LCS use cases, such as
hotspot detection, to the calibration model applied. Finally,

there has been a dearth of research on how the duration of
co-location (short-term or long-term) can impact these re-
sults. This paper attempts to fill these gaps using data from a
dense network of LCS monitors in Denver deployed through
the city’s “Love My Air” program. It offers a series of trans-
ferability metrics for calibration models that can be used in
other LCS networks and some suggestions as to which cal-
ibration model would be most useful for achieving different
end goals.

1 Introduction

Poor air quality is currently the single largest environmen-
tal risk factor to human health in the world, with ambient
air pollution being responsible for approximately 6.7 mil-
lion premature deaths every year (Health Effects Institute,
2020). Having accurate air quality measurements is crucial
for tracking long-term trends in air pollution levels, identi-
fying hotspots, and developing effective pollution manage-
ment plans. The dry-mass concentration of fine particulate
matter (PM2.5), a criterion pollutant that poses more danger
to human health than other widespread pollutants (Kim et
al., 2015), can vary over distances as small as ∼ tens of me-
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ters in complex urban environments (Brantley et al., 2019;
deSouza et al., 2020a). Therefore, dense monitoring net-
works are often needed to capture relevant spatial variations.
Due to their costliness, Environmental Protection Agency
(EPA) air quality reference monitoring networks are sparsely
positioned across the US (Apte et al., 2017; Anderson and
Peng, 2012).

Low-cost sensors (LCS) (<USD 2500, as defined by the
US EPA Air Sensor Toolbox) (Williams et al., 2014) have
the potential to capture concentrations of PM in previously
unmonitored locations and to democratize air pollution in-
formation (Castell et al., 2017; Crawford et al., 2021; Kumar
et al., 2015; Morawska et al., 2018; Snyder et al., 2013; deS-
ouza and Kinney, 2021; deSouza, 2022). However, LCS mea-
surements have several sources of greater uncertainty than
reference monitors (Bi et al., 2020; Giordano et al., 2021;
Liang, 2021).

Most low-cost PM sensors rely on optical measurement
techniques. Optical instruments face inherent challenges that
introduce potential differences in mass estimates compared
to reference methods (Barkjohn et al., 2021; Crilley et
al., 2018; Giordano et al., 2021; Malings et al., 2020):

1. Optical methods do not directly measure mass concen-
trations; rather, they estimate mass based on calibrations
that convert light scattering data to particle number and
mass. LCS come with factory-supplied calibrations but,
in practice, must be re-calibrated in the field to ensure
accuracy, due to variations in ambient particle charac-
teristics and instrument drift.

2. High relative humidity (RH) can produce hygroscopic
particle growth, leading to dry-mass overestimation, un-
less particle hydration can accurately be taken into ac-
count or the particles are desiccated by the instrument.

3. LCS are not able to detect particles with diameters be-
low a specific size, which is determined by the wave-
length of laser light within each device and is generally
in the vicinity of 0.3 µm, whereas the peak in pollution
particle number size distribution is typically smaller
than 0.3 µm.

4. The physical and chemical parameters describing the
aerosol (particle size distribution, shape, indices of re-
fraction, hygroscopicity, volatility, etc.), which might
vary significantly across different microenvironments
with diverse sources, impact light scattering; this in
turn affects the aerosol mass concentrations reported by
these instruments.

The need for field calibration to correct LCS measure-
ments is particularly important. This is typically done by co-
locating a small number of LCS with one or a few reference
monitors at a representative monitoring location or locations.
The co-location could be carried out for a brief period be-
fore and/or after the actual study or may continue at a small

number of sites for the duration of the study. In either case,
the co-location provides data from which a calibration model
that relates the raw output of the LCS as closely as possible
to the desired quantity as measured by the reference monitor
is developed. Thereafter, the calibration model is transferred
to other LCS in the network based upon the presumption that
ongoing sampling conditions are within the same range as
those at the collocation site(s) during the calibration period.

Calibration models typically correct for (1) systematic er-
ror in LCS by adjusting for bias using reference monitor mea-
surements, and (2) the dependence of LCS measurements
on environmental conditions affecting the ambient particle
properties, such as relative humidity (RH), temperature (T ),
and/or dew-point (D). Correcting for RH, T , andD is carried
out through either (a) a physics-based approach that accounts
for aerosol hygroscopic growth given particle composition
using κ-Köhler’s theory, or (b) empirical models, such as re-
gression and machine learning techniques. In this paper, we
focus on the latter, as it is currently the most widely used
(Barkjohn et al., 2021). Previous work has also shown that
the two approaches yield comparable improvements in the
case of PM2.5 LCS (Malings et al., 2020).

Prior studies have used multivariate regressions, piecewise
linear regressions, or higher order polynomial models to ac-
count for RH, T , and D in these calibration models (Hol-
stius et al., 2014; Magi et al., 2020; Zusman et al., 2020).
More recently, machine learning techniques such as random
forests, neural networks, and gradient-boosted decision trees
have been used (Considine et al., 2021; Liang, 2021; Zim-
merman et al., 2018). Researchers have also started includ-
ing additional covariates in their models besides that which
is directly measured by the LCS, such as time of day, season-
ality, wind direction, and site type, which have been shown to
yield significantly improved results (Considine et al., 2021).

Past research has shown that there are several important
decisions in addition to the choice of calibration model that
need to be made during calibration and that can impact the re-
sults (Bean, 2021; Giordano et al., 2021; Hagler et al., 2018).
These include (a) the kind of reference air quality monitor
used, (b) the time interval (e.g., hour or day) over which to
average measurements used when developing the calibration
model, (c) how cross-validation (e.g., leaving one site out or
10-fold cross-validation) is carried out, and (d) how long the
co-location experiment takes place.

Calibration models are typically evaluated based on how
well the corrected data agree with measurements from refer-
ence monitors at the corresponding co-location site. A com-
monly used metric is the Pearson correlation coefficient, R,
which quantifies the strength of the association. However, it
is a misleading indicator of sensor performance when mea-
surements are observed close to the limit of detection of the
instrument. Therefore, root mean square error (RMSE) is of-
ten included in practice. Unfortunately, neither of these met-
rics captures how well the calibration method developed at
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the co-located sites transfers to the rest of the network in
both time and space.

If the conditions at the co-location sites (meteorologi-
cal conditions, pollution source mix) for the period of co-
location are the same as for the rest of the network during
the total operational period, the calibration model developed
at the co-location sites can be assumed to be transferable to
the rest of the network. In order to ensure that the sampling
conditions at the co-location site are representative of sam-
pling conditions across the network, most researchers tend to
deploy monitors in the same general sampling area as the
network (Zusman et al., 2020). However, it is difficult to
definitively test if the co-location site during the period of co-
location is representative of conditions at all monitors in the
network; ambient PM concentrations can vary on scales as
small as a few meters. Furthermore, LCS are often deployed
specifically in areas where the air pollution conditions are
poorly understood, meaning that representativeness cannot
be assessed in advance.

In order to evaluate whether calibration models are trans-
ferable in time, we test if models generated using typical
short-term co-locations at specific co-location sites perform
well during other time periods at all co-location sites. Where
multiple co-location sites exist, one way to evaluate how
transferable calibration models are in space is to leave out
one or more co-location sites and to test if the calibration
model is transferable to the left-out sites. This method was
used in recent work evaluating the feasibility of developing a
US-wide calibration model for the PurpleAir low-cost sensor
network (Barkjohn et al., 2021; Nilson et al., 2022).

Although these approaches are useful, co-location sites are
sparse relative to other sites in the network. Even in the Pur-
pleAir network (which is one of the densest low-cost net-
works in the world), there were only 39 co-location sites in
16 US states, a small fraction of the several thousand Pur-
pleAir sites overall (Barkjohn et al., 2021). It is thus impor-
tant to develop metrics to test how sensitive the spatial and
temporal trends of pollution derived from the entire network
are to the calibration model applied. Finally, a key use case
of LCS networks is to identify hotspots. It is important to
also evaluate how sensitive the hotspot identified in an LCS
network is to the calibration model applied.

Examining the reliability of calibration models is timely,
because more researchers are opting to use machine learning
models. Although in most cases, such models have yielded
better results than traditional linear regressions, it is impor-
tant to examine if these models are overfitted to conditions at
the co-location sites, even after appropriate cross-validation,
and how transferable they are to the rest of the network. In-
deed, because of concerns of overfitting, some researchers
have explicitly eschewed employing machine learning cali-
bration models altogether (Nilson et al., 2022). It is impor-
tant to test under what circumstances such concerns might
be warranted.

This paper uses a dense low-cost PM2.5 monitoring net-
work deployed in Denver, the “Love My Air” network de-
ployed primarily outside the city’s public schools, to evalu-
ate the transferability of different calibration models in space
and time across the network. To do so, new metrics are pro-
posed to quantify the Love My Air network’s spatial and tem-
poral trend uncertainty due to the calibration model applied.
Finally, for key LCS network use cases, such as hotspot de-
tection, tracking high pollution events, and evaluating pollu-
tion trends at a high temporal resolution, the sensitivity of
the results to the choice of calibration model is evaluated.
The methodologies and metrics proposed in this paper can
be applied to other low-cost sensor networks, with the under-
standing that the actual results will vary with study region.

