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Abstract. On 20 and 22 August 2019, a small tripod was
outfitted with a sonic anemometer and placed in a highway
shoulder to compare with measurements made on an instru-
mented car as it traveled past the tripod. The rural measure-
ment site in this investigation was selected so that the instru-
mented car traveled past many upwind surface obstructions
and experienced the occasional passing vehicle. To obtain
an accurate mean wind speed and mean wind direction on
a moving car, it is necessary to correct for flow distortion
and remove the vehicle speed from the measured velocity
component parallel to vehicle motion (for straight-line mo-
tion). In this study, the velocity variances and turbulent fluxes
measured by the car are calculated using two approaches:
(1) eddy covariance and (2) wavelet analysis. The results
show that wavelet analysis can better resolve low frequency
contributions, and this leads to a reduction in the horizontal
velocity variances measured on the car, giving a better esti-
mate for some measurement averages when compared to the
tripod. A wavelet-based approach to remove the effects of
sporadic passing traffic is developed and applied to a mea-
surement period during which a heavy-duty truck passes in
the opposite highway lane; removing the times with traffic in
this measurement period gives a reduction of approximately
10 % in the turbulent kinetic energy. The vertical velocity
variance and vertical turbulent heat flux measured on the car
are biased low compared to the tripod. This low bias may be
related to a mismatch in the flux footprint of the car versus
the tripod or perhaps to rapid flow distortion at the measure-
ment location on the car. When random measurement uncer-
tainty is considered, the vertical momentum flux is found to
be consistent with the tripod in the 95 % confidence inter-
val and statistically different than 0 for most measurement
periods.

1 Introduction

Measurements of atmospheric means, variances, and covari-
ances obtained from an instrumented mobile car can provide
low-cost, in situ observations close to the ground and over
a large measurement domain. Hereafter, “instrumented mo-
bile car” refers to all potential on-road vehicles that could
serve as a measurement platform, including cars, sport util-
ity vehicles, pickup trucks, minivans, or larger mobile lab-
oratories that use a heavy-duty truck. Previous investiga-
tions have largely used instrumented mobile cars for the
measurement of near-surface atmospheric means, but mini-
mal attention has been given to their use for the measure-
ment of turbulence (i.e., variances and covariances). In the
nocturnal boundary layer characterized by stable conditions
and weak flow, turbulence near the surface mainly originates
from poorly understood non-stationary mechanical shear and
submesoscale motions (Mahrt et al., 2012; Van De Wiel et
al., 2012), such as low-level jets, thermotopographic wind
systems (i.e., katabatic flow), and breaking gravity waves
(Salmond and McKendry, 2005). In the very-stable bound-
ary layer, the generated turbulence is often intermittent and
results in the vertical transport of scalars (i.e., heat, pollu-
tants), but stationary towers may be too isolated and “site-
specific” to adequately sample the temporally and spatially
localized turbulence (Salmond and McKendry, 2005). The
mobile car, however, can measure along a driven path, which
may provide a more representative sample of turbulence
near the surface compared to a stationary tower. In addi-
tion, the mobile car may also be used to obtain in situ wind
and turbulence measurements near the surface within the ur-
ban boundary layer, measurements that may help validate
high-resolution, street-level models. In the near-surface ur-
ban boundary layer, the strength of the wind and the intensity
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of turbulence are influenced by the composition of buildings
and trees (Mochida et al., 2008; Gromke and Blocken, 2015;
Hertwig et al., 2019; Krayenhoof et al., 2020) and can have
a significant impact on pedestrian comfort (Hunt et al., 1976;
Yu et al., 2020), and neighborhood-level pollutant disper-
sion (Aristodemou et al., 2018; Su et al., 2019). The mo-
bile car involves fewer logistical limitations (i.e., permits,
vandalism) and potentially affords a greater spatial coverage
when compared to the installation of a stationary tower in
a high-density urban area. Furthermore, as the resolution of
numerical weather prediction models continues to improve,
the measurement of localized variations in near-surface heat,
momentum, and moisture fluxes may improve the prediction
of convective storms (Markowski et al., 2019).

The instrumented mobile car has been used in various
investigations to measure atmospheric means near the sur-
face (Bogren and Gustavsson, 1991; Straka et al., 1996;
Achberger and Bärring, 1999; Armi and Mayr, 2007; Mayr
and Armi, 2008; Taylor et al., 2011; Smith et al., 2010;
White, 2014; Curry et al., 2017; de Boer et al., 2021). Gordon
et al. (2012) and Miller et al. (2019) used the instrumented
car for the measurement of velocity variances on highways to
quantify vehicle-induced turbulence. Despite the increasing
number of investigations using instrumented mobile car sys-
tems for atmospheric measurements, there are limited studies
that examine their performance and accuracy for the mea-
surement of the mean flow, velocity variances, and covari-
ances.

Achberger and Bärring (1999) investigated the accuracy
of mean temperature measurements made on a minibus in
low-speed driving conditions (8 to 11 m s−1) by installing
four thermocouples at various heights (0.5, 1, 2, and 4 m).
From their results, they developed a spectral correction for
the measured air temperature to remove the effects due to
thermal inertia of the thermocouples. More recently, Ander-
son et al. (2012) evaluated the feasibility of using passen-
ger vehicles (9 in total) to collect mean air temperature and
air pressure measurements on roads, with the end goal of
improving road weather forecasts to reduce weather-related
traffic fatalities. They found good agreement for mean air
temperature measurements made on passenger vehicles when
compared to mean air temperature measurements made by
stationary weather stations; they also found poor agreement
for air pressure.

Belušic et al. (2014) is the first known study to evaluate
a three-dimensional sonic anemometer (model CSAT3, sam-
pling frequency of 20 Hz) affixed to a passenger vehicle for
its accuracy at measuring atmospheric variances and covari-
ances in addition to atmospheric means. In their setup, the
sonic anemometer was supported by a sophisticated arm and
lattice aluminum frame; the arm held the sonic above the ve-
hicle’s top at a height of 3 m from the ground, positioned
slightly ahead of the vehicle’s front end. Recently, Hanlon
and Risk (2020) investigated how the placement of a sonic
anemometer on the vehicle affects the accuracy of veloc-

ity measurements by applying computational fluid dynam-
ics modeling in combination with mobile car measurements.
The anemometers were placed vertically upward on top of
the vehicle’s roof.

If 1 min averages are assumed, then measurements (i.e.,
wind velocity, gas concentration) obtained from an instru-
mented car traveling at near-highway speeds (i.e., 15 to
25 m s−1) are made over a significant spatial path on the or-
der of 103 m, where surface variations (i.e., vegetation, build-
ing structures, other traffic) can be significant. A single spa-
tial path measured by the vehicle may therefore feature flow
conditions that are not stationary and an upwind surface that
is not homogenous. This calls into question the applicability
of the eddy covariance (EC) method, which requires near-
stationary conditions to reduce uncertainties in the estima-
tion of variances and covariances. During their investigation,
Belušic et al. (2014) made car measurements on a nearly flat,
homogenous portion of remote rural highway without traf-
fic and without large upwind obstacles, such as trees and
houses. Therefore, their investigation represented an “ide-
alized” case. Even so, they found instances where the car-
measured horizontal velocity variances were significantly
overestimated compared to measurements made by a nearby
stationary tower. They concluded that non-stationarity of
the flow was the likely cause leading to the anomalously
large car-measured horizontal velocity variances. Their re-
sults demonstrate that non-stationarity of the flow cannot be
ignored when measuring on an instrumented mobile car. Re-
cently, Schaller et al. (2017) applied wavelet analysis as an
alternative technique to estimate turbulent methane fluxes
measured by a fixed tower in non-stationary conditions. For
periods fulfilling the stationarity requirement, the wavelet
flux was in excellent agreement with eddy covariance flux,
but for periods where the stationarity requirement was vio-
lated, the wavelet flux was found to be more reliable and pro-
vided a better estimate. Since their work, wavelet analysis ap-
plied to analyze turbulent fluxes has become more common
(von der Heyden et al., 2018; Göckede et al., 2019; Conte et
al., 2021).

The present work investigates an instrumented mobile car
setup (shown in Fig. 1) by comparing car-based measure-
ments with measurements made by a small roadside tripod.
Our setup differs from Belušic et al. (2014) in two main
ways, which are necessary to make the vehicle safe for on-
road driving with other vehicles: (1) our sonic anemometer
is held closer to the vehicle and situated over the vehicle’s
front end, and (2) the sonic anemometer is held closer to
the ground at a height of 1.7 m, which is near the height
of the vehicle’s top. We selected this design to investigate
whether the sonic anemometer can be held closer to the vehi-
cle and still provide measurements that are representative of
the mean flow and turbulence near the surface, allowing road-
safe vehicle operation without compromising the measured
data. While farmland is common in our measurement do-
main, the car also traveled past many large trees and houses
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Figure 1. A front view of instrumented car (also referred to as a
mobile car platform or mobile car laboratory) used in this investi-
gation.

and experienced the occasional passing vehicle traveling in
the opposite direction. Therefore, we investigate if the mobile
car measurements are still representative of the turbulence
statistics near the surface in a less idealized case, where the
upwind surface and terrain are not homogenous and where
the measured flow is affected by many surface obstacles, in-
cluding other traffic. Thus, this work aims to help design
a low-cost experiment to measure and analyze on-road ve-
locity variances and covariances using an instrumented car,
in the presence of sporadic passing traffic and upwind sur-
face inhomogeneities. This study investigates how these in-
homogeneities affect the calculated statistics. Wavelet analy-
sis is considered as an alternative technique to eddy covari-
ance for the estimation of velocity variances and covariances
measured on the car and is applied to quantify and remove
the effects of sporadic passing traffic. The potential sources
of measurement uncertainty on the car are quantified and dis-
cussed.

