
Atmos. Meas. Tech., 15, 6949–6963, 2022
https://doi.org/10.5194/amt-15-6949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Assessing the consistency of satellite-derived upper tropospheric
humidity measurements
Lei Shi1, Carl J. Schreck III2, Viju O. John3, Eui-Seok Chung4, Theresa Lang5,6, Stefan A. Buehler5, and
Brian J. Soden7

1NOAA NESDIS National Centers for Environmental Information (NCEI), Asheville, NC, USA
2Cooperative Institute for Satellite Earth System Studies (CISESS), North Carolina State University, Asheville, NC, USA
3EUMETSAT and Met Office Hadley Centre, Exeter, UK
4Korea Polar Research Institute, Incheon, South Korea
5Meteorological Institute, Universität Hamburg, Hamburg, Germany
6International Max Planck Research School on Earth System Modelling, Max Planck Institute
for Meteorology, Hamburg, Germany
7Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

Correspondence: Lei Shi (lei.shi@noaa.gov)

Received: 1 July 2022 – Discussion started: 20 July 2022
Revised: 19 October 2022 – Accepted: 24 October 2022 – Published: 2 December 2022

Abstract. Four upper tropospheric humidity (UTH) datasets
derived from satellite sounders are evaluated to assess their
consistency as part of the activities for the Global Energy
and Water Exchanges (GEWEX) water vapor assessment
project. The datasets include UTH computed from bright-
ness temperature measurements of the 183.31±1 GHz chan-
nel of the Special Sensor Microwave – Humidity (SSM/T-
2), Advanced Microwave Sounding Unit-B (AMSU-B), and
Microwave Humidity Sounder (MHS) and from channel 12
of the High-resolution Infrared Radiation Sounder (HIRS).
The four datasets are generally consistent in the interannual
temporal and spatial variability of the tropics. Large positive
anomalies peaked over the central equatorial Pacific region
during El Niño events in the same phase with the increase
of sea surface temperature (SST). Conversely, large nega-
tive anomalies were obtained during El Niño events when
the tropical-domain average is taken. The weakened ascend-
ing branch of the Pacific Walker circulation in the western
Pacific and the enhanced descending branches of the local
Hadley circulation along the Pacific subtropics largely con-
tributed to widespread drying areas and thus negative anoma-
lies in the upper troposphere during El Niño events as shown
in all four datasets. During a major El Niño event, UTH had
higher correlations with the coincident precipitation (0.60 to
0.75) and with 200 hPa velocity potential (−0.42 to −0.64)

than with SST (0.37 to 0.49). Due to differences in retrieval
definitions and gridding procedures, there can be a difference
of 3 %–5 % UTH between datasets on average, and larger
magnitudes of anomaly values are usually observed in spa-
tial maps of microwave UTH data. Nevertheless, the tropical-
domain averaged anomalies of the datasets are close to each
other with their differences being mostly less than 0.5 %, and
more importantly the phases of the time series are generally
consistent for variability studies.

1 Introduction

The Global Energy and Water Exchanges (GEWEX)
project’s water vapor assessment (G-VAP) is organized by
the GEWEX Data and Analysis Panel. Three Global Cli-
mate Observing System (GCOS) essential climate variables
on water vapor are assessed in the G-VAP project, includ-
ing total column water vapor, upper tropospheric humidity
(UTH), and water vapor and associated temperature profiles.
The present study is part of the G-VAP activities, focusing
on the consistency assessment among satellite-derived UTH
measurements.

Measurement of UTH has traditionally been obtained from
global radiosonde observations as part of atmospheric water
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vapor profiles (e.g., Durre et al., 2018; Ferreira et al., 2019;
Brogniez et al., 2015). In the satellite era, operational rou-
tine satellite infrared measurements of UTH started with
the High-resolution Infrared Radiation Sounder (HIRS) in-
strument on board Television InfraRed Observation Satel-
lite N (TIROS-N), which was launched in 1978, and the
measurement has been continuously produced from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
and Meteorological Operational satellite (Metop) polar-
orbiting satellites to the present. UTH measurements from
geostationary observations have been generated since 1983.
Then microwave sounding measurements have been added
to the suite of UTH observations since 1991. UTH can also
be derived from the new-generation hyper-spectral sounders
including the Atmospheric Infrared Sounder (AIRS), In-
frared Atmospheric Sounding Interferometer (IASI), and
Cross-track Infrared Sounder (CrIS), as well as other satel-
lite instruments such as Sondeur Atmosphérique du Profil
d’Humidité Intertropicale par Radiométrie (SAPHIR). These
satellite sounder measurements complement each other in
providing a long-term full picture of the UTH field.

