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Abstract. The ice water path (IWP) is an important cloud
parameter in atmospheric radiation, and there are still great
difficulties in its retrieval. Artificial neural networks have
become a popular method in atmospheric remote sensing
in recent years. This study presents a global IWP retrieval
based on deep neural networks using the measurements
from the Microwave Humidity Sounder (MWHS) aboard
the FengYun-3B (FY-3B) satellite. Since FY-3B/MWHS has
quasi-polarization channels at 150 GHz, the effect of the po-
larimetric radiance difference (PD) was also studied. A re-
trieval database was established using collocations between
MWHS and CloudSat 2C-ICE (CloudSat and CALIPSO Ice
Cloud Property Product). Then, two types of networks were
trained for cloud scene filtering and IWP retrieval. For the
cloud filtering network, the microwave channels show a ca-
pacity with a false alarm ratio (FAR) of 0.31 and a proba-
bility of detection (POD) of 0.61. For the IWP retrieval net-
work, different combination inputs of auxiliaries and chan-
nels were compared. The results show that the five MWHS
channels combined with scan angle, latitude, and the ocean/-
land mask of inputs of auxiliary variables perform best. Ap-
plying the cloud filtering network and IWP retrieval network,
the final root mean squared error (RMSE) is 916.76 gm™2,
the mean absolute percentage error (MAPE) is 92 %, and
the correlation coefficient (CC) is 0.65. Then, a tropical cy-
clone case measured simultaneously by MWHS and Cloud-
Sat was chosen to test the performance of the networks, and

the result shows a good correlation (0.73) with 2C-ICE. Fi-
nally, the global annual mean IWP of MWHS is very close
to that of 2C-ICE, and the 150 GHz channels give a signifi-
cant improvement in the midlatitudes compared to using only
183 GHz channels.

1 Introduction

Ice clouds play an important role in the global climate (Liou,
1986), and their distribution strongly affects precipitation
and the water cycle (Eliasson et al., 2011; Field and Heyms-
field, 2015). Long time series and global observations of
ice clouds are essential for understanding the Earth’s cli-
mate system. Depending on the wavelength of observation,
satellite remote sensing can measure different cloud micro-
physics. Microwave measurements can penetrate deeper into
cloud layers to measure thick and dense ice clouds, while in-
frared and visible instruments are mainly used for thin cloud
measurements around cloud tops (Liu and Curry, 1998; Weng
and Grody, 2000; Stubenrauch et al., 2013). Although the
ice water path (IWP) obtained from different instruments
shows several differences (Stephens and Kummerow, 2007,
Wu et al., 2009), it is of great importance to use remote
sensing to determine the bulk and microphysical properties
of clouds. Active observations such as lidar and radar and
passive measurements such as visible/infrared imaging spec-
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trometers and microwave radiometers have been used to pro-
duce cloud products (King et al., 1998; Austin et al., 2009;
Delanoé and Hogan, 2010; Deng et al., 2010; Boukabara et
al., 2011). Millimetre-frequency radiometers are sensitive to
larger precipitating hydrometeors, while sub-millimetre fre-
quencies are sensitive to smaller ice particles (Buehler et
al., 2007). Cloud radar has the advantage of higher vertical
resolution and sensitivity than passive radiometers and can
determine the vertical structure of ice clouds. However, this
usually comes at the cost of a low spectral range and low spa-
tial coverage of the observations (Pfreundschuh et al., 2020).

The brightness temperature (TB) depression caused by the
scattering of ice particles is usually proportional to the IWP,
which simplifies the retrieval method from radiometric mea-
surements (Liu and Curry, 2000). Studies on ice cloud re-
trieval using radiometers such as the Advanced Microwave
Sounding Unit (AMSU), Special Sensor Microwave Imager/-
Sounder (SSMIS), Microwave Humidity Sounder (MHS),
and MicroWave Humidity Sounder (MWHS), as well as
limb sounders such as the Microwave Limb Sounder (MLS),
Sub-Millimetre Radiometer (SMR), and Superconducting
Submillimeter-Wave Limb Emission Sounder (SMILES),
have been published for years (Zhao and Weng, 2002; Eriks-
son et al., 2007; Wu et al., 2008; Sun and Weng, 2012; Millan
et al., 2013; Wang et al., 2014). However, these spaceborne
radiometers lack the ability to conduct polarization measure-
ment, while dual-polarization measurements above 100 GHz
show obvious polarized scattering signals of ice clouds. Re-
cent theoretical model research indicates that the nonspheri-
cal and oriented ice particles are the main reason for the po-
larization signal (Brath et al., 2020).