2 Methodology

2.1 Instrumented car

A sport utility vehicle (SUV) was outfitted with instrumen-
tation fastened to the vehicle using a roof rack, as shown in
Fig. 1. A 40 Hz, three-dimensional sonic anemometer (Ap-
plied Technologies, Inc., model type “A” or “Vx”) was in-
stalled on a support arm located at the front end of the vehi-
cle at a height of zm= 1.7 m. Since the “A” type is rated for
higher flow velocities, once it became available for use it was
installed, and the “Vx” type was removed. This change was
done to test how the specific sonic anemometer model affects
the measured velocities. The “A”, “Vx”, and “V” type sonic

anemometers (“V” is used on the roadside tripod) have an
accuracy of±0.1 m s−1 within a measurement range of±60,
±20, and ±15 m s−1, respectively. To limit the effect of vi-
brations on the measurements made by the sonic anemome-
ter, the horizontal arm holding the anemometer was sup-
ported by two metal rods attached to the vehicle’s front end.
The forward scene was recorded by a Thinkware F750 dash-
board camera (30 frames per second), which encodes 1 Hz
measurements of latitude, longitude, and vehicle speed (s) as
metadata in each MP4 file.

The coordinate system of the sonic anemometer on the car
is defined (assuming an observer is sitting inside of the vehi-
cle facing toward the front hood) so that measured velocity
parallel to vehicle motion (um) is positive toward the car, the
measured lateral velocity (vm) is positive toward the right,
and the measured vertical velocity (wm) is positive upward.
Subscript m denotes a raw measured value.

2.2 Roadside tripod

On 20 and 22 August 2019, a small tripod was assembled
and placed at the roadside (i.e., in the highway shoulder)
to compare with measurements made by the instrumented
car as it traveled past the stationary tripod. The tripod was
equipped with a three-dimensional sonic anemometer (Ap-
plied Technologies, Inc., model type “V”) that recorded at a
frequency of either 10 Hz (20 August) or 20 Hz (22 August).
Each day, the sonic was installed at a measurement height of
zm= 1.4 m. On 22 August, the tripod also had a Thinkware
X700 dashboard camera (30 frames per second) installed to
record passing traffic. To investigate the effect of tripod vi-
brations on the measurements, we tied down the system with
string on 22 August but left it free to vibrate on 20 August.

2.3 Measurement site

The measurement site was agricultural fields located on ei-
ther side of a two-lane highway. The traffic on 22 August
passing our measurement site was more significant than on
20 August; the traffic composition on 22 August included oc-
casional large trucks, and we did not observe any large trucks
passing our measurement site on 20 August. Both days fea-
tured fair weather, with sky conditions ranging from mainly
sunny on 20 August to partly cloudy on 22 August. The wind
direction measured at nearby Egbert weather station (main-
tained by Environment and Climate Change Canada, with
measurements obtained at a height of 10 m) ranged between
160 and 200◦ on 20 August and 310 and 340◦ on 22 August.
The mean wind ranged between 4.2 and 5.6 m s−1 on 20 Au-
gust and 3.8 and 5.0 m s−1 on 22 August. The Egbert weather
station is located about 16 km north of the measurement site.

The road is relatively flat near the tripod location, but in
general, the terrain is not flat and homogenous in this area.
The study area (which spans about 10 km) has several hills,
with slopes up to 10◦. The elevation ranges between 200 and
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Table 1. The number of measurement passes performed on each
measurement track on 20 and 22 August.

Date Track 1 Track 2 Excluded No. of
(traffic trips past
ahead) the tripod

20 August 6 6 1 7
22 August 5∗ 7∗ 2 9

∗ Two extra measurement passes are included, corresponding only to Track #2,
where the car was stationary prior to the pass. There is no corresponding
Track #1 since the car did not complete the entire length of Track #1 before
parking near the tripod.

300 m above mean sea level, and there are areas with numer-
ous trees and some structures located upwind of the highway.
The tripod was located at an elevation of 277 m on 20 August
and at an elevation of 222 m on 22 August (estimated from
Google Earth). For reference, the Egbert weather station is at
an elevation of 251 m.

In this work, a measurement track refers to the specific
ground path driven by the vehicle, while a measurement pass
refers to a specific set of measurements made on a particular
track. Each measurement pass can be further divided into “A”
and “B”, representing the specific direction driven by the ve-
hicle on a particular track. On each day, two different 1000 m
tracks (Track #1 and Track #2) are chosen to compare with
measurements made on the tripod. Track #1 is centered on
the location of the tripod and consists of an equal amount of
highway on either side of the tripod (i.e., 500 m before the
tripod and 500 m after the tripod). Track #2, however, begins
120 m away from the tripod and continues for 1000 m; thus,
it does not include the highway directly in front of the tripod.
Track #1 and Track #2 (for each day) are displayed in Fig. 2
as yellow and blue lines, respectively. The location of the tri-
pod in Fig. 2 is displayed as a marker with a star enclosed.
Track #1 and Track #2 are chosen to examine how the choice
of measurement track impacts the comparison of turbulence
statistics between the car and tripod. Track #1 and Track #2
overlap spatially for 380 m, and so a portion of the data con-
tained within both measurement tracks are identical for each
trip past the tripod. Table 1 gives the number of measurement
passes performed on each measurement track. The amount of
measurement passes that are excluded (from both Track #1
and Track #2) due to traffic ahead of the instrumented car
is also given. Two extra measurement passes corresponding
only to Track #2 were also analyzed on 22 August, where the
car was parked at the tripod and then drove away (a constant
vehicle speed was achieved before 120 m). Since the car did
not travel down the entire length of measurement Track #1
prior to parking at the roadside, there are no corresponding
Track #1 for these two measurement passes on Track #2.

Figure 2. The measurement site on 20 August (top) and 22 August
(bottom), with the 1000 m tracks driven by the car superimposed.
Track #1 is shown as a yellow line, and Track #2 is shown as a blue
line. Track #1 is centered on the location of the tripod; therefore,
500 m of highway are included in Track #1 on either side of the
tripod location. Track #2 begins 120 m away from the tripod; there-
fore, it does not include any measurements made on the highway
directly in front of the tripod. © Google Earth Images.

2.4 Flow distortion and sensor corrections

Measurements made on an instrumented car may be signif-
icantly impacted by flow distortion. Flow distortion origi-
nates from vehicle movement (speed s) and from the ambi-
ent horizontal wind (uH) that is present even when the ve-
hicle is stationary; uH may be at an angle to the vehicle,
potentially leading to flow distortion in both components of
the measured horizontal velocity (i.e., um, vm). Further im-
pacts on the measurements can occur from sensor misalign-
ment and sensor limitations that occur while measuring in
high flow velocities. Flow distortion at the location of the
sonic anemometer is investigated by analyzing measurement
passes that are separated into part A and B. A and B are each
driven on the same length of highway but in opposite direc-
tions (following Belušić et al., 2014). Before investigating
flow distortion, the sonic anemometer data are filtered for
spikes. Here, a spike is defined as an unrealistic sequence
of 2 or less data points and is identified by applying a non-
linear median filter according to Starkenburg et al. (2016).
For the measurements considered in this paper, the effect of
this spike removal on the calculated statistics is minimal (i.e.,
in any measurement pass, there are 2 or less flagged val-
ues). Measurements flagged as spikes are removed and re-
placed with linearly interpolated values. If it is assumed that
the mean ambient vertical velocity w≈ 0 m s−1 and that the
flow is in steady state during A and B, with measurements
made at a constant vehicle speed s, then following Belušić et
al. (2014) and Miller et al. (2019), we can assume three re-
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lationships (here, an uppercase variable (U , V , W , S) repre-
sents an averaged or binned value, while a lowercase variable
represents an individual measurement):

i. Without flow distortion, the average measured vertical
velocity (W ) at any measured longitudinal velocity (U )
is expected to be equal to 0 over a sufficiently long
record. That is, W is not expected to have any depen-
dence on U . However, in the presence of flow distortion
on the mobile car, W becomes a function of U .

ii. The average velocity recorded over both travel direc-
tions (UAB as a function of S) is expected to follow the
relationship UAB(S)= 0.5(UA(S)+UB(S))= S, since
any wind component parallel to the direction of vehicle
motion is canceled out by traveling the same distance in
both directions.

iii. The lateral velocity V measured over all of A and
all of B is expected to follow the relationship VAB =

0.5[VA+VB]= 0, since the coordinate system rotates
180◦ when the vehicle changes direction.

Figure 3a shows W binned according to U , with binning
completed using a bin size of 1 m s−1. The data shown in
Fig. 3 includes all back-and-forth passes completed on 20
and 22 August, and the binned data are derived from individ-
ual measurements made by the 40 Hz sonic anemometer (ev-
ery 0.025 s). Each bin requires at least 80 independent sam-
ples (2 s of data), otherwise it is rejected. Binning using in-
dividual measurements is done instead of averaging over all
of A and over all of B, since it is difficult to maintain a con-
stant vehicle speed during each part of the measurement pass.
However, most measurements of U fall into 2 to 4 speed bins
during a particular back-and-forth pass consisting of parts
A and B. The anemometer was not removed from the vehi-
cle between 20 and 22 August; therefore, the results should
be consistent across both days. Figure 3a demonstrates that
flow distortion at the measurement location is significant in
this study, andW increases linearly with increasing U (coef-
ficient of determination, R2

= 0.99). The measured velocity
field is corrected by applying a coordinate rotation to give a
0 mean vertical velocity (assuming there is no flow distortion
effect in vm), as

u1 = um cosθ +wm sinθ, (1a)
wc =−um sinθ +wm cosθ. (1b)

Here, θ is set to the median of θb, where θb = atan(Wb/Ub)

and subscript b represents individual binned values of
1 m s−1 size (i.e., from Fig. 3a). θb does not show any depen-
dence on U for the vehicle speeds investigated in this study
(i.e., for S > 15 m s−1; see Fig. S1 in the Supplement). For
the data shown in Fig. 3a, θ = 7.54◦ (interquartile range of
0.32◦).

Figure 3b shows U1 binned according to S. In Fig. 3b, at
S > 17 m s−1, the results suggest that U1 is overestimated.