The development of UTH datasets and the examination
of temporal and spatial variabilities of UTH have been pre-
sented in numerous studies, including both infrared datasets
(Soden and Bretherton, 1993; Jackson and Bates, 2001;
Brogniez et al., 2006; Shi and Bates, 2011; Iacono et
al., 2003; Chung et al., 2007; Gierens et al., 2014; Schröder
et al., 2014; Gierens et al., 2018) and microwave datasets
(Brogniez and Pierrehumbert, 2006; Chung et al., 2013; Sohn
et al., 2000; Buehler et al., 2008; Lang et al., 2020b; Brog-
niez et al., 2015; Moradi et al., 2016). The variability of UTH
is regulated by the large-scale atmospheric circulation. The
spatial patterns of UTH measurement are highly correlated
with widely used climate indices such as the Niño 3.4, Pacific
Decadal Oscillation (PDO), Pacific–North American (PNA),
and North Atlantic Oscillation (NAO) indices (Shi and Bates,
2011; Shi et al., 2018). The measurements have been applied
in various atmospheric variability studies. For example, UTH
datasets facilitated studies that showed a strong relationship
between UTH and El Niño–Southern Oscillation (ENSO)
(Mccarthy and Toumi, 2004; Bates et al., 1996; Soden and
Lanzante, 1996). UTH was closely associated with deep con-
vection and the evolution of large-scale weather systems (So-
den and Fu, 1995; Brogniez et al., 2009; Zelinka and Hart-
mann, 2009; Luo et al., 2007; Schreck et al., 2013) and in-
teracting with the tropical cirrus life cycle (Luo and Rossow,
2004). The measurements have been used in studies on the
strengthening of the Hadley and Walker circulations (Sohn
and Park, 2010), the widening of the tropical width (Mantsis
et al., 2017), and a possible expansion of the subtropical dry
zones (Tivig et al., 2020). The UTH datasets facilitated the
evaluation of climate models and contributed to a better un-
derstanding of large-scale atmospheric processes (Allan et
al., 2003; Soden et al., 2005; Chung et al., 2016; Allan et
al., 2022; John et al., 2021). The UTH measurements from

both microwave and infrared sounders are used together with
ground-based observations and climate model simulations to
examine global-scale changes in water vapor and response to
surface temperature variability (Allan et al., 2022).

Water vapor is an important greenhouse gas. Its concen-
tration in the free troposphere is controlled by condensation
at the cold point and subsequent advection. This leads to a
roughly constant relative humidity, which implies a strong
increase in absolute humidity content with warming (So-
den et al., 2005; Chung et al., 2014). This well-understood
overall picture is modulated by subtle changes in the dis-
tribution of humidity, as measured by the UTH, linked to
changes in atmospheric dynamics with warming (Held and
Soden, 2000).

Intercomparison of independently generated UTH datasets
provides verification of the datasets’ credibility for their uses
in research and long-term monitoring. An earlier consis-
tency study (Chung et al., 2016) analyzed UTH derived from
HIRS, Advanced Microwave Sounding Unit-B (AMSU-
B)/Microwave Humidity Sounder (MHS), and AIRS and
showed that all three products exhibit consistent spatial and
temporal patterns of interannual variability. The first phase
of the GEWEX UTH assessment (Schröder et al., 2017)
included UTH derived from polar-orbiting HIRS, AMSU-
B/MHS, and the geostationary Meteosat visible and infrared
imager (MVIRI) and Spinning Enhanced Visible and In-
fraRed Imager (SEVIRI). Since then, two new polar-orbiting
satellite microwave UTH datasets have been developed, and
there are now new versions and extended records available
for the HIRS and the microwave dataset examined previ-
ously. In this study we provide an update on the intercompar-
ison of the polar-orbiting satellite UTH datasets by includ-
ing four participating datasets, two of which are new datasets
and two of which have updated versions and extended time
series.

2 Datasets

The four datasets analyzed in this study include UTH gen-
erated by the Satellite Application Facility on Climate Mon-
itoring (CMSAF), the Fidelity and Uncertainty in Climate
data records from Earth Observations (FIDUCEO) project,
the National Centers for Environmental Information (NCEI),
and the University of Miami (UMIAMI). Three of these
are based on microwave sounder measurements, and one is
based on infrared sounder measurements. The CMSAF and
UMIAMI datasets are derived from AMSU-B/MHS mea-
surements. The FIDUCEO dataset adds Special Sensor Mi-
crowave Humidity (SSM/T-2) to the microwave measure-
ments that extends the time series back to 1994. The NCEI
UTH data are derived from HIRS channel 12 measurements.
The following provides details of the four datasets.
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2.1 CMSAF UTH

The microwave sounder UTH data (version 1.0) are derived
from AMSU-B and MHS from the 183.31± 1 GHz chan-
nel. The dataset is based on a microwave humidity sounder
dataset record generated by EUMETSAT within the frame-
work of the ERA-CLIM2 project. A combination of methods
was used to estimate inter-satellite biases for the microwave
humidity sounders (John et al., 2013; Saunders et al., 2013).
There is a simple linear relationship between brightness tem-
perature (Tb) emanating from water vapor emissions in the
upper troposphere and the natural logarithm of UTH (e.g.,
see Buehler and John, 2005), which is the Jacobian-weighted
relative humidity in the upper troposphere:

ln(UTH)= a+ b× Tb. (1)

The coefficients a and b are determined by linear regres-
sion, using a training dataset of atmospheric temperature
and humidity profiles, in which a = 23.467520 and b =

−0.099240916.
The CMSAF UTH is derived for individual pixels and

then gridded. The product is provided to users on a global,
daily 1.0◦× 1.0◦ latitude–longitude grid. UTH is retrieved
for all cloud- and surface-cleared and limb-corrected bright-
ness temperatures for each day. These are then separated for
ascending and descending passes and binned into each 1.0◦

grid cell. The time series analyzed in this report covers 1999–
2019 for the CMSAF data.