2 Data and methods

2.1 Data sources

Between 1 January and 30 September 2021, Denver’s Love
My Air sensor network collected minute-level data from 24
low-cost sensors deployed across the city outside of public
schools and at 5 federal equivalent method (FEM) reference
monitor locations (Fig. 1). The Love My Air sensors are
Canary-S models, equipped with a Plantower 5003, made by
Lunar Outpost Inc. The Canary-S sensors detect PM2.5, T ,
and RH and upload minute-resolution measurements to an
online platform via cellular data network.

We found that RH and T reported by the Love My Air sen-
sors were well correlated with that reported by the reference
monitoring stations. We used the Love My Air LCS T and
RH measurements in our calibration models, as they most
closely represent the conditions experienced by the sensors.

2.1.1 Data cleaning protocol for measurements from
the Love My Air network

A summary of the data cleaning and data preparation steps
carried out on the Love My Air data from the entire network
are listed below:

1. We removed data for time steps where key variables
(PM2.5, T , and RH measurements) were missing.

2. We removed unrealistic RH and T values (RH< 0 and
T ≤−30 ◦C).

3. We removed PM2.5 values above 1500 µgm−3 (outside
the operational range of the Plantower sensors used)
from the Canary-S sensors (Considine et al., 2021).

4. We were left with 8 809 340 min-level measurements
and then calculated hourly average PM2.5, T , and RH
measurements for each sensor; we had a total of 147 101
hourly averaged measurements.
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Figure 1. Locations of all 24 Love My Air sensors. Sensors displayed with an orange triangle indicate that they were co-located with a
reference monitor. The labels of the co-located sensors include the name of the reference monitor with which they were co-located after a
hyphen.

5. From inspection, one of the monitors, CS13, worked
intermittently in January and February before resum-
ing continuous measurement in March (Fig. S1 in the
Supplement). When CS13 worked intermittently, large
spikes in the measurements were observed, likely due
to power surges. We thus retained measurements taken
after 1 March 2021 for this monitor. The total number
of hourly measurements was thus reduced to 146 583.

Love My Air sensors (indicated by Sensor ID) were co-
located with FEM reference monitors, from which we ob-
tained high-quality hourly PM2.5 measurements, at the fol-
lowing locations (Table 1):

1. La Casa (Sensor ID: CS5)

2. CAMP (Sensor ID: CS13)

3. I25 Globeville (Sensor ID: CS2, CS3, CS4)

4. I25 Denver (Sensor ID: CS16)

5. NJH (Sensor ID: CS1) for the entire period of the ex-
periment.

2.1.2 Data preparation steps for preparing a training
dataset used to develop the various calibration
models

A summary of the data preparation steps for preparing a
training dataset used to develop the various calibration mod-
els is described below:

1. We joined hourly averages from each of the seven co-
located Love My Air monitors with the correspond-
ing FEM monitor. We had a total of 35 593 co-located
hourly measurements for which we had data for both
the Love My Air sensor and the corresponding reference
monitor. Figure S2 displays time-series plots of PM2.5
from all co-located Love My Air sensors. Figure S3 dis-
plays time-series plots of PM2.5 from the corresponding
reference monitors.

2. The three Love My Air sensors co-located at the I25
Globeville sites (CS2, CS3, CS4) agreed well with each
other (Pearson correlation coefficient= 0.98) (Figs. S4
and S5). To ensure that our co-located dataset was well
balanced across sites, we only retained measurements
from CS2 at the I25 Globeville site. We were left with a
total of 27 338 co-located hourly measurements that we
used to develop a calibration model. Figure S6 displays
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Table 1. Site location of each Love My Air sensor, as well as summary statistics of hourly measurements from each sensor.

Sensor Co-location Latitude Longitude Hours PM2.5 Temperature RH Dewpoint
ID information operational (µgm−3) (◦C) (%) (◦C)

Mean Median Min–Max mean mean mean

CS1 Co-located at NJH 39.739 −104.940 5478 13 8 0–121 14.9 57.4 4.4
CS2 Co-located at I25 Globeville 39.786 −104.989 5818 14 9 0–142 16.4 63.6 7.6
CS3 Co-located at I25 Globeville 39.786 −104.989 2490 18 13 0–159 9.3 62.5 0.1
CS4 Co-located at I25 Globeville 39.786 −104.989 5765 12 8 0–137 15.8 67.6 8.0
CS5 Co-located at La Casa 39.779 −105.005 5761 12 8 0–129 13.4 69.6 6.0
CS7 – 39.781 −104.955 6540 13 8 0–136 16.5 55.6 5.0
CS8 – 39.777 −104.987 6282 13 8 0–133 17.3 38.3 0.0
CS9 – 39.756 −104.967 6552 12 8 0–115 15.3 62.8 6.1
CS10 – 39.776 −104.853 6552 12 7 0–142 17.9 32.6 −2.4
CS11 – 39.659 −105.047 6548 12 7 0–127 15.0 58.2 4.5
CS13 Co-located at CAMP 39.751 −104.988 4449 13 8 0–115 21.9 54.7 10.2
CS15 – 39.667 −105.032 6552 10 6 0–106 17.0 34.6 −1.5
CS16 Co-located at I25 Denver 39.732 −105.015 5832 12 9 0–100 17.4 33.6 −2.2
CS17 – 39.757 −104.958 6527 12 7 0–149 17.1 35.1 −1.3
CS18 – 39.692 −104.966 6552 12 7 0–115 16.9 36.3 −1.0
CS19 – 39.772 −104.951 1749 11 5 0–66 3.4 40.0 −11.1
CS20 – 39.769 −104.949 6551 10 6 0–105 17.9 34.2 −1.2
CS21 – 39.659 −104.868 6551 12 6 0–129 15.2 39.2 −1.2
CS22 – 39.758 −104.957 6551 12 7 0–118 17.5 35.4 −0.9
CS23 – 39.772 −105.024 6552 14 9 0–139 16.5 34.6 −2.0
CS25 – 39.776 −104.833 6551 12 7 0–135 16.2 35.8 −1.8
CS26 – 39.674 −104.950 6552 12 7 0–115 15.9 36.9 −1.2
CS27 – 39.775 −105.009 6552 12 7 0–115 16.4 35.6 −1.4
CS29 – 39.760 −104.918 6552 11 7 0–114 15.7 37.5 −1.2

the time-series plots of PM2.5 from all other Love My
Air sensors in the network.

Reference monitors at La Casa, CAMP, I25 Globeville,
and I25 Denver also reported minute-level PM2.5 concen-
trations between 23 April, 11:16, and 30 September, 22:49
local time. We also joined minute-level Love My Air PM2.5
concentrations with minute-level reference data at these sites.
We had a total of 1 062 141 co-located minute-level measure-
ments during this time period. As with the hourly averaged
data, we only retained data from one of the Love My Air
sensors at the I25 Globeville site and were thus left with
815 608 min-level measurements from one LCS at each of
the four co-location sites.

Table S1 in the Supplement has information on the minute-
level co-located measurements. The data at the minute-level
displays more variation and peaks in PM2.5 concentrations
than the hourly averaged measurements (Fig. S7), likely due
to the impact of passing sources. It is also important to men-
tion that minute-level reference data may have some addi-
tional uncertainties introduced due to the finer time resolu-
tion. We will use the minute-level data in the Supplement
analyses only. Thus, unless explicitly referenced, we will be
reporting results from hourly averaged measurements.

2.1.3 Deriving additional covariates

We derived dew point (D) from T and RH reported by the
Love My Air sensors using the weathermetrics package in
the programming language R (Anderson and Peng, 2012),
as D has been shown to be a good proxy of particle hygro-
scopic growth in previous research (Barkjohn et al., 2021;
Clements et al., 2017; Malings et al., 2020). Some previous
work has also used a nonlinear correction for RH in the form
of RH2/(1−RH), which we also calculated for this study
(Barkjohn et al., 2021).

We extracted hour, weekend, and month variables from the
Canary-S sensors and converted hour and month into cyclic
values to capture periodicities in the data by taking the cosine
and sine of hour× 2π/24 and month× 2π/12, which we
designate as cos_time, sin_time, cos_month, and sin_month,
respectively. Sinusoidal corrections for seasonality have been
shown to improve the accuracy of PM2.5 measurements in
machine learning models (Considine et al., 2021).

2.2 Defining the calibration models used

The goal of the calibration model is to predict, as accurately
as possible, the “true” PM2.5 concentrations given the con-
centrations reported by the Love My Air sensors. At the co-
located sites, the FEM PM2.5 measurements, which we take
to be the “true” PM2.5 concentrations, are the dependent vari-
able in the models.
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We evaluated 21 increasingly complex models that in-
cluded T , RH, and D as well as metrics that captured the
time-varying patterns of PM2.5 to correct the Love My Air
PM2.5 measurements (Tables 2 and 3).

Sixteen models were multivariate regression models that
were used in a recent paper (Barkjohn et al., 2021) to cal-
ibrate another network of low-cost sensors: the PurpleAir,
which relies on the same PM2.5 sensor (Plantower) as the
Canary-S sensors in the current study. As T , RH, and D are
not independent (Fig. S8), the 16 linear regression models in-
clude adding the meteorological conditions considered as in-
teraction terms instead of additive terms. The remaining five
calibration models relied on machine learning techniques.

