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Abstract. Latent heating (LH) is an important factor in both
weather forecasting and climate analysis, being the essential
factor affecting both the intensity and structure of convective
systems. Yet, inferring LH rates from our current observing
systems is challenging at best. For climate studies, LH has
been retrieved from the precipitation radar on the Tropical
Rainfall Measuring Mission (TRMM) using model simula-
tions in a lookup table (LUT) that relates instantaneous radar
data to corresponding heating profiles. These radars, first
on TRMM and then the Global Precipitation Measurement
Mission (GPM), provide a continuous record of LH. How-
ever, the temporal resolution is too coarse to have significant
impacts on forecast models. In operational forecast models
such as High-Resolution Rapid Refresh (HRRR), convec-
tion is initiated from LH derived from ground-based radars.
Despite the high spatial and temporal resolution of ground-
based radars, their data are only available over well-observed
land areas. This study develops a method to derive LH
from the Geostationary Operational Environmental Satellite-
16 (GOES-16) in near-real time. Even though the visible and
infrared channels on the Advanced Baseline Imager (ABI)
provide mostly cloud top information, rapid changes in cloud
top visible and infrared properties, when formulated as an
LUT similar to those used by the TRMM and GPM radars,
can successfully be used to derive LH profiles for convec-
tive regions based on model simulations with a convective
classification scheme and channel 14 (11.2 µm) brightness
temperatures. Convective regions detected by GOES-16 are
assigned LH profiles from a predefined LUT, and they are
compared with LH used by the HRRR model and one of the
dual-frequency precipitation radar (DPR) products, the God-
dard convective–stratiform heating (CSH). LH obtained from

GOES-16 shows similar magnitude to LH derived from the
Next Generation Weather Radar (NEXRAD) and CSH, and
the vertical distribution of LH is also very similar with CSH.
A three-month analysis of total LH from convective clouds
from GOES-16 and NEXRAD shows good correlation be-
tween the two products. Finally, LH profiles from GOES-16
and NEXRAD are applied to WRF simulations for convec-
tive initiation, and their results are compared to investigate
their impacts on precipitation forecasts. Results show that
LH from GOES-16 has similar impacts to NEXRAD in terms
of improving the forecast. While only a proof of concept, this
study demonstrates the potential of using LH derived from
GOES-16 for convective initialization.

1 Introduction

As the spatial resolution of numerical weather prediction
(NWP) models becomes finer and as operational models are
run at convection permitting resolutions of a few kilometers,
data assimilation must also be adapted to deal with these finer
resolutions (Gustafsson et al., 2018). Along with the data
assimilation, initializing cloud and precipitation at the right
location is an important procedure in short-term forecasts
(Geer et al., 2018), and modelers seek to use observation data
that will create a favorable convective environment at this
fine resolution. If the model environment is not favorable for
convection, updrafts and clouds will not develop in the right
place. Latent heating (LH) can be added in the model data
assimilation cycle to help correctly initiate convection in op-
erational regional models, where both accuracy and speed are
important. Adding LH induces lower-level convergence and
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upper-level divergence, thereby initiating convection, and it
has become an important procedure that many operational
models use for the initialization of convective events (Wey-
gandt and Benjamin, 2007; Gustafsson et al., 2018). Once the
convection is initiated, LH further contributes to the intensi-
fication of convection.

The National Oceanic and Atmospheric Administration
(NOAA)’s operational models, the Rapid Refresh (RAP)
and High-Resolution Rapid Refresh (HRRR), both use ob-
served latent heating, but in different ways, to drive con-
vection (Benjamin et al., 2016). RAP uses a digital-filter
initialization (Peckham et al., 2016), while HRRR replaces
the modeled temperature tendency with the observed LH
(Benjamin et al., 2016) from the Next Generation Weather
Radar (NEXRAD), which is a ground-based radar network
over the United States. For the operational model, LH data
must be available continuously in near-real time. Therefore,
ground-based radars which have high spatial and temporal
resolutions similar to HRRR’s resolution are used to calcu-
late LH from NEXRAD reflectivity. While suitable for the
HRRR region over the contiguous United States (CONUS),
the method is not applicable to regions beyond radar cover-
age, such as the Gulf of Mexico and in some mountainous
areas.

Satellite data are used to infer the climatology of LH over
the globe. CloudSat, which carries a W-band radar that is
sensitive to light precipitation but experiences attenuation
with heavy precipitation, is used to derive LH for shallow
precipitating regions (Huaman and Schumacher, 2018). Nel-
son et al. (2016) and Nelson and L’Ecuyer (2018) created
an a priori database using model simulations from the Re-
gional Atmospheric Modeling System (RAMS) and used a
Bayesian Monte Carlo algorithm to find the most appropri-
ate LH profiles from the database for shallow convective
clouds. For deeper convection, satellites that carry instru-
ments with lower frequencies – such as Tropical Rainfall
Measuring Mission (TRMM) and Global Precipitation Mea-
surement Mission (GPM) satellites – are more appropriate
to retrieve LH. The Precipitation Radar (PR) on TRMM was
the first meteorological radar in space, designed to provide
vertical distributions of precipitation over the tropics (Kum-
merow et al., 1998). Vertical profiles of LH have been re-
trieved from its three-dimensional hydrometeor observations.
There are several retrieval algorithms using PR: the God-
dard convective–stratiform heating algorithm (CSH; Tao et
al., 1993), the spectral latent heating algorithm (SLH; Shige
et al., 2004), the hydrometeor heating algorithm (HH; Yang
and Smith, 1999), and the precipitation radar heating algo-
rithm (PRH; Satoh et al., 2001). Among these algorithms,
CSH and SLH are the two most widely used products. Most
recent versions of monthly gridded CSH and SLH products
have spatial resolutions of 0.25◦× 0.25◦ and 0.5◦× 0.5◦, re-
spectively, with 80 vertical layers, and they have been used to
provide valuable insights into heat budgets and atmospheric
dynamics over the tropics (Schumacher et al., 2004; Chan

and Nigam, 2009; Zhang et al., 2010; Liu et al., 2015; Hua-
man and Takahashi, 2016). The CSH and SLH algorithms
have improved since their first development, and both algo-
rithms are also applied to the dual-frequency precipitation
radar (DPR) data on GPM, the successor of TRMM, to con-
tinue the climate record of LH and to expand the regions of
interest to mid latitudes.

