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Abstract. The complete data fusion is a method that com-
bines independent measurements of atmospheric vertical
profiles. Recently a new formula for the complete data fu-
sion, which does not contain matrices that can be singular
and overcomes the generalized inverse approximation used
when singular matrices have to be inverted, has been pro-
posed. We show that the new formula is a generalization of
the original one and analyze the analytical relationship be-
tween the two formulas when generalized inverse matrices
are used for the inversion of singular matrices. We extend the
new formula to include interpolation and coincidence errors,
which must be considered when the profiles to be fused are
measured on different vertical grids and at different times
and/or locations. Finally, we use a real measurement of the
Infrared Atmospheric Sounding Interferometer (IASI) instru-
ment to show the improved performances of the new formula
with respect to the original one.

1 Introduction

The complete data fusion (CDF) was first introduced in Cec-
cherini et al. (2015) as a new data processing method that
allows for the combination of several independent measure-
ments of an atmospheric vertical profile and more generally
of any vectorial quantity that is retrieved using the optimal
estimation method (Rodgers, 2000). It is called “complete”
for its capability of considering all the features of the mea-
surements that are being combined, that is, not only their
errors but also their vertical resolution. The inputs of the
method are the profiles retrieved from the individual mea-
surements using the optimal estimation method together with
their a priori profiles, averaging kernel matrices (AKMs) and
noise covariance matrices (CMs), as well as an a priori pro-

file with its CM used to constrain the fused profile. The out-
put of the method is a single profile (the fused profile) with
its AKM and CM. The a priori information used to constrain
the fused profile can be freely chosen, independently of the
a priori information used in the retrievals of the individual
profiles so that the method can also be used to change the a
priori of a retrieved product. When in the variability range
of the results of the individual retrievals the linear approxi-
mation of the forward models is appropriate, the method is
equivalent to the simultaneous retrieval of all the measure-
ments that are combined (see the Appendix of Ceccherini et
al., 2015 for proof). The implementation of the simultane-
ous retrieval requires the integration of the different radiative
transfer models that simulate the measurements of the differ-
ent sensors into a single inversion system and access to the
different (Level 1) measurements, implying the use of large
computational resources specifically developed for each fu-
sion operation. The CDF overcomes these complications by
combining the Level 2 products separately supplied by the
different retrieval processors.

The method has been extended to fuse profiles retrieved
on different vertical grids for which an interpolation on a
common grid is needed and to deal with measurements ob-
tained either at different times or from different platforms
and therefore referred to different true profiles. This exten-
sion required the introduction of interpolation and coinci-
dence errors in the fusion process (Ceccherini et al., 2018).

The performance of the method has been studied on ozone
profiles retrieved from simulated measurements in the ultra-
violet, visible and thermal infrared spectral ranges for the
Sentinel-4 and Sentinel-5 missions of the Copernicus pro-
gram (Tirelli et al., 2020; Zoppetti et al., 2021). The results
of these studies show that the CDF is able to provide prod-
ucts of improved quality with respect to the input products in
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terms of reduced errors and an increased number of degrees
of freedom.

A problem connected with the application of the CDF for-
mula is the presence of the inverse matrices of the noise CMs
of the input profiles, and this implies that the formula can be
rigorously applied only when the noise CMs are nonsingu-
lar. When the profiles are retrieved solving ill-posed inverse
problems (which is a very common case), this condition is
not satisfied. In this case, we can still apply the CDF for-
mula, replacing the inverse matrices of the noise CMs with
the generalized inverse matrices (Kalman, 1976), but the re-
sult is an approximation. Furthermore, a practical problem in
the use of the generalized inverse matrices is the definition
of the threshold for the eigenvalues for which eigenvalues
smaller than this threshold have their inverses replaced with
zeros. Too small values for this threshold determine signif-
icant numeric noise in the products; on the other hand, too
large values of this threshold determine a loss of useful in-
formation.

Recently, following the approach of the Kalman filter
(Kalman, 1960; Rodgers, 2000) as done in Schneider et
al. (2022), a different formula for the CDF has been derived
(Ceccherini, 2022) for the fusion of two profiles. This for-
mula contains the inverse matrices of the retrieval error CMs,
which include both the noise and the smoothing errors, in-
stead of the inverse matrices of the noise CMs. Differently
from the noise CMs, the retrieval error CMs are always non-
singular matrices, and the new formula can be used without
having to resort to the use of generalized inverse matrices.