The same analysis performed on 30 August did not show
this overestimation in U1 for higher S (Fig. 4b); however,
the setup on 30 August used a sonic anemometer that is rated
for higher flow velocities up to 60 m s−1 (Applied Technolo-
gies, model “A”). This suggests that the overestimation in U1
on 20 and 22 August for S > 17 m s−1 is likely an instrument-
related limitation rather than a direct effect of flow distortion.
Taking the difference between the least-square fit and the ex-
pected relationship (i.e., U1 = S), the overestimation in u1
(i.e., after applying Eq. 1) is

uexcess(s)=max(0,−2.34+ 0.147s) . (2)

The overestimation, uexcess(s) is then removed from u1 to
give uc, as

uc(s)= u1(s)− uexcess(s). (3)

No corrections are applied to vm, since there is no clear rela-
tionship with any measured variable (i.e., U , S; see Fig. S2).
The corrections outlined in Eqs. (1) through (3) are applied to
all vehicle measurements from 20 and 22 August, for which
s > 0 m s−1. After correction for flow distortion, the 1 Hz ve-
hicle speed is linearly interpolated to 40 Hz and then removed
from uc to give the meteorological wind speed component
parallel to the direction of motion, as (Belušić et al., 2014)

u= uc− s. (4)

2.5 Wavelet analysis and the quantification of sporadic
passing traffic

The continuous wavelet transform of a discrete time series
x containing N data points, measured at a time step 1t , is
calculated as (Torrence and Compo, 1998a)

Gxn(a)=

N−1∑
n′=0

xn′ψ
∗

0

((
n′− n

)
1t

a

)
. (5)

The wavelet coefficients are calculated as the convolution of
x, with a dilated (a) and translated (n) wavelet function ψ0,
where a is referred to as the wavelet scale and n is a local-
ized time (position) index. If ψ is complex, then the complex
conjugate (∗) is used to calculateGxn(a). Following Torrence
and Compo (1998a), the analyzing wavelet is normalized to
have unit energy, so that

ψ0 =

√
1t

a
ψ, (6)

where ψ , in this work, is the complex Morlet wavelet,

ψ (η)= π−0.25e6iηe−η
2/2. (7)

The Morlet wavelet is chosen, since it has been shown to
be well suited for the analysis of atmospheric turbulence
(Strunin and Hiyama, 2004; Salmond, 2005; Schaller et al.,
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Figure 3. (a) The measured vertical velocity W (red), plotted as a function of the measured longitudinal velocity U and the corrected
vertical velocity Wc (blue) after application of Eq. (1); (b) the measured U1 as a function of vehicle speed S (after application of Eq. 1).
Measurements are binned using a bin size of 1 m s−1. Data shown are for both 20 and 22 August. Black dashed lines give a least square fit:
(a) W = 0.03+ 0.13U (R2

= 0.99) and (b) U1 =−2.34+ 1.147S (R2
= 0.98).

Figure 4. Corrections as shown in Fig. 3, except for 30 August. Black dashed lines give a least-square fit: (a)W = 0.45+0.11U (R2
= 0.96)

and (b) U1 = 0.44+ 0.98S (R2
= 0.92).

2017). The total energy (or wavelet variance) of the entire
time series is preserved in the wavelet transform and can
be recovered by summing the scale-averaged wavelet power
over all scales (j ) and times (n):

σ 2
x =

1j1t

CδN

N−1∑
n=0

J∑
j=0

1
aj

∣∣Gxn(aj )∣∣2, (8)

where 1j = 0.25 determines the spacing between discrete
scales aj = a02j1j (a0 = 21t) and Cδ = 0.776 is a wavelet-
specific reconstruction factor for the Morlet wavelet. The
Morlet wavelet scale can be converted to an equivalent
Fourier scale (i.e., period), as ãj = 1.03aj . Like the wavelet
variance, given time series xn and yn, the wavelet covariance
(or turbulent flux) can be calculated as

x′y′ =
1j1t

CδN

N−1∑
n=0

J∑
j=0

1
aj

R
[
Gxn

(
aj
)
G
y∗
n

(
aj
)]
, (9)

where the real part (R) of the wavelet cross-spectrum de-
fines the wavelet co-spectrum, and the imaginary part gives
the wavelet quadrature spectrum (Strunin and Hiyama, 2004;
Paterna et al., 2016). For a 1000 m track consisting of NT =
Tm/1t measurements (Tm ∈ Z is the integer second length
of the track), the wavelet variance, including timescales up
to index a∗, can be calculated as

σ 2
x1 km
=
1j1t

CδNT

NT−1∑
n=0

a∗∑
j=0

1
aj

∣∣Gxn (aj )∣∣2. (10)

In Eq. (10), index value a∗ represents the maximum (Fourier
equivalent) wavelet scale and controls the timescales that are
included in the wavelet variance, which, in this work, is set
to match Tm as closely as possible. Gxn

(
aj
)

is calculated
from a measured time series with a temporal length of 11Tm,
where the data corresponding to the measurement pass (over
which σ 2

x1 km
is calculated) are located at the center of this
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period (i.e., from 5≤ Tm < 6). This approach is applied to
ensure that the wavelet transform coefficients used to calcu-
late the wavelet variances are not impacted by edge effects
for scales up to a∗ (i.e., they do not lie outside of the cone
of influence) while still retaining good computational effi-
ciency (Torrence and Compo, 1998a; Schaller et al., 2017).
Torrence and Compo (1998a) recommend zero padding a fi-
nite series of length Tm to reduce edge effects, but in this
study, there is no need to pad the time series before or af-
ter the measurement pass with zeros, since the instrumented
car continued driving down the same road after measuring on
Track #1 and Track #2, providing continuous measured data
before and after each measurement pass. These continuous
data limit edge effects in the wavelet variances and covari-
ances calculated over 5≤ Tm < 6 for a∗ ≤ Tm, providing a
more reliable estimate for each measurement pass. Hence,
the additional data before and after each measurement pass
(equivalent to a spatial distance of about 10 km) come from
continuous driving in the vicinity of the tripod at a relatively
constant speed and, in most cases, on the same road. The
instrumented car did not come to rest, except briefly at a
stop sign or to reverse direction. There are two exceptions
for measurement passes on Track #2, where the car initially
started from rest and reached a constant speed before trav-
eling 120 m from the tripod. Based on the cone of influence
definition by Torrence and Compo (1998a), wavelet coeffi-
cients for each measurement pass are primarily influenced by
data between 3.63≤ Tm < 7.37 for a∗ ≤ Tm. Therefore, the
data between 0≤ Tm < 3.63 and 7.37≤ Tm < 11 have little
impact on the calculated wavelet variance or covariance and
thus are not necessary to give a reliable estimate for the mea-
surement pass.
σ 2
x1 km

can be decomposed to give the wavelet variance for
each second of the track (likewise with scales up to index
a∗), as

σ 2
xi1 s
=
1j1t

CδN

(i+1)/1t−1∑
n=i/1t

a∗∑
j=0

1
aj

∣∣Gxn (aj )∣∣2, (11)

where i = 0, 1, . . . , Tm− 1, N = 1/1t and

σ 2
x1 km
=

1
Tm

Tm−1∑
i=0

σ 2
xi1 s

. (12)

The wavelet variance calculated for each second allows the
effects of sporadic passing traffic to be removed by excluding
times when traffic is likely affecting the measurements made
on the car (as determined by manual inspection of the video
recordings), calculated as

σ 2
xF 1 km

=
1
Tf

Tm−1∑
i=0

δiσ
2
xi1 s

, (13)

where

δi =

{
0, if traffic
1, otherwise ,

and Tf =
Tm−1∑
i=0

δi .

Using the real part of the wavelet coefficients, the original
time series x can be reconstructed at each n. By limiting the
scales (for example, selecting scales j = Jmin to j = Jmax),
a wavelet-filtered time series can be constructed at each n, as

x
f
n =

1j
√
1t

Cδψ(0)

Jmax∑
j=Jmin

1
√
aj

R
[
Gxn

(
aj
)]
, (14)

where ψ(0)= π−0.25 for the Morlet wavelet. Calculation
of the wavelet transform is computationally intensive when
Eq. (5) is used. By applying the convolution theorem, the
wavelet transform can be completed much faster in Fourier
space, and this approach is used here; the software devel-
oped to perform the continuous wavelet transform has been
converted to IGOR Pro from Matlab code, available online
by Torrence and Compo (1998).

2.6 Coordinate rotation

To compare the measurements made on the tripod to those
made on the car, the coordinate systems must be consistent.
The initial step is to rotate the individual measurements made
on the vehicle into a meteorological coordinate system (i.e.,
umet positive toward the east and vmet positive toward the
north) using the vehicle’s heading. This rotation is necessary,
since the vehicle’s heading may change along the measure-
ment path, leading to a varying sonic anemometer coordinate
system along a driven path. For driven paths with large cur-
vature, not performing the transformation to meteorological
coordinates gives incorrect mean values (and variances) that
are used to determine the rotation angles needed for trans-
formation into a streamwise coordinate system. For the high-
ways investigated in this study, the vehicle heading remains
rather consistent over their length; hence, our analysis only
applies to straight vehicle motion, and we do not determine
uncertainties due to measurements through road curvature.

After rotation into meteorological coordinates, each track
(on the car and tripod) is then rotated into a mean streamwise
coordinate system following Wilczak et al. (2001), where u
is the mean wind and v = w = 0. The wavelet variances and
covariances are likewise rotated into mean streamwise coor-
dinates (unless otherwise indicated) using the same rotation
angles applied to rotate the eddy covariance results.

