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Abstract. We present a novel methodology to estimate cloud
condensation nuclei (CCN) concentrations from spaceborne
CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observations) lidar measurements. The algorithm
utilizes (i) the CALIPSO-derived backscatter and extinction
coefficient, depolarization ratio, and aerosol subtype infor-
mation; (ii) the normalized volume size distributions and
refractive indices from the CALIPSO aerosol model; and
(iii) the MOPSMAP (modelled optical properties of ensem-
bles of aerosol particles) optical modelling package. For each
CALIPSO height bin, we first select the aerosol-type specific
size distribution and then adjust it to reproduce the extinction
coefficient derived from the CALIPSO retrieval. The scaled
size distribution is integrated to estimate the aerosol number
concentration, which is then used in the CCN parameteri-
zations to calculate CCN concentrations at different super-
saturations. To account for the hygroscopicity of continen-
tal and marine aerosols, we use the kappa parameterization
and correct the size distributions before the scaling step. The
sensitivity of the derived CCN concentrations to variations
in the initial size distributions is also examined. It is found
that the uncertainty associated with the algorithm can range
between a factor of 2 and 3. Our results are comparable to
results obtained using the POLIPHON (Polarization Lidar
Photometer Networking) method for extinction coefficients
larger than 0.05 km−1. An initial application to a case with
coincident airborne in situ measurements for independent
validation shows promising results and illustrates the poten-
tial of CALIPSO for constructing a global height-resolved
CCN climatology.

1 Introduction

Aerosol particles act as cloud condensation nuclei (CCN)
and ice-nucleating particles (INPs) and provide a surface for
the condensation of atmospheric water vapour to form cloud
droplets. The physical and chemical properties of such par-
ticles affect not only the cloud micro- and macro-physical
properties, but also cloud development, lifetime, and the as-
sociated precipitation (Rosenfeld et al., 2014; Fan et al.,
2016; Choudhury et al., 2019). The rapid adjustments in
clouds resulting from aerosol–cloud interactions (ACIs) are
not well understood and still remain the largest source of
spread in global climate projections (IPCC, 2021). This chal-
lenge has motivated the scientific community to study ACIs
by using data from in situ and satellite measurements as well
as by means of modelling and simulations.

Satellites provide long-term global coverage that enables
ACI studies with constrained meteorology and cloud regimes
(Oreopoulos et al., 2017; Douglas and L’Ecuyer, 2019; Jia
et al., 2021). Satellite-based ACI studies relate cloud pa-
rameters (cloud reflectivity or albedo, cloud optical depth,
cloud fraction, cloud drop effective radius, liquid water path),
aerosol properties (aerosol optical depth (AOD), Ångström
exponent (AE), aerosol index (AI)), and the precipitation pat-
tern to understand the underlying mechanisms (Quaas et al.,
2008, 2020; Gryspeerdt and Stier, 2012; McCoy et al., 2017;
Kant et al., 2019; Liu et al., 2020; Choudhury et al., 2020).
The use of AOD and (to a lesser extent) AI as CCN prox-
ies results in a significant underestimation of the radiative
forcing due to ACIs (Gryspeerdt et al., 2017; Hasekamp et
al., 2019). Shinozuka et al. (2015) suggest that the satellite-
derived AOD or AI, being a column-integrated product, may
not be the appropriate proxies for cloud-relevant CCN par-
ticles that usually lie close to the cloud base. Moreover,
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Stier (2016) found a low correlation (< 0.5) between the
ECHAM-HAM model-simulated AOD and CCN concen-
tration near the cloud base and suggested the use of verti-
cally resolved measurements from spaceborne lidar for ACI
studies. The findings of Dusek et al. (2006) show that the
ability of aerosols to act as CCN is predominantly depen-
dent on their size rather than composition. This facilitates
the use of satellite-derived aerosol number concentrations
as accurate CCN proxies for ACI studies (Gryspeerdt et al.,
2017; Hasekamp et al., 2019). The PSML003_Ocean data in-
cluded in the MODIS (Moderate Resolution Imaging Spec-
troradiometer) ocean product give the aerosol number con-
centration with a radius greater than or equal to 30 nm or n30
(Remer et al., 2005, Appendix B). This product is formed by
matching the spectral radiance measured by MODIS to the
radiance estimated from a combination of the microphysical
properties (size distributions and refractive indices) of nine
aerosol types. However, the column-integrated n30 is propor-
tional to the AOD and may not represent the atmospheric
CCN particles located close to the cloud base altitudes (Shi-
nozuka et al., 2015).

Lidar measurements provide height-resolved aerosol opti-
cal properties which are crucial to study vertically co-located
aerosols and clouds (Costantino and Bréon, 2013). Mamouri
and Ansmann (2015) for the first time presented the Po-
larization Lidar Photometer Networking (POLIPHON) tech-
nique to estimate INP concentrations from lidar-derived ex-
tinction coefficient for desert dust aerosols. The algorithm
first converts the extinction coefficient to aerosol number
concentration with radius > 250 nm (n250) by using con-
version factors derived from the Aerosol Robotic Network
(AERONET) correlation study. The INP concentration is
then calculated from n250 using the parameterizations from
DeMott et al. (2010, 2015). Mamouri and Ansmann (2016)
further extend the methodology for estimating CCN concen-
trations at different supersaturation from lidar-derived ex-
tinction coefficient for dust, continental and marine aerosols,
and more recently for aged and fresh smoke aerosols (Ans-
mann et al., 2021b). The POLIPHON technique to esti-
mate CCN and INP concentrations is not only limited to
ground-based lidars but can also be applied to the space-
borne lidar CALIOP (Cloud–Aerosol Lidar with Orthogonal
Polarization) aboard the CALIPSO (Cloud–Aerosol Lidar
and Infrared Pathfinder Satellite Observations) polar-orbiting
satellite (Marinou et al., 2019; Georgoulias et al., 2020).
Georgoulias et al. (2020) for the first time estimated CCN
concentrations from CALIPSO measurements by using the
POLIPHON technique and found good agreement with the
coincident airborne in situ measurements taken during the
ACEMED-EUFAR (evaluation of CALIPSO’s aerosol clas-
sification scheme over the eastern Mediterranean) campaign
(Tsekeri et al., 2017). This illustrates the potential of space-
borne lidar measurements to construct global 3D CCN and
INP data sets.