CSH and SLH both rely on a lookup table (LUT) based
on cloud-resolving model simulations. Inputs that are used
to look for LH profiles in these LUT are different, but their
common inputs to the LUT are echo top height and surface
rainfall rate as well as a convective–stratiform flag. Echo top
height is important in determining the vertical depth of heat-
ing, and surface rainfall rate is a good indicator of the in-
tensity of maximum heating. Even though the methods use
different model simulations to create the LUT and differ in
other details, they seem to exhibit similar distributions when
they are averaged spatially or temporally (Tao et al., 2016).

Although these products have been useful for keeping cli-
mate records and for understanding the impacts of LH on
long-lasting systems like tropical cyclones, their temporal
resolutions are too coarse to be used in weather forecasting,
especially compared to 2 min observations available from
ground-based radars. The current generation of geostationary
observing systems (e.g., GOES-16 and 17, Himawari, GEO-
KOMPSAT-2) are required to achieve sampling rates compa-
rable to ground-based radars. The visible (VIS) and infrared
(IR) sensors on geostationary satellites, unfortunately, cannot
provide as much vertical information as active sensors do in
the presence of thick clouds. Nonetheless, the rapid refresh
provides important information about a cloud’s convective
nature. Since the RAP model already uses cloud top infor-
mation from geostationary data in its forecast (Benjamin et
al., 2016) and since the HRRR model uses the RAP model
outputs as initial and lateral boundary conditions, LH pro-
files derived from cloud top temperature would be consistent
with both the RAP and HRRR model cloud fields.

This study examines if cloud top information from
the Geostationary Operational-Environmental Satellite-16
(GOES-16) Advanced Baseline Imager (ABI) coupled with
convective cloud identification can be sufficient to approx-
imate NEXRAD-derived LH. Following the lead of space-
borne radar LH algorithms, an LUT is created using model
simulations. Once convective clouds are identified by using
10 consecutive one-minute ABI images, LH profiles for con-
vective cloud are found in the LUT based on the cloud top
temperature of the convective cloud. In mesoscale sectors of
interest, ABI data are provided at a one-minute resolution,
making the LH product comparable to NEXRAD’s product.
LH from GOES-16 can be beneficial over the regions with-
out radar coverage, such as oceans or mountainous regions,
where beam blockage degrades the quality of radar data.

Detailed descriptions of CSH and SLH products from the
GPM satellite and how NEXRAD converts reflectivity to LH
are provided in Sect. 2, followed by a description of the LH
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retrieval from GOES-16 ABI in Sect. 3. Section 4 uses a case
study to compare vertical profiles of LH from GOES-16 with
other radar products as well as to compare statistical results
over a three-month period to evaluate whether total convec-
tive heating rates from GOES-16 are comparable to the ones
from NEXRAD. Lastly, in Sect. 5, a weather research and
forecasting (WRF) simulation using LH from GOES-16 and
NEXRAD is presented to compare the impacts of LH assim-
ilation from the two datasets in convective initialization. Re-
sults are discussed in Sect. 5.

2 Existing LH retrieval methods

2.1 Radiosonde networks

LH is not easily measured, as it is almost impossible to single
out temperature changes by means of phase changes from the
total observed temperature changes. However, heat and mois-
ture budget studies have been conducted using sounding net-
works in field campaigns, where apparent heat sources (Q1)

and apparent moisture sinks (Q2) from the budget study can
be expressed as a function of LH (Yanai et al., 1973; John-
son, 1984; Demott, 1996). LH can then be calculated using
a diagnostic heat budget method, which was first presented
by Yanai et al. (1973) (Tao et al., 2006). Over a certain hori-
zontal area,Q1 can be expressed through the equation below,
which includes LH (Tao et al., 2006):

Q1−QR = π

[
−

1
ρ

(
∂ρw′θ

∂z

)
−∇ •V ′θ ′

]

+
1
cp

[
Lv (c− e)+Lf (f −m)+Ls(d − s)

]
, (1)

where prime denotes deviations from horizontal averages,
which are denoted by an upper bar. QR is the radiative
heating rate; θ is the potential temperature; π is the non-
dimensional pressure; ρ is the air density; cp is the specific
heat at constant pressure; and R is the gas constant for dry
air. Lv, Lf, and Ls represent the latent heats of condensation,
freezing, and sublimation, while c, e, f , m, d , and s repre-
sent each microphysical process of condensation, evapora-
tion, freezing, melting, deposition, and sublimation, respec-
tively. The last six terms on the right-hand side of Eq. (1)
represent the processes responsible for LH. Since Q1 can
be obtained using vertical profiles of temperature, moisture,
and wind data measured during field campaigns (Tao et al.,
2006), the observed Q1 is used to indirectly validate GPM
LH products that are retrieved together with Q1.

2.2 CSH and SLH from GPM DPR

LH is fundamentally a temperature change resulting from the
phase change of water in the atmosphere. Given the diffi-
culties associated with measuring temperature change where

condensation is occurring, further attributing those temper-
ature changes to phase changes is not possible on a regu-
lar basis. Instead, many methods rely on the detection of
hydrometeors, generally from microwave sensors, and then
inferring LH from the hydrometeors. Precipitation observed
from microwave sensors and latent heating are closely re-
lated, but since hydrometeors are created through condensa-
tion, LH derived from a microwave sensor is actually LH that
is released at an earlier location before the observation time.
Nonetheless, because LH products from ground- or space-
based radars and radiometers can be routinely generated over
broad scales, the advantages outweigh some of the time and
space mismatches.

The DPR has two operational LH algorithms: CSH and
SLH. In the GPM products, LH is provided along with ad-
ditional variables: Q1–QR and Q2 in SLH and Q1–QR-LH,
QR , andQ2 in CSH as well as the rain type (Tao et al., 2019).
These algorithms were first developed for TRMM data but
have been adapted to GPM data. Both algorithms use cloud-
resolving model simulations to create LUTs relating hydrom-
eteor profiles to modeled heating rates. Although there is no
direct measurement for LH to validate the results, retrieved
Q1 and Q2 are compared with sounding data from various
field campaigns through the method mentioned in Sect. 2.1.
The evolution of these products is well summarized in (Lev-
izzani et al., 2020), but each algorithm is briefly explained
here for completeness.

