Corrigendum to Atmos. Meas. Tech., 15, 6329–6371, 2022 https://doi.org/10.5194/amt-15-6329-2022-corrigendum © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to

"Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments" published in Atmos. Meas. Tech., 15, 6329–6371, 2022

Paul A. Barrett¹, Steven J. Abel¹, Hugh Coe², Ian Crawford², Amie Dobracki³, James Haywood^{4,1}, Steve Howell⁵, Anthony Jones^{1,4}, Justin Langridge¹, Greg M. McFarquhar^{6,7}, Graeme J. Nott⁸, Hannah Price⁸, Jens Redemann⁶, Yohei Shinozuka⁹, Kate Szpek¹, Jonathan W. Taylor², Robert Wood¹⁰, Huihui Wu², Paquita Zuidema³, Stéphane Bauguitte⁸, Ryan Bennett¹¹, Keith Bower², Hong Chen¹², Sabrina Cochrane¹², Michael Cotterell^{4,13}, Nicholas Davies^{4,14}, David Delene¹⁵, Connor Flynn⁶, Andrew Freedman¹⁶, Steffen Freitag⁵, Siddhant Gupta^{6,7}, David Noone^{17,18}, Timothy B. Onasch¹⁶, James Podolske¹⁹, Michael R. Poellot¹⁵, Sebastian Schmidt^{12,20}, Stephen Springston²¹, Arthur J. Sedlacek III²¹, Jamie Trembath⁸, Alan Vance¹, Maria A. Zawadowicz²¹, and Jianhao Zhang^{3,22,23}

Correspondence: Paul A. Barrett (paul.barrett@metoffice.gov.uk)

Published: 4 April 2023

¹Met Office, Exeter, EX1 3PB, UK

²Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK

³Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA

⁴Mathematics and Statistics, University of Exeter, Exeter, EX4 4PY, UK

⁵Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA

⁶School of Meteorology, University of Oklahoma, Norman, OK, USA

⁷Cooperative Institute for Severe and High-Impact Weather Research and Operations,

University of Oklahoma, Norman, OK, USA

⁸FAAM Airborne Laboratory, Cranfield, MK43 0AL, UK

⁹Universities Space Research Association, Columbia, MD, USA

¹⁰Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

¹¹Bay Area Environmental Research Institute, NASA Ames Research Centre, Moffett Field, Mountain View, CA, USA

¹²Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA

¹³School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

¹⁴Haseltine Lake Kempner, Bristol, BS1 6HU, UK

¹⁵Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA

¹⁶Aerodyne Research Inc., Billerica, MA, USA

¹⁷College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis OR, USA

¹⁸Department of Physics, University of Auckland, Auckland, New Zealand

¹⁹Atmospheric Science Branch (SGG), NASA Ames Research Centre, Moffett Field, Mountain View, CA, USA

²⁰Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA

²¹Environmental and Climate Sciences Dept., Brookhaven National Laboratory, Upton, NY, USA

²²Clouds, Aerosols, & Climate, NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA

²³Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA

In the paper, two errors were made in the written text in Sects. 4.3.1 and 5.2 when writing the manuscript. These both relate to the direction of comparisons of concentrations measured by the AMS (aerosol mass spectrometer) on board the FAAM (Facility for Airborne Atmospheric Measurements) BAe-146 aircraft operated during CLAR-IFY (CLouds–Aerosol–Radiation Interaction and Forcing for Year 2017) and the ACSM (aerosol chemical speciation monitor), which was stationed at the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility on Ascension Island as part of the LASIC (Layered Atlantic Smoke and Interactions with Aerosols) field campaign. Data for these comparisons are presented in Table 4. The numbers in Table 4 are unaffected by these errors and show the correct values.

In particular, in Sect. 4.3.1, we state the following:

Data from LASIC ACSM (using the c2 dataset) do not compare well with those from FAAM (Table 4), with LASIC-FAAM mass ratios in the ranges of 2.1–4.4 (OA), 2.1–4.5 (SO₄), 1.4–2.4 (NO₃) and 2.0–4.1 (NH₄).

The comparison should read "with FAAM-LASIC mass ratios" instead of "with LASIC-FAAM mass ratios".

In Sect. 5.2, we state the following:

The comparison between the FAAM BAe-146 AMS and the LASIC ARM site ACSM is poor. There is a difference of a factor of between 3 and 4.5 between individual species mass concentrations, with the larger magnitudes observed at the ARM site.

The text "with the larger magnitudes observed at the ARM site" should read "with the smaller magnitudes observed at the ARM site".

In summary, the numbers presented in the paper are correct with only the two instances of text being in error. We thank Calvin Howes for bringing this to our attention.