The CALIPSO aerosol model includes a set of normal-
ized volume size distributions (NVSDs) and refractive in-
dices of six aerosol subtypes (Omar et al., 2009). Similar to
the MODIS PSML003_Ocean algorithm, these microphys-
ical properties along with the CALIPSO-measured aerosol
optical properties can be used to derive the cloud-relevant
aerosol number concentrations. In the present work, we uti-
lize the CALIPSO aerosol model to calculate the extinction
coefficient by using Mie scattering for spherical particles
(continental and marine aerosols) and a combination of a
T-matrix method and an improved geometric optics method
for non-spherical particles (dust aerosols). We then modify
the NVSD by preserving its shape (mode radii and stan-
dard deviation remain constant) until a closure is achieved
between the extinction coefficient inferred from CALIPSO
measurements and derived through light-scattering calcula-
tions. We finally use the modified size distribution to com-
pute the aerosol number concentration favourable to act as
CCN by using the CCN parameterizations that correspond
to different aerosol types (Mamouri and Ansmann, 2016).
Further, we carry out sensitivity tests by varying the initial
NVSD to quantify the uncertainty associated with the re-
trieval algorithm. We compare our results with the existing
CCN retrieval algorithm POLIPHON for different aerosol
subtypes. Moreover, we present a case study where we ap-
ply our algorithm to a CALIPSO overpass over Thessaloniki
and compare it with the in situ observations taken during
the ACEMED-EUFAR campaign (Tsekeri et al., 2017). The
approach for retrieving cloud-relevant aerosol microphysical
properties has not yet been implemented for spaceborne lidar
measurements. This study, therefore, presents a new method-
ology for obtaining height-resolved aerosol number concen-
trations from CALIPSO measurements within the CALIPSO
framework, i.e. without relying on externally inferred con-
version factors.

The paper is structured as follows. The data, optical mod-
elling package used in this work, and a brief overview of
the POLIPHON technique for retrieving CCN concentrations
from lidars are described in Sect. 2. Section 3 describes our
CCN retrieval algorithm for spaceborne lidar. The sensitivity
analysis and comparison studies are presented in Sect. 4. We
conclude the paper with a summary in Sect. 5.

2 Data and retrievals

2.1 CALIPSO

CALIPSO is a sun-synchronous polar-orbiting satellite
launched on 28 April 2006, as a part of the afternoon or
A-Train constellation (Winker et al., 2009). CALIOP is a
polarization-sensitive lidar onboard CALIPSO that measures
profiles of aerosol and cloud properties from an elevation of
30 km above mean sea level to the surface. The CALIPSO al-
gorithm classifies the measured signal into aerosols, clouds,
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clear air, and surface and assigns a subtype to the detected
aerosol signals (Omar et al., 2009). CALIPSO has a set of
lidar ratios associated with each aerosol subtype. These li-
dar ratios are used in the CALIPSO retrieval algorithm to es-
timate the aerosol extinction and backscatter coefficient. In
this work, we use the CALIPSO version 4.20 level 2 aerosol
profile product with a uniform horizontal resolution of 5 km.
Because of CALIPSO’s data averaging scheme, the vertical
resolution of aerosol profile data varies with altitude. It is
60 m for altitudes between 20 and −0.5 km and 180 m above
20 km. We use the profiles of aerosol extinction coefficient,
backscatter coefficient, and particle depolarization ratio mea-
sured at 532 nm and the aerosol subtype information in the
CCN retrieval algorithm. We also use the relative humidity
profiles included in the CALIPSO data product, obtained by
the Global Modelling and Assimilation Office Data Assimi-
lation System (Molod et al., 2015).

The CALIPSO version 2 aerosol types include dust,
smoke, clean continental, polluted continental, clean ma-
rine, and polluted dust. The microphysical properties of these
six aerosol subtypes constitute the CALIPSO aerosol model
(CAMel). The lidar ratios used in the retrieval of extinc-
tion coefficient for each aerosol type were modelled us-
ing these microphysical properties. Of the six aerosol sub-
types, the properties of smoke, polluted continental, and pol-
luted dust were obtained directly from a cluster analysis of
long-term cloud-screened AERONET measurements (Omar
et al., 2005). The dust model was derived from Kalashnikova
and Sokolik (2002), and the clean marine model was de-
rived from the dry measurements taken during the Shore-
line Environment Aerosol Study (SEAS) campaign (Maso-
nis et al., 2003; Clarke et al., 2003). The clean continental
model was formed by adjusting the properties of the back-
ground continental aerosol cluster from Omar et al. (2005) to
measurements of Anderson et al. (2000). The aerosol model
has evolved with time. In version 4, a new aerosol sub-
type, namely the dusty marine (dust and marine), was in-
troduced. Further, the polluted continental and smoke sub-
types were renamed to polluted continental/smoke and ele-
vated smoke, respectively (Kim et al., 2018). The lidar ra-
tios were also modified, leading to an increase in mean AOD
by 52 % (40 %) for nighttime (daytime) retrievals, making
it more comparable with MODIS-derived AOD. In our al-
gorithm, we use the microphysical properties of five aerosol
subtypes, namely marine, dust, polluted continental/smoke,
clean continental, and elevated smoke. Note that the lidar ra-
tios used in version 4 of the CALIPSO retrieval have been
adjusted from earlier versions based on the findings from at-
mospheric measurements (Kim et al., 2018) and do not nec-
essarily connect to the CALIPSO aerosol model. Since the
changes in lidar ratio from version 2 to version 4 are mi-
nor (≤ 1%) for all aerosol types except for clean continen-
tal (51 %), we believe the aerosol model can still be used in
our algorithm. However, for the case of the clean continental
aerosol subtype, further study is required to estimate the ef-

fect of change in lidar ratio on its microphysical properties.
Having said that, we do not exclude it from our analysis for
the completeness of our algorithm, leaving a scope of future
validation study to examine its applicability in estimating the
CCN concentrations from CALIPSO.

2.2 MOPSMAP package

The modelled optical properties of ensembles of aerosol
particles (MOPSMAP) package provides the aerosol opti-
cal properties of arbitrary, randomly oriented spherical or
spheroidal particle ensembles for size parameters ranging
up to 1000 and a refractive index range of [0.1, 3.0] and
[0, 2.2] for real and imaginary parts, respectively (Gasteiger
and Wiegner, 2018). It includes a data set of pre-calculated
aerosol optical properties and a Fortran program, which esti-
mates the properties of user-defined aerosol ensembles. The
optical properties of spherical particles are modelled using
Mie scattering. While for spheroids, based on the aerosol size
parameter, MOPSMAP uses a combination of the T-matrix
method and improved geometric optics method. MOPSMAP
has been used to simulate the optical properties of different
aerosol types such as mineral (silica and alumina) and ash
aerosols (Jiang et al., 2021) and Martian dust aerosols (Chen-
Chen et al., 2021). We apply the MOPSMAP package to
model the aerosol extinction coefficient of different aerosol
subtypes with the bimodal log-normal volume size distribu-
tions and refractive indices from CAMel. The details of the
MOPSMAP input parameters are discussed in the methodol-
ogy section.