With increasing frequency, polarimetric measurements
will lead to a new understanding of clouds and their mi-
crophysical properties (Buehler et al., 2012; Eriksson et
al., 2018; Coy et al., 2020; Fox, 2020). Most passive mi-
crowave sensors that have dual-polarization channels are lim-
ited to frequencies below 100 GHz. However, these sensors
are strongly affected by surface contamination. Currently,
only the Global Precipitation Measurement Microwave Im-
ager (GPM/GMI) and Microwave Analysis and Detection of
Rain and Atmospheric Structures (MADRAS) have observed
polarimetric signals from ice clouds above 100 GHz (Defer
et al., 2014; Gong and Wu, 2017). By analysing the polar-
ization differences between the 89 and 166 GHz channels of
the GMI, Gong and Wu (2017) found that large polarization
occurs mainly near convective outflow regions (anvil or strat-
ified precipitation), while in the inner deep convective core
and distant cirrus regions, the polarization signal is smaller.
It is roughly estimated that neglecting the polarimetric signal
in the IWP retrieval will lead to errors of up to 30 % (Gong
et al., 2018). Their study further showed that the main source
of the 166 GHz high polarimetric radiance difference (PD)
is horizontally oriented snow aggregates or large snow parti-
cles, while the low polarization signal could be small cloud
ice, randomly oriented snow aggregates, foggy snow, or su-
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percooled water (Gong et al., 2020). The Ice Cloud Imager
(ICI) will provide a more comprehensive observation of ice
clouds. By covering 176 to 668 GHz, ICI has good sensitivity
to both large and small ice particles, and its dual-polarization
channels also allow the observation of horizontal particles
(Eriksson et al., 2020).

The Microwave Humidity Sounder (MWHS) aboard the
FengYun-3B (FY-3B) satellite has been proven to provide
information about IWP (He and Zhang, 2016). It has quasi-
polarization channels at 150 GHz that can provide polar-
ization signals from ice clouds. The neural network is an
easy way to find the nonlinear relationship between TB and
IWP, while the only problem is the lack of true IWP values.
CloudSat is recognized as a relatively accurate instrument for
cloud measurement, and its official Level 2C product (2C-
ICE) was used in this paper. Numerous studies have been
conducted to compare CloudSat products with in situ mea-
surements, and the results show that the Level 2C product
is quite reliable when using a combination of Cloud Pro-
filing Radar (CPR) and lidar. Its ice cloud water content
(IWC) is fairly close to the in situ observations (Deng et
al., 2013; Heymsfield et al., 2017). Although CloudSat prod-
ucts still have considerable uncertainties (Duncan and Eriks-
son, 2018), they can provide a relatively accurate reference
for IWP and IWC. Holl et al. (2010, 2014) present an IWP
product (SPARE-ICE) that uses collocations between MHS,
AVHRR (Advanced Very High Resolution Radiometer), and
CloudSat to train a pair of artificial neural networks. The 89
and 150 GHz channels were excluded, since they are surface
sensitive. However, the 150 GHz channel shows good sensi-
tivity to precipitation-sized ice particles (Bennartz and Bauer,
2003). Brath et al. (2018) retrieved IWPs from airborne ra-
diometers of ISMAR (International Submillimetre Airborne
Radiometer) and MARSS (Microwave Airborne Radiometer
Scanning System) using neural networks.

In this study, we present an analysis of IWP retrieval from
the FY-3B/MWHS observations based on deep neural net-
works. Both TB of 150 GHz (QV and QH) channels and
their PD were investigated. First, we collocated the MWHS
measurements with the CloudSat/2C-ICE IWP according to
the observation time and geolocation. Second, we trained
deep neural networks (DNN5s) that were used to filter cloud
scenes and retrieve the IWP. The effects of different chan-
nels (including PD) and auxiliary information on DNN re-
trieval were also discussed. Finally, the performance of the
final configuration networks was evaluated. The trained neu-
ral networks were used to retrieve IWP in a tropical cyclone
case and the global annual mean IWP map. The zonal mean
IWP of MWHS was also compared with Aqua/MODIS, 2C-
ICE, and ERAS reanalysis data. The main aim of this study is
to analyse the ability of MWHS in IWP retrieval, especially
the role played by the 150 GHz dual-polarization channels.

This paper is organized to describe the data analysis in
Sect. 2, followed by the retrieval method in Sect. 3. The
IWP retrieval results and analysis are discussed in Sect. 4.1
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Table 1. Channel characteristics of the MWHS. Note: NEDT is
noise equivalent delta temperature.

Channel Central Polarization Bandwidth NEDT

frequency (MHz) (K)
(GHz)

1 150 H 1000 0.8

2 150 A% 1000 0.8

3 183.31 +1 H 500 0.9

4 183.31+3 H 1000 0.5

5 183.31+7 H 2000 0.5

and 4.2. The network application on tropical cyclones and the
global mean maps are shown in Sect. 4.3, with conclusions
in Sect. 5.

2 Satellite observations
2.1 Instruments
2.1.1 FY-3B/MWHS

The FY-3B satellite was launched on 5 November 2010, and
the MWHS was equipped as one of the main payloads. The
MWHS performs the cross-track scanning along the orbit at
an angle of £53.35° from nadir to make 98 nominal mea-
surements per scan line, which corresponds to a scan swath
of 2645km in 2.667 s with a resolution of 15km at nadir.
It measures at frequencies from 150 to 190 GHz (two win-
dow channels at 150 GHz and three channels near the wa-
ter vapour absorption line at 183 GHz); these channels are
labelled CH.1 to CH.5 hereafter. The details of each chan-
nel are shown in Table 1 (Wang et al., 2013). Compared to
its successors (i.e. MWHS-II) aboard the FY-3C/D/E satel-
lite, the 150 GHz channels of MWHS have quasi-horizontal
and quasi-vertical polarization that can include unique ice
cloud information. These channels can provide information
near the Earth’s surface and lower atmosphere and can also
be used to measure atmospheric cloud parameters. For the
150 GHz channels, Zou et al. (2014) investigated the po-
larization information and concluded that the polarization
signal is related to the scan angle and information such
as surface wind speed and wind direction and can also be
strongly scattered by non-spherical ice cloud particles. Un-
der all weather conditions, except heavy precipitation, all five
channels of MWHS can observe water vapour and ice clouds
in the atmosphere. In this study, the Level 1B brightness tem-
perature data of MWHS are used.

