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Abstract. Launched in December 1999, NASA’s Multi-angle
Imaging SpectroRadiometer (MISR) has given researchers
the ability to observe the Earth from nine different views for
the last 22 years. Among the many advancements that have
since resulted from the launch of MISR is progress in the re-
trieval of aerosols from passive space-based remote sensing.
The MISR operational standard aerosol (SA) retrieval algo-
rithm has been refined several times over the last 20 years,
resulting in significant improvements to spatial resolution
(now 4.4 km) and aerosol particle properties. However, the
MISR SA still suffers from large biases in retrieved aerosol
optical depth (AOD) as aerosol loading increases. Here, we
present a new MISR research aerosol (RA) retrieval algo-
rithm that utilizes over-land surface reflectance data from
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) to address these biases. This new over-land and
over-water algorithm produces a self-consistent aerosol and
surface retrieval when aerosol loading is low (AOD< 0.75);
this is combined with a prescribed surface algorithm us-
ing a bounded-variable least squares solver when aerosol
loading is elevated (AOD> 1.5). The two algorithms (pre-
scribed+ retrieved surface) are then merged as part of our
combined surface retrieval algorithm. Results are compared
with AErosol RObotic NETwork (AERONET) validation
sun-photometer direct-sun+ almucantar inversion retrievals.

Over land, with AERONET AOD (550 nm) direct-sun
observations as the standard, the root mean squared error

(RMSE) of the MISR RA combined retrieval (n= 11563) is
0.084, with a correlation coefficient (r) of 0.935 and expected
error of ±(0.20×[MISR AOD] + 0.02). For MISR RA re-
trieved AOD> 0.5 (n= 664), we report an Ångström expo-
nent (ANG) RMSE of ∼ 0.35, with a correlation coefficient
of 0.844. Retrievals of ANG, fine-mode fraction (FMF), and
single-scattering albedo (SSA) improve as retrieved AOD
increases. For AOD> 1.5 (n= 66), FMF RMSE is < 0.09
with correlation> 0.95, and SSA RMSE is 0.015 with a cor-
relation coefficient of ∼ 0.75.

Over water, comparing AERONET AOD to the MISR
RA combined retrieval (n= 4596), MISR RA RMSE is
0.063 and r is 0.935, with an expected error of ±(0.15×
[MISR AOD] + 0.02). ANG sensitivity is excellent when
MISR RA reported AOD> 0.5 (n= 188), with an RMSE
of 0.27 and r = 0.89. Due to a lack of coincidences with
AOD> 1 (n= 21), our conclusions about MISR RA high-
AOD particle property retrievals over water are less robust
(FMF RMSE= 0.155 and r = 0.94, whereas SSA RMSE=
0.010 and r = 0.50).

In general, better aerosol particle property constraints can
be made at lower AOD over water compared to our over-
land retrievals. It is clear from the results presented that the
new MISR RA has quantitative sensitivity to FMF and SSA
(and qualitative sensitivity to non-sphericity) when retrieved
AOD exceeds 1, with qualitative sensitivity to aerosol type at
lower AOD, while also eliminating the AOD bias found in the
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MISR SA at higher AODs. These results also demonstrate the
advantage of using a prescribed surface when aerosol loading
is elevated.

1 Introduction

The first of three Along-Track Scanning Radiometer (ATSR)
instruments was launched in July 1991, bringing to the atten-
tion of the research community some of what multi-angle re-
mote sensing offers (e.g., Flowerdew and Haigh, 1995; North
et al., 1999). As NASA began to develop its Earth Observing
System in the late 1980s, it also chose to pursue a multi-
angle imaging approach by selecting the Multi-angle Imag-
ing SpectroRadiometer (MISR) as one of five instruments to
be launched on its flagship Terra spacecraft. MISR was de-
signed to image Earth’s surface and atmosphere at nine an-
gles (70.5, 60.0, 45.6, 26.1◦ in the forward and aft directions
along the flight path, plus nadir) in each of four wavelengths
(centered at 446, 558, 672, and 866 nm; Diner et al., 1998).
Beginning in February 2000, MISR has since acquired more
than 2 decades of approximately once-weekly, global data.

The initial concept for the MISR aerosol and over-land
surface retrieval algorithm was developed by Diner and Mar-
tonchik (1984a, b, 1985). The method is inherently multi-
angle; it assumes that aerosol amount and properties are con-
stant over a retrieval region and uses empirical orthogonal
functions (EOFs) in view angle to characterize the directional
surface bidirectional reflectance factor (BRF) contributions
to the top-of-atmosphere BRF. Implementation of this ap-
proach in the operational MISR standard aerosol (SA) re-
trieval algorithm is described by Martonchik et al. (1998,
2002, 2009). Substantial advances to the SA involved adding
a separate process that assumes the shape of the surface angu-
lar BRF is independent of wavelength (Diner et al., 2005) and
reducing the size of the retrieval regions from 17.6 to 4.4 km
(Garay et al., 2020). Still, even with the upgrades described
above, the MISR SA continues to show a significant negative
bias in AOD when aerosol loading is elevated (Kahn et al.,
2005, 2010; Kahn and Gaitley, 2015). In addition to this bias
in AOD, it is also likely that SA-retrieved aerosol particle
properties are negatively impacted at high AODs over land,
as errors in the retrieved surface BRF will likely manifest
themselves as errors in both AOD and aerosol type.

Among most EOS-era satellite imagers, aerosol property
information is a unique contribution the MISR instrument
can make. As such, a research aerosol (RA) retrieval algo-
rithm was developed in parallel with the SA, focused primar-
ily on deriving as much information as possible about par-
ticle microphysical properties (e.g., Kahn et al., 2001; Lim-
bacher and Kahn, 2014, 2019). This means the RA includes
a broader range of particle optical model options in the al-
gorithm climatology than the MISR SA. It results in more
subtle particle property distinctions under favorable retrieval

conditions, for example, in smoke and volcanic plumes,
when the AOD is sufficiently high (e.g., Flower and Kahn,
2020; Junghenn Noyes et al., 2020). However, especially at
low AOD, when particle type discrimination is poorer, hav-
ing a larger particle-type climatology can increase AOD un-
certainty.

Previously, in the RA, the surface was characterized either
by Fresnel-reflecting dark water with whitecaps and under-
light contributions or by a more complex surface specified
from external sources (Kahn et al., 2001; Chen et al., 2008).
The MISR RA has also provided validation and suggested
upgrades to the SA. Initial sensitivity studies established that
three to five bins in particle size, two to four bins in particle
single-scattering albedo (SSA), and spherical vs. randomly
oriented non-spherical particle properties could be distin-
guished from MISR data, provided the mid-visible aerosol
optical depth (AOD) exceeds about 0.15–0.2 (Kahn et al.,
1997, 1998, 2001; Kalashnikova and Kahn, 2006). A high
bias in retrieved low AOD values, along with limitations in
the MISR radiometric calibration, the algorithm climatol-
ogy of particle optical models, and the surface assumptions
in these early algorithms (Kahn et al., 2010) were subse-
quently addressed. The advances initially focused on over-
water retrievals. They included modernizing the code, allow-
ing for regional coverage with pixel-level (1.1 km) retrievals,
and improving the particle optical models, along with bet-
ter pixel selection, cloud screening, and uncertainty assess-
ment (Limbacher and Kahn, 2014). The MISR radiometric
calibration applied in the RA was revised based on empiri-
cal image analysis, aimed primarily at improving sensitivity
to particle properties (Limbacher and Kahn, 2015). Further
refinements included self-consistently retrieving aerosol and
chlorophyll a over a dark ocean surface, further refining the
MISR radiometric calibration to account for temporal degra-
dation (Limbacher and Kahn, 2017), and extending these re-
trievals to deriving spectral surface albedo for shallow, tur-
bid, and eutrophic water under a Lambertian water-leaving
BRF assumption (Limbacher and Kahn, 2019).

The current paper takes a further step in the advance-
ment of the MISR RA by incorporating over-land aerosol re-
trievals with the surface optical model either retrieved self-
consistently within the algorithm or prescribed from the
MODerate resolution Imaging SpectroRadiometer (MODIS)
Multi-Angle Implementation of Atmospheric Correction
(MAIAC) product (Lyapustin et al., 2018; Lyapustin and
Wang, 2018). MAIAC accumulates MODIS observations
over 4–16 d (depending on latitude) to produce multi-angle
data for the surface retrieval and reports the bidirectional re-
flectance distribution function (BRDF) at 1 km spatial reso-
lution. The current paper is organized as follows: Sect. 2 de-
scribes the RA over-land and over-water retrieval algorithms
in detail for both the prescribed and retrieved surfaces. It
introduces the bounded-variable least squares (BVLS) ap-
proach adopted for the prescribed surface version of the
algorithm, a new retrieved surface aerosol algorithm (over
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both land and water), and modifications to the aerosol op-
tical model climatology and other differences from earlier
RA versions. The aerosol quantities reported here are AOD
at 550 nm, fine-mode AOD fraction at 550 nm, coarse-mode
effective radius (in micrometers), fine-mode effective radius
(in micrometers), SSA at 550 nm, brown-smoke AOD frac-
tion at 550 nm (analogous to SSA spectral slope), and non-
spherical AOD fraction at 550 nm (Junghenn Noyes et al.,
2020). Section 3 presents the results: detailed validation of
the over-land and over-water MISR RA retrievals against
coincident AERONET sun-photometer data and inversions.
Conclusions are given in Sect. 4.