2.7 Sampling errors

2.7.1 Random measurement uncertainty

For the calculation of turbulence statistics, the use of a fi-
nite record length gives rise to a random measurement un-
certainty, since the record will not contain enough inde-
pendent samples to accurately represent the ensemble mean
(Lenschow et al., 1994). Further random measurement uncer-
tainty can be introduced by non-stationarity in the record and
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white noise in the measured signal (Rannik et al., 2016). In
this work, the magnitude of the random measurement uncer-
tainty is estimated using two methodologies. All uncertainty
estimations are after correction for flow distortion and rota-
tion into a streamwise coordinate system. The first method,
developed by Mann and Lenschow (1994), can be defined as

δML =

∣∣∣w′q ′∣∣∣(2Iwq
Tm

) 1
2
(

1+ r2
wq

r2
wq

) 1
2 (

1− az∗
)
, (15)

with the integral timescale (Iws) calculated as

Iwq =

∞∫
0

Rwq(τ )dτ. (16)

Iwq is estimated by numerically integrating the autocorrela-
tion function to the first zero crossing. In Eq. (15), z∗ ∼= 0
near the surface, rwq =

w′q ′

σwσq
is the correlation coefficient

between w and q, and Tm is the averaging period (in sec-
onds) over which the covariance is calculated. For neutral
stability, Iwq can be approximated as z/s (Finkelstein and
Sims, 2001). For a vehicle with a measurement height of
zm= 1.7 m, a mean wind speed of u≈ 2.5 m s−1, and a con-
stant vehicle speed of s= 25 m s−1, the result is Iwq ≈ 0.07 s.
For the stationary tripod (s= 0) at a slightly lower height of
zm= 1.4 m, Iwq = 0.56 s for the same wind speed. For a co-
variance of scalar q with the vertical velocity w, the instan-
taneous flux is calculated as ϕ′ = w′q ′ = (w−w)(q − q),
and ϕ′is used to estimate the autocorrelation function needed
for calculation of the integral timescale (Iwq ) from Eq. (16)
(Rannik et al., 2016). The instantaneous flux is introduced,
since the cross-correlation is an asymmetric function, mak-
ing it unsuitable for estimation of the Iwq .

The second methodology outlined in Finkelstein and
Sims (2001) gives an estimation of the variance of a covari-
ance (δFS):

δFS =

√
var
(
w′q ′

)
=

[
1
N

(
m∑

p=−m

γ̂q,q(p)γ̂w,w(p)

+

m∑
p=−m

γ̂q,w(p)γ̂w,q(p)

)]1/2

, (17)

where m is the number of samples required to ensure the
integral time scale (ITS) is sufficiently captured. γ̂w,w(p)
and γ̂w,q(p) are the unbiased autocovariance and cross-
covariance, respectively, expressed as

γ̂w,w(p)=
1

N −p

N−p∑
i=1

(wi −w)
(
wi+p −w

)
, (18)

and

γ̂q,w(p)=
1

N −p

N−p∑
i=1

(qi − q)
(
wi+p −w

)
. (19)

The value ofm is determined by calculating δFS as a function
of m and choosing the value at which δFS reaches a constant
or asymptotic value as m is further increased. For the road-
side tripod, a value of m= 300 s is determined, while for the
vehicle measurements, m= 30 s (see Figs. S4 and S5)

For wavelet analysis, Eq. (14) is applied to generate a
wavelet reconstructed time series (qf and wf ) for scales
up to a∗. Thus, the reconstructed time series will ex-
clude low frequency contributions attributed to wavelengths
λ> 1000 m. The reconstructed time series are then rotated
into mean streamwise coordinates and subsequently used in
Eqs. (18) and (19) to estimate δFS for the wavelet covariance
(and likewise for wavelet variances).

2.7.2 Random measurement uncertainty due to
instrument noise only

The sonic anemometer’s signal may be impacted by white
noise, a form of random measurement uncertainty. Lenschow
et al. (2000) consider a stationary time series with its mean
removed (i.e.,w′(t)) that is impacted by (uncorrelated) white
noise, ε(t), where the autocovariance function is

γw,w(τ )= (w′+ ε′)(w′t+τ + ε′t+τ )

= w′w′t+τ +w′ε′t+τ +w′t+τ ε′+ ε′ε′t+τ . (20)

Sincew(t) and ε(t) are uncorrelated, ε(t) is present only at 0
lag, and so wε = 0. Equation (20) then reduces to γw,w(τ )=
w′w′t+τ with γw,w(0)= w′2+ε′2. Based on the inertial sub-
range theory by Kolmogorov, the autocovariance function is
expected to follow (Lenschow et al., 2000; Wulfmeyer et al.,
2010; Bonin et al., 2016):

γw,w(τ )= w′
2
−Cτ

2
3 , (21)

where constant C is associated with turbulent eddy dissipa-
tion. To estimate ε′2, Eq. (21) is typically fit to the first 5
lags of the autocovariance function, corresponding to time
lags of 0.1 to 0.5 s for a 10 Hz signal of a sonic anemome-
ter (Rannik et al., 2016). For Doppler lidar measurements
of the vertical velocity in convective conditions, Bonin et
al. (2016) fit Eq. (21) to the autocovariance function for time
lags up to half the integral timescale (i.e., τ = 0.5Iww). The
fit is then extrapolated back to 0 lag to give γw,w(→ 0), and
the variance attributed to white noise in the measured signal
is then estimated as (Lenschow et al., 2000; Mauder et al.,
2013)

ε′2 =1γw,w = γw,w(0)− γw,w(→ 0). (22)

Some authors report a poor fit to Eq. (21) and instead apply
a linear fit extrapolation back to 0 lag to determine Eq. (22)
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(Lenschow et al., 2000; Mauder et al., 2013; Langford et al.,
2015). For measurements obtained on the tripod and instru-
mented car, a linear fit extrapolation in addition to Eq. (21)
are used to estimate ε′2. For tripod measurements, time lags
up to 0.5 s are used to determine the fit, but for the car trav-
eling at vehicle speeds near 20 m s−1, only the first 3 points
(up to 0.075 s) of the autocovariance function are used. Equa-
tion (21) may lead to an extrapolated value at 0 lag larger
than γw,w(0), which gives “negative” and thus undefined ε′2.
Bonin et al. (2016) noted a similar finding in their investi-
gation when fitting the autocovariance function to Eq. (21)
for the vertical velocity measured from Doppler lidar. They
hypothesize that the undefined ε′2 occurs when the genuine
white noise in the signal is minimal and the smallest scales
of turbulence remain unresolved. Therefore, when ε′2 is neg-
ative and undefined, we assume that the true white noise
is minimal and that ε′2≈ 0. Thus, for the analysis herein
ε′2 =max

(
ε′2,0

)
.

2.8 Comparison of mobile car measurements to tripod
measurements

In this work, we follow the approach of Belušić et al. (2014)
and select a fixed ground path to investigate means, vari-
ances, and covariances on the car. Two different fixed 1000 m
ground paths (L) are considered, referred to as Track #1 and
Track #2, and these tracks are compared to measurements
made by the tripod (see Sect. 2.3).

The averaging period (Tm) on the car is set to the tempo-
ral length of the 1000 m track for atmospheric means. For
car-measured atmospheric variances and covariances, Tm is
calculated from Taylor’s hypothesis (as Tm = L/u), with an
L= 1000 m track length. On the instrumented car, we have
u∼= s, where s is the near-constant vehicle speed over the
1000 m track, and therefore Tm is equivalent to the time it
takes for the car to travel 1000 m (for both eddy covariance
and wavelet analysis). For the car, any measurement pass
that follows closely behind a vehicle is excluded from the
results. To quantify a wavelet variance or covariance on the
car, the maximum wavelet timescale (a∗) must be chosen. In
this study, a∗ is set to match Tm as closely as possible (i.e.,
the temporal length of the 1000 m track). This approach is
used so that the wavelet variance (or covariance) is directly
comparable to eddy covariance, since both methodologies
will include the same timescales (a∗ controls the maximum
timescale included in the wavelet variance or covariance).
Tm on the tripod is set to 5 min for atmospheric means,

but for atmospheric variances and covariances, Tm varies de-
pending on the mean 5 min wind speed measured by the
tripod (u) according to Taylor’s frozen hypothesis, where
L= 1000 m. For the two measurement days investigated
here, Tm on the tripod ranges between 5 and 8 min. For con-
sistency, the averaging period used for calculation of the tri-

pod means, variances, and covariances is centered on the
time that the instrumented car passes the tripod (for both
Track #1 and Track #2). The choice of L on the tripod is
not trivial, since L should be determined by taking into con-
sideration the vehicle speed in addition to the mean ambi-
ent flow. Since the mean ambient flow in this study was rel-
atively weak (∼ 2.5 m s−1) and typically at an angle to the
vehicle, we have u∼= s on the car, but in strong ambient flow
u 6= s; Taylor’s hypothesis would suggest a different L on the
tripod to compare with the 1000 m track driven by the car.
For example, if u= 30 m s−1 on the car with s= 22 m s−1,
then 1000 m traveled by the car would correspond to a dis-
tance of Ls = 1364 m traveled by an air parcel, and this dis-
tance should be used to determine Tm on the tripod – that is,
Tm =

Ls
u
> 1000

u
. The averaging periods adopted in this study

for each methodology (wavelet analysis or eddy covariance)
and measurement system (car or tripod) are summarized in
Table 2.

3 Results and discussion

3.1 Mean wind speed and mean wind direction

Figure 5 shows a scatter plot of (a) the 5 min mean wind
direction on the tripod compared to the mean wind direc-
tion measured on the mobile car, and (b) the 5 min mean
wind speed measured on the tripod compared to the mean
wind speed measured on the mobile car. The mean wind
speed shown is after rotation into streamwise coordinates.
The gray lines in Fig. 5 denote a specific percentage of the tri-
pod measured value (i.e., 100 % gives a one-to-one relation-
ship), and this convention is used in the figures that follow.

The mean bias error, MBE= (1/N)
N∑
i=1
(Mc−Mt), and the

root mean squared error, RMSE= (1/N)
N∑
i=1

√
(Mc−Mt)

2,

are given in Table 3. Here, the subscripts c and t refer to the
car and the tripod. The tripod is therefore used as a “ground
truth” for the car measurements.