2.1.2 CloudSat/CALIPSO

CloudSat is a cloud observation satellite that was launched
into the NASA A-Train in April 2006, with a 94 GHz cloud
profiling radar (CPR) providing continuous cloud profile in-

https://doi.org/10.5194/amt-15-6489-2022

6491

formation (Stephens et al., 2008). The footprint size of the
CPR observation is approximately 1.3 km x 1.7 km, with a
vertical resolution of 240 m. The scan time for each profile
is approximately 0.16 s, and its sensitivity is —30 dBZ. It has
an orbital inclination of 98.26°, which is similar to that of
the FY-3B satellite. The Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) was launched
with the CloudSat satellite and designed to fly close to each
other in the A-Train satellite constellation to make syner-
gistic observations. The Cloud-Aerosol Lidar with Orthog-
onal Polarization (CALIOP) carried on the CALIPSO is a
dual-wavelength polarized lidar, providing 532 and 1064 nm
backscatter profiles with a footprint of 75 m cross-track and
1 km along-track (Winker et al., 2009).

The CloudSat and CALIPSO Ice Cloud Property Product
(2C-ICE) contains retrieved estimates of IWC, effective ra-
dius, and extinction coefficient for identified ice clouds mea-
sured by CPR and CALIOP with orthogonal polarization.
The 2C-ICE cloud product uses a combined input of the radar
reflectivity factor measured by the CPR and the attenuated
backscatter coefficient measured by the lidar at 532 nm to
constrain the ice cloud retrieval more tightly than using only
the radar product and to produce more accurate results (Mace
and Deng, 2019). The combination of CPR and CALIOP pro-
vides a more complete measurement of ice clouds than any
other current spaceborne sensor measurements. Further study
showed that this combined retrieval method is less sensitive
to the changes in the assumed microphysical properties than
CPR or CALIOP single retrieval (Delano€ and Hogan, 2010).

The 2C-ICE retrieval relies on forward model assump-
tions. Lidar is sensitive to small particles near the top of the
cloud but cannot measure those deep in the cloud, which can
lead to an unquantifiable error (Mace et al., 2009). A sensitiv-
ity study shows that multiple scattering, assumptions regard-
ing particle habits, and size distribution shapes are critical to
the accuracy of the retrieval (Deng et al., 2010). The research
also finds that the ratio between the IWC product and in situ
measurements is similar to the ratio between two indepen-
dent in situ measurements (approximately a factor of 2) and
concludes that the retrieval agrees well with the in situ data.
Since 2C-ICE is used to train the retrieval network in this
work, the trained network directly inherits all the systematic
errors and limitations of the product.

2.2 Collocation

Collocated measurement is the occurrence where two or
more sensors observe the same regions at the same time. One
factor for the collocation window requirements is the specific
observation target. Ice clouds are a fast-changing (minutes
to hours) atmospheric phenomenon that requires a window
of short time and small space. Another considered factor in
defining the collocation window is the number of meaningful
statistics for training.

Atmos. Meas. Tech., 15, 6489-6506, 2022



6492

The ascending node time of CloudSat is between 13:30
and 13:45 at local solar time (LST), which is close to that
of FY-3B (13:30LST). Because of the close orbits and the
ascending time between FY-3B and CloudSat, the number
of collocated measurements is large. In this study, a collo-
cation dataset of MWHS and 2C-ICE was created by set-
ting the collocation window to 15 min in time and 15km in
space. Since the footprint of MWHS is an order of magnitude
larger than that of CPR, multiple 2C-ICE pixels can be found
within 1 MWHS pixel. Therefore, the IWP values of 2C-
ICE within a circular window (a radius of 7.5 km) were aver-
aged to represent the mean IWP for the MWHS measurement
pixel. According to this collocation strategy, 1207 731 col-
locations were found between the FY-3B/MWHS and the
CloudSat/2C-ICE for 2014. Due to the different observation
methods (scan angle and footprint size) of MWHS and CPR/-
CALIOP, only 14 pixels of 2C-ICE were contained in the
best-case collocations (see Fig. 1a). Therefore, the CloudSat
footprints cover at most 13.75 % of the area of an MWHS
footprint, an error from imprecise collocation was unavoid-
able, and the representation of the dataset must be consid-
ered.

Figure 1 illustrates the statistics of the 2C-ICE pixels
within the MWHS footprints in the collocations. In most
cases, more than 10 pixels of 2C-ICE were averaged in the
corresponding MWHS pixel. However, there were still many
MWHS pixels that covered only a small quantity of 2C-
ICE pixels, which means that collocations were poorly repre-
sented. The coefficient of variation in each collocation pixel
is shown in Fig. 1b. The coefficient of variation was used
to represent the IWP dispersion of 2C-ICE pixels in each
MWHS pixel. When the coefficient of variation is small,
it means that the IWP of 2C-ICE pixels averaged in this
MWHS pixel are homogeneous and represent a scene which
MWHS observed relatively well. Since the collocation er-
ror cannot be estimated, the criteria discussed in Holl et
al. (2010) was applied to reduce the sampling effect of collo-
cations. In this study, an MWHS pixel with more than 10 pix-
els of 2C-ICE and less than 0.6 coefficients of variation was
selected for subsequent processing. However, in the case of
highly inhomogeneous clouds existing outside the CloudSat
field of view, larger uncertainty for the IWP within MWHS
pixels cannot be eliminated. After the reduction in inhomo-
geneous collocations, 665 519 collocations were retained.