2.2 FIDUCEO UTH

The FIDUCEO UTH (version 1.2) is based on the FIDUCEO
fundamental climate data record of recalibrated microwave
sounder brightness temperatures (Hans et al., 2019), cover-
ing the sensors SSM/T-2, AMSU-B, and MHS. It uses a new
UTH definition (Lang et al., 2020b) based on the concept
that the atmospheric emission layer for a water vapor chan-
nel is bounded by two characteristic amounts of water va-
por integrated from the top of the atmosphere downwards.
Using this idea, UTH is defined as the mean relative hu-
midity in a layer between two altitude levels z(IWV1) and
z(IWV2), at which the integrated water vapor (IWV) exceeds
two viewing-angle-dependent thresholds IWV1 and IWV2.
The thresholds IWV1 and IWV2 play a similar role in cap-
turing the atmospheric emission layer to the Jacobian in the
traditional definition. The IWV thresholds were optimized in
such a way that the linear relationship between the Tb and
the logarithm of UTH is best fulfilled for the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) training
atmospheres. The data record covers the time between 1994
and 2017 and provides monthly mean brightness tempera-
tures and derived UTH along with estimates of measurement
uncertainty on a 1◦× 1◦ latitude–longitude grid covering the
tropical region (30◦ S to 30◦ N). The UTH is first derived for

individual pixels before gridding. Only pixels close to the
nadir view of the satellite are selected.

2.3 NCEI UTH

The NCEI UTH dataset is based on version 3.2 of HIRS
channel 12 brightness temperature data (Shi and Bates,
2011). Because an infrared sounder cannot sense through
clouds, cloudy pixels are removed from the dataset. The
cloud-filtered and limb-corrected channel brightness temper-
atures are calibrated using derived adjustment coefficients
from matched overlapping HIRS data between satellites. In
this study the UTH is calculated based on the relationship
between UTH and HIRS channel 12 brightness temperatures
centered at 6.7 µm (T6.7) derived by Soden and Bretherton
(1996):

UTH=
cosθ
p0

e(a+b×T6.7), (2)

in which θ is the viewing angle. p0 is the pres-
sure of the 240 K isotherm divided by 300 hPa (p0 =

p[T=240 K]/300 hPa), which is determined from a training set
of ECMWF profiles for 1986–1989 as a function of month,
latitude, and longitude. The coefficients a and b are deter-
mined based on the training profiles and radiative transfer
model simulation of T6.7, in which a = 31.5 and b =−0.115.
The HIRS UTH dataset has a monthly coverage based on
clear-sky observations with a spatial resolution of 2.5◦×2.5◦.
The UTH is computed from gridded brightness temperature
data. The data analyzed in this report cover the period of
November 1978–December 2020.

2.4 UMIAMI UTH

The UMIAMI data (Chung et al., 2013) are available as grid-
ded brightness temperatures from AMSU-B and MHS on a
1.5◦× 1.5◦ latitude–longitude grid. Biases due to the differ-
ence in local observation time between satellites and spu-
rious trends associated with satellite orbital drift are diag-
nosed and adjusted for using synthetic radiative simulations
based on the interim European Centre for Medium-Range
Weather Forecasts re-analysis (ERA-Interim) and ERA5.
The adjusted, rain-cloud-filtered, and limb-corrected bright-
ness temperatures are then intercalibrated using zonal-mean
brightness temperature differences. In this study the formula
that is used by the CMSAF dataset is applied to compute
UTH. However, unlike the computation of the CMSAF UTH
in which the UTH is first derived for each individual pixel
before gridding, the UMIAMI UTH is computed from grid-
ded averaged brightness temperature values. The time series
for this study covers 1999–2020.
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3 Results and discussions

The assessment examines several aspects of the UTH
datasets, including consistency in time series, spatial feature
consistency, and changes during the datasets’ common pe-
riod. The following describes the analyses and results.

3.1 Intercomparison of time series

The UTH datasets are most often used to monitor tropi-
cal atmospheric activities (e.g., Brogniez et al., 2015; Tivig
et al., 2020; and John et al., 2021). Therefore, the as-
sessment focuses on the consistency of the tropical data.
Figure 1 plots the time series of UTH datasets aver-
aged over the domain 20◦ S–20◦ N. These include UTH
derived from both microwave 183.31± 1 GHz brightness
temperatures and infrared 6.7 µm brightness temperatures.
Figure 1a displays domain-averaged monthly mean val-
ues of UTH; Fig. 1b shows the corresponding anoma-
lies, and Fig. 1c and d show the differences in UTH
and in anomaly values, respectively, relative to the val-
ues of UMIAMI. In the anomaly calculation, the period
2000–2015 is used for climatology. Figure 1e displays
the time series of the Oceanic Niño Index (ONI) (avail-
able at https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php, last access: 16 June
2022). The ONI is constructed using the 3-month running-
average sea surface temperature (SST) anomalies in the Niño
3.4 region (5◦ S–5◦ N, 120–170◦W) (originally presented by
Trenberth, 1997).

In Fig. 1a, the four datasets appear to be separated with
two groups of similar UTH values. The values of CMSAF
and FIDUCEO UTH are larger than the values of NCEI and
UMIAMI UTH. Among the datasets, the UTH of CMSAF
and FIDUCEO is first computed for each pixel before taking
grid averages. For the UMIAMI and HIRS dataset, the grid-
ding of the brightness temperature is done first and then UTH
is computed from averaged brightness temperatures. Based
on a study by John et al. (2006), such different ways of com-
puting UTH can lead to a difference of up to 6 % UTH due to
the non-linearities in the formula that calculates UTH from
brightness temperature values. Figure 1c shows that there is
a difference of approximately 3 %–5 % UTH between two
groups of UTH datasets when a tropical average is taken.
In spite of this structural discrepancy, the anomaly plot of
the UTH in Fig. 1b shows consistency in seasonal and inter-
annual variability patterns among the four datasets. All four
datasets show major peaks and dips along the time series in
the same phases, though there are differences in the magni-
tudes of the fluctuations. In the FIDUCEO dataset, SSM/T-2
data before 1998 were at times sparse or missing, causing a
few data gaps and some uncertainty in monthly means. De-
spite different definitions and ways of computing UTH, the
anomalies of the four datasets are close to each other.

