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Abstract. Observations from geostationary satellites can
provide spatially continuous coverage at continental scales
with high spatial and temporal resolution. Because of this,
they are commonly used to complement ground-based pre-
cipitation measurements, whose coverage is often more lim-
ited.

We present Hydronn, a neural-network-based, near-real-
time precipitation retrieval for Brazil based on visible and
infrared (Vis—IR) observations from the Advanced Baseline
Imager (ABI) on the Geostationary Operational Environmen-
tal Satellite 16 (GOES-16). The retrieval, which employs a
convolutional neural network to perform Bayesian precipita-
tion retrievals, was developed with the aims of (1) leveraging
the full potential of latest-generation geostationary observa-
tions and (2) providing probabilistic precipitation estimates
with well-calibrated uncertainties. The retrieval is trained us-
ing more than 3 years of collocations with combined radar
and radiometer retrievals from the Global Precipitation Mea-
surement (GPM) core observatory over South America.

The accuracy of instantaneous precipitation estimates is
assessed using a separate year of GPM combined retrievals
and compared to retrievals from passive microwave (PMW)
sensors and HYDRO, the Vis—IR retrieval that is currently in
operational use at the Brazilian Institute for Space Research.
Using all available channels of the ABI, Hydronn achieves
accuracy close to that of state-of-the-art PMW precipitation
retrievals in both precipitation estimation and detection de-
spite the lower information content of the Vis—IR observa-
tions.

Hourly, daily, and monthly precipitation accumulations are
evaluated against gauge measurements for June and Decem-
ber 2020 and compared to HYDRO, the Precipitation Esti-

mation from Remotely Sensed Information using Artificial
Neural Networks (PERSTANN) Cloud Classification System
(CCS), and the Integrated Multi-satellitE Retrievals for GPM
(IMERG). Compared to HYDRO, Hydronn reduces the mean
absolute error for hourly accumulations by 21 % (22 %) com-
pared to HYDRO by 44 % (41 %) for the mean squared error
(MSE) and increases the correlation by 138 % (312 %) for
June (December) 2020. Compared to IMERG, the improve-
ments correspond to 16 % (14 %), 12 % (12 %), and 20 %
(56 %), respectively. Furthermore, we show that the prob-
abilistic retrieval is well calibrated against gauge measure-
ments when differences in the distributions of the training
data and the gauge measurements are accounted for.

Hydronn has the potential to significantly improve near-
real-time precipitation retrievals over Brazil. Furthermore,
our results show that precipitation retrievals based on convo-
lutional neural networks (CNNs) that leverage the full range
of available observations from latest-generation geostation-
ary satellites can provide instantaneous precipitation esti-
mates with accuracy close to that of state-of-the-art PMW
retrievals. The high temporal resolution of the geostationary
observation allows Hydronn to provide more accurate pre-
cipitation accumulations than any of the tested conventional
precipitation retrievals. Hydronn thus clearly shows the po-
tential of deep-learning-based precipitation retrievals to im-
prove precipitation estimates from currently available satel-
lite imagery.
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1 Introduction

Timely and highly resolved measurements of precipitation
constitute an important source of information for weather
forecasting, disaster response and hydrological modeling.
These measurements can be provided by dense radar and
gauge networks, but their coverage is typically limited in
less populated regions. However, even where these measure-
ments are available, they are not necessarily without issues.
The ability of rain gauge measurements to truthfully repre-
sent spatial precipitation statistics is limited by their extreme
localization (Smith et al., 1996). Ground-based precipitation
radars are affected by beam blocking as well as measurement
errors caused by the varying altitude of the radar beam along
its range (Holleman, 2007).

Since satellite observations provide continuous spatial
coverage, they are well suited to complement the measure-
ments from gauges and ground radars. Microwave observa-
tions generally provide the most direct spaceborne measure-
ments of precipitation because of their sensitivity to emis-
sion and scattering from precipitating hydrometeors. Unfor-
tunately, due to their comparably low spatial resolution, these
sensors are currently only employed on platforms in low-
Earth orbit. Since this limits the width of the satellite swath,
a large constellation of sensors on different platforms is re-
quired to achieve low revisit times. This is the approach pur-
sued by the Global Precipitation Measurement (GPM; Hou
et al., 2014). Nonetheless, the mean revisit time for the pas-
sive microwave (PMW) sensors of the GPM constellation
still exceeds 1 h in the tropics.

Visible and infrared (Vis—IR) observations from the latest
generation of geostationary satellites (Schmit et al., 2005)
provide spatial resolutions between 0.5 and 2 km at the sub-
satellite point and a temporal resolution of up to 10 min for
full-disk observations. The disadvantage of these observa-
tions for measuring precipitation is that they are mostly sen-
sitive to the properties of the upper parts of clouds, which are
only indirectly related to the precipitation near the surface.
Their unrivaled spatial and temporal resolution makes them
a valuable source of information for satellite-based precipi-
tation estimates nonetheless.

The operational use of geostationary Vis—IR observations
for precipitation retrievals dates back more than 40 years
(Scofield and Oliver, 1977), and a large number of differ-
ent algorithms have been developed over the years (Arkin
and Meisner, 1987; Adler and Negri, 1988; Vicente et al.,
1998; Sorooshian et al., 2000; Kuligowski, 2002; Scofield
and Kuligowski, 2003; Hong et al., 2004; Kuligowski et al.,
2016). Due to the aforementioned indirect relationship be-
tween observations and precipitation, nearly all of these
methods are based on empirical relationships derived from
satellite observations collocated with reference data de-
rived from more direct measurement techniques such as
ground-based radars. Moreover, operational retrievals of-
ten rely on corrections to improve the accuracy of their
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estimates. The Self-Calibrating Multivariate Precipitation
Retrieval (SCamPR; Kuligowski et al., 2016), for exam-
ple, is dynamically calibrated using the latest available mi-
crowave precipitation estimates. Similarly, Karbalaee et al.
(2017) develop a correction for the Precipitation Estima-
tion from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) Cloud Classification System
(CCS; Hong et al., 2004) based on retrievals from passive-
microwave sensors. PERSIANN-CCS is superseded by the
PERSIANN-PDIR (Nguyen et al., 2020) algorithm, which,
in addition to refining the mathematical formulation of the
regression scheme of PERSIANN-CCS, adds a regional cor-
rection scheme.

Another example is the HYDRO precipitation retrieval
that is currently in operational use at the National Institute
for Space Research (INPE) in Brazil, which is based on the
Hydroestimator algorithm (Scofield and Kuligowski, 2003).
It employs an empirical relationship between the 10.7 um IR
channel and precipitation rates with additional corrections.
To adapt it for application over South America, yet another
correction was derived by de Siqueira and Vila (2019), which
improved the accuracy of precipitation accumulations but not
that of instantaneous precipitation rates.

A common shortcoming of all retrieval algorithms dis-
cussed above is that they neglect retrieval uncertainties. The
retrieval of precipitation rates from Vis—IR observations con-
stitutes an inverse problem that is strongly underconstrained.
This is true even for microwave-based retrievals and likely
exacerbated by the less direct information content in the
Vis—IR observations. The ill-posed character of the retrieval
problem leads to significant retrieval uncertainties. Provid-
ing probabilistic estimates that quantify these uncertainties
would help the characterization of precipitation estimates
and thus increase their usefulness.

This study presents Hydronn, a novel real-time precipita-
tion retrieval that uses Vis—IR observations from the Geo-
stationary Operational Environmental Satellite 16 (GOES-
16) Advanced Baseline Imager (ABI; Schmit et al., 2005) to
retrieve precipitation over Brazil. It was designed with two
aims: (1) to leverage the full potential of observations from
the latest generation of geostationary sensors and (2) to de-
velop a Bayesian precipitation retrieval algorithm that can
provide well-calibrated uncertainty estimates.

Pfreundschuh et al. (2018) have shown that when a re-
trieval is cast as a probabilistic regression problem and solved
using a neural network, the obtained results are equivalent to
those obtained using traditional Bayesian retrieval methods,
given that the a priori distribution matches the distribution
of the data used to train the neural network. Neural-network-
based probabilistic regression techniques thus provide a pow-
erful and flexible way of combining recent advances in deep
learning with the theoretically sound handling of retrieval
uncertainties of Bayesian retrieval methods. Hydronn builds
on this approach and uses a convolutional neural network
(CNN) to predict a binned approximation of the probability
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density function (PDF) of the marginal posterior distribution
of the observed precipitation at each output pixel.

The Hydronn retrieval is trained using more than 3 years of
collocated observations from the ABI and combined radar—
radiometer retrievals from the GPM core observatory (Grecu
et al., 2016) over South America. The accuracy of Hydronn’s
instantaneous precipitation estimates is evaluated using a
separate year of GPM combined retrievals and compared
to HYDRO and the Goddard Profiling Algorithm (GPROF;
Kummerow et al., 2015) applied to PMW retrievals from the
GPM Microwave Imager (GMI). The accuracy of precipita-
tion accumulations is evaluated using gauge measurements
from June and December 2020. They are compared with HY-
DRO and two other commonly used precipitation products:
PERSIANN-CCS, which is based on geostationary IR obser-
vations only, and the Integrated Multi-satellitE Retrievals for
GPM (IMERG; Huffman et al., 2020), which combines ob-
servations from microwave, geostationary sensors, and rain
gauges.