Figures 2 and 3 give statistical information on the scan
angle, latitude, and month of the MWHS measurements in
this dataset. Since the dataset was used for global retrieval,
it must have sufficient samples, and their distribution must
represent the real world. According to the statistical results
of the collocated MWHS pixels shown in Fig. 2, most of
the collocations occurred on one side of the flight direction
(from the 40th to the 90th scan pixel). In terms of observa-
tion latitude, the collocations near the nadir scan (the 49th
pixel) cover the latitude from 80° S to 80° N, while at the
edge of the observation (the 90th pixel), they only cover the
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tropical regions. In terms of observation time and latitude,
Fig. 3 illustrates that there is an obvious lack of data above
60° S from April to September, and there are also limited
data between 0° and 30° S in December. The data distribu-
tion suggested that the training in polar regions may be in-
adequate. Due to the high number of collocations near the
poles, 121 500 observations at high latitudes were randomly
excluded to obtain a balanced dataset. For IWP retrieval, col-
locations should be classified into two bins (clear-sky scene
and cloudy scene), according to a specific IWP threshold. A
threshold of IWP > 100 gm~2 was preliminarily selected to
classify cloudy scenes. Therefore, 81490 collocations were
recognized as cloudy scenes and 462 529 collocations were
clear-sky scenes in this dataset.

The statistical information of TB and IWP for different
channels (CH.2-CH.5) in the collocation dataset is given
in Fig. 4. The TBs for CH.3 and CH.4 were mainly con-
centrated at approximately 250K, indicating a small sen-
sitivity to ice clouds. For CH.2 and CH.5, the TBs had a
larger range of variation, which is due to the larger contri-
bution of near-surface information to the window channels.
However, it can be seen that, in the presence of ice clouds
(IWP > 100 gm~2), the surface information is blocked by
clouds, making the TB range significantly smaller as the
IWP becomes larger. The statistical relationship between the
150 GHz TB and IWP at different scan angles is given in
Fig. 5. It can be found that there is a significant decrease
in the measured TB with increasing IWP for large scan an-
gles. As the scan angle decreases, especially in the case of
nadir observations, many low TBs are appearing in clear-sky
scenes because nadir observations have a very large number
of collocation scenes in the polar regions (see Fig. 2b) where
the surface lowers the measured TB. In contrast, collocation
scenes with large scan angles are mainly located in the trop-
ics, which makes the TB—IWP relationship very significant.

The density plots of the PD and TB at 150 GHz (clear-
sky and cloudy scenes) and the corresponding IWP from 2C-
ICE over the ocean and land are depicted in Figs. 6 and 7.
Scan angles from £41.28 to +53.35° were selected to com-
pare the results with observations from conical scanners. In
the cloudy case, the TBs are distributed between 150 and
290 K, with the largest PD occurring at 230 K (corresponding
to IWP > 1000 gm~2). This is similar to the result of Gong
and Wu (2017) and Gong et al. (2020). However, due to the
quasi-polarization mode and the much larger footprint, the
PD of MWHS is much lower than that of conical scanners
(e.g. GMI). The lowest TB generally appears in the centre of
deep convection clouds, and the PD is small due to the ran-
domly oriented ice particles; the largest PD due to the hor-
izontally oriented particles generally appears in the warmer
clouds. Figure 6 shows that, the lower the TB, the larger the
IWP, while the TB is also influenced by the local atmospheric
temperature. Comparing Figs. 6 and 7, the TB of the clear sky
is generally above 240 K. The PD from the ocean surface is
relatively large, while the PD from land is small.
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Figure 1. Statistical information of MWHS and 2C-ICE collocations in 2014. (a) Histogram of the number of 2C-ICE pixels within an
MWHS pixel. (b) Histogram of the coefficient of variation in IWP in collocations.
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Figure 2. Statistical information of the scan angle (a) and latitude (b) of MWHS observations in the collocation dataset.

3 Retrieval method

The collocations were used as a retrieval dataset to train the
networks, and the processing flow is shown in Fig. 8. The
DNN is a feed-forward neural network that contains an input
layer, several hidden layers, and an output layer. The DNN is
a fully connected network, and neurons in each layer connect
with all neurons in the next layer. The hidden layers are used
to perform the nonlinear calculation to achieve a nonlinear
mapping from the input to the output data. The outstanding
nonlinear mapping capability makes DNNs popular for geo-
physical retrieval.