2.3 POLIPHON

The POLIPHON technique enables the retrieval of aerosol
number concentration by combining the ability of polar-
ization lidar to measure aerosol-type-specific optical prop-
erties with long-term AERONET measurements of aerosol
microphysical properties and AOD (Shinozuka et al., 2015;
Mamouri and Ansmann, 2015, 2016). It converts the lidar-
derived extinction coefficient (α in km−1) to number con-
centration of aerosols with a dry radius greater than 100 nm
(n100,dry) for dust aerosols and greater than 50 nm (n50,dry)
for marine and continental aerosols as

nj,dry = C ·α
x(z), (1)

where nj,dry represents the total aerosol concentration with
a dry radius greater than j nm, C is the conversion fac-
tor (cm−3 Mm), and x is the aerosol extinction exponent.
The value of j is 50 nm for continental and marine aerosols
and 100 nm for dust aerosols. The constants C and x are
calculated from the lognj,dry− logα regression analysis of
AERONET measurements, and their values used in this work
are listed in Table 1.
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Table 1. POLIPHON conversion factors (C) and extinction expo-
nents (x) for different aerosol subtypes.

Type C x Source

Dust 8.855 0.7525 Ansmann et al. (2019)
Continental 25.3 0.94 Mamouri and Ansmann (2016)
Marine 7.2 0.85 Mamouri and Ansmann (2016)
Smoke 17 0.79 Ansmann et al. (2021b)

The CCN concentration at a certain supersaturation is es-
timated from the aerosol number concentration as

nCCN = fss · nj,dry, (2)

where fss = 1.0, 1.35, and 1.7 for supersaturations of 0.15 %,
0.25 %, and 0.40 %, respectively. In this study, we use the
conversion factors and extinction exponents for continental
and marine aerosols from Mamouri and Ansmann (2016).
For dust aerosols, we use the globally averaged values as sug-
gested by Ansmann et al. (2019) for application to satellite
data. For smoke aerosols, we use the aged smoke conversion
factor and extinction exponent values from Ansmann et al.
(2021b).

3 Methodology

This section describes the algorithm used in the present work
to derive CCN concentrations from the CALIPSO profiles of
extinction coefficient, backscatter coefficient, depolarization
ratio, and aerosol subtype information. We begin with the
scaling procedure of the normalized size distributions from
CAMel to obtain the actual aerosol size distribution. After
that, we explain the hygroscopicity correction followed by
the CCN parameterization adopted in our algorithm. Finally,
we discuss the application of the CCN retrieval algorithm to
CALIPSO level 2 aerosol profile data.

3.1 Aerosol size distribution

The remote sensing of aerosol number concentration re-
quires an initial assumption of aerosol microphysical proper-
ties (size distribution and refractive index). For instance, the
MODIS algorithm over the ocean uses a combination of nine
predefined aerosol size distributions and refractive indices
and selects the one for which the difference in the measured
and modelled radiance is minimum (Appendix B of Remer
et al., 2005). In our study, we use the aerosol microphysical
properties from CAMel and adopt a two-step algorithm to
derive the aerosol size distribution: (i) select the appropriate
initial normalized volume size distribution and refractive in-
dex, and (ii) scale the size distribution as per the CALIPSO-
measured extinction coefficient. In contrast to MODIS, the
aerosol type in CALIPSO is set prior to the computation of
the extinction coefficient. This eases the selection of initial

aerosol microphysics, which can now be done directly from
CAMel as per the aerosol subtype information included in
the CALIPSO retrieval.

The next step is to scale the NVSD as per the CALIPSO-
measured extinction. The extinction coefficient (α) for a cer-
tain incident wavelength can be described as

α =

rmax∫
rmin

Kα(m,r)

V (r)
·

dV (r)
dlnr

· dlnr, (3)

where r is the particle radius; V (r) is the volume of the
particle with radius r; Kα is the extinction cross section,
which is a function of the complex refractive index (m) and r;
and dV (r)/dlnr is the log-normal volume size distribution,
which for a bimodal case can be given by

dV (r)
dlnr

= Vt ·

2∑
i=1

νi
√

2π lnσi
exp

(
−(lnr − lnµi)2

2lnσi2

)
. (4)

Here, νi , σi , and µi are the volume fractions, geometric stan-
dard deviations, and geometric mean radii of the ith mode,
respectively. Vt is the total volume of the size distribution.
The above size distribution is normalized when Vt = 1. Sub-
stituting Eq. (4) in Eq. (3), we get

α = Vt ·

rmax∫
rmin

Kα(m,r)

V (r)
·

2∑
i=1

νi
√

2π lnσi

· exp
(
−(lnr − lnµi)2

2lnσi2

)
· dlnr. (5)

Thus, the extinction coefficient is a function of the size dis-
tribution parameters (Vt, νi , σi , and µi) and the extinction
cross section (Kα). Out of these parameters, under ideal con-
ditions, only Vt is an extensive property, while the rest are
intensive and independent of aerosol amount or concentra-
tion (Omar et al., 2005). Equation (5) can be simplified to

α = Vt ·αn, (6)

where αn is the normalized extinction coefficient corre-
sponding to the NVSD. If we consider α as the CALIPSO-
measured extinction, Vt would be the scaling factor for the
NVSD to compute the actual aerosol size distribution. From
Eq. (6), we can compute Vt if the value of αn is known.

We estimate αn for each aerosol subtype by using the
NVSDs and refractive indices from CAMel as input to the
MOPSMAP optical modelling package. In the MOPSMAP
input, we consider dust as spheroids and use the axis ra-
tio distribution from Dubovik et al. (2006) (also used in the
AERONET inversion). Other aerosol subtypes are consid-
ered spheres. We then compute Vt from the ratio of α and
αn (Eq. 6). On multiplying Vt with the NVSD, we get the fi-
nal scaled aerosol size distribution. Since the algorithm prin-
cipally relies on the optical modelling of CALIPSO aerosol
microphysics, we hereafter refer to it as OMCAM.
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3.2 Aerosol hygroscopicity

The hygroscopic aerosol particles in the atmosphere can up-
take water and grow in moist conditions. The hygroscopic
growth needs to be accounted for before deriving the CCN
concentrations. We consider continental (clean continental,
polluted continental/smoke, and elevated smoke) and marine
aerosols as hygroscopic. We assume dust aerosols to be hy-
drophobic in accordance with previous studies (Mamouri and
Ansmann, 2016; Ansmann et al., 2019). The hygroscopicity
correction can be applied either to the ambient extinction co-
efficient measured by CALIPSO or to the initial NVSD in
the retrieval algorithm. We consider the latter approach and
modify the initial NVSD before modelling the extinction co-
efficient. There is an inbuilt functionality in the MOPSMAP
package to account for the hygroscopicity using the kappa
parameterization scheme (Petters and Kreidenweis, 2007;
Zieger et al., 2013) as

rwet(RH)
rdry

=

(
1+ κ ·

RH
100−RH

) 1
3
, (7)

where RH is the relative humidity, and κ is the hygro-
scopic growth parameter. The rmin, rmax, and µ of the log-
normal size distribution (Eq. 5) are multiplied with this ratio,
whereas the standard deviation (σ ) remains unchanged. The
refractive index of the hygroscopic aerosol is also modified
following the volume-weighting rule (Gasteiger and Wieg-
ner, 2018). The κ value is set to be 0.3 for continental and
0.7 for marine aerosols. The values are global averages and
are suggested by Andreae and Rosenfeld (2008).