2 Methodology

2.1 MISR RA general description

The current MISR RA, presented in this paper, is essen-
tially composed of two sets of retrieval algorithms, both of
which derive aerosol loading and properties at 1.1 km resolu-
tion: the retrieved surface algorithm retrieves the Lambertian
water-leaving radiance over water and applies a spectrally in-
variant angular shape similarity assumption to derive the sur-
face BRF over land (Diner et al., 2005), whereas the other
algorithm prescribes the surface BRF for both land (from
MODIS-MAIAC) and water (using a static set of remote
sensing BRFs). The MISR top-of-atmosphere (TOA) BRFs
used for this study are identical to the set of MISR BRFs
used in our 2019 turbid water aerosol retrieval paper (Lim-
bacher and Kahn, 2019) and represent 4 years of MISR data
interspersed between 2000 and 2016 (over select AERONET
direct-sun aerosol validation sites; Holben et al., 1998).

Modified TOA BRFs (with no solar angle dependence) are
computed from the MISR radiance data according to the fol-
lowing:

BRFTOA
λ,c = Lλ,c×

π ×D2

ETOA
λ

, (1)

where Lλ,c represents the observed TOA radiance
(W m−2 µm−1 sr−1) in band λ and camera c, D is the
Earth–Sun distance at the time of observation in astronom-
ical units (AU), and ETOA

λ is the exo-atmospheric solar
irradiance at 1 AU (W m−2 µm−1). We then correct these
TOA BRFs for the following: gas absorption, out-of-band
light, stray light from instrumental artifacts, flat fielding,
and temporal calibration trends (Limbacher and Kahn, 2015,
2017, 2019). Once the TOA BRFs have been corrected for
these artifacts, MODIS-MAIAC surface BRF BRDF kernels
(Lyapustin et al., 2018; Lyapustin and Wang, 2018) are
linearly interpolated temporally to the MISR overpass date.
These MAIAC data and the corresponding MISR data are
then gridded to a static grid identical for each orbit at the
native MISR 1.1 km resolution. Additionally, we use MISR’s
digital elevation model (DEM) surface height data from

the MISR ancillary geographic product (AGP) and convert
to surface pressure (at 1.1 km spatial resolution). To create
the validation dataset used in the current paper, gridding is
performed instead at 1 km resolution on a 48× 48 pixel box
centered on each AERONET site and ingested into the RA.
Over land, where MAIAC BRDF kernels are available, the
algorithm then converts MAIAC BRDF kernels to surface
BRF for each of MISR’s 36 channels (4 bands× 9 cameras),
adjusting to ensure that the surface BRF at any angle never
exceeds 3 times the albedo (for a given band) or drops below
33 % of the albedo for a given band, similar to constraints
placed on MAIAC surface BRFs from Lyapustin et al.
(2012). Over water, the prescribed remote sensing BRF, sim-
ilar to a surface albedo if one ignores sun glint, is assumed to
be Lambertian ([0.0257, 0.00668, 0.00093, 0.0000635] for
the blue, green, red, and NIR bands, respectively) once glint
is subtracted (Limbacher and Kahn, 2017). The algorithm
then runs both sets of retrievals for each scene, one with
a prescribed surface, using MAIAC over land and a fixed
surface BRF over water, and one for which the surface
BRF is retrieved. Using a newly created land–water mask
derived from the MISR retrieved surface algorithm itself,
we then consolidate the output (AOD, aerosol properties,
cost function, etc.) from the four (retrieved+ prescribed,
land+water) retrievals into two (prescribed and retrieved
surface).

Like most operational aerosol retrieval algorithms, the
MISR RA uses a pre-built lookup table (LUT) of radiative
transfer (RT) output in lieu of running RT code on the fly.
Previous versions of the MISR RA relied on either modi-
fied linear mixing (Abdou et al., 1997) or external mixing
of the phase functions (e.g., Limbacher and Kahn, 2019)
to create aerosol mixture analogs from component particle
optical analogs represented in our LUT. Although both ap-
proaches tend to yield more accurate modeled TOA BRFs
at higher AOD, external mixing requires the generation of
massive LUTs containing thousands of mixtures to fully ac-
count for the range of aerosol properties found in nature,
and modified linear mixing requires a significant computa-
tional cost to generate reasonably accurate upwelling radi-
ances. To improve our sensitivity to aerosol type, we have
built a new LUT of aerosol model components (Table 1) that
when linearly mixed with each other should more accurately
account for the variability of aerosols seen in nature. This
new component LUT contains TOA modeled BRF data as a
function of spectral band, solar and viewing geometry, AOD,
aerosol optical model (or component), surface pressure (for
over-land retrievals), and prescribed 10 m wind speed (for
over-water retrievals). The 6-hourly wind speeds are obtained
from CCMP v2.0 data (Mears et al., 2019) and are spatially
and temporally interpolated to the MISR domain and over-
pass time. The LUT values are interpolated during the re-
trieval process to the appropriate solar and viewing geometry,
surface pressure, and wind speed.
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Table 1. Microphysical and optical properties of the new RA aerosol component climatology. Column 1 represents the component number,
column 2 describes the aerosol analogs, and columns 3–7 represent minimum radius, maximum radius, lognormal characteristic radius, log-
normal characteristic width, and effective radius (respectively). Column 8 is the Ångström exponent (calculated using all four MISR bands at
446–867 nm), column 9 is 550 nm single-scattering albedo (SSA), and the last column is the absorption Ångström exponent (AAE, calculated
using all four MISR bands at 446–867 nm). Spherical aerosol component optical properties are modeled according to Mie theory, and all
components are modeled with a lognormal particle size distribution. BlS corresponds to our black-smoke optical analogs, and BrS corre-
sponds to our brown-smoke optical analogs. Red-colored rows correspond to models used only in the prescribed surface retrievals, whereas
the one blue-colored row corresponds to the model only used by the retrieved surface aerosol retrieval. Purple-colored rows correspond to
models used in both algorithms.

Because the two sets of aerosol retrieval algorithms di-
verge from this point, Sect. 2.1.1 describes the prescribed
surface algorithm (PSA) and Sect. 2.1.2 delves into the re-
trieved surface algorithm (RSA).

2.1.1 MISR RA prescribed surface algorithm (PSA)
using bounded-variable least squares (BVLS)

As the name suggests, the MISR RA prescribed surface al-
gorithm requires external data on both surface angular spec-
tral BRF and surface albedo for each individual MISR pixel.
The process is summarized as Fig. S1 in the Supplement.
Over water, we assume that the remote sensing BRF is Lam-
bertian (once glint is subtracted), with the prescribed remote
sensing BRFs given in Sect. 2.1. Because we do not use an
over-water surface BRF database (analogous to MAIAC over
land), our over-water prescribed surface results will likely be
prone to error when aerosol loading is low. However, as de-
scribed in Sect. 2.1.3 below, the combined surface algorithm
addresses this limitation. Over land, the spectral albedo and
angular dependence come from MAIAC data that are bias-
corrected to remove artifacts that can originate in part from

differences between the MISR and MODIS spectral band
passes. A simple linear model was used for surface BRF
(and albedo) corrections in each MISR band, with the follow-
ing slopes (m) and offsets (b) used for the blue, green, red,
and NIR bands, respectively (m= [1.1,1.1,1.1,1.0]; b =
[0.015,0.0,0.0,0.0]). These coefficients were identified by
comparing RSA surface albedos (Sect. 2.1.2) with the PSA
albedos from MAIAC in regions where the MISR-retrieved
surface RA AOD agreed well with AERONET AOD and
AERONET AOD< 0.2. The fact that this bias correction
was not sufficient to completely remove the AOD bias seen
in the prescribed surface retrieval over land (especially at
AODs< 0.20) indicates that a camera-by-camera correction
should probably be used in the future. However, because the
primary focus of the prescribed surface aerosol retrieval is to
improve our sensitivity to AOD and aerosol properties when
aerosol loading is elevated (generally> 0.75), we are not as
concerned about the results of this retrieval when aerosol
loading is low.

As our sensitivity to aerosol particle properties should be
enhanced when optical loading is high, specifically because
we are prescribing the surface BRF, the discrete set of mix-
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Figure 1. The pink square on the left shows the bins corresponding to our fine-mode (FM) non-spherical aerosol models; the pink cube in
the center left demonstrates how our 10 fine-mode spherical components are organized onto a rectangular grid. The center right blue square
shows the two size bins for the coarse-mode non-spherical components, whereas the blue square on the right shows the same two size bins
for our coarse-mode spherical components. These four discretized grids are then used to additionally retrieve the fine-mode fraction (FMF)
and non-spherical fraction (both at 550 nm).

tures used by the retrieved surface algorithm (Sect. 2.1.2)
might be insufficient to describe the variability of aerosols
seen in nature. Instead, we convert our component LUT (Ta-
ble 1) into four regular grids composed of 10 fine-mode
(FM) components and 4 coarse-mode components (as shown
in Fig. 1). Rather than retrieve the non-spherical fraction
independently for the fine and coarse modes, we instead
retrieve the total non-spherical fraction for the combined
fine+ coarse modes. For our fine-mode spherical analogs,
we include five fine-mode particles in each of two size dis-
tributions, with 550 nm SSA values of 0.8 0.9, and 1.0, as
well as flat (black-smoke or BlS analog) and steep (brown-
smoke or BrS analog) SSA spectral dependence. Because we
retrieve the total non-spherical fraction, we also include a
separate grid containing two fine-mode non-spherical aerosol
models with the same size distributions as our fine-mode
spherical analogs.

Two coarse-mode grids are also created, one correspond-
ing to spherical aerosol (at 0.57 and 2.8 µm effective ra-
dius) and one corresponding to non-spherical aerosol (with
the same size bins). All told, the algorithm retrieves 550 nm
AOD and the following six pieces of information related to
aerosol microphysical and optical properties: 550 nm fine-
mode fraction (FMF), 550 nm non-spherical fraction, coarse-
mode size (re; µm), fine-mode size (re; µm), 550 nm fine-
mode spherical SSA, and 550 nm fine-mode spherical BrS
fraction.

