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Abstract. A suite of generally applicable statistical meth-
ods based on empirical bootstrapping is presented for cal-
culating uncertainty and testing the significance of quantita-
tive differences in temperature and/or ice active site densi-
ties between ice nucleation temperature spectra derived from
droplet freezing experiments. Such experiments are widely
used to determine the heterogeneous ice nucleation proper-
ties and ice nucleation particle concentration spectra of dif-
ferent particle samples, as well as in studies of homogeneous
freezing. Our methods avoid most of the assumptions and ap-
proximations inherent to existing approaches, and when suf-
ficiently large sample sizes are used (approximately > 150
droplets and >= 1000 bootstrap samples in our system), can
capture the full range of random variability and error in ice
nucleation spectra. Applications include calculation of accu-
rate confidence intervals and confidence bands, quantitative
statistical testing of differences between observed freezing
spectra, accurate subtraction of the background filtered wa-
ter freezing signal, and calculation of a range of statistical
parameters using data from a single droplet array freezing
experiment if necessary. By providing additional statistical
tools to the community, this work will improve the quality
and accuracy of statistical tests and representations of uncer-
tainty in future ice nucleation research, and will allow quan-
titative comparisons of the ice nucleation ability of different
particles and surfaces.

1 Introduction

Ice nucleation (IN) is a complex process with significant im-
plications for cloud properties in atmospheric science (Get-
telman et al., 2012; Mülmenstädt et al., 2015; Froyd et al.,
2022). Heterogeneous ice nucleation, where a separate phase
or substance assists the nucleation of ice above the homoge-
neous freezing limit, is particularly difficult to study as the
length and timescales at play in nucleation are difficult to
directly observe (Fletcher, 1969; Wang et al., 2016; Kiselev
et al., 2017; Holden et al., 2019). Most researchers resort to
macroscopic measurements of this nanoscale process by cre-
ating droplets containing suspensions of the ice active ma-
terial and observing freezing events as time passes or tem-
perature changes (Vali, 2014). The most common technique
is a variation on the droplet-on-substrate apparatus, where
droplets of known sizes are created by manual pipetting, con-
densation, or microfluidic means (Stan et al., 2009; Budke
and Koop, 2015; Whale et al., 2015; Chen et al., 2018; Polen
et al., 2018; Reicher et al., 2018; Brubaker et al., 2020; Gute
and Abbatt, 2020; Roy et al., 2021). These droplets are usu-
ally exposed to a negative temperature ramp and the freezing
temperatures of each droplet are recorded to produce an ice
nucleation rate or active site density spectrum as a function
of temperature (here we use the term “IN activity” as a gen-
eral term to refer to any measured or derived variable which
quantifies ice nucleation rate with respect to temperature).
Other procedures can be used to test the effects of time and
other variables on IN activity (Wright and Petters, 2013).
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Because these experiments only indirectly measure IN ac-
tivity, results can have high natural variability, even when
measuring the same sample on the same instrument. This
variability is inherent to ice nucleation. Using the combined
singular–stochastic VS66 model most recently discussed in
Vali (2014) and terminology proposed in Vali et al. (2015),
ice nucleation activity (or rate) is an accumulation of many
ice nucleation sites with variable critical temperatures dis-
persed randomly throughout a material. In turn, the material
is distributed randomly throughout droplets which can have
varying sizes, shapes, and environments. Therefore, a mea-
sured IN activity can be affected by heterogeneity in the dis-
tribution of ice active sites across a material, heterogeneity
in the mass or surface area of material suspended in each
droplet, differences between droplet sizes and environments,
and variations in temperature between droplets (Polen et al.,
2018). Even in a perfect experimental setup, the stochastic
nature of nucleation causes variation in the measured temper-
ature dependence of a material’s IN activity using a singular
model (Vali, 2014, 2019). Combined with the large variations
in IN activity observed between different ice nucleating sub-
stances and particles, this inherent uncertainty creates diffi-
culties in reliably assessing whether differences in observed
IN spectra indicate a statistically significant difference in IN
activity.

Experimental error is always present and must be ac-
counted for and reported, usually in the form of a stan-
dard error or a confidence interval of the mean measurement
recorded. In our experience, there is no widely implemented
approach to reporting uncertainty in IN temperature spec-
tra derived from freezing experiments. Instead, methods vary
between groups, relying on different assumptions about the
nature of ice nucleation experiments, the forms of distribu-
tions that the random variables involved take, and the quan-
tification of the derived uncertainties. In the simplest case,
standard deviations, errors, and/or confidence intervals have
been calculated from repeated experiments either by assum-
ing that variability follows a normal distribution (Losey et al.,
2018; Polen et al., 2018; Jahn et al., 2019; Chong et al., 2021;
Roy et al., 2021; Worthy et al., 2021), a Poisson distribution,
(Koop et al., 1997; Alpert and Knopf, 2016; Kaufmann et al.,
2017; Knopf et al., 2020; Yun et al., 2021), or that droplet
freezing follows a binomial distribution (McCluskey et al.,
2018; Suski et al., 2018; Gong et al., 2019, 2020; Wex et al.,
2019). In other cases, authors have used a model of ice nu-
cleation to simulate their experiments and use that simulated
distribution to estimate the uncertainty present in their ex-
periment. In simpler models, droplet freezing is modeled as
a Poisson point process (Vali, 2019; Jahl et al., 2021; Fahy et
al., 2022b). In more sophisticated models, random variables
such as the number of sites, mass of material, and tempera-
ture variations are parameterized to run completely new sim-
ulated experiments (Wright and Petters, 2013; Harrison et al.,
2016). Even in these models, either additional measurements
are required or assumptions must be made about the distribu-

tion of each variable. Until the inherent variability behind ice
nucleation can be measured to prove or disprove the assump-
tions being made, all the above methods are only as reliable
as the assumptions themselves. In Sect. 4, each method, their
required assumptions, and the validity of those assumptions
are discussed in further detail.

Empirical bootstrapping is an alternative approach to esti-
mating statistics for a dataset that to our knowledge has not
been applied in the context of ice nucleation. In this tech-
nique, a series of random samples of the measured dataset is
taken to generate estimated statistics that converge on the ac-
tual values as the number of samples increases (Efron, 1979;
Shalizi, 2022). No assumptions are required about the distri-
butions of random variables underlying ice nucleation and it
can be applied to any system where the freezing temperatures
or times of droplets are measured. Here we present a set of
generalized and statistically rigorous methods based on em-
pirical bootstrapping for quantifying uncertainty in IN spec-
tra. When accompanied by interpolation methods presented
in Sect. 3, this approach can be used to calculate continuous
confidence bands and statistically test differences between
IN spectra as shown in Sect. 5. We also address the effects
of interpolation techniques, droplet sample size, and boot-
strap sample size to direct the field towards more rigorous
and repeatable methods of experimentation and data analy-
sis. An implementation of all presented statistical methods
along with documentation and instructions for its use is pro-
vided freely for use or reference to assist in future research
and improve the statistical treatment of ice nucleation data in
the field.

