Corrigendum to “Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments” published in Atmos. Meas. Tech., 15, 6329–6371, 2022


1Met Office, Exeter, EX1 3PB, UK
2Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK
3Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
4Mathematics and Statistics, University of Exeter, Exeter, EX4 4PY, UK
5Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, HI, USA
6School of Meteorology, University of Oklahoma, Norman, OK, USA
7Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, OK, USA
8FAAM Airborne Laboratory, Cranfield, MK43 0AL, UK
9Universities Space Research Association, Columbia, MD, USA
10Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
11Bay Area Environmental Research Institute, NASA Ames Research Centre, Moffett Field, Mountain View, CA, USA
12Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
13School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
14Haseltine Lake Kempner, Bristol, BS1 6HU, UK
15Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA
16Aerodyne Research Inc., Billerica, MA, USA
17College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis OR, USA
18Department of Physics, University of Auckland, Auckland, New Zealand
19Atmospheric Science Branch (SGG), NASA Ames Research Centre, Moffett Field, Mountain View, CA, USA
20Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA
21Environmental and Climate Sciences Dept., Brookhaven National Laboratory, Upton, NY, USA
22Clouds, Aerosols, & Climate, NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA
23Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA

Correspondence: Paul A. Barrett (paul.barrett@metoffice.gov.uk)

Published: 4 April 2023

Published by Copernicus Publications on behalf of the European Geosciences Union.
In the paper, two errors were made in the written text in Sects. 4.3.1 and 5.2 when writing the manuscript. These both relate to the direction of comparisons of concentrations measured by the AMS (aerosol mass spectrometer) on board the FAAM (Facility for Airborne Atmospheric Measurements) BAe-146 aircraft operated during CLARIFY (CLouds–Aerosol–Radiation Interaction and Forcing for Year 2017) and the ACSM (aerosol chemical speciation monitor), which was stationed at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility on Ascension Island as part of the LASIC (Layered Atlantic Smoke and Interactions with Aerosols) field campaign. Data for these comparisons are presented in Table 4. The numbers in Table 4 are unaffected by these errors and show the correct values.

In particular, in Sect. 4.3.1, we state the following:

Data from LASIC ACSM (using the c2 dataset) do not compare well with those from FAAM (Table 4), with LASIC–FAAM mass ratios in the ranges of 2.1–4.4 (OA), 2.1–4.5 (SO$_4$), 1.4–2.4 (NO$_3$) and 2.0–4.1 (NH$_4$).

The comparison should read “with FAAM–LASIC mass ratios” instead of “with LASIC–FAAM mass ratios”.

In Sect. 5.2, we state the following:

The comparison between the FAAM BAe-146 AMS and the LASIC ARM site ACSM is poor. There is a difference of a factor of between 3 and 4.5 between individual species mass concentrations, with the larger magnitudes observed at the ARM site.

The text “with the larger magnitudes observed at the ARM site” should read “with the smaller magnitudes observed at the ARM site”.

In summary, the numbers presented in the paper are correct with only the two instances of text being in error. We thank Calvin Howes for bringing this to our attention.