In this paper we extend the new formula to the fusion
of any number of profiles and show that it is a general-
ization of the original CDF formula given in Ceccherini et
al. (2015). Furthermore, we analytically analyze the differ-
ences between the new formula and the original one when
the generalized inverse matrices are used for the inverse of
the noise CMs. Since in the application of the CDF to real
measurements it is common practice to interpolate between
different grids and to consider imperfect coincidence of the
fusing profiles, the new formula is also used to derive the op-
erational expression that takes into account interpolation and
coincidence errors.

Finally, we use a measurement of the Infrared Atmo-
spheric Sounding Interferometer (IASI) instrument (Cler-
baux et al., 2009) to show the improved performances of the
new formula with respect to the original one in the case of
real data.

In Sect. 2, we show that the new formula is a generaliza-
tion of the original one and extend it to handle the cases
where coincidence and interpolation errors are present. In
Sect. 3, we compare the performances of the two formulas
using an IASI measurement, and in Sect. 4 we draw the con-
clusions.

2 Theoretical analysis of the CDF formula

2.1 The new formula as a generalization of the original
one

We assume to have N profiles x̂i retrieved on the same verti-
cal grid with the optimal estimation method (Rodgers, 2000)
from N independent measurements of a true atmospheric
profile xt. The profiles x̂i are characterized by the AKMs
Ai =

∂x̂i

∂xt
, which determine the sensitivities of the profiles x̂i

to xt, and the CMs Si , which determine the retrieval errors.
Before introducing the new formula for the CDF, let us re-

call some useful relationships. The quantities Ai and Si can
be written as a function of the two quantities that charac-
terize the retrievals, that is, the Fisher information matrices
(Fisher, 1935) Fi =KT

i S−1
nyi

Ki (Ki being the Jacobian ma-
trices of the forward models and Snyi

the CMs of the noise
errors of the measured radiances yi), which characterize the
measurements, and the a priori CMs Sai used in the retrievals,
which characterize the constraints. The expressions of Ai and
Si as a function of these two quantities are

Ai =

(
Fi +S−1

ai

)−1
Fi, (1)

Si =

(
Fi +S−1

ai

)−1
. (2)

We also recall that the Si are the sum of two contributions:
Sni , the CMs of the noise errors, and Ssi , the CMs of the
smoothing errors, that are respectively equal to

Sni =

(
Fi +S−1

ai

)−1
Fi

(
Fi +S−1

ai

)−1
, (3)

Ssi =
(

Fi +S−1
ai

)−1
S−1

ai

(
Fi +S−1

ai

)−1
(4)

and, as we can see from Eq. (2), the inverse matrices of Si

always exist.
Using the Kalman filter (Kalman, 1960; Rodgers, 2000)

the new formula for the CDF was obtained in Ceccherini
(2022) in the case of the fusion of two profiles. With an it-
erative procedure that one by one adds the extra profiles to
the fused product (see Appendix A), it can be generalized to
the fusion of N retrieved profiles x̂i and expressed by the
following formula:

xf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1( N∑
i=1

S−1
i αi +S−1

a xa

)
, (5)

where xf is the fused profile, xa and Sa represent the a priori
profile and its CM used to constrain the fused profile, and

αi = x̂i − xai +Aixai, (6)

with xai being the a priori profiles used in the retrievals of
the individual x̂i . In general, the a priori profiles xai can be
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different among them and from xa. In the following we refer
to the CDF formula given in Eq. (5) as CDF (2022).

From Eqs. (1)–(3) we see that we can express Sni in terms
of Ai and Si :

Sni = SiAT
i = AiSi (7)

and in the hypothesis that the CMs of the noise errors are
nonsingular matrices we can obtain S−1

i :

S−1
i = AT

i S−1
ni . (8)

Substituting them in Eq. (5) we obtain the original formula
for the CDF given in Ceccherini et al. (2015):

xf =

(
N∑

i=1
AT

i S−1
ni Ai +S−1

a

)−1( N∑
i=1

AT
i S−1

ni αi +S−1
a xa

)
(9)

which, differently from Eq. (5), holds only in the case that the
CMs of the noise errors Sni are nonsingular matrices. There-
fore, Eq. (5) is more general than Eq. (9). In the following
we refer to the CDF formula given in Eq. (9) as CDF (2015).