To quantify the differences between datasets, the relative
differences are calculated. Note that any of the four datasets
can be used as a reference for this purpose. Among the mi-
crowave (MW) UTH datasets, the UMIAMI dataset has the
lengthiest time period of AMSU-B and MHS to allow for
the longest MW comparison with others, and it is used as
the relative reference in the calculation. Figure 1d shows that
the anomaly values are mostly within ±0.5 % UTH of each
other, with the exceptions during El Niño events when the
anomaly differences can be larger. Chung et al. (2016) ana-
lyzed the relative differences among the brightness temper-
atures of the channels sensing upper tropospheric humidity
from HIRS, AMSU-B/MHS, and AIRS. The brightness tem-
perature differences between the HIRS and AMSU-B/MHS
were mostly within ±0.2 K.

During an El Niño event (such as the 2015–2016 and
2009–2010 events as displayed in Fig. 1e) the infrared
dataset tends to have a smaller value of averaged UTH
compared to microwave UTH values, and the opposite oc-
curs during a La Niña event (such as the 2010–2011 and
2007–2008 events). This indicates that the infrared clear-sky
dataset may not fully capture the increase of water vapor dur-
ing El Niño events due to the exclusion of very humid pixels
associated with clouds and tends to have better sampling of
the dry regions. Figure 1d also shows that the tropical mean
UTH has a larger moistening trend in CMSAF than the other
datasets. Allan et al. (2022) presented tropical (30◦ S–30◦ N)
ocean and land averaged anomaly time series of ERA5 rela-
tive humidity (RH), AIRS RH, HIRS UTH, and MW UTH
(Figs. 6 and 7 of their study). The HIRS and MW UTH
are the NCEI and UMIAMI UTH datasets analyzed in the
present study, and the features of these two datasets are sim-
ilar to the NCEI and UMIAMI UTH time series in Fig. 1b.

During major El Niño events, tropical water vapor fields
exhibit distinct characteristics, and the enhanced signals fa-
cilitate the comparison of datasets. Figure 2 shows the time
series of UTH over the Niño 4 region (equatorial central Pa-
cific 5◦ S–5◦ N, 160◦ E–150◦W). Figure 2a shows that the
interannual variability of UTH is much larger compared to
tropical mean values in Fig. 1a, but similar differences be-
tween datasets remain. The UTH values of the CMSAF and
FIDUCEO datasets are generally larger than the values of
NCEI and UMIAMI datasets by approximately 5 % UTH on
average (Fig. 2c). In the anomaly plots (Fig. 2b), all datasets
depict consistent interannual variations. In Fig. 2d, the in-
frared UTH again shows smaller values compared to mi-
crowave UTH values during El Niño events and larger values
during La Niña events, similar to the features displayed in the
tropical average time series in Fig. 1d. Though a moistening
trend is shown in the CMSAF UTH time series in Fig. 1c
and d where the tropical average is taken, the moistening
trend is not as apparent for the Niño 4 region as displayed
in Fig. 2c and d.

It is interesting to observe that between Figs. 1b and 2b
the phases of the variations are mostly opposite. During the
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Figure 1. Time series of UTH (%) averaged over 20◦ S–20◦ N for (a) the averaged values of UTH, (b) the corresponding anomalies relative
to the 2000–2015 climatology, (c) the differences of UTH values relative to the values of UMIAMI, and (d) the differences of anomaly values
relative to those of UMIAMI. A 5-month moving average is applied to the UTH time series to reduce short-term fluctuations. Panel (e) shows
the time series of ONI.

major El Niño events (for example, 1982–1983, 1997–1998,
and 2015–2016), the tropical averaged time series exhibited
large negative values of anomalies (Fig. 1b), while at the
same time, large positive anomalies occurred in the Niño 4
region (Fig. 2b). An earlier study (Shi et al., 2018) showed
that unlike UTH, the total column water vapor (TCWV) on
the tropical average exhibited large positive anomalies dur-
ing El Niño events, having the same phase as the Niño 4 re-
gion UTH time series. The TCWV is largely weighted by
water vapor in the lower troposphere. During an El Niño
event, there are larger areas of water vapor increase in the
lower atmosphere as reflected in the TCWV field, compared
to the UTH field. The enhanced deep convection provides
a conduit to transport more water vapor to the atmosphere.