Machine learning models can capture more complex non-
linear effects (for instance, unknown relationships between
additional spatial and temporal variables). We opted to use
the following machine learning techniques: random forest
(RF), neural network (NN), gradient boosting (GB), Super-
Learner (SL); these have been widely used in calibrating
LCS. A detailed description of each technique can be found
in Sect. S1 in the Supplement. All machine learning models
were run using the caret package in R (Kuhn et al., 2020).

We used both leave-one-site-out (LOSO) (Table 2) and
leave-out-by-date – where we left out a three-week period of
data at a time at all sites (LOBD) (Table 3) – cross-validation
(CV) methods to avoid overfitting in the machine learning
models. For more details on the cross-validation methods
used to avoid overfitting in the machine learning models, re-
fer to Sect. S2.

Corrections generated using different co-location time
periods (long-term, on-the-fly, short-term)

As described earlier, co-location studies in the LCS litera-
ture have been conducted over different time periods. Some
studies co-locate one or more LCS for brief periods of time
before or after an experiment, whereas others co-locate a few
LCS for the entire duration of the experiment. These studies
apply calibration models generated using the co-located data
to measurements made by the entire network over the en-
tire duration of the experiment. We attempt to replicate these
study designs in our experiment to evaluate the transferability
of calibration models across time by generating four different
corrections:

C1 Entire dataset correction. The 21 calibration models
were developed using data at all co-location sites for
the entire period of co-location.

C2 On-the-fly correction. The 21 calibration models to cor-
rect a measurement during a given week were developed
using data across all co-located sites for the same week
of the measurement.

C3 Two-week winter correction. The 21 calibration mod-
els were developed using co-located data collected for

a brief period (two weeks) at the beginning of the study
(1–4 January 2021). They were then applied to measure-
ments from the network during the rest of the period of
operation.

C4 Two-week winter+ two-week spring. The 21 calibration
models were developed using co-located data collected
for two two-week periods in different seasons (1–4 Jan-
uary 2021 and 1–14 May 2021). They were then applied
to measurements from the network during the rest of the
period of operation.

Although models developed using co-located data over the
entire time period (C1) tend to be more accurate over the
entire spatiotemporal dataset, it is inefficient to re-run large
models frequently (incorporating new data). On-the-fly cor-
rections (such as C2) can help characterize short-term vari-
ation in air pollution and sensor characteristics. The dura-
tion of calibration is a key question that remains unanswered
(Liang, 2021). We opted to test corrections C3 and C4, as
many low-cost sensor networks rely on developing calibra-
tion models based on relatively short co-location periods
(deSouza et al., 2020b; West et al., 2020; Singh et al., 2021).
Each of the 21 calibration models considered was tested un-
der four potential correction schemes (C1, C2, C3, and C4).

For C1, the five machine learning models were trained us-
ing two CV approaches: LOSO and LOBD, separately. For
C2, C3, and C4, only LOSO was conducted, as model appli-
cation is already being performed on a different time period
from the training (for more details, refer to Sect. S2). Over-
all, we tested 89 calibration models (21(C1,CV= LOSO)+
5(C1,CV= LOBD)+21×3(C2,C3,C4)= 89) listed in Ta-
bles 2 and 3.

2.3 Evaluating the calibration models developed under
the four different correction schemes

We first qualitatively evaluate transferability of the calibra-
tion models from the co-location sites to the rest of the net-
work by comparing the distribution of T and RH at the co-
location sites during time-periods used to construct the cali-
bration models with that experienced over the entire course
of network operation (Fig. 2).

We then evaluate how well different calibration models
perform when using the traditional methods of model eval-
uation (Tables 2, 3, S2). We attempt to quantify the degree
of transferability of the calibration models in time by asking
how well calibration models developed during short-term co-
locations (corrections: C3 and C4) perform when transferred
to long-term network measurements. To answer this ques-
tion, we evaluated calibration models using corrections C3
and C4 only for the time period over which the calibration
models were developed, which was 1–4 January 2021 for C3,
and 1–4 January 2021 and 1–14 May 2021 for C4 (Table S2).
We compared the performance of C3 and C4 corrections dur-
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Table 2. Performance of the calibration models as captured using root mean square error (RMSE) and Pearson correlation (R). LOSO CV
was used to prevent overfitting in the machine learning models. All corrected values were evaluated over the entire time period (1 January–
30 September 2021).

ID Name Model C1 C2 C3 C4
Correction On-the-fly Correction Correction

developed on correction developed using developed using
data during developed measurements measurements

the entire period using data for made in the from the first two
of network the same week first two weeks weeks of January
operation of measurement of January and the first

two weeks in May

R RMSE R RMSE R RMSE R RMSE
(µg m−3) (µgm−3) (µgm−3) (µgm−3)

Raw Love My Air measurements

0 Raw 0.927 6.469 – – – – – –

Multivariate regression (LOSO CV)

1 Linear PM2.5, corrected = PM2.5× s1+b 0.927 3.421 0.944 3.008 0.927 3.486 0.927 3.424

2 +RH PM2.5, corrected = PM2.5× s1+RH× s2+ b 0.929 3.379 0.948 2.904 0.928 3.618 0.929 3.462

3 +T PM2.5, corrected = PM2.5× s1+ T× s2+ b 0.928 3.409 0.949 2.896 0.925 3.948 0.928 3.460

4 +D PM2.5, corrected = PM2.5× s1+D× s2+ b 0.928 3.417 0.947 2.934 0.917 3.713 0.925 3.470

5 +RH×T PM2.5, corrected = PM2.5× s1+RH× s2 0.934 3.260 0.953 2.782 0.931 3.452 0.933 3.344
+T× s3+RH×T× s4+ b

6 +RH×D PM2.5, corrected = PM2.5× s1+RH× s2 0.930 3.361 0.953 2.785 0.911 3.973 0.929 3.461
+D× s3+RH×D× s4+ b

7 +D× T PM2.5, corrected = PM2.5× s1+D× s2+ T 0.928 3.409 0.952 2.798 0.888 5.698 0.921 3.720
× s3+D× T× s4+ b

8 +RH×T ×D PM2.5, corrected = PM2.5× s1+RH× s2+ T 0.935 3.246 0.955 2.724 0.779 7.077 0.926 3.625
× s3+D× s4+RH×T× s5+RH×D
× s6+ T ×D× s7+RH×T ×D× s8+ b

9 PM×RH PM2.5, corrected = PM2.5× s1+RH 0.930 3.362 0.950 2.854 0.925 3.949 0.925 3.767
× s2+RH×PM2.5× s3+ b

10 PM×D PM2.5, corrected = PM2.5× s1+D 0.932 3.324 0.950 2.871 0.883 4.460 0.913 3.777
× s2+D×PM2.5× s3+ b

11 PM×T PM2.5, corrected = PM2.5× s1+ T 0.930 3.365 0.952 2.809 0.906 6.509 0.928 3.466
× s2+ T×PM2.5× s3+ b

12 PM× nonlinear RH PM2.5, corrected = PM2.5× s1+
RH2

(1−RH)× s2 0.934 3.277 0.948 2.900 0.931 3.510 0.932 3.403

+
RH2

(1−RH)×PM2.5× s3+ b

13 PM×RH×T PM2.5, corrected = PM2.5× s1+RH× s2+ T 0.938 3.165 0.956 2.672 0.891 6.220 0.928 3.497
× s3+PM2.5×RH× s4+PM2.5× T× s5
+RH×T× s6+PM2.5×RH×T× s7+ b

14 PM×RH×D PM2.5, corrected = PM2.5× s1+RH× s2+D 0.933 3.288 0.957 2.663 0.879 7.289 0.917 4.033
× s3+PM2.5×RH× s4+PM2.5×D× s5
+RH×D× s6+PM2.5×RH×D× s7+ b

15 PM×T xD PM2.5, corrected = PM2.5× s1+ T× s2+D 0.932 3.315 0.957 2.665 0.734 6.302 0.905 4.574
× s3+PM2.5× T× s4+PM2.5×D× s5
+T ×D× s6+PM2.5× T ×D× s7+ b

16 PM×RH×T ×D PM2.5, corrected = PM2.5× s1+RH× s2 0.940 3.115 0.960 2.557 0.324 32.951 0.765 6.746
+T× s3+D× s4+PM2.5×RH× s5
+PM2.5× T× s6+ T×RH× s7+PM2.5
×D× s8+D×RH× s9+D× T× s10
+PM2.5×RH×T× s11+PM2.5×RH
×D× s12+PM2.5×D× T× s13×D
×RH×T× s14+PM2.5×RH×T
×D× s15+ b
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Table 2. Continued.