Once we have converted our component LUT into four
regular grids (fine and coarse grids, spherical and non-
spherical grids), the algorithm then needs a starting point
to begin iterating towards a solution. This initial guess is
set to the following: AOD= 0.10, FMF= 0.8, coarse-mode
size= 1.28 µm, non-spherical fraction (fraction of aerosol
extinction due to non-spherical aerosol) 0.2, fine-mode size
0.1202 µm, fine-mode SSA= 0.9985, and fine-mode spheri-
cal BrS fraction 0.00015. The algorithm then interpolates the
LUTs separately before linearly combining the modeled fine
and coarse (and spherical+ non-spherical) grids. For a given
solution vector (AOD+ aerosol properties), we generate 36
TOA modeled BRFs

(
BRFMod

λ,c

)
, defined as

BRFMod
λ,c = BRFPath

λ,c +
TTλ,c×BRFSurf

λ,c

1− sλ×Aλ
. (2)

Here, BRFPath represents the modeled, interpolated path
BRF, which is radiation that does not interact with the sur-
face. To simplify the over-water algorithm, we also em-
bed Fresnel reflection and whitecaps into this term. We es-
timate the TOA surface-reflected radiation as the normal-
ized bottom-of-atmosphere downward irradiance multiplied
by the azimuthally averaged surface-to-camera transmittance
(TTλ,c)multiplied by the surface BRF (BRFSurf). We assume
that the multiply reflected radiation can be accounted for with
the normalization (1-sλ×Aλ), where sλ represents the effec-
tive atmospheric backscatter and Aλ represents the surface
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albedo. We recognize that this is only an approximation to
account for multiple reflections of light off the surface.

We then calculate the derivatives of Eq. (2) with respect
to all seven aerosol-related parameters and set up our linear
system of equations. The weighted linear system of equations(√

w ·A · x =
√

w · b
)

can be presented as

√
w1,1

Unc2
1,1
· · · 0

...
. . .

...

0 · · ·

√
w4,9

Unc2
4,9



×


∂BRFMod

1,1
∂Par1

· · ·
∂BRFMod

1,1
∂Par7

...
. . .

...
∂BRFMod

4,9
∂Par1

· · ·
∂BRFMod

4,9
∂Par7

×
 1Par1

...

1Par7



=



√
w1,1

Unc2
1,1
· · · 0

...
. . .

...

0 · · ·

√
w4,9

Unc2
4,9



×


(

BRFTOA
1,1 −BRFMod

1,1

)
...(

BRFTOA
4,9 −BRFMod

4,9

)
 , (3)

where 1Par1 represents the change in our retrieved first pa-
rameter (AOD) from the last guess, and1Par7 represents the
change in our retrieved seventh parameter (fine-mode spher-
ical brown-smoke fraction) compared to its initial guess or
the result of the previous iteration. The derivative matrix

(e.g.,
∂BRFMod

1,1
∂Pari

) represents the change in modeled TOA BRF
with respect to a change in one of our retrieved parameters,
such as AOD. The difference vector (column vector on the
right) represents the difference between the observations and
the current modeled TOA BRFs. On average, the magnitude
of this vector should decrease with every iteration as the al-
gorithm converges to a better solution vector. The diagonal
weight matrix (first matrix on the left on both sides of the
equation), which convolves channel weights (w) with their
respective channel uncertainties (Unc), is used to account for
things such as excessive sun glint, topographic shadowing,
and missing data, as well as accounting for the uncertainty in
the model–measurement system (more detail on this can be
found in Limbacher and Kahn, 2019). The fact that this is a
diagonal matrix means that we assume our channel weights
and uncertainties are uncorrelated (by channel).

Solving for the change in our retrieved parameter vec-
tor (1Par) is done using a bounded-variable least squares
(BVLS) solver, which was originally written by Lawson
and Hanson (1995) and updated to FORTRAN 90 by
John Burkardt in 2014 (https://people.math.sc.edu/Burkardt/

f_src/f_src.html, last access: 15 November 2022; Burkardt,
2014). This allows us to put constraints on 1Par to ensure
that our retrieved parameters stay within physical bounds
(i.e., 0.005<AOD< 9.95, 0<FMF< 1.0). The iterative
process of interpolating to a new model BRF (2), calculat-
ing its derivatives, and then iterating to a more optimal solu-
tion (3) continues for a minimum of five iterations until the
change in our cost function,

Cost=

∑
λ

∑
c

(
√
wλ,c×

[
BRFTOA

λ,c −BRFMod
λ,c

]
Uncλ,c

)2

∑
λ

∑
cwλ,c

, (4)

falls below a certain tolerance (currently set to 0.00001) or
100 iterations have occurred (in practice this many iterations
would very rarely occur). One of the problems with linear
least squares retrievals is that the assumed linearity in model
response may not be accurate far from where the deriva-
tives were calculated. This can result in the solution vector
“bouncing around”, slow convergence, or non-convergence.
To address this, if the algorithm detects that the cost func-
tion has not decreased after a new iteration, it multiplies the
change in our retrieved parameter vector (1Par) by 0.5 and
recomputes the cost function. The algorithm will continue
doing this until the new cost function is lower than the value
calculated for 1Par= 0 (i.e., the cost function of the previ-
ous iteration).

Once the algorithm has converged to a solution, it converts
the four particle property grids back into a one-dimensional
list of 550 nm aerosol mixture fraction (for all 17 compo-
nents), while also reporting 550 nm AOD, the prescribed sur-
face albedo, and cost. This can be done because our list of
17 component aerosol particle analogs exactly maps to the
bins shown in Fig. 1. To decrease file size, which is still
∼ 20 GB for all AERONET data in the validation dataset, we
do not save the mixture fractions for all 17 components, but
rather save information such as 550 nm fine-mode fraction
and 550 nm SSA based on the aggregated results.

2.1.2 MISR RA retrieved surface algorithm (RSA)
using discrete aerosol mixtures

Although MODIS-MAIAC-retrieved surface BRF allows the
MISR RA to retrieve AOD and aerosol properties over land
when aerosol loading is elevated, the quality of MISR RA
retrievals is negatively impacted when the MAIAC surface
is assumed and aerosol loading is low to moderate (AOD
at 550 nm< 0.75). This is due to factors such as differences
between the MISR and MODIS spectral responses, gridding
error, plane-parallel radiative transfer errors, and MAIAC-
retrieved surface BRF error (which should be much larger
for the MISR 70◦ viewing cameras than for the near-nadir
cameras). As a result, a version of the MISR RA was devel-
oped that self-consistently retrieves AOD, aerosol properties,
and surface properties at pixel-level resolution (1.0 km here).
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The MISR RA RSA is functionally identical to the algorithm
described in Limbacher and Kahn (2019) with the follow-
ing two exceptions, which are described briefly below: (1) a
modification of the discrete list of aerosol mixtures used by
the retrieval algorithm and (2) the addition of an over-land
retrieval.

As in Limbacher and Kahn (2019), we use the same ex-
ponential weighted average of discrete aerosol mixtures (at
their best-fitting AOD) to identify aggregate aerosol and sur-
face properties. However, the discrete aerosol mixtures we
use for this technique have been updated to reflect our new
component climatology. As in Sect. 2.1.1, we break up our
components into fine- and coarse-mode components. Here,
we only consider a small subset of the total number of com-
ponents for our retrieval. The six fine-mode components used
for this retrieval correspond to component numbers 1, 3, 9,
10, 15, and 16, whereas the two coarse-mode components
are 12 and 17. These components were selected in a way
that allows the algorithm to maintain sensitivity to parame-
ters such as single-scattering albedo (when AOD is elevated),
while acknowledging that we are unlikely to have sensitivity
to fine-mode brown-smoke fraction for AOD< 1.5. The six
fine-mode components are mixed with the two coarse-mode
components in the following FMF proportions (which results
in 104 mixtures): 1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2,
and 0. These FMF proportions are more heavily weighted to-
wards the fine mode, which allows us to better match valida-
tion Ångström exponents when AOD is low and sensitivity to
aerosol particle size is minimal. For the sake of mixing fine-
and coarse-mode components together, the algorithm treats
component 16 as fine-mode here, even though all medium
and larger components are considered to be coarse-mode for
the comparison with AERONET. A flowchart describing this
new retrieval is presented in Fig. S2; we provide a short sum-
mary of the technique below.

The addition of an over-land retrieval to the RSA repre-
sents a relatively simple extension and upgrade of our ex-
isting over-water retrieval that allows for shallow, turbid, and
eutrophic water, as described in Limbacher and Kahn (2019).
For both the over-land and over-water RSAs, we first redefine
the surface BRF as follows:

BRFSurf
λ,c = A

∗
λ×Bc; A

∗
λ =

Aλ

1− sλ×Aλ
, (5)

where Aλ represents the view-invariant surface albedo and
Bc represents the spectrally invariant angular brightness co-
efficient, which is set to 1.0 for over-water retrievals, and A∗λ
represents the remote sensing BRF over water. A∗λ provides a
reasonably accurate estimate of the impact of including mul-
tiple reflections into our modified surface albedo, as this sig-
nificantly simplifies the surface retrieval with no adverse im-
pacts (we disentangle this term later). Equation (5) is also
known as a shape similarity assumption because the spectral
surface BRF is assumed to vary by the same relative fraction
at each view angle (surface brightness can change with view

angle, but its color cannot). This shape similarity assump-
tion has its heritage in the multiangle Along-Track Scanning
Radiometer-2 (ATSR-2) instrument (Flowerdew and Haigh,
1995; Veefkind et al., 1998) and was adopted by the MISR
team as part of the MISR standard aerosol retrieval algorithm
(Diner et al., 2005).