2 Sample data and preprocessing

To demonstrate the statistical methods described here, we se-
lected an example IN dataset shown in Fig. 1. The Fuego
ground PM37 sample (FUE) from Jahn et al. (2019) was
tested for ice nucleation activity before and after being ex-
posed to water in a 1 wt % suspension and allowed to dry
under a constant 1 Lpm flow of pre-dried lab air similarly
to Fahy et al. (2022b). In both cases, a 0.1 wt % suspen-
sion of unaged or aged ash was created in water (HPLC
grade, Sigma) filtered through a 0.02 micrometer pore size
Anatop syringe filter. These suspensions were then tested for
IN activity on the CMU-CS droplet-on-substrate system de-
scribed in detail by Polen et al. (2018) and are compared
to a background freezing spectrum obtained from the fil-
tered water used to create the suspensions. Approximately
50 100 nL droplets (1.5 mm diameter) were tested per array
with a cooling rate of 1 ◦C per minute. Two separate suspen-
sions were tested for the unaged ash sample, and three sus-
pensions were tested from ash exposed to water in two sep-
arate experiments for the aged ash sample. The previously
determined Braunner–Emmett–Teller (BET) specific surface
area of 1.6394 m2 g−1 was assumed for all samples.
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Since multiple freezing experiments were performed on
nominally identical samples (e.g., the replicate suspensions
of the same ash or aging experiment), these spectra were
combined by merging the lists of freezing events that oc-
curred in each experiment. The frozen fractions and ice nu-
cleation active site density spectra were then recalculated as
if the combined freezing events occurred in a single experi-
ment. This is only valid when the IN spectrum of a given sus-
pension is insignificantly different from the combined spec-
tra of all other suspensions, and the physical and chemical
properties (e.g., suspension concentration, sample type, wa-
ter purity, background freezing) are identical between sus-
pensions. The second condition can easily be tested in the
laboratory, while the first condition can be evaluated using
statistical tests described in this paper (see Sect. 5.2).

The ice active site density spectra were calculated directly
based on Eqs. (1)–(3) (Vali et al., 2015; Vali, 1971, 2019),
where k is the differential spectrum, K is the cumulative
spectrum, f (T ) is the raw fraction of droplets frozen at tem-
perature T , N0 is the total number of droplets in the array,
N is the number of droplets that have frozen up to a given
point, and 1N is the number of droplets that have frozen in
each measurement interval. The variable 1T is the size of
the measurement interval, the choice of which is discussed
below. The normalization factor X can be average droplet
volume (Vd), mass of sample suspended per droplet (md),
or as is used here, specific surface area of sample suspended
per droplet (usually BET specific surface area; BETSSA), giv-
ing the number of ice nucleation sites that are active at tem-
perature T per unit of suspension volume (usually denoted
K), sample mass (denoted nm), or sample surface area (de-
noted ns), respectively. The derivation of these equations re-
quires that X be identical for every droplet being analyzed
– an important assumption and source of error. However, as
will be discussed later, the empirical bootstrapping approach
quantifies this source of error, meaning these parameters can
be used and interpreted even when the assumption does not
strictly apply if the uncertainty is also incorporated into the
interpretation.

k (T )= −
1

X1T
ln
(

1−
1N (T )

N (T )

)
. (1)

K (T )=
1
X

ln
N0

N(T )
= −

1
X

ln(1− f (T ))

=

Tf∑
Ti

k (T )1T . (2)

ns (T )=−
1

BETSSAmdVd
ln(1− f (T )). (3)

Differential IN spectra have only recently come into com-
mon use because most interpretations of the formulation of k

require high-quality data (e.g., hundreds of uniformly sized
droplets with low background freezing activity in our estima-
tion) for the coarse binning process used to ensure the data
are not too sparse. See Vali (2019) for an in-depth discussion
of this approach based on improvements in ice nucleation
data quality obtained using droplet microfluidics by Polen et
al. (2018) and Brubaker et al. (2020) that make the applica-
tion of differential IN spectra feasible. However, differential
spectra are extremely useful both for visual interpretation of
data and for quantitative comparison of IN spectra. Specif-
ically, they can provide information on how many IN sites
become active at a given temperature, which is not immedi-
ately obvious from examining a cumulative spectrum. For a
more generally useful method of directly calculating raw dif-
ferential spectra, 1T was chosen such that the endpoints of
the temperature interval for a data point were the midpoints
of the distance between the nearest neighbors on either side
of the data point, and1N is the number of droplets that froze
at that data point. Vali (2019) stated that this approach loses
the quantitative significance of k because the value of k will
vary based on the size of 1T ; however, we contend that it is
this variation in the size of 1T that maintains the quantita-
tive aspect of k, as the magnitude will be inversely propor-
tional to the number density of freezing events with respect
to temperature as expected. This results in noisy data, but
when coupled with the interpolation techniques presented in
Sect. 3, this problem can be resolved using a smoothing al-
gorithm. This approach has the advantage of ensuring that
every “bin” has at least one freezing event in it while main-
taining the advantages of differential IN spectra compared
to cumulative spectra, even for relatively low-quality data.
However, as will be shown in Sect. 4 and 5, high-resolution
data (e.g., from hundreds of droplets and/or several freezing
experiments) are still required for statistical comparisons of
differential IN spectra.

3 Interpolating freezing curves and calculation of
continuous spectra

The most common style of reporting ice nucleation activity is
using the cumulative ice nucleation active site density curves
calculated directly from raw data as shown in the previous
section, but there is an important limitation to this type of
data treatment. While it represents the data exactly as mea-
sured, there is no way to quantitatively compare one raw
freezing spectrum with another without some type of interpo-
lation. This is because even if a droplet freezes at a particular
temperature in one experiment, there is no guarantee that a
droplet will freeze at or near that temperature in another ex-
periment. Often the approximate difference between spectra
is just compared by eye for lack of a better method. This
presents issues when trying to subtract a background spec-
trum or when quantifying uncertainty and testing statistical
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Figure 1. Raw (not interpolated or binned) and combined raw (a) frozen fraction and (b) surface area normalized ice nucleation active site
density spectra for sample droplet freezing data used in this study. Water aged spectra are from two separate aging experiments with three
freezing experiments each for a total of six individual water aged runs denoted by “experiment#|freezing run#”.

difference between spectra, and leads to a need for effective
interpolation methods for comparing IN spectra.

3.1 Binning and its shortcomings

One common method for interpolating IN spectra is through
temperature binning, where a temperature interval is repre-
sented by a single value of IN activity that is treated as con-
stant throughout the interval. This approach is appealing, as
it aligns with the discrete nature of IN experiments and al-
lows straightforward calculation of differential IN spectra by
using the bin width as 1T (Vali, 2019). However, binning
is widely accepted as an inefficient interpolation method for
measurements of continuous variables such as ice nucleation
activity, and has been shown to reduce statistical power and
bias statistical results in data from a variety of disciplines
(Gehlke and Biehl, 1934; Selvin, 1987; MacCallum et al.,
2002; Altman and Royston, 2006; Manley, 2014; Virkar and
Clauset, 2014; van Leeuwen et al., 2019). While ice nucle-
ation activity is measured discretely, it is a continuous prop-
erty – any given ice nucleation site has a theoretical ice nu-
cleation rate over the entire continuous temperature range
and combining many ice nucleation sites together results in
a continuous curve, sometimes with multiple critical or in-
flection points (Beydoun et al., 2016). It is therefore desir-
able to transform the discrete measurements into continuous
space to accurately represent IN activity rather than further
discretizing them as in binning.