ID Name Model C1 C2 C3 C4
Correction On-the-fly Correction Correction

developed on correction developed using developed using
data during developed measurements measurements

the entire period using data for made in the from the first two
of network the same week first two weeks weeks of January
operation of measurement of January and the first

two weeks in May

R RMSE R RMSE R RMSE R RMSE
(µgm−3) (µgm−3) (µgm−3) (µgm−3)

Machine learning (LOSO CV)

17 Random forest PM2.5, corrected = f (PM2.5, T , RH) 0.983 1.713 0.988 1.450 0.913 3.926 0.911 3.824

18 Neural network PM2.5, corrected = f (PM2.5, T , RH) 0.933 3.286 0.948 2.916 0.932 3.550 0.913 4.725
(One hidden layer)

19 Gradient boosting PM2.5, corrected = f (PM2.5, T , RH) 0.950 2.870 0.964 2.452 0.910 3.854 0.909 3.834

20 SuperLearner PM2.5, corrected = f (PM2.5, T , RH) 0.950 2.855 0.970 2.236 0.910 3.917 0.923 3.582

21 Random forest For C1: 0.987 1.475 0.990 1.289 0.870 5.032 0.884 4.617
PM2.5, corrected = f (PM2.5, T , RH,
D, cos_time, cos_month, sin_month)

For C2, C3, C4:
PM2.5, corrected = f (PM2.5, T , RH,
D, cos_time)

Table 3. Performance of the calibration models using the C1 correction as captured using root mean square error (RMSE) and Pearson
correlation (R). LOBD CV was used to prevent overfitting in the machine learning models.

ID Machine learning R RMSE
(LOBD CV) (µgm−3)

17 Random forest PM2.5, corrected = f (PM2.5, T , RH) 0.983 1.710

18 Neural network PM2.5, corrected = f (PM2.5, T , RH) 0.933 3.285
(One hidden layer)

19 Gradient boosting PM2.5, corrected = f (PM2.5, T , RH) 0.953 2.759

20 SuperLearner PM2.5, corrected = f (PM2.5, T , RH) 0.956 2.692

21 Random forest PM2.5, corrected = f (PM2.5, T , RH, 0.987 1.480
D, cos_time, cos_month, sin_month)

ing this time period with that obtained from applying these
models over the entire time period of the network (Table 2).

We next ask how well calibration models developed at a
small number of co-locations sites transfer in space to other
sites using the methodology detailed in the next subsection.

2.3.1 Evaluating transferability of calibration models
over space

To evaluate how transferable the calibration technique devel-
oped at the co-located sites was to the rest of the network,
we left out each of the five co-located sites in turn and, us-
ing data from the remaining sites, ran the models proposed
in Tables 2 and 3. We then applied the models generated to

the left-out site. We report the distribution of RMSE from
each calibration model considered at the left-out sites using
box plots (Fig. 3). For correction C1, we also left out a three-
week period of data at a time and generated the calibration
models based on the data from the remaining time periods at
each site. For the machine learning models (Models 17–21),
we used CV=LOBD. We plotted the distribution of RMSE
from each model considered for the left-out three-week pe-
riod (Fig. 3).

We statistically compare the errors in predictions for each
test dataset with errors in predictions from using all sites in
our main analysis. Such an approach is useful for understand-
ing how well the proposed correction can transfer to other

Atmos. Meas. Tech., 15, 6309–6328, 2022 https://doi.org/10.5194/amt-15-6309-2022



P. deSouza et al.: Calibrating networks of low-cost air quality sensors 6317

areas in the Denver region. To compare statistical differences
between errors, we used t tests if the distribution of errors
were normally distributed (as determined by a Shapiro–Wilk
test); if not, we used Wilcoxon signed rank tests, using a sig-
nificance value of 0.05.

We have only five co-location sites in the network. Al-
though evaluating the transferability among these sites is use-
ful, as we know the true PM2.5 concentrations at these sites,
we also evaluated the transferability of these models in the
larger network by predicting PM2.5 concentrations using the
models proposed in Tables 2 and 3 at each of the 24 sites
in the Love My Air network. For each site, we display time
series plots of corrected PM2.5 measurements in order to vi-
sually compare the ensemble of corrected values at each site
(Fig. 4).

We next propose different metrics to quantify the uncer-
tainty in spatial and temporal trends in PM2.5 reported by
the LCS network as introduced by the choice of calibration
model applied in the subsection below.

2.3.2 Evaluating sensitivity of the spatial and temporal
trends of the low-cost sensor network to the
method of calibration

We evaluate the spatial and temporal trends in the PM2.5
concentrations corrected using the 89 different calibration
models, using similar methods to those described in Jin et
al. (2019) and deSouza et al. (2022) by calculating the fol-
lowing:

1. The spatial root mean square difference (RMSD)
(Fig. 5) between any two corrected exposures at the

same site: SRMSDh,d =

√
1
N

N∑
i=1
(Conchi −Concdi)2,

where Conchi and Concdi are 1 January–30 Septem-
ber 2021 averaged PM2.5 concentrations estimated from
correction h and d for site i. N is the total number of
sites.

2. The temporal RMSD (Fig. 6) between pairs of

exposures: TRMSDh,d =

√
1
M

M∑
t=1
(Concht −Concdt )2,

where Concht and Concdt are hourly corrected PM2.5
concentrations averaged over all operational Love My
Air sites, estimated from correction h and d for time t .
M is the total number of hours of operation of the net-
work.

We characterized the uncertainty in the “corrected”
PM2.5 estimates at each site across the different mod-
els using two metrics: a normalized range (NR) (Fig. 7a)
and uncertainty, calculated from the 95 % confidence in-
terval (CI), assuming a t statistical distribution (Fig. 7b).
NR for a given site represents the spread of PM2.5 across
the different correction approaches.

3. NR= 1
M

M∑
t=1

maxk∈KCkt−mink∈KCkt
Ct

.

Ckt is the PM2.5 concentration at hour t from the kth
model from the ensemble of K (which, in this case, is
89) correction approaches. Ct represents the ensemble
mean across theK different products at hour t .M is the
total number of hours in our sample for which we have
PM2.5 data for the site under consideration.

For our sample (K = 89), we assume that the variations
in PM2.5 across multiple models follows the Student t
distribution, with the mean being the ensemble average.
The confidence interval (CI) for the ensemble mean at a
given time t is CIt = Ct + t∗ SDt√

K
, where Ct represents

the ensemble mean at time t ; t∗ is the upper (1−CI)
2 criti-

cal value for the t distribution withK-1 degrees of free-
dom. For K = 89, t∗ for the 95 % double-tailed confi-
dence interval is 1.99. SDt is the sample standard devi-

ation at time t . SDt =

√
K∑
k=1

(
Ck,t−Ct

)2
K−1 .

4. We define an overall estimate of uncertainty as fol-

lows: uncertainty= 1
M

M∑
t=1

t∗ SDt
Ct
√
K

, which can also be

expressed as uncertainty= 1
M

M∑
t=1

CIt−Ct
Ct

.

2.3.3 Evaluating the sensitivity of hotspot detection
across the network of sensors to the calibration
method

One of the key use cases of low-cost sensors is hotspot detec-
tion. We report the labels of sites that are the most polluted
using calibrated measurements from the 89 different models
using hourly data. We repeat this process for daily, weekly,
and monthly averaged calibrated measurements. We ignore
missing measurements from the network when calculating
time-averaged values for the different time periods consid-
ered. We report the mean number of sensors that are ranked
“most polluted” across the different correction functions for
the different averaging periods (Fig. 8). We do this to iden-
tify if the choice of the calibration model impacts the hotspot
identified by the network (i.e., depending on the calibration
model, different sites show up as the most polluted).

2.3.4 Supplementary analysis: evaluating
transferability of calibration models developed in
different pollution regimes

We evaluated model performance for true and reference
PM2.5 concentrations > 30 µgm−3 and ≤ 30 µgm−3, as Nil-
son et al. (2022) have shown that calibration models can
have different performances in different pollution regimes.
We chose to use 30 µgm−3 as the threshold, as these concen-
trations account for the greatest differences in health and air
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pollution avoidance behavior impacts (Nilson et al., 2022).
Lower concentrations (PM2.5 ≤ 30 µgm−3) represent most
measurements observed in our network; better performance
at these levels will ensure better day-to-day functionality of
the correction. High PM2.5 (> 30 µgm−3) concentrations in
Denver typically occur during fires. Better performance of
the calibration models in this regime will ensure that the LCS
network can accurately capture pollution concentrations un-
der smoky conditions. In order to compare errors observed
in the two different concentration ranges, in addition to re-
porting R and RMSE of the calibration approaches, we also
report the normalized RMSE (normalized by the mean of the
true concentrations) (Tables S3 and S4).

2.3.5 Supplementary analysis: evaluating
transferability of calibration models developed
across different time aggregation intervals

One of the key advantages of LCS is that they report high
frequency (timescales shorter than an hour) measurements of
pollution. As reference monitoring stations provide hourly
or daily average pollution values, most often, the calibra-
tion model is developed using hourly averaged data and is
then applied to the unaggregated, high-frequency LCS mea-
surements. We applied the calibration models described in
Tables 2 and 3 developed using hourly averaged co-located
measurements on minute-level measurements from the co-
located LCS described in Table S1. We evaluated the perfor-
mance of the corrected high-frequency measurements against
the “true” measurements from the corresponding reference
monitor using the metrics R and RMSE (Tables S5 and S6).

3 Results

We first report how representative meteorological conditions
at the co-located sites were of the overall network. Tempera-
ture at the co-located sites across the entire period of the ex-
periment (from 1 January to 30 September 2021) were simi-
lar to those at the rest of Love My Air network (Fig. 2a). The
sensor CS19 is the only one that recorded lower temperatures
than those at any of the other sites, likely due to it being in
the shade. Relative humidity at the co-located sites (three of
the four co-located sites have a median RH close to 50 % or
higher) is higher than at the other sites in the network (7 of
the 12 other sites have a median RH< 50 %) (Fig. 2b). The
similarity in meteorological conditions at the co-located sites
with those experienced by the rest of the network suggests
that models developed using long-term data (C1) are likely
to be transferable to the overall network.