To retrieve the surface BRF for any given AOD and aerosol
model, we rewrite our cost function using Eqs. (2) and (4) by
applying the shape similarity assumption (Eq. 5):

Cost=

∑
λ

∑
c

(
√
wλ,c×

[
BRFTOA

λ,c −
(

BRFPath
λ,c +TTλ,c×A∗λ×Bc

)]
Uncλ,c

)2

∑
λ

∑
cwλ,c

. (6)

For every AOD and aerosol model in our LUT, we first es-
timate the modified surface albedo (A∗λ) by assuming that the
surface can be adequately described as Lambertian, which
requires that we set Bc = 1. We then take the derivative of
Eq. (6) with respect to A∗λ (here, we assume ∂Bc

∂A∗λ
= 0), set

the result to 0, and analytically solve for the modified sur-
face albedo:

A∗λ =

∑
c
wλ,c

Unc2
λ,c
×TTλ,c×Bc×

[
BRFTOA

λ,c −BRFPath
λ,c

]
∑

c
wλ,c

Unc2
λ,c
×
[
TTλ,c×Bc

]2 . (7)

For our over-water retrieval, this is the only step required
to estimate the modified surface albedo for a given AOD and
aerosol mixture. However, over land, we must solve for the
shape similarity coefficient (Bc) by taking the derivative of
Eq. (6) with respect to Bc, setting it equal to 0 (here we as-
sume ∂A∗λ

∂Bc
= 0), and solving for Bc:

Bc =

∑
λ
wλ,c

Unc2
λ,c
×TTλ,c×A∗λ×

[
BRFTOA

λ,c −BRFPath
λ,c

]
∑
λ
wλ,c

Unc2
λ,c
×
[
TTλ,c×A∗λ

]2 . (8)

For our over-land retrieval, we then iterate through Eqs. (7)
and (8) twice, as the algorithm typically converged after two
iterations (based on prior experience), which results in fur-
ther refinement of both A∗λ and Bc. Constraints on A∗λ and Bc
are provided in Fig. S2 and act to provide limits to both the
color and brightness of the surface.

Following Fig. S2 and as summarized above, we retrieve
the modified surface albedo and shape similarity coeffi-
cient for all 104 discrete aerosol mixtures and 26 AODs
found in our RT LUT (Table 2). To iterate towards the op-
timum AOD for each of those 104 aerosol mixtures, the
algorithm also temporarily saves information such as cost
function (104 mixtures× 26 AODs) and channel-specific
residual (104 mixtures× 26 AODs× 4 bands× 9 cameras).
These channel-specific residuals are simply a portion of our

cost function
(√

wλ,c×
[
BRFTOA

λ,c −
(

BRFPath
λ,c +TTλ,c×A∗λ×Bc

)]
Uncλ,c

)
. Af-

ter computing this information on the coarse AOD grid of our
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LUT, the algorithm then iterates towards a better-fitting (and
more precise) AOD and surface for each of the 104 aerosol
mixtures using a bisectional approach with five iterations;
given the coarse grid spacing shown in Table 2, the result-
ing AOD should have an algorithmic precision ranging from
< 0.001 at an AOD of 0.0 to ∼ 0.025 at an AOD of 10.

Once the optimum AOD and surface BRF properties have
been calculated for each aerosol mixture, normalized mixture
weights are calculated according to

MWm =
exp

(
Costmin−Costm
Costmin+0.01

)
∑

m

[
exp

(
Costmin−Costm
Costmin+0.01

)] , (9)

where the subscript m represents aerosol mixture, Costm rep-
resents the lowest cost (best fit) for each of the 104 aerosol
mixtures, and Costmin represents the lowest cost among all
mixtures. Weighted aggregate parameters are then calculated
for the following: 550 nm AOD, modified surface albedo
(A∗λ), shape similarity coefficient (Bc), aerosol component
fraction (Table 1), and cost. Finally, Aλ is calculated using
A∗λ via division by (1.0+ sλ×A∗λ). As in the previous sec-
tion, the algorithm then converts the aerosol component frac-
tion into the 550 nm fine-mode fraction, ANG, and 550 nm
SSA, while also reporting 550 nm AOD, the retrieved surface
albedo, and cost.

Over water, this algorithm retrieves seven pieces of infor-
mation about aerosol loading and properties as well as four
pieces of information about the surface spectral BRF (Aλ).
Over land, the algorithm retrieves an additional nine pieces of
information about the surface BRF angular behavior, which
yields a total of 20 retrieved pieces of information from 36
measurements. Even in the most topographically complex re-
gions (where up to four MISR cameras may be eliminated
due to obscuration) the number of observations will equal or
exceed the number of retrieved parameters. A major limiting
factor of this algorithm is the assumption of surface shape
similarity. If the color of the surface changes significantly
with view angle, as it does in some desert regions, the algo-
rithm will alias those errors into the retrieved aerosol proper-
ties and AOD.

2.1.3 MISR RA combined surface algorithm (CSA)

The prescribed and retrieved surface approaches are de-
scribed in Sects. 2.1.1 and 2.1.2. Over land, the combined
surface approach uses PSA AOD from the algorithm de-
scribed in Sect. 2.1.1 to identify the optimal retrieval type
for a given pixel. If PSA AOD is less than 0.75, the CSA se-
lects the AOD and aerosol properties from the RSA. If PSA
AOD is greater than 1.5, the combined surface retrieval se-
lects the AOD and aerosol properties from the PSA. If PSA
AOD falls between 0.75 and 1.5, the CSA linearly interpo-
lates AOD and aerosol properties between the RSA and PSA.
The logic behind this combined surface algorithm is twofold.
When aerosol loading is low, errors in the surface BRF based

on the PSA tend to produce significant high biases in AOD
and errors in aerosol particle properties. Conversely, when
aerosol loading is high, the RSA is unable to properly sepa-
rate the surface and atmospheric contributions, leading to a
substantial low bias in AOD (Kahn et al., 2010, among many
others). Empirically, we find that this approach with these do-
main boundaries also yields optimal results when compared
to AERONET, as shown in Sect. 3 below.

Over water, the CSA is used with the same AOD con-
straints as described above. However, because our prescribed
surface could be very inaccurate (and result in low-quality
aerosol retrievals for the PSA), the algorithm instead uses the
RSA AOD (from the algorithm described in Sect. 2.1.2) to
determine the algorithm type to be used for the final aerosol
result (PSA, RSA, or CSA). Even though the RSA suffers
from an AOD low bias at high AOD, the RSA still appears
to retain sensitivity to AOD even when AERONET AOD
exceeds 3, which makes this algorithm suitable for deter-
mining the algorithm type used. Due to the low numbers of
high AOD MISR–AERONET coincidences over water, CSA
AOD bounds (0.75 and 1.5) may need to be modified when
we have more data or if we begin using a surface BRF dataset
for our prescribed surface over-water retrievals.

2.2 MISR RA updated aerosol component climatology

The updated LUT containing RT output was created us-
ing SCIATRAN version 3.8 (Rozanov et al., 2014, https://
www.iup.uni-bremen.de/sciatran/index.html, last access: 17
August 2020). The RT code was run using the full-vector
discrete ordinates method solver with 16 streams for our
10 spherical fine-mode optical analogs with effective radii
smaller than 0.5 µm and 32 streams for the other seven op-
tical analogs. Detailed information about our 17 updated
aerosol components can be found in Table 1, and informa-
tion about the size and dimensionality of the LUT is given in
Table 2. Even though Table 2 appears to have eight dimen-
sions, the LUTs are broken up into a seven-dimensional over-
water LUT (pressure is assumed to be 1013.25 mb) and a
seven-dimensional over-land LUT (no wind speed dimension
needed). The goal in creating the individual aerosol compo-
nents shown in Tables 1 and 2 is to capture aerosol parti-
cle property variability in as few components possible, un-
der the assumption that we can linearly mix the radiances of
these mixtures to create a continuum in terms of aerosol size,
shape, and single-scattering albedo. For our spherical absorb-
ing analogs, we now include aerosol sizes ranging from 0.12
to 0.26 µm effective radius, which adds analogs that were
missing in our 2014 dataset (Limbacher and Kahn, 2014) and
from the operational MISR product (Kahn et al., 2010). Pre-
viously, we used a dust model optimized for the red and NIR
channels only (Kalashnikova et al., 2005). Here, we replaced
it with five that are modeled consistently for all MISR spec-
tral bands (Lee et al., 2017), as described in Sect. 2.2.1 below.
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Table 2. Updated LUT values and dimensionality. Each column lists the values of the variable in the heading that are included in the LUT.
The number of values is given in parentheses at the top, The overall dimensionality of the LUT is eight, although it is broken up into a seven-
dimensional over-land LUT (no wind speed dimension; 5.4× 106 elements) and a seven-dimensional over-water LUT (surface pressure
assumed to be 1013.25 mb; 1.34× 107 elements).