The mean wind speed shown in Fig. 5b shows
relatively good agreement between the car and tri-
pod, with no significant bias (MBEcar/utripod= 2 % and
RMSEcar/utripod= 22 %). When the analysis is separated by
tracks, the agreement is best for Track #1; RMSE= 0.43 and
0.71 m s−1 for Track #1 and Track #2, respectively (see Ta-
bles S1 and S2). If u measured on the tripod is used as a
normalizing factor, the normalized root mean squared error
of u (NRMSE) is 18 % and 30 % for Track #1 and Track #2,
respectively. The mean wind direction on the car agrees well
with the tripod on both Track #1 and Track #2, as shown in
Fig. 5a, where most points fall within 20◦ of the one-to-one
line.

To investigate how the car performs for shorter averaging
periods, non-overlapping intervals of 10 s duration are ex-
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Table 2. The averaging periods (Tm) used to calculate atmospheric means, variances, and covariances on the instrumented car and stationary
roadside tripod. Tm for variances and covariances are calculated from Taylor’s hypothesis (Tm = L/u), with an L= 1000 m track length. On
the instrumented car, we have u∼= s, where s is the near-constant vehicle speed over the 1000 m track, but for the tripod, u is the mean wind
speed measured on the tripod and calculated from 5 min averages.

Tm on the instrumented car Tm on the tripod

Means 40–60 s 5 min

Variances and covariances 40–60 s Varies between 5 and 8 min
(eddy covariance)

Variances and covariances 40–60 s, including wavelet scales not applicable
(wavelet analysis) up to a∗, where a∗ ∼= Tm

Figure 5. A scatter plot showing the mean wind direction (a) and mean wind speed (b) measured by the tripod and compared to the mobile
car. Dashed gray lines denote constant percentages of the independent variable.

amined on 20 and 22 August. There are 263 and 250 such
intervals on 20 and 22 August, respectively, and these repre-
sent times that the vehicle is driving in the vicinity of the
tripod (i.e., within about 10 km) and not necessarily on a
1000 m track. The results are shown in Table 4, which dis-
plays the average meteorological wind components (umet and
vmet), the mean wind direction, and the mean wind speed (af-
ter rotation into streamwise coordinates). Statistics are also
shown in Table 4, including the median, maximum, and min-
imum values in each set and the interquartile range (IQR).
The standard deviation of the wind direction is calculated us-
ing the Yamartino algorithm (Turner, 1986). The results show
that the wind direction is rather consistent on both days for
a shorter averaging period of 10 s, where the wind direction
standard deviation is 38◦ on 20 August and 31◦ on 22 August.
While the average of all 10 s mean wind speeds on 20 and
22 August is consistent with the measurement passes shown
in Fig. 5b, there can be significant variation in each individ-
ual interval, as demonstrated by the large IQR and maximum
and minimum values (IQR= 1.30 and 1.86 m s−1 on 20 and
22 August respectively). This demonstrates that using short

averaging periods on the mobile car allows the measurement
of localized flow variations, where the magnitude of the flow
may vary significantly but the direction remains relatively
constant in comparison.

3.2 Velocity variances and covariances

Figure 6 shows the velocity variances measured on the in-
strumented car compared to the velocity variances measured
on the tripod. The velocity variances measured on the car
are calculated using the typical statistical approach, de-
noted as EC (i.e., for time series x with N points, σ 2

x =

(1/N)
∑N
i=1(xi − x)

2) or wavelet analysis (i.e., Eq. 10).
Only statistical velocity variances measured by the tripod
(and covariances calculated using eddy covariance) are pre-
sented herein. For measurements made on the tripod, the ef-
fect of applying wavelet analysis to calculate variances and
covariances is minimal compared to the instrumented car
(see Fig. S3). Furthermore, for some measurement passes,
the Morlet wavelet applied to the tripod suffers from edge
effects that cannot be avoided, since the tripod recordings
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Table 3. Statistics calculated over all measurement passes (i.e., on both tracks on 20 and 22 August). Subscript EC denotes a statistical
variance or a covariance calculated using eddy covariance. A subscript W denotes a variance or covariance calculated using wavelet analysis.

MBEEC MBEW RMSEEC RMSEW MeanEC MeanW MeanEC
car car tripod

u′2 (m2 s−2) 0.90 0.44 1.44 0.75 2.15 1.69 1.26

v′2 (m2 s−2) 0.20 0.04 0.61 0.44 1.38 1.21 1.19

w′2 (m2 s−2) −0.11 −0.12 0.12 0.13 0.17 0.16 0.29

T ′2 (K2) 0.05 0.01 0.19 0.18 0.52 0.48 0.46
u′w′ (m2 s−2) 0.005 0.02 0.08 0.08 −0.13 −0.11 −0.14
w′T ′ (K m s−1) −0.05 −0.04 0.06 0.06 0.08 0.08 0.13
u (m s−1) 0.04 0.53 2.45 2.42

Table 4. Statistics of the mean flow measured by the car on 20 and 22 August. The averaging period is 10 s; therefore, the statistics are
calculated from a set of n non-overlapping intervals. Shown are the wind components in a meteorological coordinate system (umet, vmet), the
mean wind direction calculated from umet and vmet, as well as the mean wind speed after rotation into a streamwise coordinate system. Note

that u includes a component due to the vertical velocity, and hence it may exceed the horizontal wind speed calculated as uh =
√
u2

met+ v
2
met.

The standard deviation of the wind direction is calculated using the Yamartino algorithm (Turner, 1986).

20 August (n= 263) 22 August (n= 250)

Mean SD Max. Min. Median IQR Mean SD Max. Min. Median IQR

umet (m s−1) 0.30 0.82 – – 0.26 1.07 1.37 0.96 – – 1.29 1.35
vmet (m s−1) 1.63 1.03 – – 1.56 1.41 −1.73 1.26 – – −1.64 1.75
θ (◦) 190 38.2 – – 191 41.9 322 31.0 – – 318 34.0
u (m s−1) 1.90 0.92 4.54 0.18 1.72 1.30 2.42 1.23 6.30 0.14 2.40 1.86

were abruptly ended at the end of each measurement day.
For wavelet analysis, the maximum wavelet scale (index a∗)
is chosen to correspond as closely as possible to the temporal
length of the measurement track to ensure that both calcula-
tion methods retain the same spatial scales and are therefore
comparable (see Sect. 2.8). For the car measurement tracks
investigated here, the temporal length ranges between 40 and
60 s, and all measurement tracks have a maximum spatial
scale of approximately 1000 m.

Applying wavelet analysis to estimate the horizontal ve-
locity variances leads to a significant reduction in the magni-
tude compared to EC for some passes, specifically for those
passes reporting the largest horizontal velocity variances, as
shown in Fig. 6a and b. This reduction results in an improved
agreement between the two measurement systems; for u′2,
wavelet analysis gives RMSEW= 0.75 m2 s−2 compared to
RMSEEC= 1.44 m2 s−2 for EC. However, retaining larger
scales in the wavelet variance calculation (i.e., corresponding
to spatial scales exceeding 1000 m) gives horizontal velocity
variances that are larger and more consistent with EC. This
suggests that, compared to EC, wavelet analysis can better
resolve low frequency variations occurring at spatial scales
near and exceeding 1000 m. Low frequency contributions on
the car may arise from variation in the flow that results only
from a changing upwind environment; therefore, this effect

would not be captured by a stationary monitoring station.
As discussed in Sect. 2.5, wavelet analysis is applied to a
time series with a temporal length 11 times longer than the
time series used to calculate the EC variances, giving wavelet
analysis superior low frequency resolution compared to eddy
covariance.

Despite the improved agreement when wavelet analysis is
applied to estimate the horizontal velocity variances, there
are still instances where u′2 and v′2 measured by the mo-
bile car are larger than what is measured by the roadside
tripod. Given the public highway where the study was con-
ducted, some measurement passes inevitably have sporadic
traffic that was traveling in the opposite direction as the mo-
bile car (as determined by visual inspection of the video).
The passing traffic can significantly impact the velocity vari-
ances measured on the car due to vehicle-induced turbulence,
especially in the case of passing heavy-duty trucks (Gordon
et al., 2012; Miller et al., 2019). For the measurement passes
shown in Fig. 6, there are two instances where a heavy-duty
truck traveled in the lane opposite to the instrumented car as
well as a few occasions where passenger vehicles (i.e., SUV,
cars) traveled past the car.

Figure 7 displays the 1 s wavelet variance calculated us-
ing Eq. (11) for three different measurement passes from
Track #2 (on 22 August); Fig. 7a had two simultaneously
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Figure 6. The horizontal streamwise velocity variance, u′2 (a), the

lateral velocity variance, v′2 (b), and the vertical velocity variance,

w′2 (c), measured by the tripod (horizontal) and compared to the in-
strumented car (vertical). Variances calculated using either wavelet
analysis or EC are shown as red and blue markers, respectively.
Dashed gray lines denote constant percentages of the independent
variable.

passing sport utility vehicles (SUV), and Fig. 7c had a
passing heavy-duty truck followed in quick succession by an
SUV. Wavelet analysis is performed on the measured veloc-
ities in a meteorological coordinate system (i.e., umet, vmet),
with a∗ extending up the temporal length of the measure-
ment pass (i.e., the same a∗ used for the wavelet variances
presented in Fig. 6). Each measurement pass shown in Fig. 7
was performed in the same direction and in the highway lane
closest to the tripod (i.e., on the downwind side of the high-

way). Traffic is denoted by a circled area in the respective
figure panel. With these instances of traffic included, the ve-

locity variances are 1.68, 1.38, and 0.21 m2 s−2 for u′met
2,

v′met
2 and w′c

2, respectively. Removing the 1 s wavelet vari-
ances corresponding temporally with these passing vehicles

(9 s in total) gives a u′met
2, v′met

2, and w′c
2 of 1.47, 1.29, and

0.17 m2 s−2, respectively, representing about a 10 % reduc-
tion in the turbulent kinetic energy during this measurement
pass. This demonstrates that even limited traffic traveling in
the highway lane adjacent to the car (and in the opposite di-
rection) can substantially increase the magnitude of the ve-
locity variances measured by the car on a 1000 m track, es-
pecially heavy-duty trucks. In Fig. 7a, two SUVs passed by
the mobile car in quick succession, but the passage of these
vehicles is not discernable as a localized increase of the 1 s
wavelet variances. This suggests that the vehicle wakes did
not advect past the instrumented car during this measurement
pass, and thus no removal is warranted.