3.3 CCN parameterizations

We use the parameterizations listed in Mamouri and Ans-
mann (2016) to estimate CCN concentrations from the dry
aerosol number concentration. The final scaled aerosol vol-
ume size distribution obtained from the scaling procedure is
first converted to number size distribution. The number size
distribution is integrated starting at 50 or 100 nm to compute
n50,dry or n100,dry depending on the aerosol type. Finally, sub-
stituting the values in Eq. (2) results in the required CCN
concentration at different supersaturations.

3.4 Application of OMCAM to CALIPSO retrieval

Figure 1 outlines the OMCAM retrieval algorithm for esti-
mating CCN concentrations from CALIPSO measurements.
In order to apply the OMCAM algorithm to CALIPSO level
2 version 4.20 data, we first start by pre-processing the data
set. To begin with, we apply all the quality filters listed in
Tackett et al. (2018, Table 1). The CALIPSO aerosol typ-
ing algorithm consists of dust mixtures (dusty marine and
polluted dust). In such a case, we separate the dust and non-
dust extinction coefficients by using the methodology given
in Tesche et al. (2009). This is a rather simple and accepted

dust separation technique also used by Mamouri and Ans-
mann (2015, 2016) for lidar-based CCN retrieval. It uses
the particle depolarization ratio (δp) to separate the particle
backscatter coefficient (βp) into dust (βd) and non-dust (βnd)
contributions. βd can be calculated as

βd = βp
(δp− δ2)(1+ δ1)

(δ1− δ2)(1+ δp)
, (8)

where the values of δ1 and δ2 are 0.31 and 0.05, respectively.
The aerosol mixture is assumed to be pure dust (non-dust)
when δp > 0.31 (< 0.05). When 0.05≤ δp ≤ 0.31, we first
estimate βd from Eq. (8) and then calculate βnd by subtract-
ing βd from βp. We compute the dust and non-dust extinction
coefficient by multiplying the backscatter coefficient by the
respective lidar ratio. The lidar ratios of dust, polluted con-
tinental, and clean marine aerosol subtypes are taken from
Kim et al. (2018) and are equal to 44, 70, and 23, respec-
tively. The extinction coefficient of polluted dust is sepa-
rated into polluted continental/smoke and dust, while that
of dusty marine is separated into dust and marine contri-
butions. Finally, the extinction coefficient, relative humidity,
and aerosol subtype information is passed to the CCN re-
trieval algorithm.

In the CCN retrieval part, we first select the normalized
size distribution and refractive index as per the aerosol sub-
type and modify them as per the RH value so as to account for
the hygroscopicity of aerosols. In the next step, we model the
extinction coefficient using the MOPSMAP package and cal-
culate Vt from Eq. (6). Multiplying Vt by the initial dry nor-
malized size distribution gives the final dry aerosol size dis-
tribution, which is used in the CCN parameterizations (Eq. 2)
to estimate the CCN concentrations at different supersatura-
tion values. This methodology is applied to every bin of the
CALIPSO profile. In the case of dust mixtures, the separated
dust and non-dust extinction coefficients are passed through
the CCN retrieval algorithm individually, and the results are
finally added to compute the net CCN concentration for that
bin. It is worthwhile to note that this algorithm can in prin-
ciple be used to derive INP concentration from CALIPSO
measurements. This can be done by first estimating n250 from
the modified size distribution (Sect. 3.1) and then using the
INP parameterizations (DeMott et al., 2010, 2015) to esti-
mate INP concentrations. However, in the present study, we
limit our focus to retrieving the CCN concentrations.

4 Results

4.1 Sensitivity analysis

The performance of OMCAM in retrieving CCN concentra-
tions primarily relies on the initial NVSD given in CAMel.
The aerosol size distributions may change depending on the
age and composition of aerosols (region and type dependent)
and the ambient meteorology. As most of the size distribu-
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Figure 1. Flowchart of the OMCAM algorithm illustrating important steps involved in retrieving CCN concentrations from CALIPSO level
2 aerosol profile data. The upper part describes the pre-processing to infer information on the extinction coefficient, aerosol subtype, and the
relative humidity. These parameters form the input to the CCN retrieval part, which is outlined in the lower part. The chart also refers to the
used equations and the sections in which specific parts are discussed.

tions used in CAMel are derived from cluster analysis of the
long-term AERONET measurements (see Sect. 2.1), they in-
corporate the errors associated with the AERONET inversion
algorithm. Dubovik et al. (2000) found that the relative error
in the AERONET-retrieved volume size distribution for dust,
biomass burning, and water-soluble aerosols can go beyond
50 % for both small (r < 0.1 µm) and large (r > 7 µm) par-
ticles. In order to account for such errors and natural vari-
ability, we analysed the sensitivity of CCN concentrations to
the initial normalized size distributions considered in our re-
trieval algorithm.

For each aerosol subtype, the initial NVSD can be per-
turbed by changing the size distribution parameters such as
the volume fractions (νf and νc), geometric standard devi-
ations (σf and σc), and mean radii (µf and µc) of fine and
coarse modes. Since the sum of the volume fractions is unity,
this leads to five independent size distribution parameters.
We first study the individual effects of varying these param-
eters on the output nj,dry (j = 100 for dust and 50 for other
aerosol subtypes) as they are the main input to the CCN pa-
rameterizations. Figure 2 depicts the effect of varying these
size distribution parameters by ±50 % on the nj,dry relative
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to that of unperturbed size distributions from CAMel for a
preset α = 0.1 km−1 and RH= 0 for different aerosol sub-
types. The results show fine mode as the primary contributor
to the output aerosol number concentration. A certain change
in the volume size distribution in the fine mode will have a
larger impact on the number concentration compared to the
coarse mode as a much larger number of small particles is
needed to produce the same change in volume. Out of the
five parameters, µf has the maximum effect (≈ 800%) on the
output number concentration, followed by σf (≈ 150%). This
is because both µf and σf modify the distribution of volume
across different radii in the fine mode. Decreasing (increas-
ing) µf shifts the fine mode towards a smaller (larger) radius,
thereby resulting in a comparatively larger (smaller) number
of particles for a constant fine-mode volume. However, for
dust, the effect is opposite when µf is decreased. This is be-
cause the minimum cut-off radius for dust is set to be 100 nm,
and the fine mode moves out of this limit when µf is reduced,
leading to a decrease in the output number concentration. In-
creasing (decreasing) σf leads to an increase (decrease) in the
fraction of smaller particles within the fine mode. This results
in an increase (decrease) in the output number concentration
for all aerosol subtypes except dust. The output number con-
centration is comparatively less sensitive to coarse-mode pa-
rameters (µc and σc) as they contribute primarily to the op-
tical properties of the aerosol volume rather than the number
concentration. When we change the value of α, the aerosol
number concentration scales as per the ratio between α and
αn, resulting in no change in the relative n100,dry and n50,dry.