2 Data

This section introduces the various datasets that are used to
train and evaluate the Hydronn retrievals.

21 GPM CMB

The GPM dual-frequency precipitation radar (DPR) and
GMI Combined Precipitation product (Olson, 2017) com-
bines observations from the DPR and GMI on board the
GPM core observatory (Grecu et al., 2016). Although the of-
ficially listed short name for the product is GPM_2BCMB
(Olson, 2017), we will refer to it as GPM CMB since we con-
sider it more readable. Because of the high sensitivity to pre-
cipitating hydrometeors of the active and passive microwave
observations, the product provides the most accurate space-
borne precipitation estimates that are currently available. In
this study the product is used as reference data to train the
Hydronn retrievals and to assess their accuracy for instanta-
neous precipitation estimates.

2.2 Rain gauge data

The rain gauge measurements that are used in this study were
compiled by the National Institute of Meteorology of Brazil
and consist of hourly gauge measurements covering the time
range May 2000 until May 2020. June and December of 2020
will be used from these data for the evaluation of Hydronn.
Data from 2018 and 2019 are used to derive correction fac-
tors for the calibration of the hourly precipitation estimates
produced by Hydronn, as will be described in Sect. 3.6.
From all available gauge stations only those with a data
availability exceeding 90 % during June and December 2020
were selected. Their geographical distribution is displayed
together with the mean precipitation in Fig. 1. The gauge
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density is fairly high on the southeastern coast of Brazil but
decreases markedly towards the northwest.

The precipitation in June 2020 is limited to the south of the
country, small parts of the west coast, and the Amazon basin,
although the latter is only sparsely covered by the gauge ob-
servations. June is typically the beginning of the dry seasons
in the central part of the country, which is clearly visible in
the gauge measurements.

December 2020 saw high precipitation amounts on the
southwestern coast of the country extending towards the
northwest, which are associated the South Atlantic conver-
gence zone (SACZ; Satyamurty et al., 1998). Very low pre-
cipitation rates are observed in the northeast of the coun-
try, which is influenced by large-scale subsistence patterns
(de Siqueira and Vila, 2019).

2.3 HYDRO

HYDRO is the currently operational near-real-time pre-
cipitation retrieval at the Center for Weather Forecast
and Climate Studies/National Institute for Space Research
(CPTEC/INPE). It is based on the Hydroestimator (Scofield
and Kuligowski, 2003) and thus uses a combination of empir-
ical power-law relationships between 10.7 pm IR brightness
temperatures and surface precipitation with correction fac-
tors, taking into account model-derived moisture and wind
parameters as well as cloud structure. The current version
of the retrieval is described in de Siqueira and Vila (2019),
which also introduces regional correction factors based on a
climatology of surface precipitation rates derived from radar
measurements of the Tropical Rainfall Measurement Mission
(TRMM; Simpson et al., 1996) and GPM. For this study we
use the corrected version of HYDRO proposed in de Siqueira
and Vila (2019) with a regional correction for all of Brazil
(referred to as HYDROBR in de Siqueira and Vila, 2019).

24 GPROF GMI

The Goddard Profiling Algorithm (GPROF; Kummerow
et al., 2015) is used to retrieve surface precipitation from
the PMW sensors of the GPM constellation. The algorithm
is a Bayesian retrieval scheme that is based on a retrieval
database principally built up of collocations of GMI observa-
tions and the GPM CMB retrievals. Because GMI is a ded-
icated precipitation sensor and because its retrieval is based
on direct collocations with GPM CMB, the GPROF GMI re-
trieval is considered the most accurate of the sensors of the
GPM constellation. Moreover, since GMI observations can
always be collocated with the test data for the Hydronn re-
trieval, we use GPROF GMI as a baseline to assess the Hy-
dronn retrievals against.

2.5 PERSIANN-CCS

PERSIANN-CCS (Hong et al., 2004) uses 10.7 um IR ob-
servations from geostationary satellites to retrieve precip-
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(b) Mean precipitation (June)
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(c) Mean precipitation (December)
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Figure 1. Overview of the rain gauge data from June and December 2020 used to validate the retrievals. Panel (a) displays their spatial
distribution by means of the number of gauges falling into each hexagon. Hexagon-free areas are not covered by any gauges. Panels (b) and
(c) show the mean precipitation measured by all gauges falling into each hexagon.

itation. Input images are first segmented using increasing
temperature thresholds in order to identify pixels that cor-
respond to convective activity. These pixels are consecu-
tively assumed to be precipitating and classified using a
neural-network-based algorithm. Quantitative precipitation
estimates at pixel level are derived from this classification by
applying a class-specific power-law relationship that relates
the 10.7 um brightness temperatures to precipitation.

The dataset that is used for the evaluation against Hydronn
consists of hourly precipitation rates that are distributed in
near-real time through the PERSIANN data portal (UCI
CHRS Data Portal, 2022). Although the global CCS dataset
is currently being replaced by the updated PERSIANN-
Dynamic Infrared Rain Rate (PDIR-Now; Nguyen et al.,
2020), we were not able to use it for this study due to parts of
the evaluation period being missing from the online archive.

2.6 IMERG

IMERG (Huffman et al., 2020) combines retrievals from pas-
sive microwave and IR observations as well as rain gauge
measurements to produce global, half-hourly measurements
of precipitation. Due to its reliance on a wealth of measure-
ment sources as well as the sophistication of the retrieval
pipeline, the product can be considered one of the most ro-
bust satellite-based precipitation products that are currently
available (Pradhan et al., 2022).

Three different configurations of IMERG products are
available: IMERG-Early and IMERG-Late are based solely
on satellite observations and available with latencies of 4
and 14 h, respectively. IMERG-Final is adjusted using global
gauge measurements but available only after 3.5 months.
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Although Hydronn has been designed to target near-real-
time applications and is thus more similar to IMERG-Early,
we use IMERG-Final for our comparison as it constitutes
the most elaborate precipitation estimates that are currently
available and can thus be considered the state of the art of
global quantitative precipitation estimates.

3 Method

This section describes the implementation of Hydronn, the
proposed near-real-time precipitation retrieval algorithm for
Brazil. It is based on a convolutional neural network (CNN),
which is used to predict the a posteriori distribution of in-
stantaneous precipitation. Following this, it is discussed how
the probabilistic precipitation estimates can be combined to
hourly accumulations, and an a priori adjustment is proposed
to account for differences between the training data and the
gauge measurements that are used to evaluate the retrieval.

3.1 Training data

The training data for the Hydronn retrieval are generated
from collocations of input observations from the GOES-16
ABI and retrieved surface precipitation from GPM CMB
over South America. Figure 2 shows the domain over which
the training data were extracted (marked as “R1” in Fig. 2). It
extends from —85 to —30° E in longitude and —40 to 10° N
in latitude. The plot also shows extracted training scenes
and corresponding GPM CMB precipitation estimates for
23 September 2019.

The GOES-16 ABI observations were extracted at their
native resolutions. The surface precipitation from GPM
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Figure 2. GOES-16 true-color composite from 23 September 2019
(generated using the natural_color composite in Satpy; Ras-
paud et al., 2021). The rectangle R1 marks the domain over South
America, which was used for the extraction of training and testing
collocations between GOES-16 ABI and GPM CMB. Dashed poly-
gons show the boundaries of the training scenes extracted for this
day together with the collocated GPM CMB results. The rectangle
R2 marks the secondary domain, which is used as an additional test
domain to assess the impact of the spatially limited training domain.

CMB was mapped to the 2km resolution of the ABI's IR
channels using nearest-neighbor interpolation. Collocations
were extracted for the time range 1 January 2018 until 1 Jan-
uary 2020 and 1 January 2021 until 1 September 2021.

Collocations from 1 January 2020 until 1 January 2021
were extracted and set aside as test data for assessing the
accuracy of the instantaneous precipitation estimates of Hy-
dronn. In addition to this, collocations over an additional re-
gion (marked “R2” in Fig. 2) were extracted on days 1, 6, 11,
16, 21, and 26 of each month of the year 2020. These addi-
tional test data will be used to investigate the impact of the
regional training database on the retrieval accuracy.

The correspondence between probabilistic neural network
retrievals and Bayesian retrieval methods shown in Pfreund-
schuh et al. (2018) emphasizes the importance of training
data distribution for the probabilistic retrieval results. Since
the retrieval uncertainties depend on the distribution of the
training data, the retrieval can only provide well-calibrated
probabilistic predictions for test data whose distribution is
consistent with that of the training data. The distribution
of precipitation rates in the training dataset is displayed in
Fig. 3. The detection threshold for precipitation of the GPM
radar between 0.2 and 0.4mmh~! is clearly visible in the
distributions. In addition to this, a weak seasonal cycle is
apparent, which mainly impacts the likelihood of moderate
precipitation. The gauge measurements exhibit stronger sea-
sonal variability, especially for strong rain. It should be noted
here, however, that the precipitation estimates in the train-
ing data correspond to instantaneous precipitation estimates,
while the gauge measurements are integrated over the time
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Table 1. Hydronn retrieval configurations.