We also compared meteorological conditions during the
development of corrections C3 (1–4 January 2021) and C4
(1–4 January 2021 and 1–14 May 2021) to those measured
during the duration of network operation (C3: Figs. S10
and S11; C4: Figs. S12 and S13). Unsurprisingly, tempera-

Figure 2. (a) Distribution of temperature recorded by each Love
My Air sensor, (b) Distribution of RH recorded by each Love My
Air sensor. The distribution of temperature and RH recorded by co-
located LCS is shown on the left. The distribution of temperature
and RH recorded by all LCS not used to construct the calibration
models are displayed on the right.

tures at the co-located sites during the development of C4
were more representative of the network than C3, although
they were, on average, lower (median temperatures ∼ 10–
17◦C) than the average temperatures experienced by the net-
work (median temperatures ∼ 5–23◦C). RH values at co-
located sites during C3 and C4 tend to be higher than condi-
tions experienced by Love My Air sensors CS8, CS10, CS15,
CS16, CS17, CS18, and CS20, likely due to the different mi-
croenvironments experienced at each site. The differences
in meteorological conditions at the co-located sites for the
time period of calibration model developed with those expe-
rienced by the rest of the network suggest that models de-
veloped using short-term data (C3, C4) are not likely to be
transferable to the overall network.

When we evaluate the performance of applying each of
the 89 calibration models on all co-located data, we find that,
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based on R and RMSE values, the on-the-fly C2 correction
performed better overall than the C1, C3, and C4 corrections
for most calibration model forms (Tables 2 and 3).

Within corrections C1 and C2, we found that an in-
crease in complexity of the model form resulted in a de-
creased RMSE. Overall, Model 21 yielded the best per-
formance (RMSE= 1.281 µgm−3 when using the C2 cor-
rection, 1.475 µgm−3 when using the C1 correction with a
LOSO CV, and 1.480 µgm−3 when using a LOBD correc-
tion). In comparison, the simplest model yielded an RMSE of
3.421 µgm−3 for the C1 correction and 3.008 µgm−3 when
using the C2 correction. For correction C1, using a LOBD
CV (Table 3) with the machine learning models resulted in
better performance than using a LOSO CV (Table 2), except
for Model 21, which is an RF model with additional time-
of-day and month covariates, for which performance using
the LOSO CV was marginally better (RMSE: 1.475 µgm−3

versus 1.480 µgm−3).
We also found that, for corrections of short-term calibra-

tions (C3 and C4), more complex models yielded a bet-
ter performance (for example the RMSE for Model 16:
2.813 µgm−3, RMSE for Model 2: 3.110 µgm−3, generated
using the C3 correction) when evaluated alone during the pe-
riod of co-location (Table S2). However, when models gener-
ated using the C3 and C4 corrections were transferred to the
entire time period of co-location, we found that more com-
plex multivariate regression models (Models 13–16) and the
machine learning model (Model 21) that include cos_time
performed significantly worse than the simpler models (Ta-
ble 2). In some cases, these models performed worse than the
uncorrected measurements. For example, applying Model 16
generated using C3 on the entire dataset resulted in an RMSE
of 32.951 µgm−3 compared to 6.469 µgm−3 for the uncor-
rected measurements.

Including data from another season, spring, in addition to
winter in the training sample (C4) resulted in significantly
improved performance of calibration models over the entire
dataset compared to C3 (winter), although it did not result in
an improvement in performance for all models compared to
the uncorrected measurements. For example, Model 16 gen-
erated using C4 yielded an RMSE of 6.746 µgm−3. Among
the multivariate regression models, we found that models of
the same form that corrected for RH instead of T or D did
best. The best performance was observed for models that in-
cluded the nonlinear correction for RH (Model 12) or in-
cluded an RH×T term (Model 5) (Table 2).

3.1 Evaluating transferability of the calibration
algorithms in space

Large reductions in RMSE are observed when applying sim-
ple linear corrections (Models 1–4) developed using a sub-
set of the co-located data to the left-out sites (Fig. 3a, c,
d, e) or time periods (Fig. 3b) across C1, C2, C3, and C4.
Increasing the complexity of the model does not result in

marked changes in correction performance on different test
sets for C1 and C2. Although the performance of the cor-
rected datasets did improve on average for some of the com-
plex models considered (Models 17, 20, 21, for example,
vis-a-vis simple linear regressions when using the C1 cor-
rection) (Fig. 3a, b), this was not the case for all test datasets
considered, as evidenced by the overlapping distributions of
RMSE performances (e.g., Model 11 using the C2 correction
resulted in a worse fit for one of the test datasets). For C3
and C4, the performance of corrections was worse across all
datasets for the more complex multivariate model formula-
tions (Fig. 3d, e), indicating that using uncorrected data is
better than using these corrections and calibration models.

Wilcoxon tests and t tests (based on whether Shapiro–
Wilk tests revealed that the distribution of RMSEs was nor-
mal) revealed significant improvements in the distribution of
RMSEs for all corrected test sets vis-a-vis the uncorrected
data. Across the different models, there was no significant
difference in the distribution of RMSE values from apply-
ing C1 and C2 corrections to the test sets. For corrections C3
and C4, we found significant differences in the distribution of
RMSEs obtained from running different models on the data,
implying that the choice of model has a significant impact on
transferability of the calibration models to other monitors.

The time series of corrected PM2.5 values for Models 1,
2, 5, 16, and 21 (RF using additional variables) (using
CV=LOSO for the machine learning Models 17 and 21) for
corrections generated using C1, C2, C3, and C4 are displayed
in Fig. 4 for Love My Air sensor CS1. These subsets of mod-
els were chosen, as they cover the range of model forms con-
sidered in this analysis.

From Fig. 4, we note that, although the different cor-
rected values from C1 and C2 track each other well, there
are small systematic differences between the different cor-
rections. Peaks in corrected values using C2 tend to be higher
than those using C1. Peaks in corrected values using ma-
chine learning methods using C1 are higher than those gen-
erated from multivariate regression models. Figure 4 also
shows marked differences in the corrected values from C3
and C4. Specifically, Model 16 yields peaks in the data that
corrections using the other models do not generate. This pat-
tern was consistent when applying this suite of corrections to
other Love My Air sensors.

3.2 Evaluating sensitivity of the spatial and temporal
trends of the low-cost sensor network to the method
of calibration

The spatial and temporal RMSD values between corrected
values generated from applying each of the 89 models using
the four different correction approaches across all monitor-
ing sites in the Love My Air network are displayed in Figs. 5
and 6, respectively. There is a larger temporal variation (max
32.79 µgm−3) in comparison to spatial variations displayed
across corrections (max 11.95 µgm−3). Model 16 generated
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Figure 3. Performance (RMSE) of corrected Love My Air PM2.5 data by generating corrections based on the 21 models (designated as fit)
previously proposed using (a) correction C1 when leaving out a co-location site in turn and then running the generated correction on the
test site (note that for machine learning models (Models 17–21), we performed CV using a LOSO CV as well as a LOBD CV approach.);
(b) correction C1 when leaving out three-week periods of data at a time and generating corrections based on the data from the remaining
time periods across each site, and evaluating the performance of the developed corrections on the held-out three weeks of data (note that for
machine learning models (Models 17–21), we performed CV using a LOBD CV approach); (c) correction C2 when leaving out a co-location
site in turn and then running the generated correction on the test site; (d) correction C3 when leaving out a co-location site in turn and then
running the generated correction on the test site; (e) correction C4 when leaving out a co-location site in turn and then running the generated
correction on the test site. Each point represents the RMSE for each test dataset permutation. The distribution of RMSEs is displayed using
box plots and violin plots.

using the C3 correction has the greatest spatial and temporal
RMSD in comparison with all other models. Models gener-
ated using the C3 and C4 corrections displayed the greatest
spatial and temporal RMSD vis-a-vis C1 and C2.

Figures S14–S17 display spatial RMSD values between all
models corresponding to corrections C1–C4, respectively, to
allow for a zoomed-in view of the impact of the different
model forms for the four corrections. Similarly, Figs. S18–

S21 display temporal RMSD values between all models cor-
responding to corrections C1–C4, respectively. Across all
models, the temporal RMSD between models is greater than
the spatial RMSD.

The distribution of uncertainty and the NR in hourly cali-
brated measurements over the 89 models by monitor are dis-
played in Fig. 7. Overall, there are small differences in uncer-
tainties and NR of the calibrated measurements across sites.
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Figure 4. Time series of the different PM2.5 corrected values for Models 1, 2, 5, 16, and 21 across corrections (a) C1, (b) C2, (c) C3, and
(d) C4 for the Love My Air monitor CS1. Note that the scales are the same for C1, C2, and C4, but not for C3.

The average NR and uncertainty across all sites are 1.554
(median: 0.9768) and 0.044 (median: 0.033), respectively.
We note that, although the uncertainties in the data are small,
the average normalized range tends to be quite large.