However, the increased water vapor in the upper atmosphere
is confined to relatively small areas. The study of Lim et
al. (2017) showed that during a major El Niño the rising
motion of the Hadley circulation is dominant between 10◦ S
and the Equator. The branch of sinking motion in the sub-
tropics (15–25◦ N) is well organized, stretching from the sur-
face to the upper troposphere. In the upper troposphere, large
positive anomalies of total cloud fraction are formed over
10◦ S–5◦ N, and negative cloud anomalies occurred over the
subtropics. Beyond the constrained positive UTH anoma-
lies around the Equator, the water vapor in the upper tropo-
sphere is suppressed in large areas outside the Niño 4 region,
which causes large areas of negative UTH anomalies, consis-
tent with the sinking motion of the Hadley branch. When a
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Figure 2. Time series of UTH (%) averaged over the Niño 4 region for (a) the averaged values of UTH, (b) the corresponding anomalies
relative to the 2000–2015 climatology, (c) the differences of UTH values relative to the values of UMIAMI, and (d) the differences of
anomaly values relative to those of UMIAMI. A 5-month moving average is applied to the UTH time series to reduce short-term fluctuations.

tropical average is taken, the larger areas of negative anoma-
lies overcompensate for the smaller areas of positive anoma-
lies and result in mean negative anomalies during El Niño
events. As the Niño 4 region is the center of enhanced deep
convection during El Niño events, the phase of UTH is con-
sistent with that of the water vapor in the lower atmosphere
and consistent with the phase of sea surface temperature dur-
ing El Niño events as shown in Fig. 1e and as described in,
e.g., Trenberth (1997), McPhaden (1999), Wolter and Timlin
(2011), Lim et al. (2017), and Santoso et al. (2017).

We use longitude–time Hovmöller diagrams to examine
spatiotemporal variability of UTH over the deep tropics.
Figure 3 shows longitude–time evolutions of monthly UTH
anomalies around the Equator, averaged between 5◦ S and
5◦ N for the four datasets. During the past 40 years, the

most significant three El Niño events occurred in 1982–
1983, 1997–1998, and 2015–2016 according to ONI shown
in Fig. 1e. During these events the UTH field is marked by
increased anomalies in the central-eastern and correspond-
ing decreased UTH in the western equatorial Pacific. All
three events can be clearly identified in the NCEI time se-
ries, which has the longest temporal coverage.

The 1997–1998 and 2015–2016 events are also clearly dis-
played in the FIDUCEO time series. However, the sparsity of
the SSM/T-2 data before 1998 can be seen in the noisier ap-
pearance of the anomalies during that period. Nonetheless,
both the NCEI and FIDUCEO datasets show that the 1997–
1998 event was marked with higher anomaly values and ex-
tended further east in the Pacific in terms of large positive
UTH anomalies compared to the 2015–2016 El Niño. The

Atmos. Meas. Tech., 15, 6949–6963, 2022 https://doi.org/10.5194/amt-15-6949-2022
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Figure 3. Time versus longitude section of UTH monthly anomaly.
The analysis is based on an average of data between 5◦ N and 5◦ S.

Multivariate El Niño–Southern Oscillation Index (MEI) in-
dicates similar differences in the strength of these El Niño
events. In addition to the commonly used sea surface tem-
perature (SST) anomalies, the MEI also incorporates sur-
face air temperature, sea-level pressure, zonal and merid-
ional components of the surface wind, and total cloudiness
fraction of the sky (Wolter and Timlin, 2011). The Multi-
variate ENSO Index Version 2 (MEI.v2) values (available
at https://psl.noaa.gov/enso/mei/#data, last access: 3 June
2022) show that MEI reached as high as 2.5 and remained
at or above 2.0 for 12 consecutive months during the 1997–
1998 El Niño event. During the 2015–2016 El Niño, the MEI
was as high as 2.2, and remained above 2.0 for only 2 months.
The UMIAMI and CMSAF UTH time series both started in
late 1998, and they have similar patterns in the Hovmöller
analysis, both distinctively showing the 2015–2016 El Niño
event.

Allan et al. (2022) examined changes in the anomaly char-
acteristics in the zonal mean of AMIP 300–500 hPa RH,
ERA5 300–500 hPa RH, and HIRS UTH (their Fig. 8a–c).
Both the AMIP and the HIRS time series showed a de-
tectable decreasing trend in UTH 30–60◦ S, and all three
datasets showed decreasing amplitudes of anomalies after
2000. More specifically, AMIP and HIRS showed smaller
positive anomalies, while ERA5 exhibited smaller negative
anomalies. The FIDUCEO MW UTH in Fig. 3c of our study

also shows subtly stronger UTH amplitudes before 2000, al-
beit with only a few years of data available. These changes
after 2000 seem to be coincident with the decrease in the
strength of El Niño events after 2000 as depicted by the
MEI.v2, though such changes are not displayed in SST-only
Niño indices such as the ONI.

During the common period when data were available from
all four datasets, the most significant La Niña event occurred
in 2010–2011, in which the MEI.v2 value reached−2.4. The
UTH field was marked by decreased UTH in 120◦ E–160◦W
and increased UTH in 80–120◦ E. The event can be seen from
all UTH datasets. In general, the equatorial UTH anomalies
in the infrared measurements are relatively weaker than those
in the microwave measurements. The definition used to com-
pute the HIRS UTH may be the primary factor for the smaller
magnitude. The averaging of pixel-level brightness temper-
atures to the grids first before the UTH is computed may
further smooth out the largest anomalies (both positive and
negative).

To quantify the changing proportion of dry and humid
regions derived from the different datasets, we calculate
the percentage of grids with anomaly values greater or less
than several selected values over 20◦ S–20◦ N (Fig. 4). The
anomalies are relative to each of the grid points and desea-
sonalized before the percentages are calculated. Grids with
UTH anomaly values > 5 % represent very humid anoma-
lies, while those <−5 % represent very dry anomalies.
Among the MW datasets, the SSM/T-2-derived UTH in the
FIDUCEO series has the highest proportion of very humid
anomalies. For the AMSU-B/MHS series, the FIDUCEO
dataset generally has 2 %–4 % more very humid anomalies
than those of the UMIAMI dataset. The gridding of UTH
after the pixel-level brightness temperature values are aver-
aged in the UMIAMI dataset may have smoothed out some
of the most humid measurements. The CMSAF UTH has
fewer dry anomalies before 2005 than the other datasets, but
it has the largest proportion of very humid anomalies in re-
cent years. The infrared dataset has the smallest proportion of
humid anomalies compared to the MW datasets at both levels
(> 5 % and > 1 %) due to the exclusion of cloudy pixels.