Name Input  Input Output
bands  resolution resolution

Hydronng 1r 13 4km 4km

Hydronng Ay 1,...,16 4km 4km

Hydronnp o I,...,16 0.5,1,and 2km 2km

of an hour. Differences between the seasonal cycles of the
datasets may therefore be caused by changes in the temporal
evolution of precipitation events. An approach to reconcile
the differences between the distributions of training and val-
idation will be proposed in Sect. 3.6 below.

3.2 Retrieval configurations

The Hydronn retrieval has been implemented in three differ-
ent configurations in order to assess how the choice of in-
put observations and their resolution affects its performance.
The most basic retrieval configuration is the Hydronny 1r re-
trieval, which only uses brightness temperatures from the
10.3 um channel as input. The same longwave—IR window
channel is also used by HYDRO and the PERSIANN-CCS
retrieval. The availability of similar channels on a long time
series of geostationary sensors makes them suitable for the
generation of climate data records. Since this retrieval uses
the same input as HYDRO and PERSIANN-CCS it allows
for assessment of the benefit afforded by the probabilistic,
neural-network-based retrieval technique used by Hydronn.

The second retrieval configuration, denoted as
Hydronng sy, uses all available GOES channels at a
resolution of 4 km, which is the resolution at which both
HYDRO and PERSIANN-CCS are operating. This model
configuration is included to assess the benefit of including
all ABI channels in the retrieval.

The third configuration, Hydronn sy, uses all observa-
tions at their native resolution and retrieves precipitation at
the resolution of the 2km channels. This means that GOES
channel 2 is ingested at a resolution of 500 m; channels 1,
3, and 4 at a resolution of 1km; and the remaining chan-
nels at 2km. This is in contrast to the other Hydronn con-
figurations and other precipitation retrievals which typically
ingest all observations at the same resolution. This config-
uration aims to explore the extent to which high-resolution
observations can improve precipitation retrievals, even if the
reference precipitation measurement only has a resolution of
5 km. The comparison of the Hydronng aj; and Hydronns aj
configurations aims to address the question of whether the
increased computational complexity of Hydronny aj can be
justified by improvements in retrieval accuracy. The charac-
teristics of the three configurations are summarized in Ta-
ble 1.
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(b) Gauge data
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Figure 3. Distribution of reference precipitation rates. Panel (a) shows the seasonal PDFs of precipitation rates in the training data. Panel (b)
shows the PDFs of precipitation rates measured by the gauges over the time period covered by the training data. Grey lines in the background
trace the PDFs of the precipitation rates in the training data shown in panel (a).

3.3 Neural network model

All Hydronn retrievals are based on a similar convolutional
neural network (CNN) architecture, which is illustrated in
Fig. 4. CNNs have been shown to be able to learn seman-
tic features directly from image data (Selvaraju et al., 2017),
which sets them apart from conventional regression tech-
niques. Since satellite imagery of clouds exhibits patterns
that can be related to different precipitation regimes, we ex-
pect this information to help to constrain the precipitation re-
trieval. In fact, a preliminary study we have conducted found
that CNNs yield more accurate precipitation retrievals than
a fully connected neural network operating on independent
pixels. The results have been published as parts of a master’s
thesis and are available online (Ingemarsson, 2021).

CNNs’ principal building blocks are convolution layers.
A convolution layer applies a set of convolution operations
to an input image. The parameters of the layer’s convolution
kernels are learned during the training of the network. Each
convolution layer thus corresponds to a set of learnable, lin-
ear image transformations. CNNSs typically consist of a stack
of convolution layers that are interleaved with normalization
layers and activation functions. The activation functions are
required to allow the CNN to represent nonlinear transfor-
mations, while normalization has been found to be a cru-
cial ingredient to accelerate the training of CNNs (Ioffe and
Szegedy, 2015).

The neural networks used by Hydronn are built up of
blocks, each of which comprises two separable convolution
layers followed by batch normalization (Ioffe and Szegedy,
2015) and GELU activation functions (Hendrycks and Gim-
pel, 2016). These blocks were inspired by the Xception
model proposed by Chollet (2017). A residual connection
directly connects the input of each block to its output.
These residual connections improve the flow of the gradients
through the network and were found to be a crucial ingredi-
ent for the training of very deep CNNs (He et al., 2016).

Atmos. Meas. Tech., 15, 6907-6933, 2022

The Xception blocks are organized into an encoder—
decoder structure, which was popularized by the UNet model
for image segmentation (Ronneberger et al., 2015). The first
part of the model, the encoder, combines Xception blocks
with downsampling layers. These downsampling layers re-
duce the size of the input image by a factor of 2 and thus
double the receptive field of the following layers. This al-
lows the network to efficiently combine information across
different regions of the input image.

Following the encoder part of the network, the decoder
consists of several stages, each containing an upsampling
layer and a single Xception block. The upsampling layers
allow the network to combine the information extracted at
coarser resolution back down to input resolution. As in the
UNet model, skip connections between the corresponding
stages of encoder and decoder are included to improve the
flow of information through the network.

The head of the network employs five layers of 1 x 1 con-
volutions followed by normalization layers and GELU acti-
vation function. This network head is computationally equiv-
alent to a fully connected network that transforms the repre-
sentation extracted by the encoder and decoder parts of the
network to a probability distribution. A final 1 x 1 convolu-
tion maps the output for each pixel to a vector of length 128.
The softmax activation function

exp(x)
Yo iexp(x;)

is applied to each of those vectors to ensure that all elements
are positive and sum to 1. This allows the results to be inter-
preted as probabilities of a categorical distribution.

The neural network used by the Hydronny ay retrieval ar-
chitecture contains two additional downsampling stages to
allow the network to ingest all ABI channels at their native
resolution. These two stages are omitted for the Hydronna 1r
and Hydronny aj retrievals. The common encoder and de-
coder of all Hydronn models comprise five stages. The num-

o(x)= (1)
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Figure 4. The neural network architecture used by the Hydronny aj; retrieval. For the Hydronng g and Hydronng A retrievals, the two addi-
tional stages for the processing of the higher-resolution inputs are omitted. Instead, the input comprises all input observations downsampled
to 4 km resolution. Grey text in parentheses gives the shape of the tensors at the various stages of the network using channel-first ordering and
omitting the batch dimension. Bold grey text specifies merge operations for data streams. Braces are used to mark the repetition of network
components.
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ber of internal features is set to nf = 256 and the number of
Xception blocks in each encoder stage to N = 3.

All available collocations from the training period are used
for the training, and no distinction is made between day-
and nighttime observations. The Adam optimizer (Kingma
and Ba, 2014) with an initial learning rate of 0.0005, 8; =
0.9, B2 =0.99 and a cosine-annealing learning rate sched-
ule (Loshchilov and Hutter, 2016) is used for training. Warm
restarts are performed every 20 epochs and repeated until the
retrieval accuracy on a held-out part of the training data con-
verges. Training of a single retrieval model takes about 3d
on an NVIDIA V100 GPU (graphics processing unit).

3.4 Probabilistic precipitation estimates

Hydronn builds on the findings from Pfreundschuh et al.
(2018), which showed that probabilistic regression with neu-
ral networks yields the same results as a traditional Bayesian
retrieval using an a priori distribution that is the same as
the training data of the neural network. Although Pfreund-
schuh et al. (2018) used quantile regression neural networks
(QRNN?s) to perform Bayesian remote sensing retrievals with
neural networks, a different approach is taken here. Follow-
ing the work by Sgnderby et al. (2020), the range of possi-
ble precipitation values is discretized, and the neural network
output is used to predict the probabilities of the observed pre-
cipitation falling into any of the precipitation bins. By nor-
malizing the predicted probabilities by the width of the corre-
sponding bin, a binned approximation of the probability den-
sity function (PDF) of the Bayesian a posterior distribution
can be obtained. We found this approach to be equivalent to
QRNN:Ss in retrieval accuracy. We chose this approach, which
we will refer to as density regression neural network (DRNN)
because we did not find an efficient way to calculate the sum
of two independent random variables from the quantiles pre-
dicted by a QRNN. For two PDFs given over discrete bins,
the sum can be calculated by weighing all possible sums of
bin centers by the product of the corresponding probabilities
and accumulating the resulting probabilities into the bins of
the result PDF.

DRNNs can be implemented by treating the retrieval as
a classification problem over a discretized range of precip-
itation values and using the cross-entropy loss to train the
network. The cross-entropy loss is defined as

L(y,y) = —10g (Jbin(y)) » )

where y is the vector of probabilities predicted by the net-
work, and bin(y) is the index of the probability bin corre-
sponding to the true precipitation rate y.

Hydronn predicts the a posteriori distribution over 128
logarithmically spaced bins covering the range from 1073 to
10* mm h~". This upper limit of the bin range may be unreal-
istically large, but using this range has the advantage that we
can compute the sum of two distributions on the same bins
as the predictions are made.
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The reference precipitation of pixels without rain was
set to a log-uniform random value between 10~> and
107> mmh~'. Replacing zero values with small random val-
ues has the advantage of making the corresponding cumula-
tive distribution function (CDF) continuous, which ensures
that all quantiles of the distribution are always well defined.
This allows us to verify the probabilistic predictions from the
network using calibration curves.