Component name 550 nm AOD λ (nm) µ0 µ 18 10 m wind Surface pressure
(17) (26) (4) (10) (8) (19) (m s−1) (5) (mb) (2)

sph_abs_0.12_0.80_BlS 0 446.34 0.1 0.3 0 1 608
sph_abs_0.12_0.80_BrS 0.05 557.54 0.2 0.4 10 5 1050
sph_abs_0.12_0.90_BS 0.1 671.75 0.3 0.5 20 8
sph_abs_0.12_0.90_BrS 0.15 866.51 0.4 0.6 30 12
sph_abs_0.26_0.80_BlS 0.25 0.5 0.7 40 20
sph_abs_0.26_0.80_BrS 0.35 0.6 0.8 50
sph_abs_0.26_0.90_BlS 0.5 0.7 0.9 60
sph_abs_0.26_0.90_BrS 0.65 0.8 1 70
sph_nonabs_0.12 0.85 0.9 80
sph_nonabs_0.26 1.05 1 90
sph_nonabs_0.57 1.3 100
sph_nonabs_1.28 1.55 110
sph_nonabs_2.80 1.85 120
Dust_0.12 2.15 130
Dust_0.26 2.5 140
Dust_0.57 2.85 150
Dust_2.80 3.25 160

3.65 170
4.1 180

4.55
5

5.65
6.45
7.35

8.5
10

2.2.1 Updated dust optical models

The non-spherical dust optical models used in the RA were
created following Lee et al. (2017), except with the MISR
spectral bands. The non-spherical dust’s phase matrix (for all
spectral bands) is derived by integrating the single-scattering
properties of individual non-spherical particles over both size
and shape distributions. Thus, representative size and shape
distributions as well as the spectral refractive indices for dust
are determined from Aerosol Robotic Network (AERONET;
Holben et al., 1998) inversion data at Cape Verde for heavy
dust events (coarse-mode AOD> 0.5 and FMF< 0.2), with
the medians of the data record taken as representative val-
ues. Note that the AERONET inversion assumes a fixed
spheroid shape mixture (Dubovik et al., 2006), and thus the
same is used for consistency. The single-scattering proper-
ties of individual spheroids are available from an aerosol
single-scattering property database (Meng et al., 2010), en-
abling one to easily obtain the spectral optical properties of
dust. Similar dust models have been widely used in various
aerosol retrieval algorithms, as they reduce artificial biases

in AOD and Ångström exponent (ANG) retrievals due to
inaccurate representation of non-spherical dust by spherical
aerosol modeled with Mie theory (Dubovik et al., 2014; Hsu
et al., 2019; Lee et al., 2012, 2017; Lyapustin et al., 2018;
Sayer et al., 2018; Zhou et al., 2020). Previous versions of the
MISR RA used only one coarse-mode non-spherical compo-
nent to model dust. Here we create five new dust models,
using the same refractive indices, with the same size distri-
butions used for our spherical non-absorbing aerosol com-
ponents, with the expectation that this will improve our re-
trievals of fine-mode (less absorbing) and coarse-mode (more
absorbing) dust.

2.3 AERONET data and validation methodology

With hundreds of sites scattered worldwide, AERONET sun
photometers directly measure spectral AOD (Holben et al.,
1998) at an uncertainty of ∼ 0.01 (Eck et al., 1999; Sinyuk
et al., 2012) and offer excellent cloud screening as part of the
version 3 algorithm (Giles et al., 2019). Provided that AOD
is >∼ 0.1–0.2, AERONET ANG can also be reported very
accurately (Wagner and Silva, 2008). As in Limbacher and
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Kahn (2019), we first interpolate AERONET spectral AOD
to the MISR band centers using a second-order polynomial in
log space. Here we use version 3, level 1.5 (L1.5) AOD from
AERONET because version 3 cloud screening is much bet-
ter than in previous AERONET versions, and L1.5 data offer
many more retrieval results compared to L2. We then com-
pute the Ångström exponent as a log–log fit of interpolated
AOD to wavelength using all four MISR wavelengths. For
the AERONET direct-sun parameters (AOD and ANG), we
attempt to limit spatiotemporal variability from negatively
impacting our comparison with MISR by masking out all
AERONET data falling outside a ±30 min window centered
on the MISR overpass. AERONET 550 nm AOD and ANG
(446–867 nm) are then averaged over this window prior to
comparison with the MISR RA.

Although AERONET almucantar inversions (Dubovik and
King, 2000) represent retrievals of aerosol properties such
as sphericity and SSA rather than direct measurements, they
provide an opportunity to compare with aerosol particle
properties retrieved from imagers such as MISR over di-
verse regions and temporal ranges that can span more than
a decade. Because almucantar inversions are performed far
less frequently than AOD is sampled, we limit potential
coincidences to within ±4 h of the MISR overpass time,
saving the following averaged (mean) 550 nm parameters:
absorbing AOD, fine-mode AOD, coarse-mode AOD, and
sphericity. Average single-scattering albedo is then calcu-
lated as 1.0− (absorbing AOD)/(fine-mode AOD + coarse-
mode AOD). The AERONET fine-mode fraction (FMF) is
calculated as fine-mode AOD/(fine-mode AOD+ coarse-
mode AOD), and the MISR fine-mode fraction is defined as
extinction due to aerosol having an effective radius smaller
than 0.5 µm.

3 Results

3.1 MISR RA over-land validation using AERONET

As explained in the previous section, we use a ±30 min av-
eraging window for comparing AERONET direct-sun results
with the MISR RA and a±4 h averaging window for compar-
ing AERONET almucantar inversion results with the MISR
RA. Because retrieval quality likely degrades dramatically
in the presence of clouds, sea ice, and where retrieval fits
are poor (i.e., a high cost function), we established a se-
ries of tests to help identify good-quality retrievals (for all
48× 48 MISR RA retrievals centered on an AERONET sta-
tion). Quality flags are set for each test.

1. MISR surface height (from the SA digital elevation
model) is within 200 m of the given AERONET station
height.

2. At least seven of nine MISR cameras contain valid BRF
data.

3. MISR pixels must be masked as land.

4. MISR prescribed and retrieved cost functions are both
< 1.

5. MISR combined surface AOD is < 9.

6. The second derivative of the prescribed surface cost
function with respect to AOD is > 10.

7. The normalized difference vegetation index (NDVI) us-
ing the prescribed surface albedos is > 0.0.

8. Blue BRF max− blue BRF min (over all cam-
eras)< 0.1+ 0.2× exp(−1.0× [MISR prescribed sur-
face AOD]).

9. The MISR retrieved surface AOD standard deviation
among all QA pixels is < 1.

Quality flag 1 just makes sure that we compare pixels at
roughly the same elevation to each other (as dust and other
aerosols tend to be concentrated in layers) and is only
used when comparing AERONET AOD to MISR retrieved
AOD. The reasoning here is that the total column loading
will likely differ with surface elevation, but aerosol parti-
cle properties will not vary as much. Quality flag 2 makes
sure that a retrieval has enough “good” input data to give
high-quality output, and quality flag 3 uses our previously
computed land–water mask as we are only comparing the
land algorithm to AERONET for the current validation ex-
ercise. Quality flag 4 uses the RSA and PSA cost functions
to screen out poor-quality (mostly cloud-contaminated) re-
trievals. Quality flag 5 indicates that results with a com-
bined retrieval AOD greater than 9 are likely cloud. As we
saw in Limbacher and Kahn (2019), the second derivative of
our cost function can be a good indicator of retrieval qual-
ity. A larger second derivative corresponds to a steeper min-
imum in our cost function with respect to AOD; we use
10 as a lower bound here in quality flag 6 as this tends to
mask out some lower-quality results (mostly clouds). Qual-
ity flag 7 primarily masks unmasked water and clouds us-
ing the MAIAC prescribed surface albedos (these are in-
put into the PSA). Here, NDVI is calculated as follows:
NDVI= (NIR−Red)/(NIR+Red). Quality flag 8 is used to
mask partially cloudy MISR data (clouds in some cameras
but not others), as the difference between the maximum and
minimum BRF will be quite large for such pixels. Quality
flag 9 attempts to remove stray clouds via a large-scale (low-
frequency) variability filter.

3.1.1 AERONET direct-sun validation of MISR
over-land RA

Applying the flags described in Sect. 3.1 and requiring at
least 10 quality-assessed retrievals (out of 2304 potential,
from 48× 48 pixel patches) for each MISR–AERONET co-
incidence results in 11 563 averaged MISR RA–AERONET
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Figure 2. Comparison of MISR RA over-land 550 nm AOD retrievals with AERONET direct-sun 550 nm AOD. The x axes represent
AERONET 550 nm AOD and y axes represent MISR RA-retrieved 550 nm AOD. The MISR over-land retrieval algorithm type (prescribed
surface algorithm – PSA, retrieved surface algorithm – RSA, or combined surface algorithm – CSA) is embedded in the lower right of each
panel. Panels (a) and (d) present the MISR RSA, (b) and (e) present the MISR PSA, and (c) and (f) present the CSA. Panels (a)–(c) on the
left show scatterplots of MISR RA AOD compared to AERONET, with a linear scale to allow for easier interpretation of high AOD results.
Panels (d)–(f) on the right show two-dimensional histograms of MISR RA AOD compared to AERONET, with a logarithmic scale to allow
for easier interpretation of low AOD results. Expected error of MISR CSA AOD±(0.20×MISR AOD+0.02) is embedded as two red lines
in panels (d)–(f).

over-land coincidences for the 4 years of processed MISR
data, interspersed between September 2000 and November
2016. AOD statistics for the MISR–AERONET validation
are shown in Table 3 and are provided for the RSA, PSA,
and CSA.

Figure 2 shows the MISR–AERONET over-land 550 nm
AOD comparisons for the RSA (a and d), PSA (b and e), and
the CSA (c and f). Comparisons are plotted in both linear and
log space, as it is easier to evaluate the lower AOD compar-
isons with a log–log plot. Additionally, the red lines on the
log–log plots correspond to ±(0.20×[MISR AOD]+ 0.02),
which is our estimate of the expected error of the combined
retrieval (Fig. 3b). Figure 2d clearly demonstrates that the
RSA performs well when AERONET AOD is low to mod-
erate, whereas Fig. 2b clearly shows the advantages of the
PSA when aerosol loading is high. The CSA described in
Sect. 2.1.3 leverages the strengths of each algorithm, result-

ing in an RMSE (0.084) 25 % lower than the RSA (0.112)
and 41 % lower than the PSA (0.142), as well as yielding
a correlation coefficient (r = 0.935) that is higher than ei-
ther approach. Because the statistics for the CSA are signif-
icantly better than either the prescribed or retrieved surface
algorithms, the rest of the over-land validation shows only
results from the CSA.