HIRS UTH also generally has the smallest proportion of
the driest anomalies (<−5 %), but the ratios are often close
to those of the UMIAMI dataset. Interestingly, when the ma-
jority of the negative anomalies are examined (UTH anoma-
lies <−1 % in Fig. 4b), the HIRS dataset frequently has the
largest ratios of the dry anomalies. This phenomenon is par-
ticularly significant during both major El Niño and La Niña
events. For example, during the 2015–2016 El Niño, the ra-
tios of UTH anomalies <−1 % are approximately 51 % for
HIRS, 47 % for UMIAMI, 46 % for FIDUCEO, and 45 %
for the CMSAF dataset. In other words, the HIRS data iden-
tify more dry anomalies than the MW datasets, though the
magnitude of the driest HIRS UTH does not usually reach
as large values as those of the MW UTH, likely due to the
definition of the UTH formula used. Overall, the FIDUCEO
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Figure 4. Time series of the proportions of grids over 20◦ S–20◦ N with anomaly values less than −5 % and −1 % and greater than 1 % and
5 %.

dataset has the largest amplitude of the ratios for both the
most humid and the driest measurements.

3.2 Spatial anomalies during major El Niño and La
Niña events

During the common period of the four datasets, the most sig-
nificant El Niño and La Niña events occurred in 2015–2016
and 2010–2011, respectively. The spatial patterns of UTH
anomalies for 60◦ S–60◦ N during the peak 6 months of the
2015–2016 El Niño event are shown in Fig. 5. The anomalies
of several environmental variables, including data from the
Global Precipitation Climatology Project (GPCP), NOAA
Extended Reconstructed SST V5 (ERSSTv5), and modeled
200 hPa velocity potential, for the same peak 6-month pe-
riod of the 2015–2016 El Niño are displayed in Fig. 6 to

show the large-scale atmospheric circulation and SST fields.
The GPCP data are generated by combining satellite retrieval
and in situ precipitation into a final merged gridded prod-
uct (Adler et al., 2003). The ERSSTv5 dataset is derived
from the International Comprehensive Ocean–Atmosphere
Dataset (ICOADS) and is available at gridded monthly global
coverage (Huang et al., 2017). Velocity potential anoma-
lies at 200 hPa are taken from the Climate Forecast System
Reanalysis (CFSR) (Saha et al., 2010) for 2000–2010 and
the related Climate Forecast System v2 (CFSv2) operational
analyses (Saha et al., 2014) for 2011–2016.

Similarly to that discussed in Shi et al. (2018), during the
2015–2016 El Niño event, UTH developed strong positive
anomalies over the equatorial central Pacific, extending to
the eastern Pacific in 5–10◦ N. The enhanced El Niño convec-
tion drove compensating subsidence and thus negative UTH
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Figure 5. Anomalies of UTH during the peak 6 months of the 2015–
2016 El Niño event. The box shows the Niño 4 domain in the central
Pacific (5◦ S–5◦ N, 160◦ E–150◦W).

anomalies surrounding the positive anomalies. The positive
SST anomalies were centered along the equatorial central-
eastern Pacific (Fig. 6b). Anomalous divergence developed
over the warmed SST and was balanced by the anomalous
convergence over the western Pacific and the Indian Ocean
(Fig. 6c). The pattern of positive anomalies of UTH above the
Niño 4 region and along 5–10◦ N in the eastern Pacific highly
resembles the pattern of the positive precipitation anomalies
(as shown in Fig. 6a), indicating the strong linkage between
the two variables. Similar patterns of precipitation during the
2015–2016 El Niño were also shown in the study of Santoso
et al. (2017).

Overall, the area of the strong positive UTH anomalies
over the equatorial central Pacific is smaller than the sur-
rounding areas of strong negative anomalies in the tropics.

Figure 6. Anomalies of GPCP precipitation, ERSSTv5 SST, and
CFSR 200 hPa velocity potential during the peak 6 months of the
2015–2016 El Niño event. The box shows the Niño 4 domain in the
central Pacific (5◦ S–5◦ N, 160◦ E–150◦W).

Taking an example of the FIDUCEO UTH dataset, there are
approximately 34 % of grids in the tropical domain 20◦ S–
20◦ N that have UTH anomalies greater than 1 %, compared
to more than 49 % of grids having UTH anomalies less than
−1 % at the peak of the 2015–2016 El Niño as shown in
Fig. 4. The other three datasets also show larger portions of
dry grids than humid grids during the event. When a tropical-
domain average of anomalies is taken, it results in a nega-
tive anomaly during an El Niño event as shown in Fig. 1. In
the NCEI HIRS UTH panel, the magnitudes of both positive
anomalies along the central-eastern equatorial Pacific and the
negative anomalies in the western Pacific appear smaller than
those in the other three microwave UTH panels, consistent
with what is seen in the Hovmöller analysis discussed ear-
lier. However, over the tropical domain, the HIRS data have
larger proportions of dry areas in the subtropics during El
Niño events (resulting in larger overall dry area ratios shown
in Fig. 4b), leading to deeper dips of UTH during El Niño
events displayed in Fig. 1b.