As already stated, the output of the CDF is not only the
fused profile, but also its AKM and CM. The AKM and
the CM of the fused profile calculated using Eq. (9) also
contained the inverse of Sni in the formulas (Ceccherini et
al., 2015). We can now calculate these quantities for the prod-
ucts of Eq. (5), aiming at obtaining expressions that do not
contain the inverse of matrices that may be singular. From
Eq. (5) the AKM of xf is given by

Af =
∂xf

∂xt
=

(
N∑

i=1
S−1

i Ai +S−1
a

)−1 N∑
i=1

S−1
i

∂αi

∂xt

=

(
N∑

i=1
S−1

i Ai +S−1
a

)−1 N∑
i=1

S−1
i Ai, (10)

where we have used Eq. (6) for the calculation of the deriva-
tives.

The noise CM of xf is obtained by exploiting the fact that
the noise CMs of αi are Sni ; therefore,

Snf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1 N∑
i=1

S−1
i SniS−1

i(
N∑

i=1
S−1

i Ai +S−1
a

)−1

. (11)

Substituting Sni given in Eq. (7) in Eq. (11), we obtain

Snf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1 N∑
i=1

S−1
i Ai

(
N∑

i=1
S−1

i Ai +S−1
a

)−1

. (12)

The CM of xf is obtained adding to Eq. (12) the CM of the
smoothing errors:

Ssf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1

S−1
a

(
N∑

i=1
S−1

i Ai +S−1
a

)−1

, (13)

obtaining

Sf = Snf+Ssf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1

. (14)

In this section, following the recent results published in
the literature, we started from the formula CDF (2022) and
demonstrated that it is a generalization of CDF (2015). An al-
ternative line of thought can also be followed. One can start
from the formula CDF (2015), valid only in the hypothe-
sis that the noise CMs are nonsingular matrices, and using
Eq. (8) derive the formula CDF (2022). Noticing that the use
of this formula does not require the hypothesis that the CMs
of the noise errors are nonsingular matrices anymore, one can
assume its general validity. The correctness of this assump-
tion is then confirmed by the fact that CDF (2022) can also
be obtained using the Kalman filter as shown in Ceccherini
(2022).

In Appendix B we rewrite some equations in a way that
better highlights their physical meaning, although Eqs. (5)
and (9) remain the CDF equations that can be used opera-
tionally.

2.2 Relationship between CDF (2022) and CDF (2015)
with generalized inverse matrices

In the introduction we mentioned that, using the approxima-
tion of the generalized inverse matrices (Kalman, 1976), the
original formula CDF (2015) can also be used in the case
of Sni singular. Therefore, in this section, we investigate the
differences between CDF (2022) and CDF (2015) when in
the latter the generalized inverse matrices of Sni are used.
In Eq. (9) we replace the matrices S−1

ni with the generalized
inverse matrices S#

ni :

xf =

(
N∑

i=1
AT

i S#
niAi +S−1

a

)−1( N∑
i=1

AT
i S#

niαi +S−1
a xa

)
. (15)

S#
ni appear in two terms. For the first term it has already been

demonstrated in the Appendix of Ceccherini et al. (2012) that

AT
i S#

niAi = Fi = S−1
i Ai, (16)

where the second equality follows from Eqs. (1) and (2).
Therefore, the first term is equal in the two CDF formulas.

We can elaborate the second term using Eqs. (1)–(3):

AT
i S#

ni = Fi

(
Fi +S−1

ai

)−1
S#

ni

=

(
Fi +S−1

ai

)(
Fi +S−1

ai

)−1

Fi

(
Fi +S−1

ai

)−1
S#

ni = S−1
i SniS#

ni, (17)

https://doi.org/10.5194/amt-15-7039-2022 Atmos. Meas. Tech., 15, 7039–7048, 2022



7042 S. Ceccherini et al.: An improved formula for the complete data fusion

which, in general, are different from S−1
i , because SniS#

ni are
different from the identity matrices when Sni are singular ma-
trices.