The CSH algorithm was first introduced by Tao et
al. (1993). The initial algorithm by Tao et al. (1993) used
surface rainfall rate and amount of stratiform rain as inputs
to an LUT that was generated from a number of representa-
tive cloud model simulations. This LUT has since been im-
proved by increasing the number of simulations, using finer
resolutions in simulations, and adding new variables such as
echo top heights and low-level vertical reflectivity gradients
(Tao et al., 2019). For high-latitude regions observed by the
GPM satellite, new LUTs have been created with simulations
from the NASA Unified Weather Research and Forecast-
ing model, which is known to be suitable for high-latitude
weather systems (Levizzani et al., 2020). This new LUT uses
surface rainfall rate, maximum reflectivity height, freezing
level height, echo top height, decreasing flag (whether or not
reflectivity values drop by more than 10 dBZ toward the sur-
face), and maximum reflectivity intensity (Tao et al., 2019)
to select the appropriate LH profile.

The SLH algorithm is based on the work of Shige et
al. (2004, 2007). For tropical regions, the LUT is created
from cloud-resolving model simulations for three different
rain types: convective, shallow stratiform, and anvil (or deep
stratiform) clouds. Inputs to the LUT are precipitation top
height (PTH), precipitation rate at the surface (Ps), precip-
itation rate at the level that separates upper-level heating
and lower-level heating (Pf), and precipitation at the melt-
ing level (Pm). Once non-convective rain is separated into
either shallow stratiform or anvil types, a vertical profile for

https://doi.org/10.5194/amt-15-7119-2022 Atmos. Meas. Tech., 15, 7119–7136, 2022



7122 Y. Lee et al.: Latent heating profiles from GOES-16

an anvil cloud is chosen based on Pm, and the magnitudes of
upper-level heating and lower-level cooling are normalized
by Pm and (Pm–Ps), respectively. For convective and shallow
stratiform clouds, a vertical profile corresponding to the PTH
is chosen, and then upper-level heating and lower-level heat-
ing are normalized by Pf and Ps, respectively. The DPR uses
a new LUT created for mid and higher latitudes to account
for expanded latitudinal coverage by GPM. Cloud in higher
latitude regions is classified into six precipitation types: con-
vective, shallow stratiform, three types of deep stratiform,
and other. This creates six LUTs that provide LH as a func-
tion of precipitation type, PTH, precipitation bottom height,
maximum precipitation, and Ps.

Figure 1 shows monthly gridded products from these two
algorithms over CONUS for July of 2020 at three different
heights as well as their vertically integrated heating rates.
The overall horizontal patterns of the two products look sim-
ilar, but there is a difference in the vertical distributions. At 2
or 5 km, CSH tends to show higher heating rates than SLH,
while at 10 km, SLH shows higher heating rates than CSH. In
addition, SLH tends to have larger cooling rates throughout.
If integrated over the whole of the vertical layers, CSH tends
to show higher heating rates in general. These discrepancies
can be attributed to different configuration setups, such as the
microphysical scheme used to run simulations for the LUT.
The results demonstrate that the vertical profiles of LH are
highly dependent on the simulations that generate the LUT
as well as on different inputs to the LUTs.

Orbital data for these products are provided at the pixel
scale (5 km), and although results may be interpreted as “in-
stantaneous” LH, the temporal resolution from low-Earth or-
bit is too coarse to have much impact on regional forecast
models that are initialized hourly if not more frequently.

2.3 LH from NEXRAD

In the operational HRRR model, LH profiles retrieved using
radar reflectivity replace modeled LH profiles, which helps
initiate convection at the appropriate locations. LH profiles
in this case are constructed using a simple empirical formula
that converts radar reflectivity to LH. In Eq. (2), reflectivity
is converted to potential temperature tendency using a model
pressure field. This equation is only applied when radar re-
flectivity exceeds 28 dBZ. The threshold of 28 dBZ was cho-
sen based on the effectiveness of adding heating from reflec-
tivity in HRRR (Bytheway et al., 2017).

Tten =
1000
p

Rd/cpd (Lv+Lf)Qs

n • cpd
where Qs

= 1.5×
10z/17.8

264083
, (2)

where z is the grid radar and lightning proxy reflectivity; Tten
is the temperature tendency; p is the background pressure
(hPa); Rd is the specific gas constant for dry air; cpd is the

specific heat of dry air at constant pressure; Lv is the latent
heat of vaporization at 0 ◦C; Lf is the latent heat of fusion
at 0 ◦C; and n is the number of forward-integration steps of
digital filter initialization. Tten in Eq. (2) is produced in K s−1

to meet the needs during the short-term forecast. Although
heating rate is not a general output of the forecast model,
it is calculated at every time step by dividing the tempera-
ture change from the microphysical scheme by the time step,
which is usually on the order of few tens of seconds. There-
fore, this empirical formula is developed to produce LH con-
sistent with the model framework so that added LH does not
produce computational instabilities when ingested.

3 LH profiles from GOES-16

The current operational geostationary satellite, GOES-16,
carries the ABI, an instrument with 16 VIS and IR channels.
Mesoscale sectors, which are manually selected to observe
important weather events, provide data in one-minute inter-
vals. Such high temporal-resolution data have helped observe
cloud development in more detail. Using this high temporal-
resolution ABI data, convective clouds are detected, and LH
profiles for the detected clouds are assigned from an LUT.
The LUT is created by running weather research and fore-
casting (WRF) model simulations. While the CSH and SLH
algorithms look for LH profiles in a model-based LUT ac-
cording to precipitation type and precipitation top height, the
LUT for GOES-16 ABI is created for convective clouds that
appear bright and bubbling from ABI according to brightness
temperature (Tb) at channel 14 (11.2 µm), which is a good in-
dicator of cloud top temperature. LH is not assigned for strat-
iform clouds from GOES-16, as LH from stratiform clouds is
not usually used to initiate convection in the forecast model.
Once convective clouds are detected using temporal changes
in reflectance and Tb, the LH profile corresponding to the Tb
of the detected cloud is assigned from the LUT.