To further assess the consistency of UTH datasets with
several environmental variables, histograms of UTH anoma-
lies vs. anomalies of GPCP precipitation, ERSSTv5 SST, and
CFSR 200 hPa velocity potential during the peak 6 months of
the 2015–16 El Niño are presented in Figs. 7–9. The cor-
relations between the anomalies of UTH and those of the
three variables are also calculated, and the correlation val-
ues are labeled (as Corr) at the top of each panel. Among
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Figure 7. Histograms of UTH anomalies of the four datasets vs.
anomalies of GPCP precipitation during the peak 6 months of the
2015–2016 El Niño. The blue line represents the linear regression
line. The correlations between UTH anomalies and GPCP precipi-
tation anomalies are labeled at the top of the panels.

the three variables, precipitation has the highest correlations
with UTH (Fig. 7), while SST has the lowest (Fig. 8). Both
precipitation and velocity potential are proxies for vertical
motion, so they are more directly tied to wet/dry UTH than
the SST surface forcing. The increases of SST during El
Niño events usually occur most significantly in the equatorial
eastern-central Pacific, while the increases of both UTH and
precipitation are more confined over the equatorial central
Pacific. The UTH and precipitation fields both have a more
balanced dipole between the central and western equatorial
Pacific during a major El Niño, while the decrease of SST in
the western equatorial Pacific does not match the strength of
positive anomalies in the central-eastern equatorial Pacific.
These patterns lead to overall higher correlations between
UTH and precipitation than those between UTH and SST.
The correlation values also illustrate that an SST-only ENSO
index may not be as good an indicator for the strength of
UTH compared to an index that includes other environmen-
tal variables such as the MEI.

Among the UTH datasets, the MW data have higher cor-
relations with the three environmental variables. The HIRS
UTH correlation values are about 0.1 lower, primarily due to
the lack of very humid anomalies in the infrared dataset. The
histograms show that for all UTH datasets, the highest densi-
ties of anomalies are consistently centered around zero. The
density of HIRS positive anomalies decreases rapidly beyond
5 %, in line with the lowest ratio of large HIRS UTH shown
in Fig. 4d.

Figure 10 shows the UTH anomaly fields averaged over
6 months near the peak of the La Niña in 2010–2011, and

Figure 8. Similar to Fig. 7 except for UTH anomalies vs. ERSSTv5
anomalies.

Figure 9. Similar to Fig. 7 except for UTH anomalies vs. anomalies
of CFSR 200 hPa velocity potential.

Fig. 11 displays the anomalies of GPCP, ERSSTv5, and
CFSR 200 hPa velocity potential data for the same time pe-
riod. During a La Niña event, the central Pacific and Indone-
sia exhibited mostly opposite signs of anomalies for UTH,
SST, precipitation, and 200 hPa velocity potential compared
to the El Niño patterns depicted in Figs. 5 and 6, except that
the negative anomalies of the 200 hPa velocity potential were
more confined to the center over Indonesia and Australia. La
Niña events tend to lead to significant increases of UTH over
Indonesia and the equatorial eastern Indian Ocean and over
Pacific subtropics and decreases of UTH over the Niño 4 re-
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Figure 10. Anomalies of UTH during the peak 6 months of the
2010–2011 La Niña event. The box shows the Niño 4 domain in the
central Pacific (5◦ S–5◦ N, 160◦ E–150◦W).

gion. Slightly positive UTH anomalies may be found in the
equatorial eastern Pacific during a La Niña event. Similar pat-
terns of tropical features are shown in all four datasets, al-
though the magnitudes are again smaller in the infrared UTH
(Fig. 10a).

3.3 UTH changes during the common period of the
datasets

The common period when all four UTH datasets have data
spans from 1999 to 2017. To analyze UTH changes of each
dataset during the common period, we use the linear trend
method to calculate the change rate of each grid, and the re-
sults are displayed in Fig. 12. In this study, the linear trend
method is employed to show the change rates during a rel-
atively short common period as a way to examine dataset

Figure 11. Anomalies of GPCP precipitation, ERSSTv5 SST, and
CFSR 200 hPa velocity potential during the peak 6 months of the
2010–2011 La Niña event. The box shows the Niño 4 domain in the
central Pacific (5◦ S–5◦ N, 160◦ E–150◦W).

consistency, and the results should not be interpreted as long-
term trends. The La Niña event in 1998–2000 at the begin-
ning of the common period and the strong El Niño event in
2015–2016 near the end of the common period can signifi-
cantly impact the resulting trend values. The Mann–Kendall
test is used to test the significance of the trends at each grid.
The trends appear to be significant at 0.95 only in a few
small places, mainly sparsely spotted along subtropical Pa-
cific belts of negative change rates (not plotted in Fig. 12),
indicating that the time series is too short for a meaningful
trend study for the majority of areas. In the present study, the
trend results are only used as a consistency evaluation of the
datasets.