Therefore, in the case of singular Sni , the CDF (2015)
used with the generalized inverse matrices of Sni , Eq. (15), is
equivalent to

xf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1( N∑
i=1

S−1
i SniS#

niαi +S−1
a xa

)
. (18)

This equation shows that the CDF (2015) used with the gen-
eralized inverse matrices is an approximation of the more
rigorous CDF (2022), and the quality of the approximation
depends on how much SniS#

ni is close to the identity matrix.

2.3 The new formula in the presence of coincidence
and interpolation errors

We know that in the applications of the CDF to real measure-
ments it is often necessary to fuse vertical profiles measured
on different grids and at either different times or locations so
that interpolation and coincidence errors must also be con-
sidered. The expression of the CDF with interpolation and
coincidence errors, which can be called the operational CDF,
was calculated in Ceccherini et al. (2018) and was derived
from the CDF (2015) that, as we have seen above, is not valid
when there are singular matrices. In this section, we show
how the expression of the operational CDF can be written in
a more general form, using the CDF (2022) and exploiting
the equivalence of CDF (2015) and CDF (2022) in the case
that the CMs of the noise errors are nonsingular.

We start from the formula that deals with interpolation and
coincidence errors, given in Ceccherini et al. (2018), based
on the CDF (2015) and equal to

xf =

(
N∑

i=1
RT

i AT
i S̃−1

ni AiRi +S−1
a

)−1

(
N∑

i=1
RT

i AT
i S̃−1

ni α̃i +S−1
a xa

)
, (19)

where Ri are the generalized inverse matrices of the inter-
polation matrices Hi , which interpolate the profiles from the
retrieval grids to the fusion grid. Furthermore,

α̃i = αi −Ai

(
C(i)
−RiC(f)

)
xa,fine, (20)

S̃ni = Sni +Ai

(
C(i)
−RiC(f)

)
Sa,fine

(
C(i)
−RiC(f)

)T

AT
i

+AiC(i)ScoinC(i)T AT
i , (21)

where xa,fine is the a priori profile used to constrain the data
fusion represented on a fine grid that includes all the levels
of the fusion grid and of the N retrievals grids. C(i) and C(f)

are the sampling matrices from this fine grid to the grid of

the ith retrieval and to the fusion grid, respectively. Sa,fine
and Scoin are respectively the fusion a priori CM and the CM
describing the variability of the true profiles related to the
measurements that we fuse: both CMs are represented on the
fine grid. The same limit of Eq. (9) also applies to Eq. (19)
that, evidently, can be written only in the hypothesis that S̃ni

are nonsingular matrices.
In order to write an equation similar to Eq. (7) for S̃ni , we

define the matrix S̃i :

S̃i = Si +Ai

(
C(i)
−RiC(f)

)
Sa,fine

(
C(i)
−RiC(f)

)T

+AiC(i)ScoinC(i)T (22)

and from Eqs. (7), (21) and (22) we see that the following
equation holds:

S̃ni = S̃iAT
i . (23)

We observe that the matrix S̃i is not symmetric and, there-
fore, does not represent a CM. However, this only concerns
the physical meaning of the quantities and does not interfere
with the validity of the equations. On the other hand, we can
see from Eq. (21) that S̃ni is symmetric and, therefore, equal
to its transpose so that the following equation also holds:

S̃ni = Ai S̃T
i . (24)

We substitute Eq. (23) in Eq. (19) and obtain

xf =

(
N∑

i=1
RT

i AT
i

(
S̃iAT

i

)−1
AiRi +S−1

a

)−1

(
N∑

i=1
RT

i AT
i

(
S̃iAT

i

)−1
α̃i +S−1

a xa

)
. (25)

From Eq. (23) we see that the hypothesis of S̃ni nonsin-
gular implies that Ai and S̃i are also nonsingular; therefore,
from Eq. (25) we obtain the new formula for operational CDF
that no longer contains inverse of matrices that can be singu-
lar:

xf =

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

(
N∑

i=1
RT

i S̃−1
i α̃i +S−1

a xa

)
. (26)

It is simple to see that in the case of the absence of inter-
polation and coincidence errors (that is all the vertical grids
coincide and Scoin is zero), Eq. (26) becomes Eq. (5). There-
fore, Eq. (26), which coincides with the operational CDF of
Eq. (19) when S̃ni are nonsingular and coincides with the
CDF (2022) in the absence of interpolation and coincidence
errors, can be used as the new operational CDF that is rigor-
ously valid also when the noise CMs of the retrieved products
are singular matrices.
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We can also calculate the AKM and the CMs of the fused
profile obtained using Eq. (26). The AKM of xf is given by