3.1 Definition of convection in model simulations and
GOES-16 ABI

In order to make an LUT for LH profiles of convective
clouds, convective grid points need to be defined in the model
simulation. Convection can be defined in several different
ways depending on the variables available, but the most di-
rect and accurate way of defining it is to use vertical veloc-
ity (Zipser and Lutz, 1994; LeMone and Zipser, 1980; Xu
and Randall, 2001; Houze, 1997; Steiner et al., 1995; Del
Genio et al., 2012; Wu et al., 2009). Steiner et al. (1995)
and Houze (1997) suggested that convective regions tend to
have vertical velocity greater than 1 ms−1, and many previ-
ous studies that used vertical velocity to define convection
used a threshold of 1 ms−1 (LeMone and Zipser, 1980; Xu
and Randall, 2001; Wu et al., 2009). Similarly, this study uses
a vertical velocity threshold to define the convective core, as
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Figure 1. Monthly gridded LH from CSH at (a) 2 km, (c) 5 km, and (e) 10 km; (g) vertically integrated LH from CSH and LH from SLH at
(b) 2 km, (d) 5 km, and (f) 10 km; (h) vertically integrated LH from SLH.
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it is one of the prognostic variables in the model simulations.
However, in this study, a vertical velocity threshold is defined
at the layer of maximum hydrometeor contents. This is in-
tended to exclude potentially high values of negative vertical
velocity that can occur at high levels in the cloud if evapora-
tive cooling is present.

To establish the vertical velocity threshold in this study,
several values are tested in order to match the convective
fraction seen in the GOES-16 convection detection algorithm
(described in Lee et al., 2021). The vertical velocity thresh-
old whose convective fractions compared best to GOES-16 is
chosen. The GOES-16 convection detection algorithm uses
mesoscale sector data with one-minute intervals to detect
convective regions from ABI imagery. Two separate detec-
tion methods are proposed: one for vertically growing clouds
in their early stages, and one for mature convective clouds
that move rather horizontally once they reach the tropopause
and that often have overshooting tops. A detailed descrip-
tion of the methods can be found in Lee et al. (2021), but it
is briefly explained here. The method for vertically growing
clouds focuses on Tb decreases over 10 min for two water va-
por channels. If the decrease is greater than the designated
threshold (−0.5 K min−1 for channel 8 and −1.0 K min−1

for channel 10), it classifies the pixel as convective. For ma-
ture convective clouds, the method looks for grid points that
have continuously high reflectance (reflectance greater than
0.8), low Tb (Tb less than 250 K), and lumpy cloud top (hor-
izontal gradient values between 0.4 and 0.9) over 10 min.
Lumpiness of the cloud top is calculated using the Sobel op-
erator, which is commonly used for edge detection. These
thresholds are chosen based on one month of data compared
to “PrecipFlag” from the Multi-Radar Multi-Sensor System
(MRMS), which classifies precipitation types by combin-
ing data from ground-based radar and rain gauge observa-
tions. Combining the two methods yielded false alarm rates
of 14.4 % and a probability of detection of 45.3 % against the
ground-based radar product, but 96.4 % of the false alarm
cases were at least raining. Combining the two methods
provides results comparable to the radar product, and these
methods are rather simple and fast. These methods detect any
type of convective region, and therefore, the analysis is con-
ducted without distinguishing different types of convective
clouds.

Table 1 shows convective fractions using the GOES-16
convection detecting algorithm and using different verti-
cal velocity thresholds in the model outputs. Using higher
thresholds can eliminate non-convective grid points, but at
the same time, it will only include the strongest parts of
the convective regions. Using a 1.5 m s−1 threshold shows
a fractional area closest to the observed fraction; therefore,
1.5 m s−1 is used to define convection in the model output.
This number is similar to values used in some previous mod-
eling studies (1 m s−1 in LeMone and Zipser, 1980; Xu and
Randall 2001; Wu et al., 2009) and in a satellite-based study
(2–4 m s−1 in Luo et al., 2014).

Table 1. Fraction of convective area from observations and using
different vertical velocity thresholds in the model output.

Obser-
vation 1 m s−1 1.5 m s−1 2 m s−1 3 m s−1 4 m s−1

1.34 % 1.86 % 1.19 % 0.86 % 0.52 % 0.34 %

3.2 Model simulations used to create a lookup table

Eleven convective cases are simulated using WRF to obtain
enough samples to populate each cloud top temperature bin.
The convective cases were chosen over CONUS within the
NEXRAD network during May to August in 2017 and 2018.
All simulations use the same configuration, shown in Table 2,
and HRRR analysis data are used for initial and boundary
conditions. All the convective cases are run from the start of
any convective activity in the scene for at least several hours,
depending on the longevity of convection in each case, and
model outputs are collected every 10 min so that the LUT
includes LH profiles at all stages and types of convection.
However, the LUT is not divided into different types of con-
vection, as it is hard to distinguish convective types from ob-
servations. One thing to note is that the magnitude of LH can
vary depending on the model configuration, such as spatial
resolution, time step, and microphysical scheme. This study
uses the same model configuration as the HRRR model for
all simulations, which avoids discrepancies in magnitude be-
tween the modeled LH and the derived LH that will be in-
serted into the forecast models. Tbs at 11.2 µm are calculated
using the Community Radiative Transfer Model (CRTM). In
each scene, convective grid points are defined by the thresh-
old established in the previous section (1.5 m s−1), and LH
profiles from the convective grid points with the same Tb
from channel 14 are averaged to produce mean profiles for
each Tb bin of the LUT. LH profiles included in the LUT are
provided in K s−1, as for NEXRAD.