For the measurement pass shown in Fig. 7b, there is a
noticeable increase in the 1 s horizontal velocity variances
about 450 m into the measurement track. A similar trend is
also seen in Fig. 7c. Before 450 m, there are many large trees
and houses upwind of the highway, but after 450 m, the up-
wind environment becomes open farmland (i.e., limited ob-
structions to the mean flow). The presence of many trees and
houses in close proximity acts as a windbreak, forcing the
flow to accelerate and rise over the surface obstructions. The
flow is reduced downwind of the surface obstruction (Taylor
and Salmon, 1993; Mochida et al., 2008), and close to the
surface just after the obstruction (i.e., the near wake) is the
“quiet zone”, where the horizontal velocity variances are re-
duced in comparison with the undisturbed upwind flow (Lee
and Lee, 2012; Lyu et al., 2020). Therefore, the reduced hor-
izontal velocity variances for the first few hundred meters
of the track may be related to the quiet zone generated by
the many trees and houses upwind of the road. After about
450 m, the upwind environment becomes relatively open, and
the flow measured on the car increases, with this increase
continuing over the remainder of the track. The changing
wind speed along the track introduces a trend in the hori-
zontal velocity record measured on the car.

On the instrumented car,w′2 is biased low by 30 % to 50 %
(MBEEC =−0.11 m2 s−2), and applying wavelet analysis to
estimate w′2 does not improve the agreement between the
two measurement systems. The removal of vehicle-induced
turbulence from the car measurements (and not the tripod)
further decreases w′2, in turn increasing the bias between
the car and tripod. Like w′2, the sonic heat flux (w′T ′)
measured by the mobile car in this study (shown in Fig. 8b)
also has a low bias of 30 % to 50 % compared to the tri-
pod (MBEEC=−0.05 K m s−1). There is no improvement
in the statistical measures if wavelet analysis is used to es-
timate w′T ′. Despite a low bias noted in w′T ′, there is
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Figure 7. Car-measured velocity variances on three different 1000 m tracks, calculated every second using wavelet analysis. The data shown
are from 22 August. The black circled areas denote the passage of traffic in the lane adjacent to the instrumented car (i.e., traveling in the
opposite direction), as determined from visual inspection of the dashboard camera video. The text located to the right of the circle gives the
traffic composition. The data shown are measurements from the lane closet to the tripod. The velocity variances shown are in a meteorological
coordinate system.

Figure 8. The vertical momentum flux, u′w′ (a), and the sonic heat flux, w′T ′ (b), measured by the tripod (horizontal) and compared to the
mobile car (vertical). Covariances calculated using wavelet analysis and EC are shown as red and blue markers, respectively. Dashed gray
lines denote constant percentages of the independent variable.

no low bias found in the sonic temperature variance (T ′2)
measured on the instrumented car compared to the tripod
(shown in Fig. 9), where the MBEEC = 0.05 K2. Since the
sonic anemometer is placed over the front bumper, which
holds the vehicle engine, there may potentially be some im-

pact from its heat in our measurements. While the effect of
engine heat is probably more important in cold ambient tem-
peratures, there may still be an impact on the sonic temper-
ature (T ) measured on the car in this study while driving,
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Figure 9. The sonic temperature variance, T ′2, measured by the
tripod (horizontal) and compared to the mobile car (vertical). Co-
variances calculated using wavelet analysis and eddy covariance are
shown as red and blue markers, respectively. Dashed gray lines de-
note constant percentages of the independent variable.

which would likely result in T ′2 being biased high compared
to an instrumented car without engine heat effects.

The discrepancy between the car and the tripod forw′2and
w′T ′ may be related to a mismatch in the flux footprint or
possibly to the rapid flow distortion experienced at the loca-
tion of the sonic anemometer on the vehicle. The road pro-
duces a distinct upward heat flux and an increase in w′2 on
sunny days, because it has a significantly lower albedo than
the surrounding grasses and farmland. On 22 August, we
parked on the upwind side of the highway for approximately
30 min, but the car was also parked on the downwind side of
the highway during assembly and disassembly of the tripod.
For three independent 8 min periods, the average w′2, T ′2,
and w′T ′ on the upwind side of the highway are measured
at 0.15 m2 s−2, 0.46 K2, and 0.085 K m s−1, respectively.
Downwind of the highway, w′2, T ′2, and w′T ′ are found to
be larger, near 0.33 m2 s−2, 0.68 K2, and 0.109 K m s−1 on
average (from five independent samples), which are more
consistent with measurements made on the tripod, except
for T ′2. The car-measured T ′2 on the downwind side of
the highway has a large standard deviation (0.41 K2) and a
single outlier that skews the average. Removing this outlier
(where T ′2= 1.39 K2) reduces the average car-measured T ′2

downwind of the highway to 0.50 K2, which is more consis-
tent with the tripod; the 8 min sample with the anomalously
large T ′2 does not have an anomalously large w′2 or w′T ′.
The findings in this study for w′2 are similar to Gordon et
al. (2012), who measured w′2= 0.27 m2 s−2 downwind of a
four-lane highway on a sunny day.

To investigate the flux footprint of the tripod versus the
instrumented car, the footprint model of Kljun et al. (2015)
is applied with u= 2.5 m s−1, a boundary layer height

of h= 1500 m, a friction velocity of u∗= 0.35 m s−1, an
Obukhov length of L=−30 m, v′2= 1.5 m2 s−2, and a wind
direction that is assumed to be perpendicular to the highway.
These meteorological values represent estimations based on
measurements made on 22 August. For the car, zm≈ 1.7 m,
but for the tripod, zm≈ 1.4 m. However, flow distortion on
the mobile car results in the measurements being represen-
tative of a lower height than the height at which the in-
strumentation is installed. Achberger and Bärring (1999) ex-
plored the displacement due to flow distortion on a mini-bus
and estimated that the displacement at 2 m height was typ-
ically on the order of 0.2 m. Therefore, measurements ob-
tained at zm= 1.7 m on the mobile car in this study are prob-
ably representative of a slightly lower height between 1.5 and
1.6 m. For the upper height limit of zm= 1.7 m, the footprint
model predicts that the maximum location of influence to the
flux is about 4.2 m upwind of the measurement location. For
zm= 1.5 m, it is about 3.7 m upwind. Since the tripod is po-
sitioned in the shoulder of the highway, 3.7 m upwind of the
tripod is near the center of the highway. Assuming the instru-
mented car is in the lane closest to the tripod (or about 1.75 m
from the edge of the highway), the maximum location of in-
fluence to the flux is near 6 m or near the edge of the highway
furthest from the tripod. Therefore, when the car is in the lane
closest to the tripod, the measurements have a flux footprint
that includes less influence from the highway. The footprint
model predicts that the influence from the road is minimized
when the car is driving in the lane furthest from the tripod,
but for measurements made during this study, there is not a
significant statistical difference in w′2 and w′T ′ for the close
versus far highway lane. The footprint model applied here
is strongly impacted by the mean wind speed u – a lower
u gives a location of maximum influence to the flux that is
closer to the measurement system.

Another factor that may influence the velocity measure-
ments made by the sonic anemometer is rapid distortion
of the flow caused by the moving vehicle. Wyngard (1988)
shows that the variance of scalar quantities (such as the sonic
temperature or a gas concentration) remains unchanged dur-
ing rapid flow distortion. The velocity variances, however,
may be altered during stretching and compression of the flow,
as it is forced to rise over the front end of the vehicle, similar
to isotropic turbulence and flow over a symmetric hill (Brit-
ter et al., 1981; Gong and Ibbetson, 1989). If it is assumed
that the low bias in the measured w′2 on the car is caused by
rapid flow distortion alone (i.e., no effect from the highway
asphalt), then rapid distortion theory would predict a propor-
tional increase in the velocity variance measured parallel to
the vehicle motion. However, in the case of the measure-
ments of w′2 made during this study, there is likely a con-
tribution from the rapid distortion of the flow in addition to
a contribution from the flux footprint mismatch between the
car and tripod, but it is not possible to separate the effects in
this work.
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For EC, there is no significant bias for u′w′ measured on
the car compared to u′w′ measured on the tripod, as shown
in Fig. 8a. The tripod measurements of u′w′ generally fall
within the 95 % confidence interval of u′w′ measured on
the car (see Sect. 3.4.2). However, there are instances where
u′w′ measured by the two systems differ significantly, and
this suggests that a better estimate of u′w′ can probably be
obtained by averaging multiple passes. The horizontal mo-
mentum flux, u′v′, measured on the tripod does not agree
with measurements made on the mobile car (not shown), and
when sampling errors are considered, u′v′ measured on the
car is not found to be statistically different than 0 within the
66 % confidence interval.