The size distributions formed by varying the size distri-
bution parameters separately may not be sufficient enough
to capture the natural variability. Thus to imitate the natural
variability in a better way, we further consider combinations
of the variations in all the parameters. We do not expect ex-
treme shifts in the size distribution parameters as well. For
instance, reducing µf by 50 % results in abnormal size dis-
tributions, with 30 %–50 % of the fine mode moving out of
the AERONET size limits (0.05≤ r ≤ 15 µm). Therefore, in
order to exclude the non-physical size distributions, we limit
the variations in the parameters in terms of the actual volume
size distributions. To implement these constraints, we first
vary the size distribution parameters linearly with a uniform
spacing of 0.01 and then consider all possible combinations
of the variations. The NVSDs generated from all the com-
binations form the input NVSD set for the sensitivity analy-
sis. We further fix the maximum limits of bimodal NVSD to
±50 % of the amplitude of each of its modes and do not con-
sider the NVSDs that fall outside this domain in the sensitiv-
ity studies. The resulting input NVSD space for each aerosol
type is shown by the shaded region of Fig. 3. The maximum
and minimum values of all the size distribution parameters
considered in the sensitivity analysis are given in Table 2.

As we have kept a constant spacing for varying the size
distribution parameters, the number of NVSDs in the input
space directly depends on the volume of particles present in

Figure 2. Sensitivity of nj,dry (j = 100 for dust and 50 for other
aerosol subtypes) to the size distribution parameters: volume fine
fraction (a), mean radius fine (b), mean radius coarse (c), standard
deviation fine (d), and standard deviation coarse (e). The x axis rep-
resents perturbations in the size distribution parameters in percent-
age of their original values taken from the CALIPSO aerosol model.
The y axis represents the corresponding percentage change in nj,dry
relative to that estimated from the unperturbed size distribution.

each mode. While it is minimum for the clean marine sub-
type because of its almost non-existent fine mode (which
reduces the range of variation), it is maximum for polluted
continental and elevated smoke subtypes. The output ensem-
bles of number concentrations for an extinction coefficient
of 0.1 km−1 and relative humidity of 0 % are shown in the
violin plots of Fig. 4. The percentiles of the output nj,dry
set are given in Table 3. The number concentration of the
output ensemble is primarily dependent on the fine mode of
the input size distributions. The variations in the output en-
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Table 2. Bimodal log-normal volume size distribution parameters along with their limits considered in the sensitivity analysis. Abbreviations:
VF – volume fraction, MR – mean radius, GSD – geometric standard deviation, CAM – CALIPSO aerosol microphysics.

Aerosol Size distribution parameters

subtype VF fine MR fine MR coarse GSD fine GSD coarse

CAM Min Max CAM Min Max CAM Min Max CAM Min Max CAM Min Max

Clean marine 0.025 0.001 0.035 0.150 0.101 0.227 1.216 0.815 1.824 1.600 1.376 2.56 1.60 1.376 1.76
Dust 0.223 0.114 0.332 0.116 0.083 0.164 2.833 1.615 4.249 1.481 1.304 2.192 1.908 1.545 3.625
Polluted continental 0.531 0.235 0.703 0.158 0.109 0.227 3.547 1.88 5.321 1.526 1.327 2.319 2.065 1.631 4.13
Clean continental 0.050 0.001 0.069 0.206 0.136 0.310 2.633 1.501 3.950 1.61 1.385 2.592 1.899 1.538 3.589
Elevated smoke 0.329 0.168 0.49 0.144 0.098 0.211 3.726 1.938 5.589 1.562 1.359 2.437 2.143 1.671 4.285

Figure 3. Normalized bimodal log-normal volume size distributions
for marine (a), dust (b), polluted continental (c), clean continen-
tal (d), and elevated smoke (e) aerosol subtypes adopted from the
CALIPSO aerosol model. The shaded region represents the input
space along with the maximum and minimum limits of size distri-
butions selected for the sensitivity analysis.

Table 3. Percentiles of output nj,dry ensembles estimated from the
sensitivity analysis relative to that of the unperturbed case.

Aerosol Percentiles of output nj,dry ensembles
subtype relative to unperturbed (%)

5th 25th 75th 95th

Clean marine 0.044 35.8 119.25 194.05
Dust −41.30 −28.54 −0.68 34
Polluted continental −56.26 −20.77 88.15 259.38
Clean continental −49.02 7.56 130.04 275
Elevated smoke −52.23 −14.16 71.68 183.55

semble relative to the output from unperturbed NVSD from
CAMel is minimum (about a factor of 1) for dust mainly
because we only consider particles with a radius > 0.1 µm.
For clean marine, the spread is about a factor of 2 (95th per-
centile; 200 %). However, for polluted continental and ele-
vated smoke, the output ensemble is bimodal. For the first
mode, the values can go up to a factor of 1.5 for polluted
continental and around 1 for elevated smoke. The second
mode is relatively small and is related to the size distribu-
tions whose fine-mode mean radii are shifted to low values
(extreme left in Fig. 2). For this mode, the values can go up
to a factor of 3 for polluted continental and 2.5 for elevated
smoke. The largest spread in the output ensemble is found for
clean continental (95th percentile; factor of 2.7). This might
be because the bimodality of the NVSD is not well defined
for the clean continental aerosol subtype, thereby increasing
the input space of variation. Neglecting the long tail of the
distribution, we can assume the uncertainty due to the initial
NVSD to be about a factor of 2.