3.2 Previous methods of continuous functional
interpretation

To make a discrete variable continuous, some type of func-
tional interpolation is required. Many studies approximate IN
spectra as exponential polynomials or similar simple func-
tions (Atkinson et al., 2013; Kanji et al., 2013; Niedermeier
et al., 2015; Harrison et al., 2016, 2019; Peckhaus et al.,
2016; Vergara-Temprado et al., 2017; Price et al., 2018).
Exponential polynomials can capture the overall exponen-
tial shape of cumulative IN spectra in most cases, however
they impose explicit assumptions about the shape of the IN
spectra through their closed-form expressions. Particularly in
samples that contain mixtures of different types of ice nucle-
ation sites (e.g., Beydoun et al., 2017), simple polynomials
are likely to be insufficient for accurate interpolation of IN
spectra.

Instead, the ideal interpolation method would take a se-
ries of measured data points from a droplet freezing exper-
iment and would output a continuous IN parameterization
that could predict the IN activity of the sample at any tem-
perature. A parameterization such as a contact angle scheme
(Chen et al., 2008; Beydoun et al., 2016; Ickes et al., 2017)
or the singular–stochastic formulation of ice nucleation (Vali,
2014; Barahona, 2012; Niedermeier et al., 2011) would be
preferred, however these parameterizations require preexist-
ing knowledge or assumptions about of the nature of the sam-
ple being tested. For data analysis in laboratory or field stud-
ies, this information is often not available, and we must look
for an interpolation method that can capture an ice nucleation
spectrum with any shape.
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3.3 Piecewise interpolation for ice nucleation spectra

For a generally applicable interpolation scheme, piecewise
fitting algorithms such as a spline interpolation fit all require-
ments. Spline fits provide interpolations of arbitrarily com-
plex data by fitting a series of polynomials to small portions
of the available data. The resulting piecewise functions are
continuous and differentiable, meaning that only one or the
other of the cumulative or differential IN spectrum must be
directly fit from the data – the other spectrum can be cal-
culated by either computing the negative derivative of the
cumulative freezing curve or the negative antiderivative of
the differential spectrum. To find the fitting method that per-
forms well, a variety of algorithms available in the Python
Scipy library (Virtanen et al., 2020) were modified and tested
for their ability to interpolate the combined water aged vol-
canic ash ice nucleation spectrum. “Splinederiv” uses a cubic
spline fit of the cumulative spectrum, “splineint” uses a cu-
bic spline fit of the differential spectrum, “PCHIP” uses the
piecewise cubic Hermite interpolated polynomial algorithm
of the cumulative spectrum, and “smoothedPCHIP” is the
PCHIP curve followed by a cubic spline fit with a smooth-
ing factor.

Figure 2a (cumulative ns) and 2b (differential ns) com-
pare these methods to a binning approach and the raw data
from Fig. 1 using the water aged FUE ash spectrum. Note
that the interpolated spectra do not start until there is a suf-
ficient density of freezing events (more than one per degree
Celsius) to avoid overfitting and because the error on these
initial points is much larger than that of the rest of the spec-
trum as will be seen later. On initial inspection, basic spline
fits perform well at higher ice active site densities. How-
ever, the splinederiv algorithm does not always maintain the
monotonicity requirement intrinsic to the cumulative spec-
trum (and correspondingly is not strictly positive in the dif-
ferential spectrum). The splineint algorithm corrects for this,
but performs relatively poorly in capturing the behavior of
early freezers, overestimating the IN activity between −10
and −14 ◦C. The solution to these two problems is to inter-
polate the cumulative spectrum with the monotonicity con-
straint offered by the PCHIP fitting algorithm and to take
the derivative of this interpolation for the differential spec-
trum. This method reproduces the shape of the cumulative
IN spectrum because it calculates an exact interpolation, but
as a result is extremely noisy in the differential spectrum.
By adding an additional smoothing step after the PCHIP in-
terpolation (using a simple smoothed cubic spline fit after
the PCHIP algorithm), a smooth and interpretable interpo-
lated ice nucleation spectrum can be derived from the raw
data without losing the detail present at the high/warm tem-
perature end of the spectrum visible in the differential plot
as shown in the smoothedPCHIP spectrum. The smoothed-
PCHIP curve is monotonic and accurate to the observed data
in the cumulative spectrum, is smooth and readable in the
differential spectrum, and will be used for the remainder of

this work. In Fig. S1 of the Supplement, the smoothedPCHIP
algorithm is applied to each individual volcanic ash IN spec-
trum, and in Fig. S2 it is applied to the combined unaged and
water aged spectra to compare the interpolations with their
corresponding raw data points.

4 Calculating confidence intervals and bands

4.1 Elementary statistical methods

The question of how to calculate confidence intervals for IN
spectra derived from droplet freezing experiments has been
addressed several times in the IN literature. In some cases,
a normal distribution about the frozen fraction curves is as-
sumed. Where multiple freezing experiments are available
and are interpolated such that means and standard deviations
can be calculated for a collection of freezing spectra, a Z in-
terval (based on the normal distribution) or t interval (based
on Student’s t distribution) can be constructed (Polen et al.,
2018; Jahn et al., 2019; Worthy et al., 2021), or standard
deviations and standard errors are sometimes reported as is
(Losey et al., 2018; Chong et al., 2021; Roy et al., 2021).
While it is unclear how many droplets and replicate freezing
assays are required for these approximations to be valid un-
der the central limit theorem, it is unlikely that most existing
freezing assay datasets achieve this sample size requirement,
since confidence intervals calculated using these techniques
often disagree with those calculated using other methods de-
scribed below and those presented in this study. It is also un-
clear what exactly a required sample size would mean in this
context: the number of droplets is not sufficient, because each
droplet does not contribute to every point on the observed ice
nucleation spectrum equally. However, the number of sepa-
rate ice nucleation assays is also not sufficient, as techniques
that measure hundreds of droplets in a single assay should re-
quire fewer overall assays to calculate accurate statistics be-
cause there are more droplets contributing to the accuracy of
each point on the measured ice nucleation spectrum. Some
combination of the two is required, but there is no existing
method by which the accuracy of confidence intervals for an
ice nucleation spectrum can be evaluated based on the rele-
vant sample sizes.

Other studies (e.g., McCluskey et al., 2018; Suski et al.,
2018; Wex et al., 2019; Gong et al., 2019, 2020) have cal-
culated approximate confidence intervals for frozen fraction
values by treating them as binomial ratios and using the ad-
justed Wald interval suggested by Agresti and Coull (1998).
In the latter case, calculating uncertainty for derived ice ac-
tive site density spectra requires propagation of error through
Eq. (1) and (2), followed by an assumption of normality
when the confidence intervals are calculated. However, there
is no reason to believe that the spread of freezing events in
droplets should even approach a normal distribution, making
this assumption unreliable.
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Figure 2. Comparison of interpolation methods on the water aged ash sample above in (a) cumulative and (b) differential spectra. Binning
is accomplished by separating the temperature axis into “bins”, summing the number of freezing events in each bin, and then treating each
bin as a single data point in Eqs. (1)–(3). Our preferred interpolation method is the smoothedPCHIP algorithm.