3.3 Mean LH profiles according to cloud top
temperature

LH profiles of convective clouds from 11 WRF simulations
are sorted into 16 bins based on the cloud top temperature
at 11.2 µm. The 16 bins range from below 200 K to above
270 K, with a bin size of 5 K. Figure 2 shows the mean ver-
tical profiles of LH in each bin. All profiles exhibit slightly
negative LH near the ground due to evaporation, but positive
LH is shown at most layers. It is also clear in the figure that,
as the Tbs decreases, the profile stretches up in the vertical.
Interestingly though, the maximum heating rate is not per-
fectly proportional to Tb. Considering the maximum LH that
is allowed in the HRRR model, which is 0.01 K s−1, these
values seem quite reasonable. Table 3 shows the mean sur-
face precipitation rate for each bin. The precipitation rate is
inversely proportional to Tb in Table 3. This is expected, as
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Table 2. Table for WRF simulation setup.

Version WRFv3.9

Spatial resolution 3 km

Number of vertical layers 50

Time step 10 s

Microphysical scheme Aerosol-aware Thompson scheme (the original scheme is modified to produce
vertical profiles of LH as outputs)

Planetary boundary layer Mellor–Yamada–Nakanishi–Niino (MYNN) level 2.5 and level 3 schemes

Land surface model Rapid update cycle (RUC) land surface model

Long-wave and short-wave radiation physics Rapid radiative transfer model for general circulation models (RRTMG)
schemes

Figure 2. Mean vertical profiles for each cloud top temperature bin.

deeper and higher clouds tend to precipitate more. This pro-
vides more evidence that mean LH profiles for each bin can
reasonably be obtained from GOES-16.

The LUT in Fig. 2 is used throughout the later sections,
but it can be further divided with additional inputs. A de-
crease in the brightness temperature is one of the options,
but it is not considered in this study for several reasons. Since
clouds move over time, cloud advection adds uncertainty to
the change in brightness temperature if calculated per pixel.
To measure a robust brightness temperature decrease, the de-
crease can be calculated per cloud and not per pixel. How-
ever, LH profiles would have to be assigned for each cloud,
and the assigned profile would be inconsistent with the ob-

Table 3. Table of mean precipitation rate for each cloud top temper-
ature bin.

Mean precipitation
rate (mm h−1)

∼ 200 K 48.3
200–205 K 42.9
205–210 K 42.1
210–215 K 37.9
215–220 K 33.6
220–225 K 27.7
225–230 K 21.8
230–235 K 18.8
235–240 K 16.8
240–245 K 16.4
245–250 K 14.0
250–255 K 13.2
255–260 K 11.0
260–265 K 9.2
265–270 K 6.9
270 K– 4.7

served cloud top temperature for each pixel. Therefore, us-
ing brightness temperature decreases as additional inputs to
the LUT is not included in this study, and it remains a topic
of inquiry for future studies. Instead, each cloud top tem-
perature bin can be further divided according to composite
radar reflectivity, and the additional LUT is presented in Ap-
pendix A. Composite reflectivity, if available, can be used to
adjust the maximum intensity of LH profiles, as the SLH al-
gorithm adjusts the amplitude by multiplying Ps and Pf. Al-
though it is challenging to get the full vertical profile of radar
reflectivity from GOES-16 data, there are algorithms devel-
oped to estimate composite reflectivity from GOES-16, such
as GOES Radar Estimation via Machine Learning to Inform
NWP (GREMLIN; Hilburn et al., 2021). Therefore, this ad-
ditional LUT could be used along with such an estimator to
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Table 4. Total number of grid points from NEXRAD, GOES-16,
and CSH in the red, green, and blue box regions after interpolating
into the same 3 km WRF grid.

Red Green Blue

NEXRAD 30 41 35
GOES-16 15 36 23
CSH 34 50 43

assign LH profiles in more detail, but it is not used further in
this study.

4 Comparisons of LH profiles between GPR DPR,
NEXRAD, and GOES-16 ABI

4.1 A case study on 18 June 2019

LH from three different instruments – GOES-16 ABI,
NEXRAD, and GPM DPR – are examined in this section.
Methods using GOES-16 and DPR products are similar in
the sense that they use cloud top height or PTH to look for
mean profiles in the LUT created with model simulations, al-
though DPR has additional parameters such as surface rain
rate, which is used to vary the magnitude of the heating rate.
In contrast, NEXRAD uses an empirical formula to convert
radar reflectivity to LH regardless of PTH. They are all in-
stantaneous heating but are provided in different units. LH
from GOES-16 and NEXRAD are in K s−1 to easily match
with modeled heating rate, while DPR products are in K h−1.
Therefore, LH in K h−1 from DPR products are converted to
K s−1 for comparison.

A scene from 18 June 2019 is shown in Fig. 3 to compare
the precipitation types (convective or stratiform) of the three
products, as this is one of the major factors in estimating LH
profiles. The regions with reflectivity greater than 28dBZ in
Fig. 3a are regions where LH is estimated from NEXRAD re-
flectivity to be used in HRRR but not necessarily convective
regions. Pink regions on top of the visible image at chan-
nel 2 (0.65 µm) in Fig. 3b are convective regions detected by
GOES-16, and they represent the smallest convective areas
relative to the other two methods. The number of convec-
tive grid points from each product after interpolating into the
3km-resolution WRF grid is presented in Table 4 for a quan-
titative comparison. Even though areal coverage differs by
the methods, the locations of the convective cores matches
well between the products.

Clouds in the colored boxes in Fig. 3 are all convective
clouds but in different evolutional stages. Clouds in red,
green, and blue boxes have high, low, and mid-level cloud
top temperature, respectively. Since the three products have
different spatial resolutions, LH profiles from NEXRAD,
GOES-16, and CSH for these clouds are interpolated into the
same WRF grid with a 3 km resolution for a direct compari-

son in Figs. 4, 5, and 6. CSH provides LH for both convec-
tive and stratiform regions; thus, the different colors of the
lines in Figs. 4c, 5c, and 6c represent different cloud types.
Lines with a light blue color are LH profiles of convective
grid points, while the blue line is the mean of these profiles.
Similarly, LH profiles of each stratiform gird point are in
light green, while the mean of these profiles is in dark green.
The mean of all LH profiles is colored in red. Convective LH
profiles from CSH show heating throughout the vertical lay-
ers, as expected, except near the surface due to evaporation
at lower levels. LH profiles in stratiform regions show cool-
ing at low levels below a melting level and heating at levels
above. LH profiles from GOES-16 (GOES LH) correspond-
ing to the three convective clouds are shown in Figs. 4b, 5b,
and 6b. When GOES LH and CSH are compared, the mean
profile of convective LH from CSH (Figs. 4c, 5c, and 6c) is
similar to GOES LH in blue (Figs. 4b, 5b, and 6b), both in
terms of the magnitude and the vertical shape.