Af =
∂xf

∂x

=

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1 N∑
i=1

RT
i S̃−1

i

∂α̃i

∂x

=

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1 N∑
i=1

RT
i S̃−1

i AiRi, (27)

where x is the unknown profile estimated by the data fusion,
which for example can be the mean value of the true profiles
of the measurements that are fused. The value of the deriva-
tive ∂α̃i

∂x
= AiRi is obtained from Eq. (17) of Ceccherini et

al. (2018).
Exploiting the fact that the CMs of α̃i due to noise, in-

terpolation and coincidence errors are S̃ni (Ceccherini et
al., 2018), the corresponding CM of xf is equal to

Snf =

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

N∑
i=1

RT
i S̃−1

i S̃ni

(
S̃−1

i

)T

Ri(
N∑

i=1
RT

i AT
i

(
S̃−1

i

)T

Ri +S−1
a

)−1

. (28)

In order to simplify this equation, we consider the sym-

metric matrix given by the product S̃−1
i S̃ni

(
S̃−1

i

)T

and use
Eq. (24):

S̃−1
i S̃ni

(
S̃−1

i

)T

= S̃−1
i Ai S̃T

i

(
S̃−1

i

)T

= S̃−1
i Ai = AT

i

(
S̃−1

i

)T

, (29)

where the last equality is obtained making the transpose and

exploiting the fact that the matrix S̃−1
i S̃ni

(
S̃−1

i

)T

is symmet-
ric.

Using Eq. (29) in Eq. (28), the CM Snf becomes

Snf =

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

N∑
i=1

RT
i S̃−1

i AiRi

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

. (30)

The smoothing error CM of xf is equal to

Ssf =

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

S−1
a

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

(31)

and the CM of xf, obtained adding to the Snf given in Eq. (30)
the smoothing error CM given in Eq. (31), is equal to

Sf = Snf+Ssf =

(
N∑

i=1
RT

i S̃−1
i AiRi +S−1

a

)−1

. (32)

This is a useful new equation that was not considered in Cec-
cherini et al. (2018).

3 Performance comparison of the original and the new
formula using an IASI measurement

In this section, we show an example of the error that we
make using CDF (2015) instead of CDF (2022) on real data,
using a Metop-B IASI ozone measurement acquired in the
geolocation 43.45◦ of latitude and 10.77◦ of longitude at
08:45:56 UTC on 18 October 2021.

In Fig. 1 we report the retrieved ozone profile with its
a priori profile, errors and averaging kernels obtained with
the Fast Optimal Retrieval on Layers for IASI (FORLI), de-
scribed in Hurtmans et al. (2012) and Astoreca et al. (2014).
This product was downloaded from the web page IASI
Combined Sounding Products – Metop. FORLI retrieves
the ozone profiles by means of the optimal estimation
method, and the radiative transfer calculation is performed
using tabulated absorption cross sections at various pres-
sures and temperatures in order to speed up the calcula-
tion time. The derivatives of the direct model with respect
to the state vector are computed analytically. The retrieval
spectral range is 1025–1075 cm−1 and the a priori informa-
tion relies on the McPeters–Labow–Logan climatology of
ozone profiles (McPeters et al., 2007). The ozone product
of FORLI is a profile retrieved on 40 layers between surface
and 40 km, with an extra layer from 40 km to the top of the
atmosphere.

From Fig. 1 we can see that the profile used in this study
is a typical product obtained with the optimal estimation
method where most of the information is provided by the a
priori as it results from the number of degrees of freedom,
obtained by the sum of the diagonal values of the AKM,
equal to 3.3 that is much smaller than the number of retrieved
points.

In Fig. 2, we report the eigenvalues of Si and Sni for this
IASI measurement calculated with the linalg.eigvals func-
tion of NumPy Python 3 module version 1.20.2 (NumPy,
2022a).

As expected, the eigenvalues of Si are all different from
zero; on the other hand, only 6 eigenvalues of Sni have large
values, while the others have values smaller than the numeric
noise. The distribution of the eigenvalues of Sni is due to
the fact that the AKM and the retrieval error CM provided
to the users are compressed (Astoreca et al., 2017) and are
reconstructed using the 6 largest eigenvalues of the Fisher
information matrix.
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Figure 1. Panel (a) shows the retrieved ozone profile and the a priori profile, panel (b) shows the errors and panel (c) shows the averaging
kernels of the IASI measurement. The dots in panel (c) represent the diagonal values of the AKM.