A better approximation for the variability in droplet freez-
ing experiments is the Poisson distribution, in part because
the widely used ice active site density spectra are based in
Poisson statistics (Vali, 1971), but also because droplet freez-
ing resembles a Poisson point process where freezing events
occur approximately continuously and independently at a
given rate. Koop et al. (1997) suggested the use of Poisson
fiducial limits to calculate uncertainty in a variety of types
of freezing experiments, and this approach has been used by
several studies since (Alpert and Knopf, 2016; Kaufmann et
al., 2017; Knopf et al., 2020; Yun et al., 2021). However, the
distributions of IN sites across particles, distributions of these
particles among droplets, distributions of freezing abilities of
individual IN sites, distributions of freezing events that occur
based on the aggregate freezing ability in a droplet, and tem-
perature distribution between the droplets could all serve to
skew or otherwise change the distribution of droplet freez-
ing events measured. Using a Poisson distribution corrects
for only some of these random factors, and because ice ac-
tive site spectra are based on the Poisson process, these are
the variables that most need to be considered when calculat-
ing experimental uncertainty. Thus, while these closed-form
confidence limits are convenient, they are not likely to be ac-
curate.

4.2 Parametric bootstrapping and its shortcomings

Another class of methods of calculating confidence intervals
for freezing spectra relies on a technique known as boot-
strapping, where artificial freezing experiments are generated
from a measurement using Monte Carlo simulations (Davi-
son and Hinkley, 1997). When the simulations are based on
an existing ice nucleation theory (e.g., when simulated exper-

iments are produced using a parameterization of ice nucle-
ation), this technique is known as parametric bootstrapping,
and given enough simulations, the artificial experiments rep-
resent the full range of possible variability around the mea-
sured result that could be observed in the theoretical frame-
work used.

For example, based on Wright and Petters (2013), Harri-
son et al. (2016) and subsequent publications simulate a num-
ber distribution of ice active sites in a collection of theoret-
ical droplets based on the ice active site densities calculated
from the original experiment. This model can be used to sim-
ulate freezing spectra by sampling these theoretical droplets
and assuming that freezing events occur when the number
of ice active sites in each droplet is greater than or equal to
one. When repeated enough times, this distribution of freez-
ing spectra can be used to calculate confidence intervals for
the measured data either by assuming that the quantiles of
the distribution of simulated freezing spectra approximate
the confidence intervals or by calculating simple Z intervals
from the distribution of simulated freezing spectra (although
the latter invokes an assumption of normality).

An alternative method of parametric bootstrapping for
confidence intervals of IN spectra models individual droplets
freezing as a Poisson point process (again the same assump-
tion used in deriving ice active site density spectra) as shown
in Vali (2019) and applied in Jahl et al. (2021) and Fahy
et al. (2022b). In this approach, the number of droplets that
freeze in each temperature interval (or equivalently, the rate
of droplet freezing) is used as the mean value of a discrete
Poisson distribution. Then, for each temperature interval, a
new number of droplets freezing in the interval is selected
from the distribution. When this is done for all temperature
intervals, the simulated values are combined into a simulated
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experiment. Once ice active site density spectra are calcu-
lated from these simulations and this process is repeated hun-
dreds to thousands of times, the quantiles of the distribution
of simulated ice active site densities for each temperature bin
can be used as an approximation of confidence intervals.

Both parametric bootstrapping approaches described here
rely on the parameterization to produce accurate results,
meaning that if the parameterizations are approximate or in-
accurate, they may produce misleading or incorrect statis-
tics. An in-depth analysis of the accuracy of the assump-
tions of each of these parameterizations is beyond the scope
of this paper, but there are major concerns for each model.
The calculations based on particle distributions in droplets
(Wright and Petters, 2013; Harrison et al., 2016) assume that
ice active sites are distributed evenly across the surface of
a material, that the material is suspended evenly through-
out the droplet, and possibly (depending on the specific ap-
proach) that the material is composed of uniform spheres and
that ice nucleation is time-independent or the characteristic
temperatures for each given ice nucleation site are normally
distributed. The first assumption is known to be false for
some materials; minerals often have higher concentrations of
and/or more ice active IN sites near or in specific nanoscale
defects, cracks, pores, or other specific regions such as the
perthitic textures in some feldspar minerals (Whale et al.,
2017; Kiselev et al., 2017; Holden et al., 2019; Friddle and
Thürmer, 2020). The second assumption may or may not
be true, especially at higher suspension concentrations (Bey-
doun et al., 2016). The third assumption depends on the ma-
terial in question. The fourth assumption ignores time, one
of the most important factors introducing uncertainty and
randomness into droplet freezing experiments (Wright and
Petters, 2013; Herbert et al., 2014; Vali, 2014; Knopf et al.,
2020), and the fifth assumption does not have a theoretical
basis and requires additional experimentation to determine
the parameters of the normal distribution (Wright and Pet-
ters, 2013). Regardless of the specific approach used, these
techniques either require extensive experimentation to deter-
mine the nature of the ice nucleation material being studied
or rely on assumptions that produce an incomplete and po-
tentially inaccurate parameterization.

The calculations based on the Poisson distribution (Vali,
2019; Fahy et al., 2022b; Jahl et al., 2021) have very dif-
ferent assumptions. Stochasticity and IN site variability are
accounted for in the process of simulation from the mea-
sured IN spectrum, however this method requires coarse bin-
ning, as ideally multiple freezing events will occur within
each bin. As discussed before, binning continuous data is in-
efficient. It also assumes that in these bins, the nucleation
rate does not change with temperature. For coarse temper-
ature bins especially, this assumption will break down, as
ice nucleation spectra are strong exponential functions of
temperature (Fletcher, 1969). While the Poisson parametric
bootstrapping method makes fewer assumptions and captures
more variability than other parametric methods, it relies on

risky and/or false assumptions, contributing systematic error
to the confidence intervals. Note it is not the purpose of this
study to quantitatively compare methods previously used to
calculate uncertainty in IN spectra, and the above discussion
is only a qualitative overview of the assumptions and approx-
imations previous methods use.