3.3 Velocity spectra

Figure 10 displays the binned power spectral density (mul-
tiplied by frequency) of the velocity components for mea-
surement Pass 5 (Fig. 10a), Pass 7 (Fig. 10b), and Pass 8
(Fig. 10c) from Track #1. These three measurement passes
have been chosen, since they demonstrate unique features in
the car spectra, which are representative of the spectra from
the remaining measurement passes not shown (see Fig. S6).
The frequencies are normalized to give a wavelength as λ=
u/f , where f is the frequency (Hz) and u is the mean ambi-
ent wind on the tripod or the car relative flow on the mobile
car. Each panel displays the spectra of u (top), v (middle),
andw (bottom). In general, the shape of the spectra measured
on the mobile car agree well with the spectra measured by the
tripod; however, there are some notable differences: (1) un-
like the tripod, the power spectra of u and v measured on
the car during Pass 7 and 8 increase at high frequencies
(λ < 5 m). This increase may be related to white noise in
the measured signal or perhaps to aliasing and is present in
about 75 % of the measured spectra from Track #1. Lang-
ford et al. (2015) show that the power spectra of the sonic
temperature increase linearly with a +1 at high frequencies
(in the inertial subrange) in the presence of white noise, re-
sembling the findings in this study for u and v. One poten-
tial source of white noise in the measured horizontal veloc-
ity components may be road unevenness (Schiehlen, 2006).
Belušić et al. (2014) found distinct peaks near a frequency
of 7 Hz in their car-measured v spectra, which they attribute
to frame vibrations, and by comparing the sonic measure-
ments to GPS–INS motion, they concluded that road uneven-
ness did not impact the high frequency portion of the velocity
spectra. (2) For u in Pass 7 and 8, as λ increases past 100 m,
the power spectral density increases on the car, while on the
tripod, the power spectral density decreases. (3) In Pass 7
and 8, w appears to be under-sampled, since the car spectra
do not extend through the entire inertial subrange. Therefore,
sampling at high vehicle speeds (> 15 m s−1) would proba-
bly benefit from a sampling rate greater than 40 Hz. Addi-
tionally, in Pass 5 and 8, there is a general underestimation
of the power spectral density of w on the car compared to the

tripod for λ between about 5 to 80 m, and this underestima-
tion is a common feature in the measured car spectra.

3.4 Measurement uncertainties

3.4.1 Flow distortion correction angle, θ

Despite the rather strong relationship between the measured
vertical velocity (W ) and the measured longitudinal veloc-
ity (U ) discussed in Sect. 2.4, there is still an uncertainty
in the rotation angle (θ ) used to correct for the effect of
flow distortion on the vertical velocity. The median of θ
calculated using all binned values is 7.54◦, with the lower
and upper quartile (25th and 75th) being 7.38 and 7.70◦, re-
spectively (IQR= 0.32◦). If θ =Q25= 7.38◦ is used for the
flow distortion correction instead, the mean vertical veloc-
ity measured on the car during all measurement passes in-
creases, givingw= 0.06 m s−1 (using θ =Q50= 7.54◦ gives
w= 0.00 m s−1). In addition, there is an increase in the mag-
nitude of w′2, w′T ′, and u′w′, giving a marginally better sta-
tistical agreement between the car and tripod for w′2 and
w′T ′, as shown in Table 5. These results demonstrate that
reducing θ to give w> 0 m s−1 is not sufficient to improve
the agreement among all turbulence statistics and will not re-
move the bias noted in Sect. 3.2 for w′2 and w′T ′. Similarly,
increasing θ from 7.54◦ does not remove the bias or improve
the agreement between the car and tripod.

3.4.2 Sampling errors

A significant concern when obtaining atmospheric measure-
ments from an instrumented mobile car is the impact of sam-
pling errors. Sampling errors on the mobile car may result
from (i) the use of a record length that is too short to be rep-
resentative of an ensemble mean, (ii) non-stationarity of the
flow introduced by microscale variations or inhomogeneities
in the terrain and surrounding structures (i.e., trees, build-
ings), or (iii) white noise and persistent structured signals in-
troduced by vehicle resonance and vibrations.

In this work, three methods to quantity the random mea-
surement uncertainty are investigated: (1) the method of
Finkelstein and Sims (2001), referred to as F&S (Eq. 17, de-
noted as δFS); (2) the method of Mann and Lenschow (1994),
referred to as M&L (Eq. 15, denoted as δML); and (3) the
method of Lenschow et al. (2000) (Eq. 22). F&S and M&L
give an estimate of the overall random measurement un-
certainty, while Lenschow et al. (2000) gives an estimate
of the random measurement uncertainty attributed only to
white noise in the measured signal. The method of Lenschow
et al. (2000) does not include contributions from persistent
structured signals that may occur at a specific frequency (i.e.,
from vehicle resonance or some other cause of vibrations,
such as speed bumps). δFS and δML give 1 standard devia-
tion of the random measurement uncertainty of a measured
variance or covariance for the averaging period Tm, which
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Figure 10. Binned power spectral density (multiplied by frequency) of the velocity components u (a–c), v (d–f), and w (g–i), measured by
the roadside tripod (triangles) and the mobile car (circles). The frequencies are normalized to give a wavelength (λ) as u/f , where f is the
frequency (Hz) and u is the mean ambient wind speed (or car relative flow for the mobile car).

Table 5. Statistics calculated over all measurement passes (i.e., Track #1 and Track #2), but with θ = 7.38◦.

MBEEC MBEW RMSEEC RMSEW MeanEC MeanW MeanEC
car car tripod

u′2 (m2 s−2) 0.89 0.44 1.43 0.75 2.14 1.68 1.26

v′2 (m2 s−2) 0.20 0.04 0.61 0.44 1.38 1.21 1.19

w′2 (m2 s−2) −0.10 −0.11 0.11 0.12 0.18 0.17 0.29
u′w′ (m2 s−2) −0.04 −0.02 0.10 0.08 −0.18 −0.15 −0.14
w′T ′ (K m s−1) −0.04 −0.03 0.05 0.05 0.09 0.09 0.13
u (m s−1) 0.04 – 0.53 – 2.44 – 2.42

is demonstrated by Rannik et al. (2009) to be nearly equiva-
lent to the standard error of the variance or covariance. Thus,
in this work, we define the 68 % confidence interval as the
range F ± δ and likewise the 95 % confidence interval as the
range F±1.96δ, where F is the measured variance or covari-
ance. When the confidence interval of a variance or covari-
ance includes the value measured on the tripod, then mea-
surements are deemed consistent between the two systems
in that confidence interval (for that measurement pass). Fig-
ures 11 to 13 display the random measurement uncertainty
of the measured variances and covariances, calculated using
these three methodologies.

The random uncertainty estimates calculated from M&L
and F&S agree well on the mobile car platform for velocity

variances when m= 30 s. However, for m= 30 s, F&S tends
to give a slightly greater magnitude of random measurement
uncertainty than M&L for covariances (i.e., Fig. 13). This is
similar to the findings of Finkelstein and Sims (2001), who
note that the method of F&S contains a contribution from
both the autocovariance and cross-covariance function, lead-
ing to a larger magnitude and more conservative estimate of
the sampling error compared to M&L. Rannik et al. (2016)
note that F&S gives an estimate of the “total” random mea-
surement uncertainty

The random measurement uncertainty calculated from
F&S and M&L scales approximately linearly with increasing
magnitude of the velocity variance or covariance, as shown in
Figs. 11 to 13. For Track #2, there are several instances where
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Figure 11. Random measurement uncertainty of the horizontal velocity variance measured on the car, plotted as a function of (a) the

longitudinal velocity variance u′2 and (b) the lateral velocity variance, v′2. Dashed gray lines denote constant percentages of the independent
variable.

Figure 12. Random measurement uncertainty of the vertical velocity variance measured (a) on the car and (b) on the tripod, plotted as a

function of w′2. Dashed gray lines denote constant percentages of the independent variable.

u′2 is large (i.e., 2 to 5 m2 s−2) and δFS is on the order of u′2

. Thus, u′2 measured on Track #2 is not statistically different
than 0 in the 95 % confidence interval for some measurement
passes. A trend in the velocity record results in an autocorre-
lation function that does not fall to 0 as expected and instead
remains elevated at large time lags. This suggests that δFS in
this study includes a contribution from non-stationarity in the
record, which is consistent with the conclusions for measure-
ments made on stationary towers from Rannik et al. (2016),
who found that δFS continues to increase as m is increased to
300 s.

Reconstructing the time series using wavelet analysis pro-
duces a filtered time series, where the resolved low fre-
quency contributions are excluded. Applying F&S to the

reconstructed time series gives an estimate of δFS for the
wavelet variances and covariances (shown in Figs. 11 to 13 as
diamonds). For u′2, wavelet estimates of δFS follow a simi-
lar trend to the uncertainty estimates found using the unfil-
tered time series – that is, as the magnitude of the wavelet
variance increases, so does δFS. However, for times when
wavelet analysis predicts a smaller u′2, δFS is also found to
be proportionally reduced.

For the measurement tracks investigated here, the use of a
linear fit to estimate δL gives a much larger uncertainty than
Eq. (21), as shown in Figs. 11 and 12. In the case of the ver-
tical velocity, δL estimated using a linear fit extrapolation is
3 to 4 times larger than the total random measurement uncer-
tainty according to δFS. δL is expected to represent a contribu-
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Figure 13. Measurement uncertainty of (a) the vertical turbulent momentum flux u′w′ and (b) the vertical turbulent sonic heat flux w′T ′

measured on the car and plotted as a function of the flux magnitude. Dashed gray lines denote constant percentages of the independent
variable.

tion to the total random measurement uncertainty, and there-
fore δL < δFS (Rannik et al., 2016). This suggests that the
linear fit significantly underestimates the true variance and
overestimates the amount of white noise forw. If a power law
fit (Eq. 21) is used instead of a linear fit, δL is reduced, and
for several measurements passes δL < δFS. The difficulty of
estimating δL for w on the car is not unexpected, since w has
an integral timescale (ITS) of 0.05 to 0.1 s for vehicle speeds
near 20 m s−1, and this is only 2 to 4 times the sampling in-
terval of the sonic anemometer. This limits the amount of
autocovariance function time lags that lie within the inertial
subrange, giving a poor fit. Lenschow et al. (2000) note that,
for a successful power law fit to the autocovariance function,
the ITS must be “several times larger” than the sampling in-
terval of the instrument. For w measured on the tripod, the
use of Eq. (21) gives undefined ε′2, while a linear fit gives
δL > δFS, as shown in Fig. 12b.