Figure 2. Eigenvalues of the CMs Si and Sni of the IASI measure-
ment.

This product is used to perform a consistency check using
the two CDF formulas, as described below.

The CDF formula can also be used to estimate, in the linear
approximation, how the retrieved profile x̂i changes when
the a priori profile xai and its CM Sai are changed. This oper-
ation, explained in detail in Ceccherini et al. (2014), consists
of using the CDF formula with a single input retrieved pro-
file x̂i , obtained with its a priori profile xai and a priori CM
Sai , and with the application of a new constraint x′

ai and S′ai .
The new profile x̂′i , which is the original measurement with
a new constraint, can be obtained using either CDF (2022) or

CDF (2015):

x′
iCDF(2022) =

(
S−1

i Ai +S′−1
ai

)−1 (
S−1

i αi +S′−1
ai x

′
ai

)
, (33)

x′
iCDF(2015) =

(
AT

i S#
niAi +S′−1

ai

)−1 (
AT

i S#
niαi +S′−1

ai x
′
ai

)
, (34)

where in the expression derived from CDF (2015) we have
used the generalized inverse matrices of Sni to deal with the
most general case in which Sni is singular.

When in Eqs. (33) and (34) we use a new constraint that is
equal to the original one, x′

ai = xai and S′ai = Sai , the for-
mulas should provide the retrieved profile x̂i . This is a check
that we use to validate the self-consistency of the input data
and that we can use here to assess the differences between
the two CDF formulas.

Substituting αi from Eq. (6) in Eq. (33) and using Eqs. (2)
and (16), we obtain that actually

x′
iCDF(2022)

[
x′

ai = xai,S′ai = Sai
]
= x̂i . (35)

On the other hand, substituting αi from Eq. (6) in Eq. (34)
we obtain

x′
iCDF(2015)

[
x′

ai = xai,S′ai = Sai
]

= x̂i +

[(
AT

i S#
niAi +S−1

ai

)−1
AT

i S#
ni − I

](
x̂i − xai

)
, (36)

where I is the identity matrix. The second term of Eq. (36)
measures the error made using the generalized inverse and,
using Eqs. (1), (3) and (16), we see that, in the case that Sni

is nonsingular, it is equal to zero.
We have calculated the difference

x′
iCDF(2015)

[
x′

ai = xai,S′ai = Sai
]
− x̂i for several val-

ues of the threshold used to determine the eigenvalues that
are neglected in the calculation of the generalized inverse
matrix of Sni . In Fig. 3 we report the consistency test
provided by this difference in the case of 3 values of the
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Figure 3. Results of the consistency test with CDF (2015) consid-
ering only the 5, 6 and 7 largest eigenvalues in the calculation of the
generalized inverse matrix of Sni .

threshold that correspond to selecting, respectively, the 5, 6
and 7 largest eigenvalues. The generalized inverse matrices
are calculated with the linalg.pinv function of the NumPy
Python 3 module version 1.20.2 (NumPy, 2022b), which
calculates the Moore–Penrose pseudo inverse of a matrix
using the singular value decomposition and a threshold for
the eigenvalues.

We can see that the smallest differences are obtained for
the case of 6 eigenvalues, as expected from the distribution
of the eigenvalues. The case of 5 eigenvalues is affected by
the loss of useful information; on the other hand the case
of 7 eigenvalues is affected by the amplification of the nu-
meric noise. In this case, the choice of the threshold value
can simply be done by looking at Fig. 2, where the abrupt
variation of the eigenvalues clearly indicates the threshold.
In a general case, in which the variation of the eigenvalues is
smooth, this test can be used to define the threshold for the
eigenvalues, choosing the value that minimizes the difference
x′

iCDF(2015)

[
x′

ai = xai,S′ai = Sai
]
− x̂i .