4.3 Empirical bootstrapping and its benefits

The other class of bootstrapping method, non-parametric
bootstrapping (known as empirical bootstrapping), does not
rely on any parameterizations. Instead, the original exper-
imental data are sampled from with replacement (i.e., the
same data point can be sampled more than once) to produce
artificial datasets (Efron, 1979; Efron and Tibshirani, 1994;
Davison and Hinkley, 1997; Shalizi, 2022). This method
is remarkably well suited to the problem of ice nucleation
statistics, as droplet freezing experiments result in a list of
freezing temperatures that can be easily sampled from to cre-
ate new simulated droplet freezing experiments. The large
droplet numbers coupled with a limited freezing temperature
range ensure that the empirical data cover most of the pos-
sible variability within each experiment. If multiple freezing
experiments are performed on identically prepared samples,
this method will even capture the variability in sample prepa-
ration and other aspects of the experiments being performed.
Since variations in droplet size, sample mass suspended, or
distributions of surface area among droplets (the parame-
ters behind the normalization constant X) also contribute
to the variability observed in experiments, the error caused
by assuming X is constant between droplets is also included
into the model. Empirical bootstrapping requires no physical
model of ice nucleation and so captures the stochastic nature
of ice nucleation, inhomogeneities in ice active site distri-
butions within the sample, and even any potential unknown
sources of variability within IN active materials. Thus, em-
pirical bootstrapping is universally applicable, can capture
all sources of variability in an experiment, and is unambigu-
ous in its implementation, making it an ideal candidate for a
standard statistical method for analyzing ice nucleation ex-
periments. The only assumption required (which has already
been made when deriving ice nucleation spectra) is that all
data points must be statistically independent, meaning that
no droplet can affect any other droplet’s freezing temperature
(Shalizi, 2022). This condition is already required for accu-
rate ice nucleation measurements and is already implemented
in most laboratories by physically isolating droplets using an
inert oil or gas or by separation of droplets in wells or mi-
crowells. Empirical bootstrapping is only otherwise limited
by the computational time available to draw many statistical
simulations of an ice nucleation spectrum and the quality of
the observed data itself (Hesterberg, 2015), both of which are
addressed further in Sect. 4.6.

Figure 3a and b show the application of empirical boot-
strapping to simulate cumulative and differential spectra for
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the combined and interpolated volcanic ash ice nucleation
data previously introduced in Figs. 1 and 2. Each spectrum
is statistically simulated by randomly sampling with replace-
ment n times from the list of freezing temperatures using a
discrete uniform distribution function in the original experi-
ment with the choices function in the built-in random library
in Python, where n is the number of droplets in the orig-
inal experiment. Where multiple droplets froze at a given
temperature, that temperature is added multiple times to the
“observed” list. This process is repeated to create new “sam-
pled” freezing temperature lists until the desired number of
simulated experiments is achieved. Each sampled list is then
sorted and analyzed as distinct freezing assays, each with its
own IN spectra that can be interpolated as usual. The simu-
lated spectra are distributed around the true data due to varia-
tions in which droplets are sampled for each simulation, and
the width of this distribution provides an estimate of how un-
certain the experimental value is at that temperature. Sum-
mary statistics of this distribution such as mean, standard
deviation, and quantiles can be calculated by dividing the
temperature range of each interpolated spectrum into a dense
grid of evenly spaced points (e.g., ∼ 10 points per degree
Celsius) and calculating each statistic as usual using the dis-
tribution at each point. The resulting statistics as a function of
temperature can then be interpolated exactly using a simple
spline fit due to the high density of data available, providing
interpolated continuous functions for each summary statistic.
This process is detailed further in the Supplement.

While the mathematical theory behind empirical boot-
strapping is complex (see Efron and Tibshirani, 1994 or
Davison and Hinkley, 1997 for a thorough treatment of the
mathematics behind bootstrapping and Canty et al., 2006 for
a thorough discussion of inconsistencies and errors that can
be encountered when using bootstrapping), Fig. 3 provides
some evidence that this approach has successfully captured
the possible variability in the ice nucleation spectra. Using
the interpolated quantiles as a measurement of the spread of
the simulated spectra, the magnitude of the variability in each
spectrum largely follows the trends that would be expected.
For example, the simulated cumulative spectra have much
less relative variability than the simulated differential spectra
and both types are less variable at intermediate temperatures
where more droplets froze in the actual experiments. This
reflects the fact that increased sample sizes tend to reduce
uncertainty as cumulative spectra represent a sum of all pre-
vious data points, and most droplets tend to freeze at interme-
diate temperatures in a droplet freezing assay. The noisiness
of the differential spectra indicates large uncertainty, mean-
ing the differential spectrum for the unaged volcanic ash is
largely uninterpretable, while the differential spectrum for
the aged volcanic ash and both cumulative spectra are much
more descriptive – for example, it can clearly be seen that
the two cumulative spectra do not overlap significantly be-
low −13 ◦C, a fact that will be further quantified in Sect. 5.
The large variability (even to k values of zero in some cases)

observed at the extrema of both differential spectra represent
relatively rare freezing events for the samples, such that a
given simulation may or may not observe freezing events at
that temperature. These areas are more common in the un-
aged volcanic ash IN spectrum because that spectrum con-
sists of fewer droplets than the aged volcanic ash IN spec-
trum, highlighting the importance of high-resolution data for
meaningful interpretations of differential spectra. Also note
that in the last degree of each differential spectrum, the mea-
sured results lie outside of the quantiles calculated because
100 simulations are not sufficient to fully estimate the vari-
ability in the measured spectrum; this problem would be
remedied with additional simulations that fully sample that
region of the IN spectrum.

4.4 Basic bootstrapped confidence bands and their
limitations

Using this new method to simulate data that capture the vari-
ability inherent to freezing experiments, bootstrapped sum-
mary statistics describing the experimental measurement can
be calculated. Values such as the bootstrapped standard er-
ror of the mean approximate the true standard error of the
mean remarkably accurately when large numbers (n≥ 200)
of bootstrap simulations are employed, a fact known as
the “plug-in-principle” (Efron and Tibshirani, 1994). Boot-
strapped confidence intervals, however, are a more difficult
subject. The previous studies that used parametric bootstrap-
ping methods assumed that the α/2th and 1-α/2th quantiles
of the simulations correspond to the lower and upper limits of
the 1-α level confidence interval, respectively, where α is the
threshold value chosen for statistical significance (Harrison
et al., 2016; Vali, 2019). This assumption is common, and
while it can work well for many applications, this “quantile
interval” has little basis in statistical theory. It is also strongly
affected by bias, only partially corrects for skewed distribu-
tions (ice nucleation spectra are likely to be skewed upward
based on the Poisson statistics they are derived from) and can
be too narrow when applied to some distributions (Hester-
berg, 2015; Efron, 1987). The strong bias that quantile inter-
vals exhibit is particularly concerning when using potentially
inaccurate parametric bootstrapping or when a small sample
results in poor sample coverage in empirical bootstrapping.

Fortunately, other bootstrap confidence intervals exist. For
a simple interval rooted in statistical theory, we can construct
the reverse percentile interval, also known as the pivotal in-
terval, where the upper and lower quantiles are subtracted
from twice the sample mean for the lower and upper con-
fidence intervals respectively. However, in skewed distribu-
tions such as uncertainty in ice nucleation spectra, the piv-
otal interval tends to be inaccurate. For a more traditional
interval, we can construct a Z interval around the measured
spectrum with a bootstrapped estimation of standard error,
but this assumes a normal variance – obviously a poor ap-
proximation of the complexity inherent to ice nucleation. A
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Figure 3. Interpolated combined data (bold line), interpolated 2.5th and 97.5th quantiles (dashed lines), and interpolated individual simu-
lations (faint lines; N = 100) of the (a) cumulative ns and (b) differential ns spectrum for each set of combined ash data from Fig. 1. The
simulated data (faint lines) using empirical bootstrapping provide a realistic estimate of the distribution of how the spectra could vary based
on stochasticity, variations in the individual droplet freezing experiments comprising the combined experimental spectrum, and other factors
contributing to experimental uncertainty.

bootstrapped t interval (tboot) using the number of droplets
in the original experiment as the number of degrees of free-
dom is a slightly better estimate, but still suffers from error
from bias (including narrowness bias) and skewness (Hester-
berg, 2015; Efron, 1987).