In contrast, LH from NEXRAD (NEXRAD LH) shows
a different vertical profile than GOES LH and CSH, which
both use the LUT consisting of model simulations. GOES
LH and CSH peak around the middle of the atmosphere,
while the NEXRAD LH in the convective core tends to peak
at low levels where radar reflectivity is high (Figs. 4a, 5a,
and 6a). At low levels where model simulations have cooling,
NEXRAD LH does not show cooling due to Eq. (2), which
is designed to only produce positive values. This heating at
lower levels induces convergence in the lower atmosphere
and divergence in the upper atmosphere, and thus, convec-
tion can be effectively initiated from the added heating.

Although their vertical shapes are different, the magnitude
of the NEXRAD LH is similar to the other products. Overall
values of the mean convective LH profiles from NEXRAD
in blue are slightly smaller than the mean convective pro-
file of GOES LH and CSH (blue line) but are closer to the
total mean profile of CSH (red line), which indicates that
the 28dBZ threshold might include some stratiform regions
as well. The smaller mean of the NEXRAD LH is mainly
attributed to anvil regions where reflectivity is greater than
28 dBZ, which only exist at a few vertical layers, with reflec-
tivity being equal to 0 dBZ elsewhere.

Even though the mean NEXRAD LH is smaller, the to-
tal LH for the region can be similar when it is summed up
over the region due to the broader area determined by the
threshold of 28 dBZ in Fig. 3a relative to that of GOES-16
(Fig. 3b). Therefore, the total LH of each cloud is again com-
pared between the three products (Table 5). Here, “total LH”
is defined as the vertically and horizontally integrated LH
over each convective cloud. This comparison is intended to
account for differences in the area and for convective defini-
tions that make direct comparison between vertical levels dif-
ficult. In addition, comparing combined values will be mean-
ingful, as those are the values that will be used to initiate
each convective cloud. Table 5 shows that the total LH from
CSH tends to be higher than that from the other two products,
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Figure 3. A scene on 18 June 2019. (a) NEXRAD composite reflectivity; only the regions with reflectivity greater than 28 dBZ are shown in
colors; color bar is in dBZ. (b) Convective regions detected by GOES-16 are colored in pink on top of GOES-16 visible imagery of channel
2 (0.65 µm) reflectance. (c) Precipitation type defined by CSH; convective regions are colored in pink, while stratiform regions are colored
in navy.

while the total LH is shown to be similar between NEXRAD
and GOES-16, although GOES LH is slightly larger. Despite
the smaller mean of NEXRAD LH that was shown in Figs. 4,
5, and 6, it shows a good agreement with GOES LH in total
heating.

4.2 Three-month analysis against NEXRAD LH

The case study from Sect. 4.1 is presented to show how the
vertical structure of GOES LH compares to other radar prod-
ucts. In this section, three months of data from May, June,
and July of 2020 are used to compare total LH for convective
clouds between GOES-16 and NEXRAD. Total LH used in
this section is, again, vertically and horizontally integrated
over each convective cloud. Both GOES-16 brightness tem-
perature and NEXRAD reflectivity are resampled to the 3 km
HRRR grid for a direct comparison and are compared under
several conditions that the HRRR model uses to avoid dis-
ruption in the existing model physics. During the convective
initiation step in the HRRR model, LH is calculated from
NEXRAD radar reflectivity following Eq. (2) if the layer is
cloudy, is under the GOES cloud top (using level 2 cloud top
pressure data), is above the planetary boundary layer, and has

a temperature less than 277.15 K. Additionally, LH is calcu-
lated for temperatures greater than 277.15 K only if the cor-
responding reflectivity exceeds 28 dBZ.

GOES LH is calculated with the same criteria described
above, except for the additional 28 dBZ categorization. Ad-
jacent convective grid points by the detection algorithm are
clustered to define a convective cloud. In order to minimize
errors coming from different definitions of convection in
GOES and NEXRAD, total LH is compared only in clouds
where both NEXRAD and GOES detect convection. Since
the area defined as convective cloud tends to be wider in
NEXRAD than in GOES-16 and since one convective cloud
from NEXRAD tends to include multiple convective cloud
systems defined by GOES, the comparison is done by com-
bining all convective clouds from GOES-16 that overlap with
each convective cloud by NEXRAD. Regions with low radar
quality, as indicated by the radar quality flag, are excluded in
the analysis.

Among the 4045 convective clouds collected during the
three months of the analysis, only 2660 convective clouds
are within reasonable range of each other in both GOES-16
and NEXRAD. Here, we define “reasonable range” as fol-
lows: the number of convective grid points from GOES-16
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Figure 4. LH profiles from (a) NEXRAD, (b) GOES-16, and
(c) CSH for the red box region. Light blue lines are each the LH
profile for individual convective grid points, and the darker blue
line is a mean profile of the light blue lines. In (c), the LH profile
for each stratiform grid point is colored in light green, and its mean
profile is colored in dark green. The mean of all (convective and
stratiform) LH profiles for CSH is colored in red.

Figure 5. Same as Fig. 4 but for the green box region.

does not exceed 5 times that of NEXRAD, and vice versa. A
total of 2660 clouds are selected, and the total LH for these
clouds from both GOES-16 and NEXRAD is fitted to a linear
regression model. Figure 7 shows a scatter plot of NEXRAD
LH and GOES LH for each convective cloud using log–log
space. A decent correlation coefficient of 0.83 is obtained
between NEXRAD LH and GOES LH in Fig. 7. In most
cases, large discrepancies in total LH seem to be caused by a
corresponding discrepancy in the number of convective grid
points, which is inevitable, but overall, the total LH values
seem to agree well if the number of convective grid points is
similar.