In this study, a DNN with six layers was selected. The first
layer was the input layer, and each input quantity used a neu-
ron to connect with the next layer. The second to fifth layers
were the hidden layers in which 256 neurons were used for
each layer, and the tanh and the rectified linear unit (ReLU)
are selected as the activation functions for the cloud filtering
network and the IWP retrieval network, respectively. Since
networks are prone to overfitting in the training, the early
stopping and dropout method is used to improve the training.
To remove the effect of the order of data, random assigna-
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tion and normalization are performed in front of the hidden
layers. The final layer was the output layer, which used the
IWP of 2C-ICE (transfer to log space) as a reference. The ac-
tivation function of the last layer is selected according to the
target of the network. For the determination of cloudy and
clear-sky scenes, the sigmoid function was used for binary
classification. For the IWP retrieval, the results were output
directly. Due to the imbalanced dataset of the clear-sky and
cloudy scenes, the focal loss function which can solve the
problem of a serious imbalance of positive and negative sam-
ple ratios in one-stage object detection was used instead of
the cross-entropy loss function (Lin et al., 2017). In the itera-
tive training of the networks, the models with the best results
in the validation data will be retained. The hyperparameters
were chosen by comparing the performance of DNNs with
different hidden layers, numbers of hidden neurons, and reg-
ularization parameters. Each network mentioned in the next
section uses the same hyperparameters of the model to en-
sure that the performance of the network is only affected by
the input parameters.

The sensitivity of ice clouds was discussed by Holl et
al. (2010) and Eliasson et al. (2013), and their studies

Atmos. Meas. Tech., 15, 6489-6506, 2022
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showed no significant radiance signals at IWPs < 100 g m~>
for MHS measurements. Therefore, it was used as the thresh-
old for the cloud filtering network.

From those collocations, we randomly assign 75 % to be
used for training and 25 % to be used for validation. The
training data are used as a sample of the data for model fit-
ting. The validation data can be used to tune the hyperparam-
eters of the network and for preliminary evaluation of the
model. Collocations during January 2015 are used for test-
ing. These data were not used to train the networks and ad-
just the hyperparameters but serve as independent data to test
the performance of the final obtained networks.

The performance metrics employed for the retrieval are
defined in the following. The commonly used binary clas-
sification metrics are chosen for the cloud filtering network.
A confusion matrix M is defined as follows:

TP FP
M:(FN TN.) M)

TP and TN are the number of true positives (both MWHS
and CloudSat find ice clouds) and negatives (both MWHS
and CloudSat find no ice clouds), respectively. FP and FN
are the number of false positives (MWHS finds ice clouds but
CloudSat does not) and negatives (CloudSat finds ice clouds
but MWHS does not), respectively.

https://doi.org/10.5194/amt-15-6489-2022

From the confusion matrix above, the accuracy (AC), false
alarm ratio (FAR), probability of detection (POD), F1 score
and critical success index (CSI) can be derived as follows:

TP+ TN

AC = 2
TP+ TN+ FP+ FN
FP
FAR= — 3)
TP + FP
TP
POD= ——— “4)
TP +FN
2.TP
Fl=— (5)
2.-TP+FP+FN
TP
CSl= —————. (6)
TP + FN + FP

The performance evaluation for the IWP retrieval network
is based on the root mean square error (RMSE), mean ab-
solute percentage error (MAPE), bias (BIAS), and Pearson
correlation coefficient (CC) and defined as follows:

1 N
RMSE = v Z (Ypred.i — yvalid,i)2 (7
i=1
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Figure 6. The PD-TB 5 v density plots for the collocations in the cloudy scenes over the ocean (a) and land (b). Panels (c) and (d) show

the corresponding IWPs from 2C-ICE.

Clear-sky case

(@) (b)
Ocean pdf Land pdf
10 10
0.035
0.025
0.03
3 5 0.02
0.025
g 0.02 } 0.015
A 0.015
0.01
5 001 5
0.005
0.005
-10 . . . 0 -10 . . . 0
150 200 250 300 150 200 250 300
150(V) GHz (K) 150(V) GHz (K)
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Figure 8. The schematic of the MWHS retrieval based on the DNN
model.
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4 Results

To retrieve the IWP from the MWHS measurements, two net-
works were trained for different capabilities. The first one
allowed classifying a scene according to whether it is clear
sky or cloudy. The second was to retrieve the IWP. The two
networks are used separately, and the IWP of the scene con-
sidered clear sky was set to 0. Due to the randomness of the
neural network in the assigned training and validation data,
20 models were trained for each combination to ensure the
stability of the model results.

4.1 Cloud filtering network

The network structure, training dataset, and cloud IWP
threshold are discussed above. The sigmoid activation func-
tion can vary the output of the network from 0O to 1, which
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Table 2. Errors in cloud filtering using different channels.

AC FAR POD Fl CSI

1. CH.1-5 091 031 061 0.65 048
2.CH.2-5 091 031 061 0.65 048
3.CH.3-5 091 031 054 0.60 043
4.CH3and4 090 030 052 059 042
5.CH3and5 090 031 050 058 041
6.CH4and5 091 029 054 0.61 044
7.CH.3 0.88 042 037 045 029
8.CH4 090 026 041 052 035
9.CH.5 0.89 033 035 046 030

Table 3. Errors in IWP retrieval using different auxiliaries. Note:
NO is for no auxiliaries, Lat is adding latitude as auxiliary informa-
tion, Ang is adding the scan angle, and Mask is adding the land/sea
mask.