4.5 Better bootstrapped confidence bands

Significant work has gone into correcting these problems
with basic bootstrapped confidence intervals. The tboot in-
terval can be corrected for skewness to the “tskew” interval
by including a second-order skewness term in the tboot cal-
culation as shown by Johnson (1978). The quantile interval
can be expanded by changing the quantile bounds by a factor
related to the t statistic to remove narrowness bias, called the
“expanded quantile interval” or the BCa confidence interval
(Efron, 1987; Hesterberg, 2015). However, by far the most
accurate method is the studentized confidence interval, re-
ferred to as the “bootstrap T” or “confidence intervals based
on bootstrap tables” elsewhere (Efron and Tibshirani, 1994;
Hesterberg, 2015; Diciccio and Efron, 1996; Efron, 1979).
This method corrects the errors of the t interval by estimating
the actual distribution of the t statistic using bootstrapping.
Specifically, the standard error of each simulated spectrum
is calculated and is used to normalize the difference of each
simulated spectrum from the mean of all simulated spectra.
These normalized values are compiled into another distribu-
tion and the desired quantiles of this distribution are mul-
tiplied by the standard error of the collective of simulated
spectra to produce the final confidence intervals. To obtain
the standard error of each individual simulated spectrum, a
second round of bootstrapping is needed using the simulated

spectrum as the “true” measurement resulting in “resimu-
lated” spectra. Further descriptions and equations for calcu-
lating this and all previously mentioned confidence intervals
are provided in the Supplement. The process is computation-
ally intensive, but it results in confidence intervals that are
unaffected by bias or skewness, even for small sample sizes.
Statistical theory calls such intervals second-order accurate,
and this property sets the bootstrap T apart as a standard to
compare other confidence intervals against.

The above methods were used to calculate confidence
bands (continuous confidence intervals) for the cumulative
and differential IN spectra of the unaged and water aged
combined volcanic ash sample. Like the summary statistics,
to create confidence bands confidence intervals were calcu-
lated at every 0.1 ◦C within each spectrum and were interpo-
lated using a smoothed cubic spline fit. The different meth-
ods of calculating confidence bands for the combined un-
aged spectra representing 91 droplets (the number of droplets
present in the two unaged FUE freezing experiments) are
compared in Fig. 4. In general, the best-performing confi-
dence bands (determined by being the closest to the studen-
tized bands) are calculated using the quantile or expanded
quantile methods and the skew-corrected t interval method –
the other approaches tend to be less accurate. In contrast, in
the combined water aged spectra representing 286 droplets,
the different methods of calculating confidence bands are in
good agreement over most of the IN spectra (Fig. S3), al-
though the studentized confidence bands show slightly dif-
ferent behavior at high temperatures where very few droplets
are observed to freeze. As in Fig. 3, the variability in the dif-
ferential spectrum for these relatively low-resolution data is
significant as shown by the wide confidence bands in Fig. 4b,
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Figure 4. Comparison of methods to calculate confidence bands (shown as different-colored dashed lines) for (a) cumulative and (b) dif-
ferential unaged volcanic ash ns spectra representing 91 droplets. Experimental spectra are shown in black. Most calculation techniques
are in good agreement across the range of the cumulative spectrum, but all techniques except the studentized intervals (green dashed line)
overestimate the variability in the differential spectra, resulting in confidence bands that are too wide across most of the spectrum.

although most confidence bands overestimate this variability
compared to the studentized bands.

4.6 Recommendations for use of empirical
bootstrapping methods and required sample sizes

If accurate confidence bands on both the cumulative and dif-
ferential spectra are required from low-resolution data, stu-
dentized intervals should always be used. Ideally, the studen-
tized confidence bands should be used in all cases, but the
computational time required for calculation of these confi-
dence bands can be excessive. For most use cases then, the
tskew bands are somewhat conservative confidence bands
rooted in theory, and we will use them in the remaining ex-
amples below. Quantile or expanded quantile bands are also
an appropriate choice when empirical bootstrapping is used
but should be tested against the studentized bands for each
system to check for potential biases in the data collection
process. Quantile bands should be avoided when using small
numbers of droplets (> 5 per degree Celsius measured seems
to be acceptable) or when using a parametric bootstrap, as the
biases inherent to the parameterization will be amplified by
the quantile bands. The pivot and tboot bands seem to be poor
choices in the context of ice nucleation.

Although we cannot theoretically determine the sample
sizes required for accurate confidence bands using empiri-
cal bootstrapping due to the same limitations discussed pre-
viously, the sample sizes required for accurate confidence
bands can be empirically evaluated by testing how many as-
says, droplets, and simulated spectra are required for confi-
dence bands to converge (therefore reducing the uncertainty
of the confidence bands due to sample size). Figure 5a dis-

plays interpolations and resulting confidence bands for the
differential IN spectrum of aged volcanic ash when 50, 100,
150, 200, and 286 (where all droplets are included) droplets
are randomly sampled from the six performed experiments.
The width and shape of the confidence bands change sig-
nificantly but seem to be converging to a smooth curve
exemplified when N = 286. When N = 50, the confidence
bands span 3 or more orders of magnitude, indicating that
50 droplets may be too few to draw any conclusions from
freezing spectra in our system. In this case, the minimum
sample size is approximately 150 for useful conclusions at
the 95 % confidence level, and at least 200 is preferred (at
least in our system) for more accurate confidence bands to
ensure the entire probability space of droplet freezing is cov-
ered. More droplets or freezing assays improve the accuracy
and reduce the width of the confidence bands, especially in
differential IN spectra, further motivating the many recently
developed microfluidic techniques (Stan et al., 2009; Weng et
al., 2016; Reicher et al., 2018; Tarn et al., 2018; Brubaker et
al., 2020; Roy et al., 2021). Additionally, the number of sim-
ulations (and resimulations if using studentized confidence
bands) should be chosen carefully to ensure the full variabil-
ity present in IN spectra is represented.