Since storing the full posterior distribution for all pixels is
of little use for operational processing, only a reduced num-
ber of relevant statistics are retained in the retrieval output.
Those are the posterior means as well as a sample and 14
quantiles of the posterior distribution. Note that the quan-
tiles are always located around the region of the posterior
distribution that contains most of its mass and thus provide
a more compact way of storing the probabilistic retrieval re-
sults than the full 128 probabilities. In addition to providing
a direct measure of retrieval uncertainty, the quantiles can be
used to reconstruct a piece-wise linear approximation of the
cumulative distribution function (CDF) of the retrieved dis-
tribution. The CDF can then be used, for example, to detect
the exceedance of certain precipitation thresholds. Compared
to training a separate classifier to perform this task, this ap-
proach has the advantage that the precipitation threshold can
be chosen dependent on the application context after the net-
work has been trained.

3.5 Calculation of hourly accumulations

The precipitation estimates produced by Hydronn corre-
spond to instantaneous precipitation rates. In order to com-
pare the retrieved, instantaneous precipitation rates to the
gauge measurements, a method is required to aggregate the
retrieval results to hourly accumulations. While this is not an
issue when only the posterior mean is retrieved, it is unclear
how retrieval uncertainties should be accumulated in time.
The problem is illustrated in Fig. 5 using six consecutive re-
trievals at a single output pixel. The green lines show the re-
trieved distributions for each input observation. Because Hy-
dronn has no way of modeling the correlations between con-
secutive observations, it is not clear how the instantaneous
distributions can be aggregated to a posterior distribution for
the hourly accumulations.

With the lack of a formal way to resolve this, we have
implemented two heuristics for calculating probabilistic esti-
mates of hourly accumulations from instantaneous measure-
ments. The first heuristic is to average the predicted posterior
distributions. For the case of multiple identical observations,
this preserves the retrieval uncertainties and thus corresponds
to the assumption of strong dependence of the retrieval errors
for consecutive observations. The second approach is to as-
sume temporal independence of the retrieval uncertainty.

The blue and red curves in Fig. 5 show the resulting pos-
terior distributions of the hourly accumulations for the as-
sumptions of dependent errors and independent errors, re-
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Figure 5. Retrieved posterior distributions of instantaneous precip-
itation (green, solid lines) for an hour of ABI observations. The cor-
responding derived distributions for the hourly accumulations are
shown in red and blue for the assumptions of dependent and inde-
pendent errors, respectively.

spectively. Despite the differences in the two distributions,
they both have the same mean value. Under the assumption
of temporal independence, the instantaneous retrieval errors
have a tendency to compensate for each other, which reduces
the retrieval uncertainty. Conversely, strongly dependent er-
rors have a tendency to conserve the uncertainty of the instan-
taneous retrievals, resulting in higher probabilities assigned
to stronger precipitation.

For the evaluation of the Hydronn retrieval, we calcu-
late PDFs of hourly accumulations using both approaches.
Two types of accumulations are thus produced for each Hy-
dronn configuration: one corresponding to the assumption
of dependent retrieval errors, which will be identified with
the qualifier “(dep.)”, as well as one corresponding to the
assumption of independent retrieval errors, which will be
identified with the qualifier “(indep.)”. Since the assump-
tions only affect the predicted retrieval uncertainties and not
the predicted mean values, such a distinction is not required
when point estimates of precipitation are considered.

3.6 Correcting for a priori assumptions

According to Bayes’ theorem, the posterior distribution of
retrieved precipitation p(x|y) for given input observations y
is proportional to the product of the probability of observing
y for a given precipitation rate x and the a priori probability
of x:

p(xly) o< p(ylx) p(x). 3

One difficulty with machine-learning-based retrievals is that
the a priori distribution cannot be chosen freely but is dic-
tated by the training data distribution. Figure 3 indicates that
there are inconsistencies between the training data and gauge
measurements. For example, the retrieval will learn from the

https://doi.org/10.5194/amt-15-6907-2022
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training data that the probability of precipitation values be-
tween 10™" and 1072 mmh~! is effectively zero.

This raises the question of whether it is possible to cor-
rect for the effect of the a priori assumptions encoded in the
training data of the retrieval. To explore this, we propose the
following method to correct the probabilistic predictions. Let
DPGauges(x) denote the PDF of precipitation as measured by
the available gauges shown in Fig. 3b. Moreover let

r(x) = PGauges (X) )
p(x)

denote the ratio of the PDFs of the gauge measurements
and the a priori distribution of precipitation as defined by
the training data. Assuming that pGauges(x) =0 wherever
p(x) =0 and that the conditional distribution p(y|x) of the
observations remains unchanged, a corrected posterior distri-
bution can be obtained by point-wise multiplying the likeli-
hood ratio r with the posterior distribution predicted by Hy-
dronn:

PCorrected (X]y) ¢ p(y]x)r(x) p(x), @)

The difficulty with this approach is that we only know the a
priori distribution corresponding to the instantaneous precip-
itation retrievals, i.e., the distribution of the training data, but
not for the hourly accumulations retrieved using Hydronn.
To infer them, we calculated hourly accumulations for ran-
domly sampled hours over the full year of 2019 for each re-
trieval configuration. The resulting correction factors for the
Hydronny aj retrieval are displayed in Fig. 6.

4 Results

This section evaluates the Hydronn retrievals in three steps.
First, the accuracy of the instantaneous precipitation esti-
mates with respect to the GPM CMB reference data is as-
sessed and compared to the GPROF GMI and HYDRO re-
trievals. Second, the retrieved-precipitation accumulations
from June and December 2020 are evaluated against gauge
measurements and compared to accumulations from HY-
DRO, IMERG, and PERSIANN-CCS. Third, a case study
of a heavy, flood-producing precipitation event is presented.
Definitions of the metrics used to evaluate the retrievals are
provided in Appendix Al.

4.1 Instantaneous precipitation estimates
4.1.1 Case study

As the first step in the evaluation of the instantaneous pre-
cipitation estimates, we consider retrieved precipitation for
an overpass of the GPM satellite over a mesoscale convec-
tive system (MCS) in the border region between Argentina,
Paraguay, and Brazil on 16 December 2020 at 13:59:00 UTC.

Atmos. Meas. Tech., 15, 6907-6933, 2022
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Figure 6. A priori distributions of hourly accumulations and derived correction factors r for the Hydronng aj retrieval. Panel (a) displays the
a priori distributions of hourly precipitation accumulations derived assuming strong temporal dependence of measurements (blue) and com-
plete independence (red). The dashed grey line shows the PDF of the gauge measurements. Panel (b) displays the corresponding correction
factors for the two assumptions calculated as the ratio between the respective PDFs and the PDF of the gauge measurements.

The retrieval results are displayed together with a natural
color composite in Fig. 7. The GPROF GMI and IMERG re-
trievals exhibit good agreement with the GPM CMB results.
This is expected, not only because GPROF and IMERG in-
corporate PMW observations, but also because GPM CMB
is used to derive the retrieval database used by GPROF, and
GPROF is in turn used by IMERG.

The HYDRO retrieval, on the other hand, does not agree
well with the GPM CMB results. The heavy precipitation re-
trieved by HYDRO is located in the western part of the MCS,
whereas the GPM CMB shows the very heavy precipitation
in the northeastern parts of the system. The Hydronny 1r re-
trieval captures the overall structure of the MCS better than
HYDRO but fails to represent its smaller-scale structures.
Both the Hydronns an and Hydronnp aj retrievals improve
upon this and yield results that are very similar to those of
GPROF GMI and IMERG.

Accuracy metrics for the MCS overpass with respect to the
CMB reference data are provided in Table 2. Hydronnyg jr
and Hydronny aj both exhibit dry biases of the same mag-
nitude as HYDRO, and Hydronng a even exceeds those.
However, all Hydronn retrievals yield significantly more ac-
curate results than HYDRO in terms of the other metrics.
The Hydronnj aj retrieval even surpasses IMERG in terms
of mean squared error (MSE), mean absolute error (MAE),
and critical success index (CSI) and achieves results close to
those of GPROF GMI.

This evaluation indicates that, while the total amount of
precipitation remains less accurate for Hydronn than for the
PMW retrievals, the spatial structure of the retrieved pre-
cipitation is captured equally well. Moreover, it should be
noted that the revisit time for the GPM constellation of PMW
sensors at these latitudes is around 1h (Hou et al., 2014).
Hydronn, however, can provide precipitation retrievals every

Atmos. Meas. Tech., 15, 6907-6933, 2022

10 min. While increasing the temporal coverage of the pre-
cipitation measurements is also what IMERG aims to achieve
by merging PMW retrievals with observations and retrievals
from geostationary sensors, this seems to lead to a degrada-
tion of the accuracy of the precipitation estimates. To further
illustrate the capabilities of the Hydronn retrievals, a “Video
supplement” of precipitation estimates for the MCS case is
provided (Pfreundschuh, 2022b).

4.1.2 Accuracy over target region

To assess the accuracy of the instantaneous precipitation es-
timates of Hydronn, we use collocations with GPM CMB
from all GPM overpasses of the year 2020 over the target
region, i.e., the region to which the Hydronn training data
were restricted (R1 in Fig. 2). The results of Hydronn are
compared to HYDRO and GPROF GMI. Since GPROF re-
trievals can be directly collocated with the results from CMB
and because GPROF is used by IMERG, we chose GPROF
GMI over IMERG for this comparison as it can be expected
to provide a stronger baseline. This is corroborated by the
case study presented above.