RMSE MAPE BIAS CC

(gm~?) (%) (gm™?)
1. No 1085.75 109.94 —-91.09 0.50
2. Lat 943.68 84.53 —125.98 0.61
3. Ang 1020.52 106.43 —-93.64 0.53
4. Mask 943.80 81.84 —126.03 0.62
5. Lat+Ang 908.59 79.88 —145.70 0.64
6. Lat+Mask 908.48 75.80 —141.02 0.64
7. Ang+Mask 895.98 78.60 —143.64 0.65
8. Lat+Ang+Mask 875.20 7530 —117.05 0.67

represents the probability of cloud occurrence. Therefore, a
threshold value of cloud probability must be assigned to de-
termine the cloudy scene. After testing, a threshold value of
0.4 was the most appropriate for this cloud filtering. To en-
hance the filtering capacity, scan angle, mask, latitude, and
longitude were all used as auxiliary information. The cloud
filtering performance for different channel combinations is
listed in Table 2. The results showed that all three 183 GHz
channels have cloud identification capability, and the addi-
tion of one 150 GHz channel enhances the POD of the net-
work, while the two 150 GHz channels do not yield addi-
tional information. However, the detection of ice clouds us-
ing MWHS channels was still limited. The FAR and POD of
the best network are 0.31 and 0.61, respectively.

4.2 IWP retrieval network

For the global IWP retrieval, clear-sky scenes were excluded
from the training data. Different combinations of the net-
work input are compared to find the best retrieval strategy.
The auxiliary information cases and their retrieval errors are
listed in Table 3. In these cases, all five channels were used.
Additional information, including latitude, scan angle, and
ocean/land mask and their combinations, was added to train
the networks.

Atmos. Meas. Tech., 15, 6489-6506, 2022
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Table 4. Errors in IWP retrieval using different channels.

RMSE MAPE BIAS CC
(em™2) (%) (gm7?)
1. CH.1-5 875.20 75.30 —117.05 0.67
2. CH.2-5 901.84 76.75 —139.49 0.64
3. CH.3-5 932.29 79.34 —158.89 0.61
4. CH.3-5+PD 894.08 79.82 —134.88 0.65

Concerning the errors shown in Table 3, a significant im-
provement in retrieval performance is achieved by adding lat-
itude or ocean/land mask information, while the contribution
of just adding the scan angle to the retrieval is not signif-
icant. In MWHS measurements, the signal from ice clouds
is a reduction in TB by the scattering effect. In the absence
of latitude information and ocean/land mask, it is difficult to
distinguish whether the decrease in TB is due to ice particles
or the low radiance from the surface. According to cases 1, 2,
and 4 in Table 3, CC is improved from 0.50 to approximately
0.62, and the RMSE and MAPE are also improved signifi-
cantly. However, MAPE and BIAS are in conflict, and reduc-
ing MAPE will increase BIAS. Therefore, CC is an important
metric for evaluating the model. The combination of auxil-
iaries can further improve the retrieval results, although the
effect of using the scan angle alone is not obvious. Cases 5
and 6 in Table 3 indicate that the scan angle combined with
latitude and ocean/land mask can also further improve the
retrieval capability. The retrieval MAPE of each IWP bin is
shown in Fig. 9a. The MAPE in different IWP bins gives a
more detailed comparison. Compared to no auxiliary model,
adding auxiliaries can significantly reduce retrieval errors,
especially at IWP < 200 gm~2 and IWP > 1000 gm~2.

The performance of the different channel combinations
(all the auxiliary information is added) is presented in Ta-
ble 4. Since the 183 GHz channels (CH.3-5) of MHS have
proven to have good sensitivity to CloudSat IWP, the influ-
ence of the 150 GHz channel and its PD were mainly focused
on here. The results of cases 2 and 3 in Table 4 show that
adding the 150 GHz window channel (CH.2) gives an im-
provement to all the metrics. Considering the contribution of
PD in the retrieval, the results show that the addition of PD
alone (case 4) contributes to the retrieval of IWP, while the
combination including both H and V polarization channels
has the best performance (case 1). Figure 9b illustrates the
MAPE of different channels. Comparing case 3 with case 4
in Table 4, the addition of PD gives an obvious improvement
in the retrieval results at IWP > 2000 gm~2. In general, all
channels of MWHS contribute to ice cloud retrieval.

The final retrieval models (case 1 in Table 2 and case 8
in Table 3) were selected according to the metrics. Com-
bining the cloud filtering network and the IWP retrieval net-
work with the test data, the final results are shown in Table 5.
The performance over the ocean and land is also listed. Af-
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Table 5. Errors in the final selected models.

RMSE MAPE BIAS CC
(em™2) (%) (gm?)
Final model 916.76 92.90 —213.12 0.65
Land 942.81 92.56 —260.47 0.55
Ocean 908.20 92.76 —196.79 0.69

ter adding the cloud filtering network, the accuracy of the
IWP retrieval decreased significantly for MAPE and BIAS
and slightly for CC and RMSE. The results are better over
the ocean than over land, especially the correlation. Figure 10
shows the scatterplot between MWHS IWP and 2C-ICE ITWP
in January 2015. The result shows relative agreement, but the
MWHS IWP has significant dispersion at low IWPs, which
may be due to the lack of sensitivity of the MWHS to thin
ice clouds. Although the MWHS channels are sensitive to
the IWP when it is around 100 gm~2, the cloud filtering
network shows large FAR, which will lead to unsatisfac-
tory results at the IWP threshold. The final model underes-
timates the true value overall but overestimates it when the
IWP < 300gm™2.