3.3 Evaluating the sensitivity of hotspot detection
across the network of sensors to the calibration
method

Mean (95 % CI) PM2.5 concentrations across the 89 differ-
ent calibration models listed in Tables 1 and 2 at each Love
My Air site for the duration of the experiment (1 January–
30 September 2021) are displayed in Fig. S22. Due to overlap
between the different calibrated measurements across sites,
the ranking of sites based on pollutant concentrations is de-
pendent on the calibration model used.

Every hour, we ranked the different monitors for each of
the 89 different calibration models in order to evaluate how
sensitive pollution hotspots were to the calibration model
used. We found that there were, on average, 4.4 (median= 5)
sensors that were ranked most polluted. When this calcula-
tion was repeated using daily averaged calibrated data, there
were, on average, 2.5 (median= 2) sensors that were ranked
the most polluted. The corresponding value for weekly cali-
brated data was 2.4 (median= 1) and for monthly data was 3
(median= 3) (Fig. 8).

3.4 Supplementary analysis: evaluating transferability
of calibration models developed in different
pollution regimes

When we evaluated how well the models performed at high
PM2.5 concentrations (> 30 µgm−3) versus lower concentra-
tions (≤ 30 µgm−3), we found that multivariate regression
models generated using the C1 correction did not perform
well in capturing peaks in PM2.5 concentrations (normalized
RMSE> 25 %) (Tables S3 and S4).

Multivariate regression models generated using the C2
correction performed better than those generated using C1
(normalized RMSE ∼ 20 %–25 %). Machine learning mod-
els generated using both C1 and C2 corrections captured
PM2.5 peaks well (C1: normalized RMSE ∼ 10 %–25 %,
C2: normalized RMSE ∼ 10 %–20 %). Specifically, the C2
RF model (Model 21) yielded the lowest RMSE values
(4.180 µgm−3, normalized RMSE: 9.8 %) of all models con-
sidered. The performance of models generated using C1 and
C2 corrections in the low-concentration regime was the same
as that over the entire dataset. This is because most measure-
ments made were < 30 µgm−3.

Models generated using C3 and C4 had the worst per-
formance in both concentration regimes and yielded poorer
agreement with reference measurements than even the uncor-
rected measurements. As in the case with the entire dataset,
more complex multivariate regression models and machine
learning models generated using C3 and C4 performed worse
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Figure 5. Spatial RMSD (µgm−3) calculated using the method detailed in Sect. 2.3.5 from applying each of the 89 calibration models using
the four different correction approaches to all monitoring sites in the Love My Air network.

than more simple models in both PM2.5 concentration inter-
vals (Tables S3 and S4).

3.5 Supplementary analysis: evaluating transferability
of calibration models developed across different
time aggregation intervals

We then evaluated how well the models generated using
C1, C2, C3, and C4 corrections performed when applied to
minute-level LCS data at co-located sites (Tables S5 and S6).
We found that the machine learning models generated using

C1 and C2 improved the performance of the LCS. Model
21 (CV=LOSO) generated using C1 yielded an RMSE of
15.482 µgm−3 compared to 16.409 µgm−3 obtained from the
uncorrected measurements.

The more complex multivariate regression models yielded
a significantly worse performance across all corrections.
(Model 16 generated using C1 yielded an RMSE of
41.795 µgm−3). As in the case with the hourly averaged mea-
surements, using correction C1, LOBD CV instead of LOSO
for the machine learning models resulted in better model per-
formance, except for Model 21. Few models generated using
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Figure 6. Temporal RMSD (µgm−3) calculated using the method detailed in Sect. 2.3.5 from applying each of the 89 calibration models
using the four different correction approaches to all monitoring sites in the Love My Air network.

C3 and C4 resulted in improved performance when applied
to the minute-level measurements (Tables S5 and S6).

4 Discussion and conclusions

In our analysis of how transferable the correction models
developed at the Love My Air co-location sites are to the
rest of the network, we found that, for C1 (corrections de-
veloped on the entire co-location dataset) and C2 (on-the-

fly corrections), more complex model forms yielded better
predictions (higher R, lower RMSE) at the co-located sites.
This is likely because the machine learning models were best
able to capture complex, non-linear relationships between
the LCS measurements, meteorological parameters, and ref-
erence data when conditions at the co-location sites were
representative of that of the rest of the network. Model 21,
which included additional covariates intended to capture pe-
riodicities in the data, such as seasonality, yielded the best
performance, suggesting that, in this study, the relationship
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Figure 7. Distribution of (a) uncertainty and (b) normalized range (NR) in hourly calibrated measurements across all 89 calibration models
at each site using the methodology described in Sect. 2.3.5.

Figure 8. Variation in the number of sites that were ranked as “most
polluted” across the 89 different calibration models for different
time-averaging periods displayed using box plots.

between LCS measurements and reference data varies over
time. One possible reason for this could be the impact of
changing aerosol composition in time, which has been shown
to impact the LCS calibration function (Malings et al., 2020).

When examining the short term, C3 (corrections devel-
oped on two weeks of co-located data at the start of the ex-
periment) and C4 (corrections developed on two weeks of co-
located data in January and two weeks of co-located data in a
May) corrections, we found that, although these corrections
appeared to significantly improve LCS measurements dur-
ing the time period of model development (Table S2), when
transferred to the entire time period of operation, they did
not perform well (Table 2). Many of the models, especially
the more complex multivariate regression models, performed
significantly worse than even the uncorrected measurements.
This result indicates that calibration models generated dur-
ing short time periods, even if the time periods correspond to
different seasons, may not necessarily transfer well to other
times, likely because conditions during co-location (aerosol-
type, meteorology) are not representative of that of network
operating conditions. Our results suggest the need for statis-
tical calibration models to be developed over longer time pe-
riods that better capture different LCS operating conditions.
However, for C3 and C4, we did find models that relied on
nonlinear formulations of RH, which serve as proxies for
hygroscopic growth, yielded the best performance as com-
pared to more complex models (Table 2). This suggests that
physics-based calibrations are potentially an alternative ap-
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proach, especially when relying on short co-location periods,
and need to be explored further.

When evaluating how transferable different calibration
models were to the rest of the network, we found that, for
C1 and C2, more complex models that appeared to perform
well at the co-location sites did not necessarily transfer best
to the rest of the network. Specifically, when we tested these
models on a co-located site that was left out when generat-
ing the calibration models, we found that some of the more
complex models using the C2 correction yielded a signifi-
cantly worse performance at some test sites (Fig. 3). If the
corrected data were going to be used to make site-specific de-
cisions, then such corrections would lead to important errors.
For C3 and C4, we observed a large distribution of RMSE
values across sites. For several of the more complex models
developed using C3 and C4 corrections, the RMSE values at
some left-out sites were larger than observed for the uncor-
rected data, suggesting that certain calibration models could
result in even more error-prone data than using uncorrected
measurements. As the meteorological parameters for the du-
ration of the C3 and C4 co-locations are not representative of
overall operating conditions of the network, it is likely that
the more complex models were overfit to conditions during
the co-location, leading to them not performing well over the
network operations.

For C1 and C2, we found that there were no significant dif-
ferences in the distribution of the performance metric RMSE
of corrected measurements from simpler models in compar-
ison to those derived from more complex corrections at test
sites (Fig. 3). For C3 and C4, we found significant differ-
ences in the distribution of RMSE across test sites, which
indicates that these models are likely site specific and not
easily transferable to other sites in the network. This suggests
that less complex models might be preferred when short-term
co-locations are carried out for sensor calibration, especially
when conditions during the short-term co-location are not
representative of that of the network.

We found that the temporal RMSD (Fig. 6) was greater
than the spatial RMSD (Fig. 5) for the ensemble of corrected
measurements developed by applying the 89 different cal-
ibration models to the Love My Air network. One of the
reasons this may be the case is that PM2.5 concentrations
across the different Love My Air sites in Denver are highly
correlated (Fig. S5), indicating that the contribution of lo-
cal sources to PM2.5 concentrations in the Denver neighbor-
hoods in which Love My Air was deployed is small. Due
to the low variability in PM2.5 concentrations across sites, it
makes sense that the variations in the corrected PM2.5 con-
centrations will be seen in time rather than space. The largest
pairwise temporal RMSD were all seen between corrections
derived from complex models using the C3 correction.

Finally, we observed that the uncertainty in PM2.5 concen-
trations across the ensemble of 89 calibration models (Fig. 7)
was consistently small for the Love My Air Denver network.
The normalized range in the corrected measurements, on the

other hand, was large; however, the uncertainty (95 % CI) in
the corrected measurements fall within a relatively small in-
terval. The average normalized range tends to be quite large,
likely due to outlier corrected values produced from some
of the more complex models evaluated using the C3 and C4
corrections. Thus, deciding which calibration model to pick
has important consequences for decision makers when using
data from this network.

Our findings reinforce the idea that evaluating calibra-
tion models at all co-location sites using overall metrics like
RMSE should not be seen as the only or the best way to
determine how to calibrate a network of LCS. Instead, ap-
proaches like the ones we have demonstrated and metrics
like the ones we have proposed should be used to evaluate
calibration transferability.