We have also estimated the effect of change in RH on the
output ensemble of n100,dry and n50,dry (not shown). Increas-
ing RH decreases the spread of the output ensemble slightly,
with a significant decrease for RH> 90%, except for dust,
which is assumed to be hydrophobic. At RH= 99%, the
bimodality of polluted continental and elevated smoke sub-
types disappears. The variations in the relative number con-
centrations decrease to less than a factor of 2 for all subtypes.
This might be a result of the decrease in the absolute num-
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Figure 4. Violin plots for the output ensemble of nj,dry (j = 100
for dust and 50 for other aerosol subtypes) relative to that of un-
perturbed NVSD from the CALIPSO aerosol model. The filled
shape shows the probability density of the data (smoothed by non-
parametric kernel density estimator) along the y axis, symmetric on
either side, representing a violin-like shape. The box limits repre-
sent the first and third quartiles, the white circle inside the box is
the median, and the ends of the grey line passing through the centre
of the box represent the adjacent values (data excluding outliers).
Abbreviations: CM – clean marine, PC – polluted continental, CC
– clean continental, and ES – elevated smoke.

ber concentration as the particle size increases with RH, and
fewer particles are needed to produce the same extinction.
At a constant RH value, when α is modified, the output en-
semble of aerosol number concentrations scales as per the
ratio between α and αn, resulting in no change in the rel-
ative n100,dry and n50,dry (not shown). To summarize, if we
neglect the contributions of extreme shifts in the size distri-
bution (i.e. the long tails in the violin plots) and consider the
effect of RH, we can assume that the overall uncertainty in
the retrieval algorithm due to the initial NVSD is likely to
range between a factor of 1.5 and 2.5.

Uncertainties in the OMCAM algorithm can also arise
from the uncertainty in the CALIPSO measurements, the
CCN parameterization, and the hygroscopicity parameter-
ization. The CALIPSO-retrieved extinction coefficient can
have an uncertainty of up to 30 % (Omar et al., 2009; Kim
et al., 2018). The ability of aerosol to act as CCN depends
on the composition, size, and atmospheric supersaturation
value. In situations with complex aerosol mixtures and vari-
able updraught velocity, the simple CCN parameterization
developed by Mamouri and Ansmann (2016) may fail. The
κ values used to account for the hygroscopicity are global
averages and may vary regionally depending on the aerosol
source, composition, and age. Moreover, the hydrophobic
approximation for dust may not work for cases in which
dust is coated or mixed with soluble aerosols (Mamouri and
Ansmann, 2016). In such a case, dust aerosols with a dry
radius > 50 nm can also act as CCN (Mamouri and Ans-
mann, 2016). Furthermore, aerosol misclassification in the
CALIPSO aerosol-typing scheme (Ansmann et al., 2021a)

may introduce errors in the OMCAM algorithm. Account-
ing for the mentioned possibilities, we assume that the over-
all uncertainty in our retrieval algorithm is likely to range
between a factor of 2 and 3. It is comparable to the uncer-
tainty in POLIPHON retrieval. However, OMCAM incorpo-
rates additional uncertainties due to the hygroscopicity cor-
rection. Studies have found that the conversion factors used
in the POLIPHON technique for dust and smoke aerosols
vary with the source region and the age of aerosols (Ansmann
et al., 2019, 2021b). Such factors further increase the uncer-
tainties associated with the retrieval algorithm when applied
to satellite or global data sets.

4.2 Comparison with POLIPHON

In this section, we present a theoretical comparison of
the CCN concentrations estimated using the OMCAM and
POLIPHON methods (Mamouri and Ansmann, 2016). Both
algorithms’ primary input is the aerosol-type-specific extinc-
tion coefficient. Hence, we consider a range of extinction
coefficients and compute the corresponding theoretical CCN
concentrations with both algorithms. To estimate CCN con-
centrations with POLIPHON, we use the extinction-to-CCN
conversions given in Eq. (1). The ratio between the CCN
concentrations estimated using POLIPHON (CCNPOLI) and
OMCAM (CCNOMCAM) algorithms for varying extinction
coefficients at a supersaturation of 0.15 % and zero rela-
tive humidity is shown in Fig. 5. The continental aerosols
in POLIPHON represent a mixture of urban haze, biomass
burning, road dust, and biological particles (Mamouri and
Ansmann, 2016). Thus we compare it with the polluted
continental aerosol subtype of CALIPSO. For continental
aerosols, CCNPOLI and CCNOMCAM are comparable, with
the former always being larger than the latter. For smoke
aerosols, both the algorithms yield similar values for α >
0.05 km−1. For α < 0.05 km−1, the POLIPHON values can
be up to 2 times larger than those of OMCAM. The CCN
concentrations estimated from both the algorithms yield sim-
ilar results for dust as well, with comparable values for
α > 0.1 km−1 and increasing disparity for decreasing α be-
low 0.05 km−1. In the derivation of the conversion factors
and extinction exponents in the POLIPHON method by re-
gression analysis, the sample size for AOD< 0.05 is either
zero for dust (Ansmann et al., 2019) or limited for smoke
aerosols (Ansmann et al., 2021b). It might be a reason be-
hind the difference between the CCNPOLI and CCNOMCAM
for smoke and dust aerosols for α < 0.05 km−1. However,
for the case of marine aerosols, the values estimated using
POLIPHON are significantly larger than those of OMCAM
(up to 6 times). This may be due to the different approaches
followed and sample sizes considered to derive the size dis-
tributions used in the two algorithms. The POLIPHON con-
version factor for marine aerosol is estimated from 7.5 years
of measurements between 2007 and 2015 at the Barbados
AERONET site (Mamouri and Ansmann, 2016). In contrast,
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Figure 5. Ratio of CCNss=0.15 estimated from POLIPHON and
OMCAM algorithms for varying extinction coefficient for marine,
dust, continental, and smoke aerosol subtypes.

the marine model used in OMCAM is derived from in situ
measurements of sea-salt size distributions produced from
breaking waves, taken during the SEAS experiment at Bel-
lows Air Force Station, Oahu, Hawaii, between 21 and 30
April 2000 (Masonis et al., 2003; Clarke et al., 2003). Stud-
ies found that the AERONET size distributions can be signif-
icantly different from the in situ measurements – especially
under high-relative-humidity conditions (Chauvigné et al.,
2016; Schafer et al., 2019). Further studies involving type-
specific comparisons of both the aerosol number concentra-
tions and the CCN concentrations with in situ measurements
are required to test the reliability of both algorithms (Ma-
mali et al., 2018). When it comes to ease of application, the
POLIPHON method with its simple extinction-to-CCN con-
version is more straightforward, while the OMCAM algo-
rithm – at the present stage – is more complex and compu-
tationally expensive. Despite the complexities, OMCAM in-
corporates a hygroscopicity correction methodology which is
essential for a CALIPSO-based CCN retrieval (Georgoulias
et al., 2020). Furthermore, the computation time in the OM-
CAM algorithm can be drastically reduced by either (i) pa-
rameterizing the output CCN concentrations in terms of the
type-specific extinction coefficient and RH values or (ii) cre-
ating a look-up table of CCN concentrations at different ex-
tinction coefficients and RH values for different aerosol sub-
types. However, such developments are not within the scope
of the present work, which focuses on the theoretical descrip-
tion of the OMCAM algorithm.