4.3 Network application
4.3.1 Tropical cyclone IWP retrieval

Tropical Cyclone Bansi, observed by MWHS and CloudSat
simultaneously (the time difference is approximately 3 min)
on 12 January 2015, was selected for the validation of the fi-
nal networks. The MWHS-observed TBs of the cyclone are
shown in Fig. 11. Quite low TB (as low as 150 K) can be
found at 150 and 183 7 GHz channels in the regions of
the eyewall (the eye is not seen) and spiral rain bands which
were mainly caused by the scattering of ice particles in the
clouds. The 18341 and 183 +-3 GHz channels were strongly
influenced by water vapour, and the shape of the cyclone
was hardly observable, but clear low TBs can still be seen
in the eyewall and rainband. The distribution characteristics
of PDs at 150 GHz (TBy — TBy) are similar to the structure
of the tropical cyclone, but significant PDs occur mainly in
the warm ice clouds at approximately 200-250 K. The PD
reaches its maximum in the anvil precipitation regions (ap-
proximately 5 K; consistent with the result in Fig. 4) and de-
creases in the remote clear-sky or cirrus regions.

Applying the two neural networks trained above to the
tropical cyclone, the retrieval IWPs are shown in Fig. 12 in
comparison with 2C-ICE, and the retrieval errors are listed
in Table 6. Due to the narrow field of view of CloudSat, a
total of 21 pixels of MWHS were collocated in the tropi-
cal cyclone region. The results show that MWHS IWP has
a high correlation with 2C-ICE, and the MAPE and BIAS
in the tropical cyclone cases are better than those in Ta-
ble 5. Although the RMSE is larger, it is reasonable in trop-
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Table 6. Errors in the tropical cyclone retrieval.

RMSE MAPE BIAS CC

(em™2) (%)  (gm™?)
CH.1-5 1191.3 77.69 82.07 0.73
CH.2-5 1197.3 82.98 18.22 0.72
CH.3-5 1174.1 79.71 —113.67 0.73

ical cyclones. For tropical cyclone retrieval, the addition of
the 150 GHz channel does not have a significant impact on
the accuracy. The RMSE and CC of the three retrievals are
similar. Although there are differences between MAPE and
BIAS, the differences are not significant.
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4.3.2 Global mean IWP comparison

Figure 13 gives the TB of each channel against that of all
the other channels for the MWHS dataset in 2015 (blue)
and the collocation dataset (red). Due to a huge amount of
MWHS data, 10% measurements were randomly selected for
each month, i.e. a total of 1.2 x 107 samples. Overall, the col-
location dataset covers a most range of the measurements,
which means that the collocations are well representative of
the MWHS measurement scenes.

Figure 14 shows the global mean IWP for 2015 from the
Aqua/MODIS L3 product (MYDO0O8_M3, C61; Platnick et
al., 2015), CloudSat 2C-ICE, FY-3B/MWHS retrieval, and
ERAS reanalysis dataset. The ERAS IWP data shown here
were combined from the total column snow water (CSW) and
cloud ice water (CIW) data since they differentiate between
precipitating and nonprecipitating ice. The overall distribu-
tion of the annual mean IWP for the four datasets is similar.
The MODIS product has a significantly higher IWP than the
other three products, while ERAS5 has a lower IWP overall.
The IWP from 2C-ICE is the same as MODIS near the Equa-
tor and between ERAS and MODIS elsewhere. Since 2C-ICE
was used to train the networks, MWHS IWP is certainly ap-
proaching the 2C-ICE and similar to the IWP maps in Dun-
can and Eriksson (2018). There is no significant difference
between the results of the three MWHS channel combina-
tions on the map, but the IWP result using only the 183 GHz
channels is lower at middle latitudes than the IWP results
with the addition of the 150 GHz channels. The zonal means
of IWP for 2015 are given in Fig. 15. The overall shape of
the IWP zonal averages is fairly consistent across datasets.
However, there are large differences in the overall magnitude
of the IWP. These differences are particularly pronounced at
mid-latitudes, especially between the MODIS product and
the other three products. The IWP from MWHS is generally
close to 2C-ICE, and the result without the 150 GHz channel
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Figure 11. Tropical Cyclone Bansi on 12 January 2015, as observed with FY-3B/MWHS channels.

is lower than 2C-ICE between 30 and 60° S in the North-
ern Hemisphere and 20-60° N in the Southern Hemisphere.
There is an improvement after adding the 150 GHz channel
(little difference between using 1 or 2 150 GHz channels),
and the IWP in the Northern Hemisphere is the same as the
2C-ICE, while it is still lower in the Southern Hemisphere.

4.4 Discussion

Ice cloud misidentification is an important and unavoidable
problem in this study. One reason is that the microwave chan-
nels detect ice clouds through the large decrease in TB. How-
ever, the low temperature in high-altitude regions or other
temperature anomaly phenomena can also lead to low TB.
In the final results above, although geographic information is
added to the training data, there are still many misclassifica-
tion cases, such as on the Tibetan Plateau in winter. There-
fore, knowing the surface temperature or the near-surface air
temperature will help ice cloud detection. Holl et al. (2014)
show that infrared channels show good performance. The
other reason is due to the mismatch between the CloudSat
and the MWHS footprints spatially and temporarily. Since
the CloudSat pixels cover less than 15 % of the MWHS pix-
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els, the 2C-ICE scenes cannot fully represent the MWHS ob-
servations, especially in the case of thin clouds.

For the IWP retrieval, the 150 GHz window channel has
a significant ice cloud response which, in combination with
183 GHz channels, provides a better retrieval of IWP. The
PD at 150 GHz, although contaminated by polarization from
the ocean surface, also contributes positively to the retrieval
especially when the IWP is larger than 1000 gm~2. In addi-
tion, the PD of quasi-polarization channels from MWHS is
related to the scan angle and does not fully represent the po-
larization information of the ice particles, especially near the
45° scan angle. From the perspective of polarization mea-
surements only, a cross-track scanner does not provide as
much polarization information as a conical scanner.