Figure 3a presents a larger AOD scatterplot image of the
MISR RA CSA with the different algorithm regimes color-
coded. Because the different regimes are selected based on
the MISR prescribed surface AOD (not the combined AOD),
the background color codes are approximate. Comparing to
Fig. 2, Fig. 3a demonstrates that the combined approach
picks the best pieces from both algorithms. This algorithm
also eliminates the tendency for the MISR RA (and the MISR
SA) to significantly underestimate AOD when aerosol load-
ing is elevated. Figure 3b shows that a prognostic error of
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Figure 3. Panel (a) is identical to Fig. 2f, with the addition of a color code added to identify regions where the prescribed and/or retrieved
surface algorithms are used in the combined surface algorithm. Panel (b) shows MISR RA 68th percentile absolute AOD errors as a function
of MISR combined over-land AOD. Data are plotted at increments of 2 % (∼ 160 coincidences per data point), with a black expected error
line (derived from these data) plotted on top of the data.

Table 3. MISR RA vs. AERONET direct-sun over-land statistics. The rows under “AOD comparison” indicate the type of MISR retrieval
being compared to AERONET. The rows under “ANG comparison” indicate the MISR RA AOD constraints being placed on the comparison
with AERONET (MISR AOD must be> 0.05, etc). For the first column, RSA corresponds to the MISR RA over-land retrieved surface algo-
rithm, PSA corresponds to the MISR RA over-land prescribed surface algorithm, and CSA corresponds to the MISR RA over-land combined
surface algorithm. The number of MISR–AERONET coincidences used to generate a given set of statistics is given in column 2 (No.). Root
mean squared error (RMSE) is given in column 3, median absolute error (MAE) is given in column 4, the average MISR–AERONET bias is
given in column 5, and the Pearson correlation coefficient (r) is given in column 6.

AOD comparison No. RMSE MAE Bias r

Retrieved surface algorithm (RSA) 11563 0.112 0.031 −0.006 0.886
Prescribed surface algorithm (PSA) 11563 0.142 0.074 0.091 0.899
Combined surface algorithm (CSA) 11563 0.084 0.031 0.003 0.935

ANG comparison (CSA only)

CSA ANG | CS AOD> 0.05 8911 0.432 0.300 −0.031 0.466
CSA ANG | CS AOD> 0.20 3327 0.385 0.267 0.107 0.703
CSA ANG | CS AOD> 0.50 664 0.349 0.244 0.133 0.844
CSA ANG | CS AOD> 1.0 151 0.272 0.155 −0.042 0.932
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±(0.20×[MISR AOD] + 0.02) fits the data very well, al-
though this can be reduced by applying further quality con-
straints to the data. This prognostic error is taken as a line fit-
ted to the 68th percentile absolute AOD errors (with respect
to AERONET), binned at every 2 % of MISR-retrieved AOD
(so 50 bins in total). As a prognostic error, this can be used
to estimate pixel-level uncertainty of MISR RA AOD with-
out the use of AERONET data (assuming the data are cloud-
and quality-screened in the manner described above and that
AERONET cloud screening is not significantly biassing the
results).

Figure 4 compares the MISR CSA ANG to AERONET
ANG for MISR-retrieved AOD greater than 0.05 (panel a),
0.20 (panel b), 0.50 (panel c), and 1.0 (panel d). Statistics for
these plots are also provided in Table 3. Figure 4 (all pan-
els) shows two clusters of ANG for AERONET, one at ∼
0.25 (likely dust-dominated) and another at ∼ 1.5 (probably
smoke- and/or pollution-dominated). The MISR RA captures
the smoke- and/or pollution-dominated cluster very well but
tends to overestimate ANG substantially as AERONET ANG
decreases below∼ 1.25, although this significantly improves
as AOD increases. The fact that this bias improves with AOD
suggests that the cause may be due to the fact that the RSA
is more weighted towards the fine mode (unlike the PSA).
Because the PSA is used only when AOD exceeds 0.75 (and
fully only when> 1.5), the largest change in this bias should
show up from panels c to d (which it does). Regardless of the
reasons for the discrepancies with AERONET, ANG RMSE
of 0.385 and a correlation coefficient of 0.703 for MISR
AOD> 0.20 suggest that the algorithm still offers useful
particle size constraints over land even at lower AOD. For
AOD> 1, an RMSE of 0.272 and correlation coefficient of
0.932 (n= 151) indicate that the algorithm is in excellent
agreement with AERONET and can offer substantial infor-
mation on aerosol particle size at higher AOD, as expected.

3.1.2 AERONET inversion validation of MISR
over-land RA

Using the retrieval quality flags indicated in Sect. 3.1 com-
bined with a 4 h averaging window (we still require at least
one direct-sun data point within 30 min of the MISR over-
pass) and 10-pixel minimum (same as in Sect. 3.1.1), we
found that a significant number of the high-AOD cases used
for our inversion comparison were mistaken as clouds and
screened out. The cause of this excessive masking is due to
quality flags 6–8 (Sect. 3.1). For this inversion comparison
we now ignore those three flags unless at least one of those
flags is triggered (i.e., condition not met) and the fraction
of good retrievals (out of 2304 potential retrievals) is less
than 0.1. This new method allows us to increase the num-
ber of QA cases designated as “good” with AOD> 1.0 by
65 %, while still eliminating most cloudy artifacts. It yields
2561 MISR–AERONET inversion coincidences with MISR
AOD> 0.2, 571 coincidences with AOD> 0.5, and 177 co-

incidences with AOD> 1. Statistics for all figures shown
(SSA, FMF, and sphericity) can be found in Table 4.

A comparison of MISR RA 550 nm FMF and AERONET
550 nm FMF is presented in Fig. 5a (0.5<AOD< 1.0),
Fig. 5b (1.0<AOD< 1.5), and Fig. 5c (AOD> 1.5). Fig-
ure 5a–c show very similar patterns compared to Fig. 4,
with excellent sensitivity to retrievals of small (fine-mode)
smoke and pollution aerosol and less sensitivity seen in
the coarse-mode-dominated regions. However, as demon-
strated in Fig. 5b–c and Table 4, overall sensitivity to
FMF increases substantially for retrieved 1.0<AOD< 1.5
(compared to 0.5<AOD< 1.0), with RMSE dropping from
0.205 to 0.139, median absolute error (MAE) improving
from 0.105 to 0.058, and the correlation coefficient increas-
ing from 0.769 to 0.914.

Even though the current version of the MISR RA now
includes fine-mode non-spherical components, the algo-
rithm tends to dramatically underestimate the retrieved non-
spherical fraction compared to the value retrieved from
AERONET. This is in part due to the mixtures available to
the RSA, as the algorithm is more dominated by fine-mode
spherical analogs than either non-spherical or coarse-mode
analogs. Just like FMF, MISR sensitivity to the non-spherical
fraction over land dramatically improves as AOD increases.
This is also the case for AERONET inversions, but probably
occurs at lower AOD. Imposing more stringent AOD con-
straints (1.0<AOD< 1.5 compared to 0.5<AOD< 1.0),
RMSE drops from 0.43 to 0.257, MAE drops from 0.298 to
0.093, and the correlation coefficient increases from 0.670
to 0.841.

A comparison of MISR 550 nm over-land retrieved SSA
and AERONET 550 nm SSA is also presented in Fig. 5g–
i. MISR SSA errors decrease significantly with increasing
AOD, resulting in an RMSE of 0.021 for the 111 coinci-
dences with 1.0<AOD< 1.5. For AOD greater than 1.5,
RMSE is 0.015 and MAE is 0.008, whereas the correlation
coefficient is 0.748. It is likely that this improvement in SSA
is in part due to the recent addition of multiple non-spherical
particle models of different sizes, which allows the algo-
rithm to better retrieve non-spherical particle size (and con-
sequently SSA). Given that AERONET uncertainty for SSA
at these higher AODs is likely∼ 0.01 (Sinyuk et al., 2020), it
is also likely that AERONET SSA uncertainty is propagating
into our reported statistics, unless the errors for both MISR
and AERONET are positively correlated.

3.2 MISR RA over-water validation using AERONET

We use the same temporal constraints for our over-water
AERONET comparison as were used over land. We apply
the following series of tests to help identify good-quality re-
trievals (for all 48× 48 MISR RA retrievals centered on an
AERONET station). Quality flags are set for each test.

1. The MISR surface height (from DEM) is within 200 m
of the given AERONET station height.
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Figure 4. Two-dimensional histograms of the MISR RA combined surface algorithm over-land ANG compared to AERONET ANG. The
x axes are AERONET ANG and y axes are the MISR combined surface algorithm over-land ANG. Panel (a) shows MISR ANG vs.
AERONET ANG constrained by MISR-retrieved AOD> 0.05. Panels (b)–(d) show the same as (a), but for MISR-retrieved AOD con-
straints of > 0.20 (b), > 0.50 (c), and > 1.0 (d).

Table 4. MISR RA vs. AERONET almucantar inversion statistics over land. Same as Table 3, except for MISR RA vs. AERONET inversion
statistics over land. All MISR data correspond to the combined surface algorithm. Note that AERONET inversion results are not ground
truth; they represent retrieval results. The AERONET team cautions against the use of results when blue-band AOD< 0.4, so comparisons
for green-band AOD< 0.50 should be considered qualitative rather than quantitative.