Compared to w, the measured horizontal velocity compo-
nents on the car (u, v) have a larger ITS (on the order of 1 s)
and a larger signal-to-noise ratio (SNR). Rannik et al. (2016)
argue that the method proposed by Lenschow et al. (2000) is
best suited for closed-path sensors as opposed to open-path
sensors and high-precision instrumentation such as sonic
anemometers. They found that the method of Lenschow et
al. (2000) gives a relatively unbiased estimate of the white
noise when the SNR is small and applied the method to es-
timate δL only for w (not for u or v). For u and v in this
study, δL typically represents a small contribution to the total
random measurement uncertainty, except for weaker signals
(i.e., lower measured horizontal variances). The presence of
white noise in the measured u and v signals is also supported
by the spectra shown in Fig. 10b, where a near +1 slope ap-
pears at high frequencies within the inertial subrange. This is
not the case for w, where the spectra do not show a +1 slope
at high frequencies; hence, w spectra have no evidence of

white noise impacting the measured signal. This may suggest
that δL overestimates the magnitude of white noise present in
w, and so δL is likely not a reliable estimate of white noise
in the vertical velocity for car measurements made at high
vehicle speeds near 20 m s−1.

In addition to Track #1 and Track #2, the car was driven
on a gravel road at relatively high vehicle speeds (s between
20 and 23 m s−1) for a short (< 5 min) period. The effect
of the gravel road is investigated by splitting the short pe-
riod into non-overlapping intervals of 49 s (yielding 5 unique
samples) and performing the same analysis as outlined in
Sect. 2. The car measurements on the gravel road are similar
to car measurements obtained on the paved road for a com-
parable s. The magnitude of the variances and covariances
on the gravel road are consistent with those measured on the
paved road within the 95 % confidence interval, and the un-
certainty estimates (δFS, δML, and δL) are the same order of
magnitude. The measured velocity variances and uncertainty
analysis for the gravel road are displayed in the Supplement
(Fig. S7). These measurements suggest that the road surface
types investigated in this study have a limited influence on
the measured turbulence statistics.

3.4.3 Tripod velocity record contamination from
passing traffic

Since the study was designed to investigate measurements in
non-idealized conditions, the highway locations have public
access; therefore, other vehicle traffic was present during the
measurements. The traffic consisted largely of passenger ve-
hicles (such as cars, pickup trucks, sport utility vehicles, and
minivans), but the traffic on 22 August was more significant
and was comprised of occasional large trucks (dump trucks
and tractor-trailers). For measurement passes on 22 August
(with video recordings available on the tripod), the dashboard
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camera recorded between 26 and 40 total passing vehicles,
of which 0 to 4 were large trucks. The car takes about 45 s to
complete a track, but on the tripod, the equivalent averaging
period is between 6 to 8 min. For some measurement passes,
the mobile car does not experience any traffic contamination,
but this is not the case for the tripod. Therefore, the tripod
will measure a different composition and amount of passing
traffic than the car, potentially leading to differences in the
measurements made by the two systems.

Large trucks produce a significant amount of vehicle-
induced turbulence, but passenger cars and sport utility ve-
hicles produce much less in comparison (Miller et al., 2019;
Gordon et al., 2012). Furthermore, the wake has limited lat-
eral spread relative to the vehicle travel direction (Kim et al.,
2016), except perhaps for times with significant advection, so
the most noticeable effect on the tripod will be from traffic
in the adjacent highway lane (i.e., closet to the tripod). For
measurements on the car, passing traffic (particularly large
trucks) is found to enhance the measured velocity variances
(i.e., Fig. 7c). Like the car, the main effect of passing traffic
on the tripod measurements would also be an enhancement of
the velocity variances. Thus, for times when there is no traf-
fic contamination on the car, the differences shown in Fig. 6
between the car and tripod-measured velocity variances may
be underestimated, since the tripod velocity variances are en-
hanced due to passing traffic but the car measurements are
not. Therefore, the presence of traffic measured by the tripod
and not the car introduces an additional uncertainty into the
measurement comparisons shown in Sect. 3.

4 Conclusions

The results presented in Sect. 3 demonstrate that the instru-
mented car design used in this study can successfully mea-
sure the mean atmospheric boundary layer close to the sur-
face, but the car measurements may vary significantly based
on the surrounding features such as trees, buildings, and
other traffic. Therefore, the interpretation of the car-based
measurements depends largely on the specific application,
since the car may measure turbulence that is localized and not
represented in single-point measurements made at a station-
ary tower. In the previous study of Belušić et al. (2014), there
was limited upwind surface obstructions and no other traffic
during their measurements. Despite the more idealized envi-
ronment, their measurements revealed times when the hori-
zontal velocity variances (u′2 and v′2) measured on the car
were significantly larger than a nearby stationary tower, and
they suggest that intense, temporally limited flow structures
are to blame. These events dominate the measurements made
on the car but not on the tripod, since the averaging period is
longer. In this investigation, u′2 and v′2 on the car calculated
using EC are also found to be much larger than measured on
the tripod for some measurement passes (i.e., a factor be-

tween 2 and 5 for u′2, with RMSEEC Car/MeanEC Tripod =

NRMSEEC≈ 114 %). When the measurement uncertainty
in Sect. 3 is considered, these large u′2 are not statisti-
cally different than 0 in the 95 % confidence interval, since
δFS ≈ u′

2. Applying wavelet analysis to calculate u′2 and v′2

gives significantly reduced magnitudes for some measure-
ment passes, particularly those measurement passes with the
largest estimated EC variances. This results in an improved
agreement between the mobile car and tripod for u′2 and
v′2 (for u′2RMSEW Car/MeanEC Tripod = NRMSEW≈ 60 %).
The improved agreement using wavelet analysis suggests
that wavelet analysis resolves length scales near and exceed-
ing the length of the measurement track (i.e., 1000 m); in this
study, the change in surface features on Track #2 (from a
windbreak to an open field) may yield an artificial low fre-
quency contribution in the velocity record. Thus, when mea-
suring from an instrumented car, it is important to be aware
of changes in terrain and land usage, which can strongly im-
pact the near-ground measurements.

Evidence from this investigation shows that passing traffic
(especially large trucks) can also lead to an increase in the ve-
locity variances measured on the car. However, if the passing
traffic is sporadic, the resulting increase in the measured
velocity variances from vehicle-induced turbulence can be
identified and removed using wavelet analysis. In this study,
for a measurement pass that experienced a passing heavy-
duty truck and sport utility vehicle, removing the times when
the traffic passes the mobile car (9 out of 46 s) decreases
the turbulent kinetic energy by about 10 %. This highlights
the importance of video recordings in conjunction with sonic
anemometer measurements on a car, so that times with pos-
sible traffic contamination can be identified in applications
where its measurement is not intended.

The sampling uncertainties in Sect. 3 suggest that it is pos-
sible to measure a statistically significant vertical momen-
tum flux on the mobile car at vehicle speeds near 20 m s−1.
u′w′ measured on the car is typically found to be consis-
tent with the tripod within the 95 % confidence interval,
but for some passes, u′w′ measured on the car is small
(< 0.06 m2 s−2) and not statistically different than 0 in the
95 % confidence interval. Therefore, for measurements ob-
tained on the mobile car, a better estimate of u′w′ can prob-
ably be obtained by averaging multiple passes with a spa-
tial extent of 10s of kilometers. Random measurement un-
certainty estimates of u′w′ by F&S and M&L (which give
1 standard deviation of the uncertainty) have magnitudes
that are typically 10 % to 40 % of the measured flux. Fur-
thermore, there is no significant bias in u′w′ measured on
the car when the entire set of measurement passes is con-
sidered (MBEEC Car/MeanEC Tripod = NMBEEC≈−4 % and
MBEW Car/MeanEC Tripod = NMBEW≈−14 %).

The vertical velocity (w′2) and vertical sonic heat
flux (w′T ′) measured in this study are found to be bi-
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ased low compared to measurements made on the tripod
(NMBEEC≈−38 % for both w′2 and w′T ′). The low bias
on the car is probably due to the combination of two fac-
tors: (1) the footprint measured by the car contains less of
the low-albedo highway than the tripod, and (2) rapid flow
distortion at the measurement location on the car. Interest-
ingly, there is evidence of a similar low bias in w′2 (but not
w′T ′) measured by the car in Belušić et al. (2014), where
only 4 out of the 19 completed passes measured a greater
w′2 on the car than the stationary tower (i.e., their Fig. 4).
This demonstrates that wind tunnel testing or computational
flow modeling of each specific instrumented car design may
be useful to quantify the effects of rapid flow distortion on
the measured velocity variances and covariances. Applying
the method of Lenschow et al. (2000) to estimate the magni-
tude of white noise in the measured vertical velocity signal
at vehicle speeds near 20 m s−1 likely underestimates the true
signal variance and overestimates the amount of white noise
and therefore is not recommended.

The mean wind speed and mean wind direction were found
to be consistent with measurements made on the tripod. For
u measured on Track #1 and Track #2, the NMBE≈ 2 % and
NRMSE≈ 22 %, respectively. Even a short averaging period
of 10 s for car measurements made at a vehicle speed near
20 m s−1 provides a reliable estimate of mean wind direction
on the car; for about 250 unique intervals on 20 and 22 Au-
gust, the interquartile range of the wind direction is 42 and
34◦, respectively. Despite the rather consistent wind direc-
tion, the mean wind speed in any individual 10 s averaging
period may vary considerably; the interquartile range for u
is 1.3 and 1.9 m s−1 on 20 and 22 August, respectively. The
large variation in the 10 s mean wind speed likely represents
more localized flow that exists in a specific location. There-
fore, the instrumented car may prove invaluable for studies
that require precise measurement of localized flow, providing
simultaneous measurements of wind speed and direction over
a large domain. This study shows that, even when the sonic
anemometer is placed particularly close to the vehicle (com-
pared with Belušić et al., 2014, for example), it is still pos-
sible to correct for flow distortion effects and to obtain mea-
surements of the mean wind and turbulence that are consis-
tent (within the 95 % confidence interval) of those measured
by a nearby stationary tripod.

The results presented in this investigation demonstrate that
car-based measurements of turbulence require care when se-
lecting the appropriate spatial and temporal averaging and
when selecting the measurement location to ensure that the
measurements obtained are representative of the specific ap-
plication. This is demonstrated in our measurements, where
the highway surface or flux footprint, upwind obstructions,
and passing traffic are all found to have a significant effect
on the measured values but are not necessarily errors, since
they do represent real features that can generate atmospheric
turbulence.
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