Figure 8 displays the resulting PDFs of retrieved precip-
itation conditioned on the value of the reference precipita-
tion for all assessed algorithms. While all distributions ex-
hibit noticeable spread, GPROF shows the best agreement
with the reference data. Conversely, HYDRO hardly shows
any sensitivity to the strength of the reference precipitation.
For the Hydronn results, slight improvements between the
three configurations are discernible. While the Hydronng 1r
retrieval exhibits the weakest relationship between reference
and retrieved precipitation, the Hydronng oj; configuration
yields slightly more accurate results. This can be seen in the
sharpening of the conditional PDF:s for precipitation rates oc-
curring between 2 and 20mmh~! as well as an increase in

https://doi.org/10.5194/amt-15-6907-2022
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Figure 7. A mesoscale convective system over the border region between Argentina, Paraguay, and Brazil on 16 December 2020 observed
by GPM and GOES-16. Panel (a) shows a natural color composite (generated using Raspaud et al., 2021). Panel (b) shows retrieved surface
precipitation from CMB retrieved using combined radar and passive microwave observations. Panel (b) shows precipitation retrieved by
GPROF GMI using only passive microwave observations. Panel (c) shows the surface precipitation from the IMERG Final product. Panel (d)
shows surface precipitation retrieved by HYDRO from GOES ABI observations. Panels (e), (f), and (g) show the corresponding results from

the three Hydronn configurations.

Table 2. Retrieval accuracy metrics for the MCS overpass shown in Fig. 7. Definitions of all metrics can be found in Appendix Al. Bold font

marks the best results for each metric.

Retrieval Bias MAE MSE Correlation  POD FAR CSI
(mmh=1)  [(mmh=1)?]
Hydro —0.598 2.495 46.291 0.228 0.707 0.169 0.618
GPROFGMI  -0.163 1.699 27.467 0.552 0998 0.519 0.481
IMERG 0.28 2.204 40.664 0.429 0973 0.213 0.77
Hydronng [g 0.612 2.36 30.768 0.506 0.901 0.192 0.74
Hydronng aj 0.813 2.362 33.038 0.524 0916 0.138 0.798
Hydronny j 0.57 2.105 29918 0.564 0.922 0.14  0.801

the slope of the conditional mean retrieved precipitation for
rain rates exceeding 2mmh~!. Clearer improvements in re-
trieval accuracy are observed for the Hydronny ay configu-
ration, which yields a slightly sharper distribution and an in-
creased slope in the conditional mean for precipitation rates
larger than 0.5 mmh~!. Comparing the Hydronny aj results
to GPROF shows that the distributions are quite similar for
precipitation rates below 10mmh~!. Above this threshold,
GPROF shows better sensitivity to the reference rain rates,
whereas Hydronn aj exhibits a stronger tendency to under-
estimation.

For a more quantitative analysis, Fig. 9 displays accuracy
metrics for the quantitative precipitation estimates for the full
year of test data. The results confirm that Hydronn yields
more accurate retrievals than HYDRO. Moreover, the Hy-
dronn versions that use all ABI channels are close to GPROF

https://doi.org/10.5194/amt-15-6907-2022

in terms of their accuracy. All retrievals exhibit weak sea-
sonal variability across all metrics, but this does not affect
their relative performance significantly.

4.1.3 Accuracy over the Northern Hemisphere

The neural network models used by Hydronn were trained
using only observations over Brazil (R1 in Fig. 2). The results
from the previous section indicate that Hydronn achieves
significantly higher accuracy than HYDRO and even ap-
proaches the accuracy of GPROF GMI when all available
ABI channels are used. This, of course, raises the question of
whether Hydronn still works outside the region used for its
training.

To investigate this, we have evaluated the retrievals us-
ing collocations from days 1, 6, 11, 16, 21, and 26 of every

Atmos. Meas. Tech., 15, 6907-6933, 2022
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Figure 8. PDFs of retrieved precipitation conditioned on the reference precipitation for GPROF GMI, HYDRO, and the three Hydronn
configurations. The purple line in each panel shows the mean of the retrieved surface precipitation conditioned on the reference precipitation.

month of 2020 over the Northern Hemisphere (marked as R2
in Fig. 2). The results for GPROF and the Hydronn retrievals
are displayed in Fig. 10. While the accuracy of GPROF is
higher than over Brazil, the accuracy of all Hydronn config-
urations decreases. However, the decrease remains relatively
small compared to the improvements over HYDRO that were
observed over Brazil. This suggests that the neural networks
learned robust relationships between the ABI observations
and surface precipitation that generalize to observations from
outside their training domain.

4.2 Validation against rain gauge data

From the estimates of instantaneous precipitation, we now
turn to accumulated precipitation. Since all of the reference
algorithms considered here neglect the probabilistic nature of
the precipitation retrieval and only provide a single value as
retrieval result, we first assess the accuracy of the determin-
istic quantitative precipitation against the gauge measure-
ments. Following this, the probabilistic estimates produced
by Hydronn and their potential to improve the characteriza-
tion of the observed precipitation are assessed.

4.2.1 Quantitative precipitation estimates
Accuracy metrics for all retrievals evaluated against the

gauge measurements for hourly, daily, and monthly precipi-
tation means are provided in Table 3. In terms of correlations

Atmos. Meas. Tech., 15, 6907-6933, 2022

for hourly means, HYDRO yields the worst performance,
with a correlation of 0.282 for June and 0.134 for Decem-
ber. It is followed by PERSIANN-CCS, with a correlation of
0.32 and 0.26, respectively. IMERG yields a correlation of
0.53 for June and 0.4 for December. All Hydronn retrievals
yield higher correlations with Hydronny 1r, achieving 0.59
in June and 0.4 in December, Hydronng aj 0.65 and 0.5, and
Hydronnj s 0.67 and 0.59. Hydronng g has higher MAE
for hourly accumulations than both HYDRO and IMERG in
June and higher MSE than IMERG in both June and Decem-
ber. Except for this, however, the Hydronn retrievals gener-
ally yield more accurate results in terms of MSE and MAE
for hourly accumulations than the other retrievals.

The accuracy of all retrievals improves as the accumu-
lation time increases. For daily means, the ranking of the
retrieval algorithms remains mostly the same as for hourly
means. This is also the case for monthly means, with the ex-
ception that the accuracy of IMERG increases and rises to the
level of the best Hydronn configuration in terms of MSE and
outperforms it in terms of MAE in June. A likely explanation
for this is the calibration that is applied to the IMERG Final
product, which matches it to monthly gauge measurements.

A graphical analysis of the accuracy of the retrieved daily
accumulations is provided in Fig. 11. In this representation,
the large uncertainties that are present in all retrievals are ev-
ident. Nonetheless, the results confirm the general findings
from the analysis above. The two conventional IR retrievals,
HYDRO and PERSIAN CCS, yield the least accurate re-
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Figure 9. Retrieval accuracy with respect to GPM CMB for all overpasses over the training domain in 2020. Each panel shows the average

of a metric over the full year as well as its seasonal variability.
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Figure 10. Retrieval accuracy with respect to GPM CMB for overpasses on days 1, 6, 11, 16, 21, and 26 of each month of 2020 over the
domain R2. Each panel shows the average of a metric over the full year as well as its seasonal variability.

sults. In particular, both retrievals show a tendency to miss
or strongly underestimate accumulations below 40 mmd—!.
This tendency is decreased in the IMERG results for accu-
mulations > 10 mmh~" but still evident for weaker precipi-
tation. Overall, the Hydronn retrievals achieve higher accu-
racy for both weak and strong precipitation, and the retrieval
accuracy increases with the information content of the input.

https://doi.org/10.5194/amt-15-6907-2022

Nonetheless, systematic underestimation of strong rain rates
affects all Hydronn retrievals.

The spatial distribution of the biases of the monthly mean
precipitation is displayed in Fig. 12. For June, the results
from all algorithms exhibit dry biases on the west coast
of Brazil and in the south of the country. HYDRO and
PERSIANN-CCS exhibit the strongest biases, while they are
weakest in IMERG and Hydronny jr.

Atmos. Meas. Tech., 15, 6907-6933, 2022
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Table 3. Accuracy metrics for the retrieved mean precipitation compared to gauge measurements at different timescales. The best values in
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each column are marked using bold font. Definitions of all metrics are provided in Appendix Al.