4.3 Case study

In this section, we compare the profiles of aerosol number
concentrations derived using the OMCAM and POLIPHON
algorithms with the in situ observations taken during the
ACEMED-EUFAR campaign (evaluation of CALIPSO’s
aerosol classification scheme over the eastern Mediter-
ranean). Specifically, we use the n50,dry concentrations es-
timated from the in situ measurements taken on 9 September
2011 at 00:05–01:50 UTC over land and sea surface around
Thessaloniki given in Tsekeri et al. (2017, Tables 3 and 5)

(hereafter referred to as T17). The airborne in situ mea-
surements coincide in space and time with the CALIPSO
nighttime overpass at 00:40 UTC over Thessaloniki. Geor-
goulias et al. (2020) (hereafter written as G20) applied the
POLIPHON method to the overlapping CALIPSO measure-
ments and estimated the CCN concentrations at a supersatu-
ration of 0.15 % (n100,dry for dust and n50,dry for continental
and marine aerosols) for comparison with the in situ mea-
surements from T17. We apply the OMCAM algorithm to
the same CALIPSO overpass and compute the n50,dry con-
centrations. The results are discussed in the following.

The profiles of CALIPSO-measured extinction coeffi-
cient, aerosol subtype, and the n50,dry concentration calcu-
lated from the OMCAM algorithm for the CALIPSO over-
pass over Thessaloniki on 9 September 2011 are shown in
Fig. 6. Over the land areas (latitude from 40.6–41.2◦ N),
the CALIPSO aerosol typing algorithm identifies the pres-
ence of elevated smoke and polluted continental aerosols
(Fig. 6b). However, for retrieving the extinction coefficient
for polluted continental aerosol layer, the lidar ratio was
modified and, thus, is not considered in our present com-
parison (not shown). The presence of smoke over the land
region was also identified by T17. The CALIPSO-measured
extinction coefficient over land is highly variable in space,
ranging from 0.07 to as high as ≈ 3 km−1 in the proxim-
ity of cloud. The OMCAM-estimated n50,dry correspondingly
varies from 617 to 40 000 cm−3. Over the sea region (lati-
tude from 40–40.6◦ N), T17 detected the presence of elevated
smoke plumes. This was not detected by the aerosol typing
algorithm of earlier version 3 CALIPSO data used in T17.
However, with the modifications of version 4 used in this
work, CALIPSO successfully detects elevated smoke, ma-
rine, and dust aerosols, with elevated smoke being the dom-
inant one. The overall extinction coefficient along with its
variability over the sea area is lower compared to land, with
the values ranging from 0.026 to 0.36 km−1. The correspond-
ing OMCAM-estimated n50,dry concentrations vary from 33
to 5000 cm−3.

T17 estimated the n50,dry at different altitudes over the
land region corresponding to two 5 km cloud-free segments
of CALIPSO retrieval with latitudes between 40.85 and
40.95◦ N. The average n50,dry concentration estimated for the
selected CALIPSO segments over land using OMCAM and
POLIPHON (taken from G20) is plotted along with the in
situ measurements from T17 in Fig. 7a, and the values are
listed in Table 4. On average, when no hygroscopicity cor-
rection is applied, the OMCAM and POLIPHON overesti-
mate the n50,dry concentration by 355 % and 370 %, respec-
tively. A similar result from OMCAM and POLIPHON is ex-
pected given that elevated smoke was the dominant aerosol
type over the land with extinction coefficient > 0.1 km−1,
for which both the algorithms yield a similar result (Fig. 5).
Upon accounting for the hygroscopic growth, the overestima-
tion decreases to 167 % (130 % for POLIPHON). Note that
the RH-corrected POLIPHON values in G20 are produced by
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Figure 6. Plot of extinction coefficient (a), aerosol subtype mask (b), and the OMCAM-estimated n50,dry concentrations (c) for a CALIPSO
overpass over the Thessaloniki region of northern Greece on 9 September 2011. The white lines mark the land (40.85–40.95◦ N) and sea
(40–40.6◦ N) regions for which the in situ observations at different altitudes are provided by Tsekeri et al. (2017). The grey colour represents
invalid values (NaN). Abbreviations: CM – clean marine, PC – polluted continental, CC – clean continental, PD – polluted dust, ES – elevated
smoke, and DM – dusty marine.

Figure 7. The n50,dry concentrations estimated from CALIPSO satellite data using OMCAM (solid line) and POLIPHON (black dots)
incorporated from Georgoulias et al. (2020) and in situ aircraft observations (red dots) adopted from Tsekeri et al. (2017) over the land (a)
and sea (b) surface close to the Thessaloniki region. The dotted line and unfilled black circles represent the n50,dry estimated from OMCAM
and POLIPHON, respectively, when hygroscopicity correction is not considered.
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Table 4. The n50,dry concentrations (in cm−3) from in situ measurements (Tsekeri et al., 2017) and CALIPSO measurements by using
OMCAM and POLIPHON (Georgoulias et al., 2020) algorithms at different altitudes over land and sea regions around Thessaloniki, Greece.
The values inside the brackets refers to zero-humidity case (no hygroscopicity correction applied).

Region Altitude In situ OMCAM POLIPHON CALIPSO – in situ (%)

(RH= 0) (RH= 0) OMCAM (RH= 0) POLIPHON (RH= 0)

Land 2.1 727 1590 (1957) 1504 (1816) 119 (169) 107 (150)
2.7 1318 3171 (5296) 2851 (4505) 141 (302) 116 (242)
3.2 779 2160 (5401) 2086 (6370) 177 (593) 168 (718)

Sea 1.3 1427 826 (926) 508 (609) −42 (−35) −64 (−57)
2.1 1834 1476 (1796) 1405 (1683) −20 (−2) −23 (−8)
2.7 1601 1065 (1504) 912 (1264) −29 (0) −39 (−16)
3.2 2814 841 (1357) 459 (794) −70 (−52) −84 (−72)

using the in situ dry to ambient extinction coefficient ratios
(DARs) measured at different RH values during the aircraft
measurements (Tsekeri et al., 2017). In contrast to the over-
estimation over the land, both the algorithms underestimate
the n50,dry concentrations over the sea (Fig. 7b). When we
do not account for the hygroscopic growth, both the OM-
CAM and POLIPHON algorithms underestimate the n50,dry
concentration by 22 % and 38 %, respectively. When the RH
growth is corrected, the underestimation further increases to
40 % and 52 %, respectively. Similar to land regions, both the
algorithms yield comparable results over the sea as the dom-
inant aerosol type is elevated smoke in both scenarios.