We found that the detection of the “most polluted” site in
the Love My Air network (an important use case of LCS net-
works) was dependent on the calibration model used on the
network. We also found that, for the Love My Air network,
the detection of the most polluted site was sensitive to the
duration of time averaging of the corrected measurements
(Fig. 8). Hotspot detection was most robust using weekly
averaged measurements. A possible reason for this is that
temporal variations in PM2.5 in Denver varied primarily on a
weekly scale, and therefore analysis conducted using weekly
values resulted in the most robust results. Such an analysis
thus provides guidance on the most useful temporal scale for
decision making related to evaluating hotspots in the Denver
network.

In supplementary analyses, when we evaluated the sensi-
tivity of other LCS use cases to the calibration model ap-
plied, such as tracking high pollution concentrations during
fire or smoke events, we found that different models yielded
different performance results in different pollution regimens.
Machine learning models developed using C1 and models
developed using C2 were better than multivariate regression
models generated using C1 at capturing peaks in pollution (>
30 µgm−3). All models using C3 and C4 yielded poor per-
formance results in tracking high pollution events (Tables S3
and S4). This is likely because PM2.5 concentrations during
the C3 and C4 co-location tended to be low. The calibration
model developed thus did not transfer well to other concen-
trations. When evaluating how well the calibration models
developed using hourly aggregated measurements translated
to high-resolution minute-level data (Tables S5 and S6), we
observed that machine learning models generated using C1
and C2 improved the LCS measurements. More complex
multivariate regression models performed poorly. All C3 and
C4 models also performed poorly. This suggests that caution
needs to be exercised when transferring models developed
at a particular timescale to another. Note that, in this paper,
because pollution concentrations did not show much spa-
tial variation, we focus on evaluating transferability across
timescales only.
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In summary, this paper makes the case that it is not enough
to evaluate calibration models based on metrics of perfor-
mance at co-located sites, alone. We need to do the follow-
ing:

1. Determine how well calibration adjustments can be
transferred to other locations. Specifically, although we
found that, in Denver, some calibration models per-
formed well at co-location sites, the models could result
in large errors at specific sites that would create difficul-
ties for site-specific decision making.

2. Examine how well calibration adjustments can be trans-
ferred to other time periods. In this study, we found
that models developed using the short-term C3 and C4
corrections were not transferable to other time periods,
because the conditions during the co-location were not
representative of broader operating conditions in the
network.

3. Use a variety of approaches to quantify transferability
of calibration models in the overall network (e.g., with
spatiotemporal correlations and RMSD). The metrics
proposed in this paper to evaluate model transferability
can be used in other networks.

4. Investigate how adopting a certain timescale for aver-
aging measurements could mitigate the uncertainty in-
duced by the calibration process for specific use cases.
Namely, we found that in the Love My Air network,
hotspot identification was more robust when using daily
averaged data than hourly averaged data. Our analy-
ses also revealed which models performed best when
needing to transfer the calibration model developed us-
ing hourly averaged data to higher-resolution data and
which models best captured peaks in pollution during
fire or smoke events.

In this work, the Love My Air network under consider-
ation is located over a fairly small area in a single city. In
this network, for the time period considered, PM2.5 seems
to be mainly a regional pollutant, and the contribution of lo-
cal sources is small. More work needs to be done to evaluate
model transferability in networks in other settings. Concerns
about model transferability are likely to be even more press-
ing when thinking about larger networks that span different
cities and should be considered in future research. In this
study, we present a first attempt to demonstrate the impor-
tance of considering the transferability of calibration mod-
els. In future work, we also aim to explore the physical fac-
tors that drive concerns about transferability to generalize our
findings more broadly.

Code availability. The code is available on reasonable request.

Data availability. The data from the Love My Air
air quality monitoring network used in this study can
be obtained by contacting the Love My Air Program
(https://www.denvergov.org/Government/Agencies-Departments-
Offices/Agencies-Departments-Offices-Directory/Public-Health-
Environment/Environmental-Quality/Air-Quality/Love-My-Air,
Denver, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-6309-2022-supplement.

Author contributions. PD conceptualized the study, developed the
methodology, carried out the analysis, and wrote the first draft. PD
and BC obtained funding for this study. BC produced Fig. 1. All
authors helped in refining the methodology and editing the draft.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Priyanka deSouza and Ben Crawford grate-
fully acknowledge a CU Denver Presidential Initiative grant that
supported their work. The authors are grateful to the Love My Air
team for setting up and maintaining the Love My Air network. The
authors are also grateful to Carl Malings for the useful comments

Review statement. This paper was edited by Albert Presto and re-
viewed by two anonymous referees.

References

Anderson, G. B. and Peng, R. D.: weathermetrics: Functions
to convert between weather metrics (R package), http://cran.
r-project.org/web/packages/weathermetrics/index.html (last ac-
cess: 26 October 2022), 2012.

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstet-
ter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J.,
Vermeulen, R. C. H., and Hamburg, S. P.: High-Resolution
Air Pollution Mapping with Google Street View Cars: Ex-
ploiting Big Data, Environ. Sci. Technol., 51, 6999–7008,
https://doi.org/10.1021/acs.est.7b00891, 2017.

Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and
application of a United States-wide correction for PM2.5 data
collected with the PurpleAir sensor, Atmos. Meas. Tech., 14,
4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.

Bean, J. K.: Evaluation methods for low-cost particulate
matter sensors, Atmos. Meas. Tech., 14, 7369–7379,
https://doi.org/10.5194/amt-14-7369-2021, 2021.

Atmos. Meas. Tech., 15, 6309–6328, 2022 https://doi.org/10.5194/amt-15-6309-2022

https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://doi.org/10.5194/amt-15-6309-2022-supplement
http://cran.r-project.org/web/packages/weathermetrics/index.html
http://cran.r-project.org/web/packages/weathermetrics/index.html
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.5194/amt-14-4617-2021
https://doi.org/10.5194/amt-14-7369-2021


P. deSouza et al.: Calibrating networks of low-cost air quality sensors 6327

Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-
Cost Sensor Measurements into High-Resolution PM2.5 Model-
ing at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–
2162, https://doi.org/10.1021/acs.est.9b06046, 2020.

Brantley, H. L., Hagler, G. S. W., Herndon, S. C., Massoli,
P., Bergin, M. H., and Russell, A. G.: Characterization of
Spatial Air Pollution Patterns Near a Large Railyard Area
in Atlanta, Georgia, Int. J. Env. Res. Pub. He., 16, 535,
https://doi.org/10.3390/ijerph16040535, 2019.

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U.,
Fishbain, B., Broday, D., and Bartonova, A.: Can commer-
cial low-cost sensor platforms contribute to air quality mon-
itoring and exposure estimates?, Environ. Int., 99, 293–302,
https://doi.org/10.1016/j.envint.2016.12.007, 2017.

Clements, A. L., Griswold, W. G., RS, A., Johnston, J. E., Hert-
ing, M. M., Thorson, J., Collier-Oxandale, A., and Hanni-
gan, M.: Low-Cost Air Quality Monitoring Tools: From Re-
search to Practice (A Workshop Summary), Sensors, 17, 2478,
https://doi.org/10.3390/s17112478, 2017.

Considine, E. M., Reid, C. E., Ogletree, M. R., and Dye, T.:
Improving accuracy of air pollution exposure measurements:
Statistical correction of a municipal low-cost airborne partic-
ulate matter sensor network, Environ. Pollut., 268, 115833,
https://doi.org/10.1016/j.envpol.2020.115833, 2021.

Crawford, B., Hagan, D. H., Grossman, I., Cole, E., Hol-
land, L., Heald, C. L., and Kroll, J. H.: Mapping pollu-
tion exposure and chemistry during an extreme air qual-
ity event (the 2018 Kı̄lauea eruption) using a low-cost sen-
sor network, P. Natl. Acad. Sci. USA, 118, e2025540118,
https://doi.org/10.1073/pnas.2025540118, 2021.

Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R.,
Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a
low-cost optical particle counter (Alphasense OPC-N2) for
ambient air monitoring, Atmos. Meas. Tech., 11, 709–720,
https://doi.org/10.5194/amt-11-709-2018, 2018.

Denver: Love My Air, https://www.denvergov.org/Government/‚Agencies-
Departments-Offices/Agencies-Departments-Offices-
Directory/Public-Health-Environment/Environmental-
Quality/Air-Quality/Love-My-Air, last access: 22 October 2022.

deSouza, P. and Kinney, P. L.: On the distribution of low-
cost PM2.5 sensors in the US: demographic and air qual-
ity associations, J. Expo. Sci. Env. Epid., 31, 514–524,
https://doi.org/10.1038/s41370-021-00328-2, 2021.

deSouza, P., Anjomshoaa, A., Duarte, F., Kahn, R., Kumar,
P., and Ratti, C.: Air quality monitoring using mobile low-
cost sensors mounted on trash-trucks: Methods develop-
ment and lessons learned, Sustain. Cities Soc., 60, 102239,
https://doi.org/10.1016/j.scs.2020.102239, 2020a.

deSouza, P., Lu, R., Kinney, P., and Zheng, S.: Expo-
sures to multiple air pollutants while commuting: Evidence
from Zhengzhou, China, Atmos. Environ., 247, 118168,
https://doi.org/10.1016/j.atmosenv.2020.118168, 2020b.

deSouza, P. N.: Key Concerns and Drivers of Low-
Cost Air Quality Sensor Use, Sustainability, 14, 584,
https://doi.org/10.3390/su14010584, 2022.

deSouza, P. N., Dey, S., Mwenda, K. M., Kim, R., Subramanian, S.
V., and Kinney, P. L.: Robust relationship between ambient air
pollution and infant mortality in India, Sci. Total Environ., 815,
152755, https://doi.org/10.1016/j.scitotenv.2021.152755, 2022.

Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., Mc-
Neill, V. F., Westervelt, D. M., Beekmann, M., and Subramanian,
R.: From low-cost sensors to high-quality data: A summary of
challenges and best practices for effectively calibrating low-cost
particulate matter mass sensors, J. Aerosol Sci., 158, 105833,
https://doi.org/10.1016/j.jaerosci.2021.105833, 2021.

Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.:
Air Quality Sensors and Data Adjustment Algorithms: When Is
It No Longer a Measurement?, Environ. Sci. Technol., 52, 5530–
5531, https://doi.org/10.1021/acs.est.8b01826, 2018.

Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field
calibrations of a low-cost aerosol sensor at a regulatory mon-
itoring site in California, Atmos. Meas. Tech., 7, 1121–1131,
https://doi.org/10.5194/amt-7-1121-2014, 2014.

Jin, X., Fiore, A. M., Civerolo, K., Bi, J., Liu, Y., Donkelaar, A.
van, Martin, R. V., Al-Hamdan, M., Zhang, Y., Insaf, T. Z.,
Kioumourtzoglou, M.-A., He, M. Z., and Kinney, P. L.: Com-
parison of multiple PM2.5 exposure products for estimating
health benefits of emission controls over New York State, USA,
Environ. Res. Lett., 14, 084023, https://doi.org/10.1088/1748-
9326/ab2dcb, 2019.

Kim, K.-H., Kabir, E., and Kabir, S.: A review on the human health
impact of airborne particulate matter, Environ. Int., 74, 136–143,
https://doi.org/10.1016/j.envint.2014.10.005, 2015.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engel-
hardt, A., Cooper, T., Mayer, Z., Kenkel, B., and R Core Team:
Building predictive models in R using the caret package, R J.,
223, 28, 1–26, 2020.

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M.,
Di Sabatino, S., Bell, M., Norford, L., and Britter, R.: The rise of
low-cost sensing for managing air pollution in cities, Environ.
Int., 75, 199–205, https://doi.org/10.1016/j.envint.2014.11.019,
2015.

Liang, L.: Calibrating low-cost sensors for ambient air monitoring:
Techniques, trends, and challenges, Environ. Res., 197, 111163,
https://doi.org/10.1016/j.envres.2021.111163, 2021.

Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.:
Evaluation of PM2.5 measured in an urban setting using a low-
cost optical particle counter and a Federal Equivalent Method
Beta Attenuation Monitor, Aerosol Sci. Technol., 54, 147–159,
https://doi.org/10.1080/02786826.2019.1619915, 2020.

Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson,
A. L., Presto, A. A., and Subramanian, R.: Fine particle mass
monitoring with low-cost sensors: Corrections and long-term
performance evaluation, Aerosol Sci. Technol., 54, 160–174,
https://doi.org/10.1080/02786826.2019.1623863, 2020.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G.,
Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin,
M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K.
H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins,
B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro,
D., Westerdahl, D., and Williams, R.: Applications of low-cost
sensing technologies for air quality monitoring and exposure as-
sessment: How far have they gone?, Environ. Int., 116, 286–299,
https://doi.org/10.1016/j.envint.2018.04.018, 2018.

Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Devel-
opment and evaluation of correction models for a low-cost fine
particulate matter monitor, Atmos. Meas. Tech., 15, 3315–3328,
https://doi.org/10.5194/amt-2021-425, 2022.

https://doi.org/10.5194/amt-15-6309-2022 Atmos. Meas. Tech., 15, 6309–6328, 2022

https://doi.org/10.1021/acs.est.9b06046
https://doi.org/10.3390/ijerph16040535
https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.3390/s17112478
https://doi.org/10.1016/j.envpol.2020.115833
https://doi.org/10.1073/pnas.2025540118
https://doi.org/10.5194/amt-11-709-2018
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://www.denvergov.org/Government/Agencies-Departments-Offices/Agencies-Departments-Offices-Directory/Public-Health-Environment/Environmental-Quality/Air-Quality/Love-My-Air
https://doi.org/10.1038/s41370-021-00328-2
https://doi.org/10.1016/j.scs.2020.102239
https://doi.org/10.1016/j.atmosenv.2020.118168
https://doi.org/10.3390/su14010584
https://doi.org/10.1016/j.scitotenv.2021.152755
https://doi.org/10.1016/j.jaerosci.2021.105833
https://doi.org/10.1021/acs.est.8b01826
https://doi.org/10.5194/amt-7-1121-2014
https://doi.org/10.1088/1748-9326/ab2dcb
https://doi.org/10.1088/1748-9326/ab2dcb
https://doi.org/10.1016/j.envint.2014.10.005
https://doi.org/10.1016/j.envint.2014.11.019
https://doi.org/10.1016/j.envres.2021.111163
https://doi.org/10.1080/02786826.2019.1619915
https://doi.org/10.1080/02786826.2019.1623863
https://doi.org/10.1016/j.envint.2018.04.018
https://doi.org/10.5194/amt-2021-425


6328 P. deSouza et al.: Calibrating networks of low-cost air quality sensors

Singh, A., Ng’ang’a, D., Gatari, M. J., Kidane, A. W., Alemu, Z.
A., Derrick, N., Webster, M. J., Bartington, S. E., Thomas, G.
N., Avis, W., and Pope, F. D.: Air quality assessment in three
East African cities using calibrated low-cost sensors with a fo-
cus on road-based hotspots, Environ. Res. Commun., 3, 075007,
https://doi.org/10.1088/2515-7620/ac0e0a, 2021.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,
Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A.,
Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air
Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377,
https://doi.org/10.1021/es4022602, 2013.

Health Effects Institute: State of Global Air 2020, https://www.
stateofglobalair.org/ (last access: 26 October 2022), 2020.

Van der Laan, M. J., Polley, E. C., and Hubbard, A.
E.: Super learner, Stat. Appl. Genet. Mo. B., 6, 25,
https://doi.org/10.2202/1544-6115.1309, 2007.

West, S. E., Buker, P., Ashmore, M., Njoroge, G., Welden, N.,
Muhoza, C., Osano, P., Makau, J., Njoroge, P., and Apondo, W.:
Particulate matter pollution in an informal settlement in Nairobi:
Using citizen science to make the invisible visible, Appl. Geogr.,
114, 102133, https://doi.org/10.1016/j.apgeog.2019.102133,
2020.

Williams, R., Kilaru, V., Snyder, E., Kaufman, A., Dye, T., Rutter,
A., Russel, A., and Hafner, H.: Air Sensor Guidebook, US En-
vironmental Protection Agency, Washington, DC, EPA/600/R-
14/159 (NTIS PB2015-100610), https://cfpub.epa.gov/si/si_
public_record_Report.cfm?Lab=NERL&dirEntryId=277996
(last access: 26 October 2022), 2014.

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk,
A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A
machine learning calibration model using random forests to im-
prove sensor performance for lower-cost air quality monitoring,
Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-
11-291-2018, 2018.

Zusman, M., Schumacher, C. S., Gassett, A. J., Spalt, E.
W., Austin, E., Larson, T. V., Carvlin, G., Seto, E.,
Kaufman, J. D., and Sheppard, L.: Calibration of low-
cost particulate matter sensors: Model development for a
multi-city epidemiological study, Environ. Int., 134, 105329,
https://doi.org/10.1016/j.envint.2019.105329, 2020.

Atmos. Meas. Tech., 15, 6309–6328, 2022 https://doi.org/10.5194/amt-15-6309-2022

https://doi.org/10.1088/2515-7620/ac0e0a
https://doi.org/10.1021/es4022602
https://www.stateofglobalair.org/
https://www.stateofglobalair.org/
https://doi.org/10.2202/1544-6115.1309
https://doi.org/10.1016/j.apgeog.2019.102133
https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NERL&dirEntryId=277996
https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NERL&dirEntryId=277996
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.1016/j.envint.2019.105329

	Abstract
	Introduction
	Data and methods
	Data sources
	Data cleaning protocol for measurements from the Love My Air network
	Data preparation steps for preparing a training dataset used to develop the various calibration models
	Deriving additional covariates

	Defining the calibration models used
	Evaluating the calibration models developed under the four different correction schemes
	Evaluating transferability of calibration models over space
	Evaluating sensitivity of the spatial and temporal trends of the low-cost sensor network to the method of calibration
	Evaluating the sensitivity of hotspot detection across the network of sensors to the calibration method
	Supplementary analysis: evaluating transferability of calibration models developed in different pollution regimes
	Supplementary analysis: evaluating transferability of calibration models developed across different time aggregation intervals


	Results
	Evaluating transferability of the calibration algorithms in space
	Evaluating sensitivity of the spatial and temporal trends of the low-cost sensor network to the method of calibration
	Evaluating the sensitivity of hotspot detection across the network of sensors to the calibration method
	Supplementary analysis: evaluating transferability of calibration models developed in different pollution regimes
	Supplementary analysis: evaluating transferability of calibration models developed across different time aggregation intervals

	Discussion and conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