550 nm FMF comparison No. RMSE MAE Bias r

FMF | 0.20<AOD< 0.50 1990 0.194 0.125 0.034 0.611
FMF | 0.50<AOD< 1.00 394 0.205 0.105 0.093 0.769
FMF | 1.00<AOD< 1.50 111 0.139 0.058 0.035 0.914
FMF | AOD> 1.50 66 0.088 0.046 0.011 0.976

550 nm non-sph. fr. comparison

Non-sph. fr. | 0.20<AOD< 0.50 1990 0.482 0.343 −0.326 0.520
Non-sph. fr. | 0.50<AOD< 1.00 394 0.430 0.298 −0.306 0.670
Non-sph. fr. | 1.00<AOD< 1.50 111 0.257 0.093 −0.110 0.841
Non-sph. fr. | AOD> 1.50 66 0.259 0.115 −0.032 0.791

550 nm SSA comparison

SSA | 0.20<AOD< 0.50 1990 0.049 0.024 0.012 0.299
SSA | 0.50<AOD< 1.00 394 0.039 0.018 0.012 0.391
SSA | 1.00<AOD< 1.50 111 0.021 0.011 0.004 0.717
SSA | AOD> 1.50 66 0.015 0.008 0.001 0.748
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Figure 5. Scatterplots of the MISR RA combined surface algorithm over-land 550 nm particle properties compared to AERONET 550 nm
retrieved particle properties. The x axes are AERONET 550 nm particle properties and y axes are the MISR combined surface algorithm
over-land 550 nm particle properties. AOD constraints are embedded in red for each panel. The first row of panels (a, d, g) corresponds to
retrievals with 0.50<MISR AOD< 1. The second row of panels (b, e, h) corresponds to retrievals with 1.00<MISR AOD< 1.50. The third
row of panels (c, f, i) corresponds to retrievals with MISR AOD> 1.50. The first column of panels (a–c) shows MISR RA-retrieved fine-
mode fraction (FMF) vs. AERONET-retrieved FMF, the second column of panels (d–f) shows MISR RA-retrieved non-spherical fraction vs.
AERONET-retrieved non-spherical fraction, and the third column of panels (g–i) shows MISR RA-retrieved single-scattering albedo (SSA)
vs. AERONET-retrieved SSA.

2. At least seven of nine MISR cameras have valid BRF
data.

3. MISR pixels must be masked as water.

4. The MISR retrieved surface cost function is < 1.

5. The MISR retrieved surface AOD is < 9.

6. MISR BRF NDVI (minimized over all nine cameras) of
MISR BRFs is <−0.075.

7. (MISR prescribed surface AOD−MISR retrieved
surface AOD)< (0.25×MISR retrieved surface
AOD+0.05).

8. The MISR retrieved surface AOD standard deviation
among all QA pixels is < 0.25.

As for our over-land results, quality flag 1 ensures that we
compare pixels at roughly the same elevation to each other
and is only used when comparing AERONET AOD to MISR-
retrieved AOD. Quality flag 2 ensures that a retrieval has
enough “good” input data to give high-quality output, which

is especially important over water where up to four cameras
could be glint-contaminated. Quality flag 3 uses our previ-
ously computed land–water mask to make sure that a given
pixel is water. Quality flag 4 uses the retrieved surface cost
function to screen out poor-quality retrievals. Quality flag 5
screens out pixels with a retrieved surface AOD> 9 (likely
cloud), and quality flag 6 masks out clouds and ephemeral
waterways that are not currently water-covered. Quality flag
7 is used to identify clouds that have not been screened by
the other quality filters. Because the over-water RSA does
not suffer from the same dramatic loss of sensitivity to AOD
seen by the over-land RSA, the PSA and RSA values should
be similar except in the presence of clouds or over very bright
waters. As such, quality flag 7 will also likely eliminate many
retrievals over bright waters. Quality flag 8 attempts to re-
move stray clouds via a large-scale variability filter.

3.2.1 AERONET direct-sun validation of MISR
over-water RA

As in our over-land comparison, we apply the flags listed
above and require at least 10 quality-assessed retrievals (pix-
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Table 5. MISR RA vs. AERONET direct-sun statistics over water. Same as Table 3, except for MISR RA over water.

AOD comparison No. RMSE MAE Bias r

Retrieved surface algorithm (RSA) 4596 0.063 0.024 0.013 0.931
Prescribed surface algorithm (PSA) 4596 0.080 0.039 0.044 0.930
Combined surface algorithm (CSA) 4596 0.063 0.024 0.014 0.935

ANG comparison (CSA only)

CSA ANG | CS AOD> 0.05 4335 0.401 0.250 −0.107 0.657
CSA ANG | CS AOD> 0.20 1381 0.326 0.198 −0.066 0.814
CSA ANG | CS AOD> 0.50 188 0.269 0.159 −0.032 0.889
CSA ANG | CS AOD> 1.0 26 0.194 0.094 0.011 0.921

Figure 6. Same as Fig. 2, except for the MISR over-water retrieval.

els) for each AERONET coincidence; otherwise, the spa-
tially averaged MISR results are not included in the statistics.
AOD and ANG statistics for the 4596 MISR quality-assessed
and AERONET coincidences are shown Table 5.

Figure 6, the over-water equivalent to Fig. 2, presents the
comparison of MISR over-water AOD for all three retrieval
types (RSA, PSA, and CSA) as both a scatterplot in linear
space (to emphasize higher AOD results) and a log–log 2-
D histogram (to compare lower AOD results). Specifically,
the MISR RSA over-water retrieval does not suffer from the

same level of degradation in results as AERONET AOD in-
creases (there is still a small low bias), which is why we use
the RSA to identify the bounds for the CSA over water. Com-
pared to Fig. 2 and Table 3, results appear much more con-
sistent with AERONET AOD over water than over land, with
a combined surface RMSE of 0.063 over water vs. 0.084
over land, MAE of 0.024 over water vs. 0.031 over land,
and correlation coefficient of 0.935 over water vs. 0.935 over
land. Although there is little improvement in the total statis-
tics between the RSA and CSA over-water surface results,
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Figure 7. Same as Fig. 3, except for the MISR over-water retrieval.

this may be due to the very limited number of MISR over-
water–AERONET coincidences when AOD is elevated (> 1;
26 over water vs. 177 over land). As such (and to be consis-
tent with the previous section), ANG and particle property
results are presented subsequently only for the CSA.

Figure 7a shows the MISR CSA over-water AOD com-
pared to AERONET AOD, with colored rectangular boxes to
indicate the retrieval regime of the MISR combined retrieval.
Figure 7b shows a plot of MISR–AERONET 68th percentile
errors as a function of MISR CSA over-water AOD. The line
(0.15× [MISR AOD]+0.02) fits the MISR error very well
for all ranges of retrieved AOD, indicating that this should
be a good estimate of expected error.

Figure 8 shows the comparison of MISR over-water CSA
ANG with AERONET ANG as a 2-D histogram for the same
AOD bins presented in Fig. 4: MISR AOD> 0.05 (panel a),
MISR AOD> 0.2 (panel b), MISR AOD> 0.50 (panel c),
and MISR AOD> 1 (panel d). It is clear from Fig. 8 that
the MISR over-water retrieval algorithm suffers from a small
low bias in ANG for pollution and smoke aerosol when AOD
is low (< 0.2), and this is also represented in the statistics

found in Table 5. As expected, the statistics for the MISR
over-water retrieval appear better than the over-land results
for every AOD regime. Compared to the over-land results for
MISR-retrieved AOD> 0.20, RMSE is 0.326 over water vs.
0.385 over land, MAE is 0.198 vs. 0.267, and the correlation
coefficient is 0.814 vs. 0.703, suggesting that the MISR over-
water retrieval has good sensitivity to retrievals of spectral
AOD (ANG is derived from this) when AOD is > 0.20.

3.2.2 AERONET inversion validation of MISR
over-water RA

As in our over-land comparison, we use the MISR CSA re-
sults with a 4 h averaging window (requiring at least one
valid direct-sun data point) and 10-pixel minimum. Although
we are likely eliminating some high-AOD events, it was
not feasible to develop an additional cloud-screening met-
ric to use for the inversion comparison. The result of our
quality assessment is 948 coincidences with MISR AOD>
0.2, 144 coincidences with AOD> 0.5, and 21 coinci-
dences with AOD> 1. Statistics for the MISR over-water vs.
AERONET inversion comparison are shown in Table 6 for
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Figure 8. Same as Fig. 4, except for the MISR over-water retrieval.

the 550 nm fine-mode fraction, 550 nm non-spherical frac-
tion, and 550 nm single-scattering albedo. Due to the limited
number of MISR over-water–AERONET coincidences with
AOD> 1.0, the conclusions one can draw from this dataset
will also be limited.

Figure 9a–c show scatterplots of MISR over-water FMF
compared to AERONET FMF for AOD ranges presented
in Table 6. MISR over-water FMF statistics are better than
the over-land results for MISR-retrieved AOD< 1, espe-
cially for the AOD range of 0.2–0.5. In this range, over-
water vs. over-land statistics are as follows: RMSE is 0.142
vs. 0.194, MAE is 0.087 vs. 0.125, and the correlation co-
efficient is 0.804 vs. 0.611. Interestingly, MISR over-water
FMF RMSE and MAE slightly deteriorate from the 0.2–0.5
retrieved AOD regime onwards, even though correlation im-
proves substantially (from 0.804 to 0.939 for AOD> 1). The
fact that the FMF bias becomes more negative in magni-
tude with increasing AOD suggests that this is in part due
to algorithmic differences between the PSA and RSA (more
fine-mode-dominated for the RSA), although it could also be
partly due to differences in the definition of fine mode be-
tween the MISR RA and AERONET.