Using the optimum number of 6 eigenvalues
for CDF (2015), in Fig. 4 we compare the differ-
ences x′

iCDF(2022)

[
x′

ai = xai,S′ai = Sai
]
− x̂i and

x′
iCDF(2015)

[
x′

ai = xai,S′ai = Sai
]
− x̂i of the consis-

tency test for the two CDF formulas with the retrieval error
of the profile estimated by the square root of the diagonal
elements of the CM Si .

As expected the consistency test provides zero differ-
ences using CDF (2022), and detectable differences, al-
though much smaller than the retrieval errors, are present

Figure 4. Results of the consistency test applied to the IASI mea-
surement for the two formulas CDF (2015) and CDF (2022) com-
pared with the retrieval error of the profile.

when using CDF (2015). These differences are an estimate
of the errors introduced by CDF (2015) in the fusion process
with respect to the results of CDF (2022). The comparison
between Fig. 3 and Fig. 4 shows that the use of a number of
eigenvalues that differs from the optimum value by one unity
produces an error comparable with the retrieval error; there-
fore, it is very important to identify the optimum number of
eigenvalues with the test described above.

The errors introduced by CDF (2015) depend on the com-
pression used to represent the matrices in the files pro-
vided to the users. If less compression was applied to the
data, a greater number of eigenvalues could be considered
in the calculation of the generalized inverse matrix of Sni ,
and the errors introduced by CDF (2015) would be further
reduced.

When no compression is applied, the errors introduced by
CDF (2015) are due to the numerical precision with which
the data are provided, because the eigenvalues smaller than
the numerical precision of the largest eigenvalue will usually
only contribute to the noise of the generalized inverse. There-
fore, less compression and improved numerical precision can
reduce the approximation introduced by CDF (2015).

4 Conclusions

The original CDF (2015) formula requires the calculation of
the inverse matrices of the noise CMs Sni of the input profiles
and, therefore, can be rigorously applied only when these
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CMs are nonsingular. In the other cases, the CDF (2015) can
still be used, replacing the inverse matrices of the noise CMs
with the generalized inverse matrices, but the result is an ap-
proximation. Furthermore, a variable exists in this operation,
and a threshold has to be identified for the choice of how
many eigenvalues are used in the calculation of the general-
ized inverse matrices.

A new formula CDF (2022) has been presented that con-
tains the inverse matrices of the retrieval error CMs (the CMs
that include both the noise and the smoothing errors), instead
of the inverse matrices of the noise CMs. Since the retrieval
error CMs are always nonsingular matrices, the new formula
can be used without resorting to generalized inverse matrices.

We deduced the analytical relationship between the two
formulas and observed that the quality of the approximation
provided by the old formula depends on how much SniS#

ni is
close to the identity matrix.

Furthermore, we have obtained the expression of the oper-
ational CDF (2022), which can handle interpolation and co-
incidence errors. The operational CDF (2022) is indispens-
able for the application of the CDF to real measurements,
which are often measured on different vertical grids and at
different times and/or locations.

Finally, we have introduced a consistency check that can
be used to define the threshold for the eigenvalues of the
noise CMs and applied it to a real IASI measurement to
evaluate the errors made using CDF (2015) instead of CDF
(2022). We observed that in practice the errors introduced by
the use of CDF (2015) are much smaller than the retrieval
errors and depend on the data compression and numerical
precision with which the data are provided to the users.

The errors made with the old CDF (2015) do not appear
to be too large, even in the case of a significant data com-
pression; however, the use of the new CDF (2022) and oper-
ational CDF (2022) is recommended for data fusion process-
ing.

Appendix A

In this Appendix, we prove that Eq. (5) is the generalization
to N profiles of the new formula for the CDF obtained in
Ceccherini (2022) in the case of the fusion of two profiles
using the Kalman filter.

At the basis of this proof there is the consideration that
the product of the CDF is characterized by the same quanti-
ties that characterize the retrieval product: CMs, AKM and a
priori information; therefore, it can be used as input for suc-
cessive fusion operations.

Here we demonstrate that if Eq. (5) is valid for N it is valid
also for N + 1 and, since we know that it is valid for N = 2,
using the induction principle, we deduce that it is valid for
any N .

We suppose to have fused N profiles and, therefore, for
hypothesis we have obtained the profile xf given by Eq. (5).