General consistency of the change patterns in the tropics
is found among the four datasets. They all show increased
UTH over the Niño 4 region (5◦ S–5◦ N, 160◦ E–150◦W)
and over the eastern Pacific near 5–10◦ N and a decrease
of UTH over Peru and surrounding areas. Decreased UTH
values along both the northern and the southern Pacific sub-
tropics are seen in all datasets. The change rate patterns over
the tropical and subtropical Pacific follow the 2015–2016 El
Niño UTH patterns (as shown in Fig. 5) to some extent, in-
dicating the influence of the El Niño signals on the change
rate calculation. Over the Indian Ocean, decreased UTH cen-
tered over the equatorial central Indian Ocean is surrounded
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Figure 12. Change rates of the four UTH datasets during the com-
mon period 1999 to 2017.

with increased UTH in most datasets, except that the cen-
ter of decreasing rates is confined to a smaller area around
15◦ S for the CMSAF UTH. The change rates (both positive
and negative) in the NCEI HIRS dataset (Fig. 12a) are gen-
erally smaller than those in microwave datasets. The largest
change rates are found in the CMSAF image, with positive
changes covering most of the areas, consistent with the trend
in Fig. 1d. An earlier study (Lang et al., 2020b) plotted the
time series of individual satellites’ UTH from NOAA-15 to
Metop-B for both FIDUCEO and CMSAF datasets (Fig. 6 in
that article). Their Fig. 6b showed that offsets between the
UTH time series from consecutive satellite missions in the
CMSAF record tend to be positive over time. When all the
satellites are merged into one time series, this may lead to a
positive trend.

The three datasets that have mid-latitude coverage
(Fig. 12a, b, and d) exhibit negative change rates over the Ti-
betan Plateau. This may not necessarily indicate a decrease in

water vapor, though. Over high elevations (similarly to over
high latitudes) there are contributions of the surface tempera-
ture to the radiances measured by satellite UTH sounders. A
decrease in calculated UTH values over a high elevation can
be caused by either a decrease in water vapor or an increase
in the surface temperature. The clear-sky measurement ex-
cludes some high-humidity data due to removal of cloudy
pixels compared to MW datasets. The Jacobian of less-humid
data has a lower peak in the atmosphere, and the lower tail of
the Jacobian profile is closer to the surface (e.g., see Fig. 1
in Brogniez et al., 2006). Over a high elevation, increasing
surface effect can be included in the observation radiances.
A warming at the surface may contribute more to an in-
frared dataset due to a larger portion of less-humid data. Over
the mid-latitude Pacific, both NCEI and UMIAMI data show
negative change rates in 45–60◦ N, while the CMSAF dataset
shows positive change rates. Over the Southern Hemisphere
mid-latitude, the CMSAF dataset displays increased humid-
ity, while both positive and negative change rates are found
in the NCEI and UMIAMI datasets.

4 Conclusions

In this study we assess the consistency of four UTH datasets
derived from both microwave and infrared sounders of polar-
orbiting satellites as part of the GEWEX water vapor as-
sessment activities. These include measurements from the
183.31± 1 GHz channel on SSM/T-2, AMSU-B, and MHS
and HIRS channel 12 (calibrated to 6.7 µm). The main con-
clusions are as follows:

1. The four datasets exhibit consistency in tropical spa-
tial patterns and in interannual variability. Large pos-
itive anomalies peaked over the Niño 4 region during
El Niño events in the same phase with the increase of
sea surface temperature as expected. At the same time,
opposite phases of anomalies were obtained in the aver-
aged tropical anomalies because the compensating dry-
ing areas of dissipation are larger than the relatively
confined moistening area above deep convection. All
four datasets exhibit such similar temporal variability.

2. The infrared UTH dataset exhibits the largest propor-
tions of dry areas at the peak of El Niño and La Niña
events (more than 4 % larger ratio of dry areas com-
pared to those of MW datasets). The MW datasets have
a larger proportion of humid measurements during El
Niño events, while during a major La Niña such as the
2010–2011 event, the ratios of humid areas are close to
each other among three UTH datasets (differences less
than 1 %), except the CMSAF dataset which overall has
larger humid areas.

3. Through the common period of 1999 to 2017, differ-
ences are observed in the changing rates of the datasets.
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A wider spread of UTH moistening is observed in the
CMSAF datasets.

4. The four datasets show that during a major El Niño
event, there are significant increases of UTH over a
narrow belt of the equatorial central Pacific consistent
with the positive anomalies of the precipitation pattern,
though typically the positive anomalies of SST cover a
larger latitude span and are more prominent in the east-
ern Pacific. Negative anomalies develop over the weak-
ened ascending branch of the Pacific Walker circulation
in the western Pacific and eastern Indian Ocean where
there is a positive anomaly of the 200 hPa velocity po-
tential and over the enhanced descending branches of
the local Hadley circulation along the Pacific subtrop-
ics.

5. During a major El Niño, the spatial correlations between
UTH and SST are not high, with the correlation val-
ues in the range of 0.37 to 0.49. In the meantime, the
spatial correlations between UTH and precipitation are
higher, ranging from 0.60 to 0.75. The infrared dataset
has lower correlation values (about 0.1 smaller) with
SST, precipitation, and 200 hPa velocity potential com-
pared to those for the MW UTH datasets due to the lack
of very humid data in the infrared dataset.

6. Though there are apparent and expected differences in
the values of total UTH due to differences in the defini-
tion and in the gridding procedure, the tropical averaged
anomalies of the datasets are close to each other (mostly
within±0.5 % over tropical-domain average), and more
importantly the phases of the time series are generally
consistent for variability studies.

7. The infrared and MW UTH datasets have their own
strengths and weaknesses. The HIRS dataset is the
longest, over 43 years of observations so far, for long-
term studies, and its variability, temporal phases, and
spatial patterns are generally consistent with MW ob-
servations. However, being a clear-sky dataset, it does
not capture the most humid regions. The MW datasets
have a shorter time series, but they retain almost all sky
data, removing only the precipitating pixels, and thus
have better sampling for a full spectrum of UTH espe-
cially for very humid data.
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