June 2020

MAE (mmh~1) MSE [(mmh~1)?] Correlation
Retrieval Bias (mm h_l) Hourly Daily Monthly ‘ Hourly Daily Monthly ‘ Hourly Daily Monthly
HYDRO —0.055 0.106  0.079 0.06 0.611 0.077 0.01 0.28 0.65 0.72
PERSIANN-CCS —0.035 0.115 0.085 0.053 0.671 0.077 0.008 032  0.63 0.72
IMERG —0.013 0.1  0.065 0.034 0.393  0.048 0.004 0.56 0.8 0.87
Hydronng jg —-0.002 0.108 0.07 0.036 0.404 0.045 0.004 059  0.81 0.85
Hydronng aj —0.034 0.084 0.059 0.043 0.361 0.043 0.005 0.65 0.84 0.88
Hydronny Ay —0.031 0.084 0.058 0.04 0.345 0.04 0.004 0.67 0.84 0.89

December 2020

MAE (mmh™1) \ MSE [(mmh~1)?] \ Correlation
Retrieval Bias (mmh—1) Hourly Daily Monthly ‘ Hourly Daily Monthly ‘ Hourly Daily Monthly
HYDRO —0.037 032  0.215 0.106 3.1 0219 0.02 0.13 0.42 0.62
PERSIANN-CCS 0.096 0.398  0.285 0.151 3.594  0.308 0.041 026 042 0.56
IMERG 0.014 0.285 0.196 0.08 1.9 0.18 0.014 0.38 0.573 0.73
Hydronng 1r —-0.002 0.283  0.189 0.088 2.011 0.15 0.016 0.48 0.63 0.7
Hydronng aj —0.006 0.235 0.159 0.076 1.797  0.128 0.013 056  0.69 0.75
Hydronny aj 0.011 0.226  0.153 0.074 1.704 0.121 0.013 059 0.71 0.76

The results for December are less homogeneous be-
tween algorithms. The strongest biases are observed in
the PERSIANN-CCS results, which strongly overestimate
precipitation in central and northern Brazil. HYDRO and
Hydronng [r, as well as to a lesser extent PERSTIANN-CCS,
Hydronng a1, and Hydronnp 4y, exhibit a systematic dry bias
in southern Brazil. Overall, the biases of IMERG are small-
est in magnitude and exhibit the least extent of spatial cor-
relation. However, the differences between IMERG and the
best Hydronn configuration, Hydronn, aj;, are small.

Finally, we consider the retrieved daily cycles of precip-
itation, which are displayed in Fig. 13. From the reference
retrievals, IMERG yields the best agreement with the gauge
measurements in both June and December. In June, the daily
cycle is mostly flat, with a weak peak around 14 h. IMERG
reproduces this behavior well but exhibits a weak peak that is
delayed by about 2 h. In addition to exhibiting larger biases,
the daily cycles derived from HYDRO and PERSIANN-
CCS show an increase of precipitation towards the after-
noon, which is in disagreement with the gauge measure-
ments. Hydronny jr and Hydronny a5 exhibit biases compa-
rable to those of HYDRO and PERSIANN-CCS but remain
flat throughout the day. The Hydronns jr results track the
gauge measurements almost exactly, although the afternoon
peak is delayed by about an hour.

Both IMERG and HYDRO yield relatively good agree-
ment with the gauge measurements for December. IMERG is
slightly closer to the gauge measurements during the morn-
ing and early afternoon but overestimates precipitation in the
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afternoon and evening. HYDRO slightly underestimates pre-
cipitation during the first half of the day, but its afternoon
peak, despite being close in magnitude to that of the gauge
measurements, is delayed by about 3 h. PERSIANN-CCS
shows good agreement with the gauge measurements in the
first half of the day but strongly overestimates the afternoon
peak. All Hydronn configurations yield good agreement with
the gauge measurements.

4.2.2 Probabilistic estimates

We now proceed to evaluate the probabilistic precipitation
estimates that are produced by Hydronn. As explained in
Sect. 3.5, two probabilistic estimates of the hourly precip-
itation rates were produced. The first one, (dep.), assumes
strong dependence of retrieval errors for consecutive obser-
vations, while the second one, (indep.), assumes independent
errors. In addition to that, a corrected distribution has been
calculated for each of these predictions using the correction
factors described in Sect. 3.6. This yields four probabilistic
predictions for each Hydronn configuration. These predic-
tions will be referred to with the configuration name and the
qualifiers (dep.) and (dep., corr.) for the predictions derived
assuming dependent uncertainties with and without correc-
tion, respectively, and (indep.) and (indep. corr.) for the cor-
responding predictions derived using the independence as-
sumption.

We first consider the distribution of precipitation rates as
measured by gauges and the retrieval algorithms, which is
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Figure 11. Scatter plots of gauge measurements against retrieved daily accumulations for HYDRO, PERSIANN-CCS, IMERG, and the three
Hydronn configurations. The first two columns show the results for June 2020. The third and fourth columns show the results for December
2020. Frequencies have been normalized column-wise to improve the visibility of heavy precipitation events.

shown in Fig. 14. For June, IMERG precipitation accumula-
tions agree very well with the gauge measurements but fail
to capture the heavy precipitation exceeding 20mmh~!. HY-
DRO and PERSTANN-CCS underestimate the occurrence of
light precipitation < 1 mmh~'. While HYDRO tends to un-
derestimate moderate and heavy precipitation, the tail of the
precipitation distribution is well represented by PERSTANN-
CCs.

The distribution of the retrieved mean precipitation for the
Hydronn retrievals is close to the gauge measurements up
until precipitation of around 8 mmh~! but underestimates
the frequency of heavier precipitation. When instead sam-
ples from the posterior distribution are considered, the rep-
resentation of heavy precipitation is improved. However,
for (indep.), the frequency of heavy precipitation events
is still underestimated, which is slightly improved by the
correction. However, the correction of the (dep.) results of
Hydronng [r leads to an overestimation of heavy precipita-
tion. The correction slightly improves the representation of
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very light precipitation for the (dep.) results of Hydronng ay
and Hydronnz, All-

For December, IMERG overestimates the frequency of
light precipitation, while it is represented well by HYDRO
and PERSIANN-CCS. All retrievals overestimate the fre-
quency moderate precipitation. HYDRO and IMERG un-
derestimate the frequency of heavy precipitation, while
PERSIANN-CCS captures the tail of the distribution well.
For the Hydronn retrievals, the distribution of the retrieved
mean precipitation is again similar to the distribution of
IMERG, except with a stronger tendency to underestimate
the frequency of heavy precipitation. The sampling again re-
covers the heavy precipitation events. The correction slightly
improves the frequencies of low and heavy precipitation, but
the effect remains small.

The missing heavy precipitation events in the distribution
of the mean retrieved by Hydronn retrievals should thus be
understood as an effect of the uncertainties in the retrieval
results. Because the information content of the Vis—IR ob-
servations is insufficient to accurately determine the strength

Atmos. Meas. Tech., 15, 6907-6933, 2022
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Figure 12. Retrieved mean precipitation during June and December 2020. The first two columns show the results for June. The third
and fourth columns show the results for December. Shading in the background of each panel shows the spatial distribution of the mean
precipitation of the corresponding retrieval. Colored hexagons show the spatial distributions of the retrieval biases with respect to the gauge

measurements.

of heavy precipitation events, the retrieved mean will always
underestimate the heaviest of those events. When samples
from the posterior distribution are considered instead, the ex-
treme values of the distribution are correctly reproduced.

The assumption used to calculate the posterior distribu-
tion of hourly accumulations has a clear impact on the dis-
tribution of the retrieved-precipitation rates. Assuming in-
dependent retrieval errors leads to an overestimation of the
frequency of light precipitation at the expense of heavy pre-
cipitation, while assuming dependent errors has the opposite
effect. It is interesting to note that for June the assumption
of independent errors yields better agreement with the gauge
measurements, while for December it is the latter.

In addition to sampling from the posterior distribution, the
retrieved quantiles can be used to derive confidence intervals

Atmos. Meas. Tech., 15, 6907-6933, 2022

for the predicted precipitation. The reliability of the confi-
dence interface for December 2020 is assessed in Fig. 15
using calibration curves. The corresponding results for June
can be found in Fig. A1 in the Appendix. We only discuss the
results from December here because the results from June are
practically the same.

For the assumption of dependent retrieval errors, the cali-
bration curve tends to lie above the diagonal, which signifies
that the true precipitation values fall into the predicted inter-
val more often than expected. The retrieved confidence inter-
vals thus overestimate the retrieval uncertainty. The opposite
effect is observed for the assumption of independent errors.
Applying the a priori correction improves the calibration for
both assumptions.
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retrieval posterior.

The results presented in Fig. 15 use the modified gauge
measurements described in Sect. 3.6 to which small random
noise has been added to nonzero measurements and zeros
were replaced with small random values. This was required
because quantiles are ill defined when the CDF of a quan-
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tity is discontinuous. So while the results above show that
the predicted uncertainties from the Hydronn retrieval are
well calibrated, they would not be when compared against
the raw gauge measurements. However, since the modifica-
tions to the measured precipitation are well within their un-
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Figure 15. Calibration of the confidence intervals derived using the quantiles of the retrieval posterior distribution predicted by each Hydronn
configuration for December 2020. The dashed grey line in the background shows the expected results for perfectly calibrated results.

certainty, this still shows that the predicted confidence inter-
vals are meaningful.

The retrieved quantiles can also be used to estimate the
probability that an observed pixel exceeds certain precipita-
tion thresholds. This has been used to calculate probabilities
of hourly accumulations exceeding 5 and 20 mmh~!, which
correspond roughly to the 99th and 99.9th percentiles of the
distribution of gauge measurements. The ability of the re-
trievals to detect high-impact precipitation events in Decem-
ber 2020 is assessed using precision—recall (PR) curves (see
Appendix Al for a definition) in Fig. 16. The corresponding
results for June can be found in Fig. A2 in the Appendix.
For the non-probabilistic retrievals, the curves were gener-
ated using the predicted precipitation and classifying all pix-
els above a varying threshold as exceeding the sought-after
precipitation rate. The corresponding curves for the Hydronn
retrievals were obtained by varying the probability threshold
above which a pixel is classified as an high-impact event.