Figure 9d–f show scatterplots of the MISR over-water
non-spherical fraction compared to the AERONET non-

spherical fraction. Unlike with FMF, errors and correlation
improve with AOD for all bins. It is likely that the addition
of multiple non-spherical particle models (now included in
both fine and coarse modes for the MISR RA) is contributing
to the improvement in retrieved non-sphericity with AOD,
with RMSE at 0.384 for the 0.2–0.5 bin, dropping to 0.3 for
the 0.5–1.0 bin, and dropping further to 0.15 for AOD> 1.
Correlation dramatically improves as well, increasing from
0.577 to 0.913 for the 0.2–0.5 bin and AOD> 1, respectively.

Figure 9g–i show scatterplots of MISR over-water
550 nm single-scattering albedo compared to retrievals of
AERONET single-scattering albedo (with the same AOD
ranges as above). Although the correlation is quite a bit
lower than the results over land, RMSE and MAE are bet-
ter for the water algorithm compared to the over-land algo-
rithm (for the same AOD bin). For instance, for over-water
AOD> 1 (n= 21), we report an RMSE of 0.010, an MAE
of 0.005, and a correlation coefficient of 0.501, whereas for
the 1.0–1.5 AOD bin over-land retrieval (n= 62) we report
an RMSE of 0.021, MAE of 0.011 and correlation coefficient
of 0.717. Considering how dust-dominated the over-water
results are at high AOD (AERONET mean non-sphericity
is 0.799 for AOD> 1), it is very likely that the addition of
multiple non-spherical particle models has significantly im-
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Table 6. MISR RA vs. AERONET almucantar inversion statistics over water. Same as Table 4, except for MISR RA vs. AERONET inversion
statistics over water. All MISR data correspond to the combined surface algorithm. Note that AERONET inversion results are not ground
truth; they represent retrieval results. The AERONET team cautions against the use of results when blue-band AOD< 0.4, so comparisons
for green-band AOD< 0.50 should be considered qualitative rather than quantitative.

550 nm FMF comparison No. RMSE MAE Bias r

FMF | 0.20<AOD< 0.50 804 0.142 0.087 −0.001 0.804
FMF | 0.50<AOD< 1.00 123 0.150 0.111 −0.028 0.882
FMF | AOD> 1.00 21 0.155 0.127 -0.098 0.939

Non-sph. fr. comparison

Non-sph. fr. | 0.20<AOD< 0.50 804 0.384 0.301 −0.199 0.577
Non-sph. fr. | 0.50<AOD< 1.00 123 0.300 0.237 −0.147 0.732
Non-sph. fr. | AOD> 1.00 21 0.150 0.075 −0.075 0.913

550 nm SSA comparison

SSA | 0.20<AOD< 0.50 804 0.039 0.022 0.001 0.222
SSA | 0.50<AOD< 1.00 123 0.031 0.014 0.004 −0.105
SSA | AOD> 1.00 21 0.010 0.005 0.003 0.501

Figure 9. Same as Fig. 5, except for the MISR over-water retrieval. Note the different AOD (compared to Fig. 5) bounds embedded in red.

proved our retrievals of SSA, especially in dust-dominated
regions. However, the conclusions we can draw from this
are still limited by the small number (21) of QA cases with
AOD> 1.0.

4 Conclusions

In Limbacher and Kahn (2019), we demonstrated the MISR
RA’s ability to retrieve AOD and the Ångström exponent over
ice-free water of any color (turbid, shallow, eutrophic, etc.).
Using the same dataset we used in that study, we develop,
test, and present a new version of the MISR RA capable of
retrieving aerosol and surface properties over both land and
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ice-free water. We also test the approach of imposing a pre-
scribed surface BRF at higher AOD using MODIS-MAIAC
Ross-Thick Li-Sparse (RTLS) RTLS 8 d surface BRF kernels
over land and static values over water. In addition to validat-
ing AOD and the Ångström exponent, we dig more deeply
into this dataset by evaluating the retrieved fine-mode frac-
tion (FMF), retrieved non-spherical fraction (Non-Sph Fr),
and retrieved single-scattering albedo (SSA; all parameters
at 550 nm).

Over land, using our combined surface algorithm, the
dataset yields 11 563 quality-assessed MISR–AERONET
direct-sun coincidences. The MISR RA over-land 550 nm
AOD is highly correlated with AERONET 550 nm AOD
(r = 0.935). The error statistics are also quite favorable, with
a root mean squared error (RMSE) of 0.084, median ab-
solute error (MAE) of 0.031, and a small bias of 0.003.
Constraining MISR RA-retrieved AOD errors by MISR RA-
retrieved AOD, we identify a prognostic pixel-level MISR
RA over-land AOD uncertainty of ±(0.20×[MISR AOD]+
0.02), which holds true even when AOD exceeds unity
over land, unlike for the MISR operational standard al-
gorithm (SA; which suffers from extreme biases in this
regime). For the 664 MISR–AERONET direct-sun coinci-
dences with MISR-retrieved AOD greater than 0.50, we re-
port the following Ångström exponent statistics: RMSE is
0.349, MAE is 0.244, the bias is 0.133, and the correla-
tion coefficient is 0.844. The AERONET almucantar inver-
sion dataset yields 571 quality-assessed MISR–AERONET
coincidences with MISR-retrieved AOD> 0.50 and 177 co-
incidences with MISR-retrieved AOD> 1. For 1.0<MISR
AOD< 1.5, we report FMF RMSE of 0.139 and FMF r =
0.914, non-sph fr. RMSE of 0.257 and r = 0.841, and SSA
RMSE of 0.021 and r = 0.717. With the exception of the re-
trieved non-spherical fraction, over-land statistics continue to
improve for AOD> 1.5. Taken together with the Ångström
exponent statistics, the over-land MISR RA yields some
qualitative information about aerosol size (FMF and ANG) if
retrieved AOD exceeds 0.2, with excellent quantitative com-
parison to AERONET beginning at an AOD∼ 1.0. Qualita-
tive retrievals (RMSE∼ 0.25) of non-sphericity can be made
at higher AOD (generally > 1) than is needed to get con-
straints on size. Depending on retrieval conditions, quali-
tative retrieval of SSA can be made at an AOD ranging
from 0.5–1.0, with quantitative results (RMSE∼ 0.02) ap-
parent when AOD exceeds 1. MISR RA SSA error statis-
tics continue to improve above an AOD of 1.5, with an
RMSE= 0.015 and MAE< 0.01. Overall, we note that our
assessment of retrieved particle properties from the MISR
RA is consistent with the study performed by Kahn and Gait-
ley (2015) using the previous version (V22) of the MISR op-
erational aerosol product. However, that work was limited
to AOD< 0.6, as the MISR SA suffers from systematic bi-
ases in AOD above this. For the first time, partly because the
MISR RA prescribed surface algorithm allows us to perform
aerosol retrievals accurately at much higher AOD, we can

extend their qualitative conclusions about MISR-retrieved
aerosol type into a more quantitative over-land comparison
with AERONET.

Over water our combined surface algorithm yields 4596
MISR quality-assessed and AERONET direct-sun coinci-
dences. As with the over-land retrieval, over-water AOD is
highly correlated (r = 0.935) with AERONET 550 nm AOD.
Error statistics also improve, with an RMSE of 0.063, MAE
of 0.024, and a small bias of 0.014. Prognostic pixel-level
AOD error improves slightly to ±(0.15×[MISR AOD] +
0.02). For the 188 MISR–AERONET direct-sun coinci-
dences with MISR-retrieved AOD greater than 0.50, we re-
port the following Ångström exponent statistics: RMSE is
0.269, MAE is 0.159, the bias is −0.032, and the correla-
tion coefficient is 0.889. The AERONET almucantar inver-
sion dataset yields 144 quality-assessed MISR–AERONET
coincidences with MISR-retrieved AOD> 0.50 and 21 coin-
cidences with MISR-retrieved AOD> 1, which greatly limits
our ability to draw conclusions about retrieved aerosol parti-
cle properties over water. For MISR AOD> 1.0, we report
FMF RMSE of 0.155 and FMF r = 0.939, non-sphericity
RMSE of 0.150 and r = 0.913, and SSA RMSE of 0.010
and r = 0.501. Qualitative retrievals of aerosol type appear
similar to the over-land retrieval, with the expectation that
better constraints on all aerosol particle properties can be
made at lower AODs. Due to the addition of multiple non-
spherical particle models (including in the fine mode), it
appears likely that quantitative retrievals (RMSE< 0.2) of
aerosol non-sphericity can be made over water if the AOD
exceeds unity, although this will need to be confirmed in fu-
ture work.

This paper represents the first iteration of a combined
MISR RA over-land+ over-water retrieval. The authors plan
to use to results of this study to further refine the aerosol
particle properties used by the algorithm and improve our
characterization of the surface used by the prescribed surface
algorithm over both land and water. In the future, we will
likely include all AERONET direct-sun and inversion coin-
cidences with MISR for the entire 22-year data record rather
than the 4 years that were included here, as this will improve
our ability to draw conclusions about aerosol particle prop-
erties, especially over water.

Data availability. All MISR RA validation data used for this
paper are available at NASA’s Atmospheric Science Data Center
(ASDC). The data can be downloaded at https://asdc.larc.nasa.
gov/micro-article/new-misr-research-aerosol-retrieval-algorithm
(last access: 9 November 2022, Kahn and Limbacher, 2022).
CCMP vector winds are produced by Remote Sensing Systems and
sponsored by NASA. Data are available at https://remss.com/ (last
access: 1 November 2022; Mears et al., 2019).
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