In Fig. 5b, the tskew confidence bands of the combined
water aged volcanic ash IN spectra (all 286 droplets) are
compared when the number of simulations (nSim) ranges
from 50 to 10 000. Figure S4 shows the same bootstrap sim-
ulation number analysis when using 50 and 150 droplets ran-
domly sampled from the initial 286 to test the effects of
droplet number on the required bootstrap simulation sam-
ple size. Based on these plots, the number of bootstrapped
spectra does not appear to impact the confidence intervals
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Figure 5. Differential freezing spectra of the water aged FUE ash with tskew confidence bands (a) calculated with varying numbers of
data points randomly sampled without replacement from all six experiments with 1000 bootstrapping simulations, and (b) calculated using
different numbers of bootstrapping simulations, with the experimental combined spectrum shown in black. Figure S4 shows the cumulative
spectra, but the effects of sample size are not as pronounced.

nearly as much as the number of droplets used. This is a con-
trast from requirements in other types of bootstrapping tech-
niques, which can be easily calculated to require more than
10 000 samples to be accurate within an acceptable margin
of error of 10 % (Hesterberg, 2015). While this insensitivity
could be coincidence (errors in opposite directions canceling
out to result in confidence bands that are approximately cor-
rect), we speculate it is instead related to the fact that each
bootstrap sample includes many droplets (286 in this case)
which are also sampled, covering the probability space more
completely than when single data points are sampled and
therefore reducing the Monte Carlo error observed. Based on
this, we recommend ensuring that the number of simulations
multiplied by the number of droplets (the “resample size”)
in each simulation exceeds 10 000 – in the above spectrum
this resample size ranges from around 14 000 to 2.86 mil-
lion. This is partially corroborated by Fig. S5, where the re-
sample size reaches as low as 2500 and the confidence bands
with low resample sizes often do not match those with high
resample sizes. It is also important to consider the statistic
being calculated – in the above case the standard deviation
and skewness are being used to calculate confidence bands,
but if quantiles were being used, the number of bootstrapped
spectra would have to be large enough to calculate accurate
2.5th and 97.5th quantiles (likely about 200 spectra). Regard-
less, the effects of bootstrap sample size should be tested
whenever empirical bootstrapping is applied to ensure that
the accuracy of the calculated confidence bands (or any other
statistic) is never dependent on the number of simulations
used. Similarly, each investigator must determine their own
droplet sample size requirement to collect datasets that can
answer their research questions.

Finally, Figs. 3–5 provide evidence that the interpolation
technique used is not overfitting the data, as the quantiles and

other confidence bands follow the general shape of the ex-
perimental spectra. Since these statistics are calculated from
an aggregate of 1000 samples in most cases, they would be
expected to smooth out random variation present in a single
measured spectrum that could be causing the complex inter-
polated curve observed. Because the aggregated data main-
tain the same shape, it can be assumed that it is at least some-
what meaningful, and that the interpolation technique is us-
ing an appropriate smoothing factor; however, this should
be tested regularly to minimize potential overfitting. Note
that when droplet numbers are below 200 (as in some of the
Fig. S4a spectra and in Fig. S5) the interpolated differential
spectra have shapes that look unrealistic (e.g., many inflec-
tion points within 1 or 2 ◦C), but they also have error bars that
span many orders of magnitude in those regions, meaning
that neither the measured value nor the interpolation of the
differential IN spectrum at that point is as useful because the
uncertainty is so high. Regardless, the interpolation of the cu-
mulative spectrum remains smooth and interpretable, and the
portions of the interpolated differential spectrum with lower
uncertainties are still meaningful.

5 Comparing IN spectra, testing statistical significance,
and background subtraction

Confidence bands provide useful information about the vari-
ability of a single dataset – in the case of droplet freezing
assays, 95 % confidence intervals contain the true population
mean ice nucleation activity of the suspension being sampled
from in 19 out of 20 analyses (that is, either the true spec-
trum is within the confidence interval, or an event of proba-
bility at most 5 % happened during data collection). All ice
nucleation data should be reported with some form of confi-
dence interval or quantification of the distribution of the mea-
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surements (e.g., standard error bars). These statistics must be
calculated using a method, such as empirical bootstrapping,
rooted in statistical theory to minimize assumptions about the
ice nucleation experiment and accurately represent the uncer-
tainty inherent to the experiment.

Another key application of statistics that quantify the vari-
ability within a dataset is in comparing measurements of dif-
ferent samples to assess the degree of similarity of their ice
nucleation activity. In general terms, confidence bands can
be used to compare two IN spectra by determining whether
they could reasonably have been drawn from the same pop-
ulation. Often confidence intervals or bands are interpreted
based on whether they overlap: if confidence intervals of two
spectra do not overlap, they are statistically significantly dif-
ferent. However, it is not necessarily true that if the confi-
dence bands overlap the two measurements are statistically
the same at a given confidence level. This common miscon-
ception is based on the difference between error bars calcu-
lated using the standard error of the mean and confidence
intervals (Barde and Barde, 2012; Belia et al., 2005).

For a more quantitative (and interpretable) method to com-
pare IN spectra can simply be divided or subtracted. We will
use the term “difference spectrum” to refer to this ratio or dif-
ference as a function of temperature, as both are calculated
using the same procedures and provide similar information.
When interpolated IN activity spectra are used, a continu-
ous difference spectrum can easily be generated by calcu-
lating the ratio (or difference) between two interpolations at
each point in a dense grid of temperatures, then interpolating
between those points. A difference spectrum can be plotted
as a function of temperature with its own confidence bands
and can be used to test whether two IN spectra are statisti-
cally significantly different at any temperature where the two
spectra overlap at any confidence level. Stated precisely, the
hypothesis that the two IN spectra are different can be tested
against the null hypothesis that the two IN spectra are not
quantitatively different. in the case of a ratio-based differ-
ence plot with confidence bands, if the confidence bands do
not contain one at a given temperature, then the null hypoth-
esis is rejected. If they do contain one, then that claim cannot
be made. If a difference between IN spectra is used instead
of a ratio, then zero is used for this hypothesis test instead of
one. Therefore, if confidence bands can be accurately calcu-
lated for a difference spectrum, then continuous statistically
rigorous claims about differences between IN spectra can be
tested.

5.1 Calculating confidence bands for difference spectra

Calculating confidence bands for differences or ratios of con-
tinuous variables is not trivial, but for these metrics to be use-
ful, confidence bands are necessary. Subtracting or dividing
the confidence bands of the compared spectra is not accurate.
Elementary propagation of error formulas assumes that the
variability within both spectra (and of the difference spec-

tra) is normally distributed, which is a poor assumption as
discussed previously. Again, bootstrapping offers a solution.
To simulate the variability in the difference spectra, individ-
ual simulations of each measurement can be subtracted or
divided from each other pairwise until a collection of sim-
ulated difference spectra combining the variability inherent
to each measurement is produced. From these bootstrapped
simulations, confidence bands can be produced using any of
the methods in Sect. 4.

Figure 6a and b show the ratio and difference between the
IN spectra of water aged volcanic ash and unaged volcanic
ash with confidence intervals. Suspension of minerals and
volcanic ash in water can cause alteration of the ice-active
surface sites due to a variety of geochemical processes as
shown in recent literature (Harrison et al., 2019; Jahn et al.,
2019; Kumar et al., 2019; Maters et al., 2020; Perkins et al.,
2020; Fahy et al., 2022b). Based on the confidence bands of
either metric, it can easily be seen that below approximately
−12 ◦C, there is a statistically significant difference between
the IN activity of the aged ash and unaged ash with p < 0.05,
confirming that in this experiment there is an alteration of
the IN activity of volcanic ash due to suspension in water.
The magnitude of this difference has also been determined
in both relative and absolute terms, providing a quantitative
measurement of the change in IN activity due to chemical
processing of this sample. In this case, the IN activity of wa-
ter aged ash is reduced by a factor of 2–3 below −12 ◦C and
is reduced by between 0 and 1500 ice active sites per square
centimeter of ash surface area as a function of temperature.
For this analysis only about 200 bootstrap simulations per
shared degree Celsius seems to be necessary for consistent
confidence bands for each difference spectrum.