For the detection of events exceeding Smmh~!, HYDRO
exhibits the least skill, followed by PERSIANN-CCS. Also
here, IMERG yields better results than the two conventional
IR retrievals. The detection skill of Hydronng 1r is notice-
ably better than that of IMERG, while the two other con-
figurations further improve the detection performance. For
events exceeding 20 mmh~!, all retrievals yield worse detec-
tion accuracy than at Smmh~!. Also here, HYDRO exhibits
the least skill, followed by PERSIANN-CCS and IMERG,
which yield very similar results. All Hydronn configurations
outperform the reference retrievals.

Interestingly, the assumption used to accumulate the un-
certainties as well as the a priori correction does not have any
noticeable effect on the detection skill. The reason for this is
likely that the PR curves are invariant to any transformation
that preserves the ranking of the strength of the precipitation
events. This means that, although the two assumptions may
lead to different assigned probabilities, they both contain the

Atmos. Meas. Tech., 15, 6907-6933, 2022

same information on the strength of the observed precipita-
tion event.

Since the Hydronn retrievals can be used to derive a prob-
ability of an observation exceeding a given precipitation
threshold, a relevant question is how accurate these proba-
bilities are. The calibration of the detection probabilities of
events exceeding 5Smmh~! is displayed in Fig. 17 for De-
cember 2020 and Fig. A3 for June 2020 in the Appendix. For
December, the predictions derived assuming temporally de-
pendent uncertainties are fairly well calibrated, but larger de-
viations from the diagonal are observed for the probabilities
derived assuming independent uncertainties. For June, (dep.)
yields the best calibrated results for Hydronny 1r, while for
Hydronng A and Hydronn; ap, (indep.) yields the best cal-
ibration. However, the differences are relatively small, and
both assumptions yield reasonably well calibrated probabili-
ties. The corrections only have a minor effect on the calibra-
tion and do not lead to any consistent improvements.

4.3 Case study

As a final part of this evaluation, a case of heavy precipitation
in the city of Duque de Caxias in the State of Rio de Janeiro
is considered that occurred between the 22 and 24 December
2020 and led to flooding (Fohla De S. Paulo, 2020). About
250 mm of accumulated precipitation was measured by the
rain gauge in the neighborhood of Xerém over the period of
2d.

Gauge measurements and retrieved precipitation accumu-
lations in the area surrounding the gauge in Xerém during
the 2 d are shown in Fig. 18. The gauge measurements show
localized occurrence of heavy precipitation in a number of
gauges to the north and east of Xerém and light precipitation
along the coast towards the south and east.

The HYDRO retrievals are very high in the northeast of
the region but miss the precipitation that fell around Xerém.
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Figure 17. Calibration of the probabilistic precipitation event detection for precipitation exceeding 5 mm h—L.

PERSTANN-CCS misses nearly all of the precipitation that
fell during the 2 d. In contrast, IMERG and Hydronn retrieve
more precipitation in the area around Xerém. In particular,
Hydronng aj; and Hydronn; a5 both capture the precipitation
in the vicinity of Xerém well.

It is notable that the Hydronng oy and Hydronns ap re-
trievals exhibit considerably finer structures in their results
than IMERG or the other retrievals. Moreover, these struc-
tures agree well with the gauge measurements. This suggests
that the high resolution of the Vis—IR observations allows the
retrieval to better resolve small-scale precipitation events.

The rain rates at the gauge station in Xerém (location
marked by red star in Fig. 18) are displayed in Fig. 19. The
plots show the hourly precipitation rates retrieved by the ref-
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erence retrievals as well as the mean and posterior distribu-
tion for all Hydronn retrievals. Only results obtained with the
assumption of dependent retrieval uncertainties are shown.
The precipitation measured at the rain gauge far exceeds the
precipitation measured by any of the reference retrievals or
the retrieved mean of the Hydronn retrievals. The Hydronn
retrievals predict elevated uncertainties for the period during
which the strongest precipitation is observed. However, the
precipitation peaks still exceed the 99th percentile. Two fac-
tors may explain that more than the expected 1 % of gauge
measurements lie outside the predicted uncertainty range.
Firstly, the observations considered here are not randomly
sampled but correspond to an event that is known to be ex-
treme. Secondly, as stated in the article in Fohla De S. Paulo
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Figure 18. Retrieved precipitation accumulations for an extreme precipitation event in the city of Duque de Caxias in the state of Rio de
Janeiro. Panel (a) shows gauge-measured precipitation accumulations using colored hexagons. Locations of the gauges are marked using red
points. The red star marks the location of the Xerém neighborhood of Duque de Caxias in which the gauge station closest to the reported
flooding is located. The remaining panels show the retrieved-precipitation accumulations for the tested retrieval algorithms.
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(2020), heavy precipitation events are common in this region.
This may indicate that regional factors act to intensify the
precipitation, which is unlikely to be captured in the training
data of the retrieval.

Nonetheless, an encouraging results is that the predicted
value of the 99th percentile increases with the information
content in the retrieval input. This indicates that the neural

Atmos. Meas. Tech., 15, 6907-6933, 2022

network can leverage the additional information to better rep-
resent the uncertainty in the retrieval.

5 Discussion

The study presented Hydronn, a neural-network-based pre-

cipitation retrieval for Brazil, which has been trained using
combined radar and radiometer measurements from the GPM
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core observatory. Using all ABI channels at their native res-
olution, the retrieval yields instantaneous precipitation esti-
mates that are close in accuracy to those of GPROF GMI.
The derived accumulations compare favorably against the
currently operational precipitation retrieval, HYDRO, as well
as the PERSIANN-CCS product. The configurations that use
all ABI channels yield more accurate precipitation accumula-
tions than the IMERG Final product across most considered
metrics.

5.1 Information content of Vis—IR observations

The three tested retrieval configurations use input observa-
tion of increasing information content. The Hydronn4 1r con-
figuration only uses a single IR channel at a resolution of
4 km, while Hydronng ay uses all available bands of the ABL
The best-performing retrieval, Hydronn, aj;, combines the
observations from all channels of the GOES ABI at their
native resolutions. Clear increases in retrieval performance
are observed when all ABI bands are incorporated into the
retrieval and an additional, albeit smaller, improvement is
achieved when all channels are ingested at their native reso-
lutions. This demonstrates the ability of the neural-network-
based retrieval to efficiently combine observations across
channels and different spatial scales. The fact that HYDRO
and Hydronng jr use the same observations as retrieval in-
put demonstrates the significant improvement that neural-
network-based retrievals can achieve compared to conven-
tional methods. This is in good agreement with the findings
from Sadeghi et al. (2019), who also report improvements
when comparing PERSIANN-CCS to a CNN-based retrieval.

The retrieval accuracy of Hydronn in its most advanced
configuration is comparable to that of GPROF GMI at the
5 km resolution considered here. Certainly, it must be taken
into account that the Hydronn retrievals are evaluated against
the data they were trained to reproduce, which will tend to
overestimate their accuracy with respect to independent mea-
surements. However, this is also the case for GPROF GMI,
whose retrieval database is to a large extent built up of col-
locations with GPM CMB. This result is notable because
Vis—IR observations from geostationary satellites are typi-
cally understood to merely “augment” (Kidd et al., 2021)
the more capable PMW sensors. While the case study from
Sect. 4.1.1 indicates that the Vis—IR observations are still in-
ferior in terms of their ability to quantify the total amount
of precipitation, the structure of the MCS is truthfully repre-
sented. Leveraging the high temporal resolution of the GOES
ABI observations, the retrieval easily outperforms all other
tested algorithms in terms of hourly and daily accumula-
tions with a considerable margin. This suggests that space-
borne precipitation measurements may benefit significantly
by making better use of available observations from geosta-
tionary satellites.

https://doi.org/10.5194/amt-15-6907-2022

6927

5.2 Probabilistic precipitation retrievals

A novel aspect of the proposed precipitation retrievals is their
ability to provide probabilistic precipitation estimates. In this
study, we have demonstrated multiple ways of how this may
improve the utility of the retrieval results:

1. The results in Fig. 14 show that samples from the
retrieval posterior reproduce the gauge-measured distri-
bution of rain rates more accurately than the retrieved
mean. The deviations of the distribution of the posterior
mean from the gauge measurements should thus be
understood as a consequence of the statistical properties
of this estimator instead of a retrieval deficiency. The
random samples may be useful for applications that are
sensitive to heavy precipitation rates, such as runoff
modeling or climatological studies. To illustrate this,
Fig. 20 shows scatter plots of the 99th percentile of the
monthly distribution of hourly accumulations at each
gauge station and the 99th percentile of the correspond-
ing retrievals for June and December 2020. HYDRO
and PERSIANN-CCS yield accuracy similar to IMERG
in this analysis despite IMERG having higher accuracy
for all other metrics considered in this study. Both
HYDRO and PERSIANN-CCS were developed with
a focus on convective precipitation. The regression
relations underlying both retrievals were developed
from summer precipitation in the United States and
enforce a monotonically decreasing relationship (Hong
et al., 2004; Vicente et al., 1998) between brightness
temperatures and precipitation rates. This may explain
why they succeed in representing heavy, convective
precipitation events but fail to represent more general
conditions. By explicitly resolving the probabilistic
nature of the precipitation retrieval, HYDRONN can
provide both climatologically accurate accumulations
(see Table 3) and improved representation of heavy
precipitation.