The n50,dry values estimated over the land and sea region
from the OMCAM and POLIPHON algorithms are compa-
rable to each other. The RH-corrected POLIPHON values
(using in situ DAR measurements) are in good agreement
with those of OMCAM, which uses kappa parameterization
with globally averaged kappa values. Both the OMCAM and
POLIPHON algorithms were able to capture the pattern of
altitudinal variations in n50,dry as observed by the in situ mea-
surements. However, the magnitudes of n50,dry are overesti-
mated by both the algorithms over the land by a factor of 1.5,
whereas over the sea region, the underestimation by both the
algorithms is about a factor of 0.5. One of the intrinsic lim-
itations of this comparison results from the vast difference
in measuring timescales of CALIPSO and the research air-
craft. While for CALIPSO it is as small as 15 s, it is around
2 h for the aircraft. From Fig. 6c, we can clearly see that the
extinction coefficient along with the n50,dry concentrations
is highly variable over the land region (ranging from 617 to
40 000 cm−3) compared to rather homogeneous concentra-
tions over the sea. This might be the reason for the large dis-
crepancy between in situ and CALIPSO retrievals over the
land region. Moreover, only two cloud-free CALIPSO 5 km
profiles are considered for the comparison over land, which
further increases the chances of disparity. Given the limited
sample space, this comparison should not be considered to be
validation but rather a demonstration of the capability for re-

trieving CCN concentrations from spaceborne lidar measure-
ments. A detailed study comparing the CALIPSO-retrieved
aerosol number and CCN concentrations with ground-based
and aircraft in situ measurements is required to evaluate the
reliability of OMCAM and POLIPHON algorithms in esti-
mating the CCN concentrations.

5 Summary and conclusions

We present the OMCAM algorithm to derive the height-
resolved cloud-relevant CCN concentrations from CALIPSO
measurements. The algorithm uses the normalized size distri-
butions and refractive indices from CALIPSO aerosol mod-
els (Omar et al., 2009) as an input to MOPSMAP to calcu-
late the extinction coefficient. The size distributions are then
scaled to reproduce the CALIPSO-measured extinction co-
efficient. To account for the hygroscopicity, we use kappa
parameterization (Petters and Kreidenweis, 2007) and mod-
ify the size distribution and the refractive index before the
scaling step. We then estimate the required aerosol number
concentration by integrating the final scaled size distributions
over the size ranges relevant for different aerosol types. Uti-
lizing the aerosol-type-specific CCN parameterizations from
Mamouri and Ansmann (2016), we convert the aerosol num-
ber concentrations to cloud-relevant CCN concentrations for
different supersaturation.

The OMCAM algorithm relies on the potentiality of the
CALIPSO aerosol models to accurately describe the micro-
physical properties of the aerosol subtypes defined within the
CALIPSO retrieval algorithm. We performed sensitivity tests
by varying the normalized size distributions by up to ±50 %
of the amplitude of each mode and found that the uncertainty
in the final aerosol number concentration ranges between a
factor of 2 and 3.

We compared the CCN concentrations obtained from OM-
CAM with those of the POLIPHON method – the existing
method for lidar-based CCN retrieval. For extinction coef-
ficients > 0.05 km−1, we found a good agreement for con-
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tinental, dust, and smoke aerosols. However, as the extinc-
tion coefficient becomes smaller than 0.05 km−1, the differ-
ence increases, with the POLIPHON values going as high
as twice the OMCAM values. For marine aerosols, the CCN
concentration derived using the POLIPHON method is al-
ways higher (4–6 times) than that of OMCAM.

For an initial evaluation of the OMCAM algorithm, we
compared the thus obtained n50,dry with in situ measurements
taken over the land and sea region around Thessaloniki dur-
ing the ACEMED campaign (Tsekeri et al., 2017). For the
retrievals over sea, we found that CALIPSO underestimates
the n50,dry by about 40 %. Over the land areas; however,
CALIPSO overestimates n50,dry by about 167 %. The large
discrepancies may be a result of the combination of highly
variable n50,dry over the land region and the instantaneous
measurement by CALIPSO in contrast to the in situ measure-
ment, which was performed in a time period of 2 h. All values
remained within a factor of 2, which is in agreement with the
estimated uncertainty. Moreover, the n50,dry retrieved from
CALIPSO using the OMCAM algorithm was comparable to
that of POLIPHON (Georgoulias et al., 2020).

Our future goals include a comprehensive evaluation of
the CALIPSO-derived aerosol number and CCN concen-
trations with ground-based and airborne in situ measure-
ments. We will use the airborne Atmospheric Tomography
Mission measurements of aerosol number concentration pro-
files from altitudes of 0.2 to 12 km between the years 2016
and 2018 (Williamson et al., 2019) to access the quality of
the respective parameter derived from CALIPSO. Further-
more, we will also compare the CALIPSO products with the
long-term surface measurements of CCN and aerosol size
distributions from 11 atmospheric observatories around the
globe between 2006 and 2016 (Schmale et al., 2017). The
comparison study will enable us to test the applicability of
OMCAM and POLIPHON algorithms in the context of es-
timating the aerosol number and CCN concentrations from
spaceborne lidar measurements. Ultimately, we plan to ap-
ply the best-performing algorithm to more than 15 years of
CALIPSO data to construct a global height-resolved CCN
climatology. The data set when coupled with other satellite-
based global cloud-related data or state-of-the-art numeri-
cal models will help in improving our current understand-
ing of the aerosol–cloud interactions. Also, it will be inter-
esting to compare the CALIPSO-derived CCN concentra-
tions with emerging aerosol remote sensing techniques avail-
able for other satellites. For instance, Rosenfeld et al. (2016)
formulated an algorithm for estimating CCN concentrations
from the measurements of the Visible/Infrared Imager Ra-
diometer Suite (VIIRS) instrument aboard the Suomi Na-
tional Polar-orbiting Partnership (NPP) satellite by treating
clouds as CCN chambers for convective clouds and later
on extended the algorithm for marine stratocumulus clouds
(Efraim et al., 2020).

The ability of CALIPSO not only to measure vertically re-
solved aerosol optical properties but also to detect the respon-

sible aerosol type has facilitated the retrieval of global 3D
type-specific aerosol properties. We have described a novel
methodology to retrieve cloud-relevant CCN concentrations
from CALIPSO measurements, illustrating the potential of
CALIPSO to produce 3D global CCN climatology for ACI
studies and climate model evaluations, opening new gates for
further validation of the algorithm against ground-based and
airborne in situ measurements.
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