Now we fuse xf with another profile x̂N+1 using the Kalman
filter. From Eq. (16) of Ceccherini (2022), we obtain the new
fuse profile given by

x
(N+1)
f =

(
S−1

f Af+S−1
N+1AN+1+S−1

a

)−1

(
S−1

f αf+S−1
N+1αN+1+S−1

a xa

)
, (A1)

where αf is given by

αf = xf− xa+Afxa. (A2)

Using Eqs. (10) and (14) we derive that

S−1
f Af =

N∑
i=1

S−1
i Ai (A3)

and using Eqs. (5), (10), (14) and (A2) we derive that

S−1
f αf =

N∑
i=1

S−1
i αi . (A4)

Substituting Eqs. (A3)–(A4) in Eq. (A1) we obtain

x
(N+1)
f =

(
N+1∑
i=1

S−1
i Ai +S−1

a

)−1(N+1∑
i=1

S−1
i αi +S−1

a xa

)
, (A5)

which is Eq. (5) written for the fusion of N + 1 profiles.
Therefore, as anticipated above, using the induction princi-
ple, we can state that Eq. (5) is valid for any N .

Appendix B

In this Appendix, we rewrite some equations of the CDF pre-
sented in the paper in a way that better highlights their phys-
ical meaning.

If we expand the relationships between the retrieved pro-
files x̂i and the true profile xt to the first order around the a
priori profiles xai , we obtain

x̂i = xai +Ai (xt− xai)+Giεi

= Aixt+ (I−Ai)xai +Giεi, (B1)

where Gi =

(
KT

i S−1
nyi

Ki +S−1
ai

)−1
KT

i S−1
nyi

are the gain ma-
trices and εi are the noise errors of the measured radiances
yi . Using Eqs. (6) and (B1) we can rewrite αi as

αi = Aixt+Giεi, (B2)

that is, αi is the true profile smoothed by the averaging ker-
nels of the ith measurement plus the error. Therefore, αi can
be interpreted as a measurement of the true profile performed
with the weighting functions given by the rows of Ai .
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Substituting Eq. (B2) in Eq. (5) we obtain

xf =

(
N∑

i=1
S−1

i Ai +S−1
a

)−1

(
N∑

i=1
S−1

i Aixt+S−1
a xa+

N∑
i=1

KT
i S−1

nyi
εi

)
(B3)

and using Eq. (16), Eq. (B3) becomes

xf =

(
N∑

i=1
Fi +S−1

a

)−1

(
N∑

i=1
Fixt+S−1

a xa+

N∑
i=1

KT
i S−1

nyi
εi

)
. (B4)

Equation (B4) clearly shows that the CDF profile is the
weighted mean of the true profile, weighted N times with
the Fisher information matrices of the different N measure-
ments, and of the a priori profile weighted with the matrix
S−1

a .
Using this formalism we can also rewrite Eqs. (10) and

(14), which give the expressions of the AKM and CM of the
fused profile:

Af =

(
N∑

i=1
Fi +S−1

a

)−1 N∑
i=1

Fi, (B5)

Sf =

(
N∑

i=1
Fi +S−1

a

)−1

. (B6)

Equation (B4) is equivalent to Eq. (5) and reveals the phys-
ical meaning of the CDF as a weighted mean of a set of
measurements. However, while Eq. (5) is expressed using the
retrieval products (αi quantities obtained from the retrieved
profiles, AKMs and CMs) and, therefore, can be operatively
used, the same does not apply to Eq. (B4), which is expressed
using unknown quantities (such as the true profile and the
errors).

As a final consideration, we notice that the CDF can be
traced back to the general approach outlined in Sect. 4.1.1
of Rodgers (2000) once the new linearized independent mea-
surements αi have been introduced. Indeed, if in Eq. (4.20) of
Rodgers (2000) we replace the measurements yi with αi , the
Jacobians Ki with Ai and the CMs Sεi

with Sni , we obtain the
CDF formula in the formalism of Eq. (9), apart from the dif-
ference that in Eq. (9) the a priori is made explicit. Therefore,
the CDF can be interpreted as an optimal estimate obtained
by all the considered measurements linearized around the in-
dividual solutions. However, the general formalism exposed
in Sect. 4.1.1 of Rodgers (2000) cannot be directly applied to
the profiles retrieved with the optimal estimation method, be-
cause affected by the bias of the a priori and the merit of the
CDF is the individuation of the αi quantities that overcome
this limitation.

Data availability. The IASI data used in the paper are available
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