It should be noted, however, that these random samples
do not take into account spatial correlations. To what
extent this may negatively impact applications of the re-
trieval results remains to be investigated.

2. The retrieved quantiles allow the derivation of confi-
dence intervals to quantify retrieval uncertainty. By cor-
recting for the difference in a priori distributions as well
as the degeneracy of quantiles due to discontinuities
in the CDF of gauge measurements, we were able to
show that the retrieval uncertainties are well calibrated,
even against gauge measurements (Fig. 15). Due to the
large uncertainties that are inherent to precipitation re-
trieval from Vis—IR observations (Figs. 8, 11), quantify-
ing these uncertainties has the potential to increase the
trustworthiness of the predictions.
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Figure 20. Scatter plots of the 99th percentile of the monthly distribution of hourly precipitation accumulations of each gauge station for June
(blue) and December (red) plotted against the 99th percentile of the corresponding retrieved distribution of precipitation accumulations. The
results of the Hydronn retrievals use samples from the posterior distribution of hourly accumulations obtained assuming dependent retrieval

errors instead of the posterior mean.

3. We have shown that the retrieved quantiles can be
used to detect heavy precipitation events (Fig. 16, Ta-
ble 3). Here, all Hydronn retrievals perform better than
IMERG, although they are based on observations with
a significantly lower information content. This clearly
shows the benefits of quantifying retrieval uncertain-
ties. Moreover, we were able to show that the proba-
bilistic detection of these events is fairly well calibrated
(Figs. 17, A3).

Finally, we have also investigated how uncertainties from
instantaneous precipitation retrievals can be propagated to
the full hour. The two approaches that we have tested cor-
respond to assuming temporally independent and temporally
dependent retrieval uncertainties. Our results indicate that
the assumption of dependent uncertainties overestimates the
actual retrieval uncertainty, whereas assuming independent
uncertainties underestimates actual uncertainties (Figs. Al,
15). With the lack of a better method to infer the distribu-
tion of hourly accumulations, our results indicate that as-
suming dependent uncertainties yields slightly more reliable
results (Figs. 15, Al, 17, A3). Moreover, it is encouraging
that the way the accumulations are calculated does not af-
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fect the overall detection skill for heavy precipitation events
(Figs. 16, A2).

5.3 Utility of a priori corrections

We have proposed a method to correct for variations in the
distribution of precipitation in the training data relative to
comparable ground validation data. The most distinct ef-
fect of the a priori correction was observed when the pre-
dicted confidence intervals were evaluated against gauge data
(Figs. 15, A1). This allowed us to show that the Hydronn re-
trievals can provide well-calibrated uncertainty estimates for
their predictions when the differences between the a priori
distributions of the training data and the gauge measurements
are taken into account.

However, the correction only had minor effects on the ob-
served distribution of precipitation and did not improve the
calibration of the detection of heavy precipitation events. We
suspect the reason for this to be that the correction mostly af-
fects the probabilities of light precipitation, which, because
of their frequency, have a strong effect on the calibration of
the confidence intervals. However, the statistics used to de-
rive the correction may not be precise enough to correct for
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the differences of the much rarer heavy precipitation events.
Whether more specialized corrections that take into account
seasonal variability can help with the detection of extreme
precipitation remains to be investigated.

6 Conclusions

Hydronn, the presented neural-network-based precipitation
retrieval, improves real-time precipitation estimates over
Brazil. Its performance is superior to both the currently op-
erational algorithm and the much more sophisticated, global
IMERG Final product, which combines observations from
Vis—IR and PMW sensors as well as global gauge measure-
ments.

Our results demonstrate the potential of region-specific re-
trieval algorithms, which exploit the full potential of locally
available satellite observations. This is made possible by the
availability of accurate surface precipitation retrievals from
the GPM core observatory, which were used to derived the
training data for the retrieval. Since these data are available
globally between —65 and 65° N, the approach can poten-
tially be applied to many other regions around the world.

We have shown that our retrievals work reasonably well,
even outside their training domain over Brazil. This indicates
that not only the regional training data, but also the ability of
deep CNNs to leverage previously discarded, spectral, and
structural information from the satellite imagery contribute
to the good performance of the Hydronn retrievals. More-
over, we have shown how a probabilistic regression approach
can be used to perform Vis—IR precipitation retrievals using
a Bayesian framework and that the probabilistic predictions
improve the characterization of the observed precipitation.

Finally, the fact that our relatively simple retrieval out-
performs state-of-the-art precipitation products despite being
solely based on Vis—IR observations shows the potential of
deep learning for quantitative precipitation estimation. The
ability of the neural network retrieval to leverage informa-
tion from all channels of the ABI at their native resolutions
shows the strength of the end-to-end approach to retrieval
design. This suggests that there is considerable room to im-
prove spaceborne precipitation estimates by making better
use of currently available satellite imagery.

Appendix A: Accuracy metrics
Al Quantitative precipitation estimation

The metrics used in the study to assess quantitative estimates
of surface precipitation are the bias, mean absolute error
(MAE), mean squared error (MSE), and the Pearson corre-
lation coefficient. Their definitions are provided in Table A1.

The disadvantage of these metrics is that they neglect the
probabilistic character of the Hydronn retrievals and do not
provide any information on how well uncertainties are repre-
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Table Al. Accuracy metrics used to assess the accuracy of quan-
titative precipitation estimates Yretrieved against reference measure-
ments yyye. Overbars are used here to denote the mean over all
pixels in the test dataset and oy, to denote the standard deviation of
the quantity y.

Name Calculation Range Best

value
Bias retrieved — Ytrue —00to 00 0
MAE [Vretrieved — Vtrue| 0 to oo 0
MSE Oretrieved — Yirue)* 00 00 0
Correlation Oretrieved — Yretrieved) (Ytrue — Yirue) Oto 1 1

OYretrieved O ¥true

sented. We use the mean of the continuous ranked probability
score (MCRPS) to assess the accuracy of probabilistic pre-
cipitation estimates. For a given retrieved cumulative prob-
ability function F, the continuous ranked probability score
(CRPS) with respect to the reference value ye is defined as

o0

CRPS(F. yirue) = / (FO) = Lz ) . (A1)

—00

For a perfect prediction of ygye without uncertainty, the
predicted CDF F takes the form of a step function, and the
CRPS is zero. A CRPS larger than zero measures the devi-
ation from this perfect prediction. The CRPS takes into ac-
count both sharpness and calibration of the probabilistic pre-
cipitation estimates (Gneiting and Raftery, 2007).

A2 Precipitation detection

To evaluate the skill of the retrievals to detect precipitation or
precipitation exceeding a certain intensity, we primarily rely
on precision—recall (PR) curves. Since Hydronn provides a
probability that represents how likely an observed pixel con-
tains precipitation, the classification is based on the proba-
bility exceeding a certain detection threshold. The detection
threshold can be adapted to balance false positive against
false negative errors.

Because of this additional degree of freedom, assessing
the classification accuracy for a single classification thresh-
old does not fully characterize the skill of the retrieval. PR
curves overcome this limitation by displaying the precision,
i.e., the fraction of true positives and the total number of pre-
dictions, and the recall, i.e., the fraction of all raining pixels
that are correctly detected, for all possible detection thresh-
olds.

Retrievals that only predict a single precipitation rate can
be used for precipitation detection by counting all pixels
with precipitation exceeding a certain threshold as raining.
Here the precipitation threshold can be used like a detection
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threshold to balance false positives and false negatives. In
this way, a PR curve can also be drawn for those retrievals.
In addition to PR curves, we will use the false alarm rate
(FAR), probability of detection (POD), and critical success
index (CSI) as scalar metrics. They are defined as follows:

FP
FAR= — (A2)
TP + FP
TP
POD= — (A3)
TP + FP
TP
CSI= ———— (A4)
TP + FP + FN,

where TP denotes the number of true positives, FP false pos-
itives, and FN false negatives.

Code availability. The code to generate the training data,
train the machine learning models, run the retrievals, and
analyze the results is available from a public repository
(https://doi.org/10.5281/zenodo.6371712, Pfreundschuh, 2022a).

Data availability. The GPM CMB data are freely available from
(Olson, 2017). The rain gauge data are available from (Pfreund-
schuh et al., 2022). GPROF GMI data are freely available from
Kummerow, 2022. PERSIANN-CCS data are freely available from
the UCI CHRS data portal (2022). GPM IMERG data are freely
available from Huffman et al., 2019. Since HYDRO is a near-real-
time service, the HYDRO retrieval results are currently not publicly
available. However, we are happy to provide access to the data used
within this study upon request.

Video supplement. A video of a full day of Hydronnp aj re-
trieval compared to IMERG is provided in addition to this paper
(https://doi.org/10.5281/zenodo.7117246, Pfreundschuh, 2022b).
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