5.2 Applications of difference spectra

Difference spectra have a variety of useful applications
within the context of ice nucleation. The first has already
been shown, as two spectra can be easily tested to determine
whether there is a statistically significant difference between
them. This is particularly useful in studies of chemical aging,
where the change in IN activity after a given chemical treat-
ment can be quantitatively measured using the difference or
ratio before and after aging. Another application is in back-
ground freezing subtraction for IN spectra. All droplet-on-
substrate methods used to measure heterogeneous IN activity
have some level of background freezing activity either from
background heterogeneous nucleation or from homogeneous
ice nucleation that can change day to day depending on the
system (Polen et al., 2018; Vali, 2019). For accurate measure-
ments and to compare between instruments, the instrumental
background (or homogeneous ice nucleation activity) must
be subtracted from any measured heterogeneous IN spec-
trum. This can be readily accomplished by calculating the
difference between the IN spectrum of interest and the back-
ground freezing spectrum. Where there is no background,
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Figure 6. Comparison of the water aged ns spectrum to the unaged ns spectrum (a) by dividing and (b) by subtracting. The dotted line
appears at 1ns = 1 in (a) and at 1ns = 0 in (b), signifying no difference between the two spectra. Confidence bands are calculated us-
ing interpolated tskew bootstrapped ratio/difference simulations as discussed above. Based on the confidence bands, there is a statistically
significant difference between the water aged and unaged ash spectra for temperatures <−12 ◦C for both plots, and the magnitude of this
difference is available as a function of temperature.

the difference is equal to the sample spectrum. By saving
the subtracted simulations used to calculate the variability
in this difference spectrum, the background-subtracted data
can be compared further via another difference spectrum if
desired. This can also be useful in determining whether a
sample’s IN activity is distinguishable from the instrumental
background in weak IN active materials. For all use cases,
accurate confidence bands based on the bootstrapping pro-
cedures presented here are integral to ensuring rigorous and
correct analysis and interpretation of the data, as simply sub-
tracting K(T ) or k(T ) without accurate confidence intervals
or other statistics does not fully represent the background-
subtracted spectrum.

A third application of difference spectra in IN activity is
in locating outliers. Droplet-on-substrate IN measurements
are extremely sensitive to contamination and human error,
even when great care is taken during the sample prepara-
tion process. When two measurements of the same sample
disagree, additional replicate measurements are taken to de-
termine if a measurement is an outlier, usually visually. Ide-
ally, a more quantitative measurement of outlier status would
be used, such as the Grubbs test (Grubbs, 1969), Tukey’s
Fences (Tukey, 1977), or the modified Thompson Tau test
(Thompson, 1985). However, the usefulness of these com-
mon techniques and the assumptions they require for IN
spectra is questionable. Instead, we propose that for a quan-
titative measurement of whether a sample is an outlier, the
difference spectrum comparing the sample in question with
the combined spectrum of the remaining measurements of
the same sample can be used. An example of this analysis is
shown in Fig. 7, where the various water aged ash freezing
experiments are compared using a difference plot to com-

binations of the remaining measurements. It can be clearly
seen that only the spectrum shown in goldenrod is statisti-
cally significantly different (in this case lower) at the 99 %
confidence level based on the bootstrapped tskew confidence
bands. Therefore, this experiment could be treated as an out-
lier at that confidence level and excluded from future analy-
sis. Even still, great care should be taken when dealing with
potential outliers, and the confidence level required to ex-
clude outliers should be carefully considered so as not to re-
move valid data. Whenever possible, decisions about whether
to exclude a potential outlier should combine this statistical
method with observations or lack thereof of specific experi-
mental errors in the laboratory.

6 Summary and conclusions

We have presented a rigorous and generalized set of meth-
ods for interpolating raw data, calculating confidence bands
and other statistics, and quantitatively comparing IN spectra
derived from droplet freezing assays. The interpolation meth-
ods discussed use ice nucleation data far more efficiently than
previous binning methods, and allow continuous quantitative
comparison of IN spectra without compromising statistical
power and detail present in the original data. Empirical boot-
strapping is introduced as an improvement on the elementary
statistical methods and parametric bootstrapping previously
used by capturing the full variability present in each IN spec-
trum or collection of IN spectra with no assumptions about
the nature of ice nucleation for the material being tested.
Continuous confidence bands are calculated using rigorous
and modern algorithms to replace the quantile intervals or z
intervals previously used. Finally, the ability to interpolate
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Figure 7. Comparison of individual water aged cumulative ns spec-
tra to the remaining combined water aged cumulative ns spectra.
Each curve is a difference spectrum of one of the six experiments di-
vided by the remaining five experiments combined (solid lines) with
bootstrapped tskew 99 % confidence intervals (dotted lines). The ex-
periment shown in goldenrod (1|1) is statistically significantly dif-
ferent from the other five experiments and is therefore deemed an
outlier.

and simulate IN spectra is used to develop difference spectra
with accurate confidence bands for quantitative comparison
and statistical testing of ice nucleation activities between ma-
terials and background subtraction.

These approaches can be used to help answer many im-
portant research questions in the field related to statistically
assessing observed changes or differences in IN activities,
and can be applied to any experimental setup using arrays
of droplets freezing over time or at varying temperatures.
They are supported by statistical theory and use widely ac-
cepted methodologies from the statistics literature. The uni-
versality, simplicity, and accuracy of this approach makes
it an ideal candidate to be a standard statistical method by
which to compare datasets from different instruments and
groups. The bootstrapping approach could be particularly
useful for incorporating uncertainty in IN activity into ad-
vanced atmospheric models, as a full distribution of IN ac-
tivity at each temperature can be easily estimated from simu-
lations. To facilitate adoption of these statistics, all code de-
veloped for this project along with documentation and data
to recreate the figures in this paper are available in archived
form as was used at the time of writing at KiltHub (Fahy
et al., 2022a) or in a living GitHub repository where up-
dates or additional information may be added in the fu-

ture (https://github.com/wdfahy/CMU-INstats, last access: 7
November 2022).

Further refinement of these methods by optimizing code
runtime, improving confidence interval coverage, adding
simulation methods, and implementing different statistics
may be accomplished in the future as necessary. Extension
of the procedures described here may be possible to describe
uncertainty in instruments that measure ice nucleation in the
aerosol phase such as CFDC-type instruments and expansion
chambers, and are not limited to ice nucleation. This may
lead to applications describing uncertainty in experiments
analyzing a variety of nucleation processes under varying
conditions. If widely adopted, the quality and consistency of
statistical treatment of nucleation data will improve, leading
to enhanced representation and communication of results and
interpretations within those fields.

Code and data availability. All code and data used
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