5 Impacts of NEXRAD LH and GOES LH on
precipitation forecast

The WRF model was run for one convective case on
10 July 2019 to compare the impacts of GOES LH and
NEXRAD LH on precipitation forecasts. HRRR data are
used as initial and boundary conditions, and the same con-
figuration is used as when making the LUT. GOES-16 vis-
ible data are only available for initialization from 15:00 to
22:00 UTC, so results are compared after one hour of run-

Figure 6. Same as Fig. 4 but for the blue box region.

Table 5. Total LH (K s−1) from NEXRAD, GOES-16, and CSH in
the red, green, and blue box regions.

Red Green Blue

NEXRAD 0.31 1.41 0.68
GOES-16 0.44 1.52 0.89
CSH 0.84 3.18 2.70

ning freely, from 17:00 to 00:00 UTC. In order to initiate con-
vection in the same manner as HRRR does with NEXRAD,
modeled LH profiles are replaced with the observed LH pro-
files at every time step during the one hour of the pre-forecast
period. Observed LH profiles at 45, 30, 15, 0 min before the
start of the free run are used for their respective 15 min period
before the start of the free run. After the pre-forecast run, the
model is run freely for an hour, and after the one-hour free
run, the one-hour accumulated rainfall rate results are com-
pared. One-hour rain accumulation from simulations without
using any observed LH (CTL), using NEXRAD LH (NL),
and using GOES LH (GL) are validated against gauge bias-
corrected quantitative precipitation estimation (QPE; one-
hour accumulation) from MRMS.

Figure 8 shows one simulation where observed LH is
applied from 15:00 to 16:00 UTC, after which the model
is freely run for an hour until 17:00 UTC. The CTL run
(Fig. 8a) misses many convective regions, and precipitation is
markedly less than MRMS observations in Fig. 8b. Both the
NL and GL runs initiated convection in the right place and
enhance precipitation. In the light green box region where
the CTL run totally misses convection, NL and GL runs both
produce precipitation, although there is an overestimation of
precipitation in the NL run and an underestimation in the GL
run. In the dark green box region where convection is weak
in the CTL run, the NL and GL runs increased precipitation
amounts closer to the observations. The NL run correctly ini-
tiates convection in the yellow box region but not in the red
box region, while the GL run correctly initiates convection in
the red box but not in the yellow box.

These results can be further explained by looking at Fig. 9,
which presents maps of vertically integrated NEXRAD LH
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Figure 7. Scatter plot of NEXRAD total LH and GOES total LH in
K s−1. It is plotted in log–log axes.

and GOES LH that are applied to the model at 16:00 UTC
(the last time that observed LH profiles are applied during
the 15:00–16:00 UTC period). As seen in the enlarged two
green box regions in Fig. 9, NEXRAD shows very high to-
tal LH (up to 0.35 K s−1) in a few grid points and small
LH in surrounding areas, while most of the GOES LH val-
ues in the two green boxes are at or below 0.2 K s−1. The
reason why there was an overestimation of precipitation in
the NL run (Fig. 8c) could be due to this extremely high
NEXRAD LH. Interestingly, in the red box region, both
NEXRAD and GOES have similar total LH values, but only
the GL run produced precipitation (in Fig. 8d). Lastly, it
makes sense that the GL run did not initiate convection in
the yellow box region (Fig. 8d), because no LH is applied
due to missed convection by the GOES convection detection
algorithm (Fig. 9b). Overall, both NEXRAD LH and GOES
LH have positive impacts on the precipitation forecast, and
their forecast results appear to have similar skills.

For a quantitative evaluation, fraction skill scores (FSS)
are calculated for the eight simulations that added LH for dif-
ferent one-hour time periods (LH is added for an hour during
15:00–16:00 UTC, 16:00–17:00 UTC..., 22:00–23:00 UTC,
and FSS are calculated after the one-hour free run at 17:00,
18:00,..., 00:00 UTC). FSS is one of the neighborhood-based
precipitation verification metrics introduced by Roberts and
Lean (2008), and it is calculated using Eq. (3):

FSS(n) = 1−

1
NxNy

Nx∑
i=1

Ny∑
j=1

[
Oi,j −Pi,j

]2
1

NxNy

[
Nx∑
i=1

Ny∑
j=1

O2
i,j +

Nx∑
i=1

Ny∑
j=1

P 2
i,j

] , (3)

where Nx and Ny are the number of columns and rows,
and Oi,j and Pi,j are, respectively, an observed and model
forecast fraction calculated over a small n× n domain. It
calculates a fraction that passes a threshold value over an

n× n domain, and the fraction over the small domain is
compared rather than individual grid points. In this study,
a 15 km× 15 km domain is used to calculate FSS for the
six one-hour accumulated precipitation thresholds of 0.254,
2.54, 6.35, 12.7, 25.4, and 50.8 mm h−1 (0.01, 0.1, 0.25, 0.5,
1, and 2 inch h−1).

The overall FSS for the four simulations is shown in
Fig. 10. Black, red, blue, and green lines represent CTL, NL,
GL with the Thompson scheme, and GL with the WSM6
scheme, respectively. Compared to the CTL, both the NL and
GL runs show significant improvements in FSS for all thresh-
olds. Although the NL run outperforms GL at smaller thresh-
olds, the GL run shows better results at higher thresholds of
25.4 and 50.8 mm h−1. This can be because GOES LH tends
to have maximum heating in the middle atmosphere, which
can develop deeper clouds, but further investigation is needed
to study the sensitivity of different vertical profiles to precip-
itation forecasts. An additional GL run, using the different
microphysical scheme of WSM6, is provided to briefly show
the impacts of different microphysical schemes. It has less
positive impacts, indicating that maintaining consistency in
the microphysical scheme could be critical. Nonetheless, it
shows that LH from GOES-16 presented in this study can be
useful for improving precipitation forecasts, especially in the
regions where ground-based radar data are not available.