In terms of the retrieval using the neural network, the
results of this paper are basically consistent with Holl et
al. (2014). The error between the retrieval results and 2C-ICE
is approximately 100 %. The latitude and ocean/land mask
are important auxiliary information for DNN retrieval. Holl
et al. (2014) used angle information that contains geomet-
ric observations of the local zenith and azimuth and showed
a significant improvement. However, the results in Table 3
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Figure 12. IWP comparison of MWHS and 2C-ICE for Tropical Cyclone Bansi.

show that the scan angle is of limited help for retrieval, which
may be due to the fact that the scan angle is not fully repre-
sentative of the geometry of the observed radiance, and it
works better when used in conjunction with the latitude and
land/sea mask.

However, there are some limitations to using neural net-
works for IWP retrieval. Collocation is the first limitation,
since there are some uncertainties in the field of view of
MWHS and CloudSat due to the large resolution difference.
These uncertainties are represented in the training data and
can be better predicted using, for example, quantile regres-
sion neural networks (Pfreundschuh et al., 2018). The most
important issue is the real sample (2C-ICE) used in training,
which has uncertainties that are difficult to quantify. There-
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fore, it is also impossible to make accurate error estimates of
the model results. In the absence of access to a large number
of real samples, the use of neural networks can only con-
verge to a certain product with the highest accuracy (such as
2C-ICE). An alternative approach is to use simulation results
(typical profiles) of radiative transfer models, where the gen-
eralization ability of the network will strongly depend on the
model itself and the input field. In addition, the microwave
band below 200 GHz is sensitive only to large ice particles
and thick clouds and is relatively less effective for cloud de-
tection.
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Figure 13. Measurement comparison from different channels of MWHS dataset in 2015 (blue) and the collocation dataset discussed above

(red).

5 Conclusions

In this paper, an analysis of global IWP retrieval from FY-
3B/MWHS radiance measurements based on neural net-
works is presented. The MWHS aboard the FY-3B satel-
lite has two quasi-polarization channels at 150 GHz, which
can provide more information about ice clouds. For IWP re-
trieval, CloudSat/2C-ICE was chosen as the reference dataset
for neural networks because it is publicly available and meets
the requirements in terms of data numbers and measure-
ment accuracy. Two types of networks (cloud filtering and
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IWP retrieval) are trained using the collocation dataset of
MWHS and 2C-ICE. A cloud filtering network was trained

to classify cloudy and clear-sky scenes. For the IWP thresh-
old of 100 gm~2, 183 GHz channels of MWHS show sen-
sitivity to ice clouds, and 150 GHz channels improve the
performance. The FAR and POD of the final network are
0.31 and 0.61, respectively. IWP retrieval networks with dif-
ferent combinations of channels and auxiliary information
as input were compared to find the best retrieval strategy.
The retrieval results show that adding the 150 GHz chan-
nel gives an obvious improvement in IWP retrieval and
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that the PD also has a positive impact. Comparing the fi-
nal configuration MWHS retrieval IWP with 2C-ICE, the
CC=0.65, RMSE = 916.76 gm~2, MAPE = 92.90 %, and
BIAS = —213.12gm™2.

Applying the networks to Tropical Cyclone Bansi, the
results show a relatively high correlation (0.73) between
MWHS IWP and 2C-ICE. In this case, the effect of the
150 GHz channel is not significant compared to using only
183 GHz channels. The 2015 annual mean IWP from MWHS
shows a similar overall shape to that of MODIS, 2C-ICE, and
ERAS and is very close to 2C-ICE in magnitude, making the
retrieved IWP more credible. Compared with the result us-
ing only 183 GHz channels, adding 150 GHz channels sig-
nificantly improves the retrieval accuracy in the mid-latitude
region.

Neural networks are widely used to statistically charac-
terize the mapping between radiometric measurements and
related geophysical variables. The advantages of neural net-
works are their simplicity and ease of use, their ability to ef-
fectively learn the complex nonlinear mapping relationships
in samples, and their better robustness to noisy data. By us-
ing collocated measurements, there is no need to establish
a complicated radiative transfer model with many possible
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sources of error. Although the retrieval accuracy can never
be as good as 2C-ICE, the spatial and temporal coverage will
be much larger which is important for a long time series of
climate research.

Code and data availability. FY-3B MWHS data are avail-
able  at:  http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.

aspx?currentculture=en-US (last  access: 26 October
2022; National Satellite Meteorological Center, 2015.).
CloudSat 2C-ICE product can be downloaded from

https://www.cloudsat.cira.colostate.edu/data-products ~ (last  ac-
cess: 20 October 2022; CIRA, 2019). Aqua/MODIS L3 product
can be downloaded from https://ladsweb.modaps.eosdis.nasa.gov/
search/order/1/MYDO08_M3--61 (last access: 22 March 2022;
LAADS DAAC, 2022). ERAS reanalysis data can be down-
loaded from https://doi.org/10.24381/cds.6860a573 (Hersbach et
al., 2019). The code and test data for this paper are accessible
from public repositories (https://doi.org/10.5281/zenodo.6620750;
Wang, 2022).
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