6 Conclusions

A method to obtain vertical profiles of LH from GOES-16
ABI data was described. Convective clouds are first detected
using temporal changes in reflectance and Tb, and then LH
profiles for the detected cloud are found by searching for
an LUT created using WRF model simulations. The LUT
contains LH profiles of convective clouds that are defined
by a threshold of 1.5 m s−1 for the modeled vertical veloc-
ity, and these convective LH profiles are sorted according to
Tb at 11.2 µm, which is a good indicator of cloud top height.
Mean profiles that represent each Tb bin show good correla-
tion with cloud top temperature, with lower Tb bins having
deeper LH profiles. Precipitation rates corresponding to each
bin are also well correlated to Tb. Even though the LUT in
Fig. 2 uses one infrared channel to estimate LH profiles, it
is actually more than just one brightness temperature value.
The GOES-16 convection detection algorithm uses 10 time
steps of channel 2 reflectance and channel 8 and 10 bright-
ness temperature data to find active convective regions with a
bubbling cloud top and brightness temperature decrease; thus
the overall algorithm uses more information than just one
brightness temperature value. In addition, LH values in the
LUT are well within the range that is allowed in the HRRR
model to initiate convection using NEXRAD.

To investigate how LH from GOES-16 differs from other
radar products, LH from GOES-16, NEXRAD, and CSH are
compared in three convective clouds with different cloud top
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Figure 8. One-hour rain accumulation at 17:00 UTC on 10 July 2019 from (a) a simulation without any LH observation, (b) MRMS gauge-
corrected quantitative precipitation estimation (QPE), (c) a simulation using NEXRAD LH, and (d) a simulation using GOES LH.

Figure 9. Vertically integrated LH at 16:00 UTC on 10 July 2019 from (a) NEXRAD and (b) GOES-16. Two green box regions are enlarged
for better comparison.

heights. Vertical profiles of convective LH from GOES-16
are very similar to those from CSH that use model sim-
ulations in the LUT. Their vertical profiles show heating
throughout the vertical layers, except near the surface, where
evaporation occurs, and heating peaks around the middle
of the atmosphere. This vertical pattern differs from that
of the empirical formulation used with by HRRR the radar
reflectivity. Vertical profiles of LH from NEXRAD depend
strongly on the vertical profiles of reflectivity, which typi-
cally peaks near the surface in convective regions. This leads

the NEXRAD maximum LH to be at lower levels, not often
simulated in the models.

Even though vertical profiles of LH from the various meth-
ods differ, the total LH, which is calculated by integrating
the horizontal and vertical LH for each convective cloud,
is shown to be similar between GOES-16 and NEXRAD.
A three-month analysis shows good correlations overall be-
tween GOES-16 and NEXRAD if the detected convection
areas are similar. Besides the limitation in convection detec-
tion by GOES-16, GOES LH estimates can have large errors
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Figure 10. Fraction skill score (FSS) using thresholds of 0.254,
2.54, 6.35, 12.7, 25.4, and 50.8 mm h−1 (0.01, 0.1, 0.25, 0.5, 1,
and 2 inch h−1) for CTL (black), NL (red), GL with the Thompson
scheme (blue), and GL with WSM6 scheme (green) runs.

in the case of multi-layer clouds or in clouds with sheared
structure, as it is based on the cloud top.

In order to examine the impacts of GOES LH compared to
NEXRAD LH in precipitation forecast, one case study is pre-
sented. Applying LH derived from GOES-16 to model ini-
tialization allows for correct initiation of convection in the
scene, and the simulation result looks similar to the one de-
rived from applying NEXRAD LH. Although the GOES con-
vection detection algorithm is not perfect and misses some
convection, and even though GOES LH is somewhat re-
stricted to cloud top information, these results prove that LH
obtained from GOES-16 have reasonable values and can be
used to improve precipitation forecasts over the region where
ground-based radar data are not available.

This work is a proof-of-concept study to show the po-
tential of using infrared data in initializing convection, and
there is room for improvement. The LUT can be improved
by adding more input variables, such as cloud top cooling
rate. In the case of using cloud top cooling rates as inputs,
additional wind products will be needed to remove model
and observational errors coming from cloud advection. Aside
from changing input variables, other microphysical schemes
can be tested for the LUT to compare intensities or vertical
structures of the derived LH profiles using different micro-
physical schemes. Further investigation will also be needed
to analyze the impacts of the different vertical structures of
LH in convective initiation.

Appendix A

An additional LUT using composite reflectivity along with
cloud top temperature is provided here. This LUT can be
used with NEXRAD composite reflectivity or with other syn-
thetic radar reflectivity simulators that use GOES-16 data,
such as GREMLIN. This LUT includes vertical profiles of
mean reflectivity for each cloud top temperature and com-
posite reflectivity bin (Fig. A1) as well as vertical profiles of
LH (Fig. A2). Radar reflectivity profiles retrieved using this
LUT can be used directly in the model initialization step in
the same way as ground-based radar reflectivity profiles are
used in the HRRR model, or LH profiles in this LUT can
be used with some modifications in the model initialization
step, as in this study. Each plot shows the mean profiles for
each cloud top temperature bin, while different colors in the
plot represent each composite reflectivity bin. Note that, for
higher cloud top temperature bins, high composite reflectiv-
ity bins (red or brown lines) are not shown, because clouds
with warmer cloud tops do not generally show high com-
posite reflectivity. For lower cloud top temperature bins, low
composite reflectivity bins (blue lines) are not shown, be-
cause deep convective clouds tend to have high composite
reflectivity.
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Figure A1. Mean reflectivity profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot corresponds to each
cloud top temperature bin, and different colors in the plot represent each composite reflectivity bin.
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Figure A2. Mean LH profiles for 16 cloud top temperature bins and 7 composite reflectivity bins. Each plot corresponds to each cloud top
temperature bin, and different colors in the plot represent each composite reflectivity bin.
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Data availability. GOES-16 ABI brightness temperature data are
obtained from CIRA, but access to the data is limited to CIRA
employees. GOES-16 ABI level 2 cloud top pressure (CTP) data are
obtained from NOAA National Centers for Environmental Infor-
mation, https://doi.org/10.7289/V5D50K85 (GOES-R Algorithm
Working Group and GOES-R Program Office, 2018). GPM DPR
data are from GPM DPR and GMI Combined Convective Strati-
form Heating L3 1 month 0.5◦× 0.5◦ V06, Greenbelt, MD, USA,
Goddard Earth Sciences Data and Information Services Center
(GES DISC), https://doi.org/10.5067/GPM/DPRGMI/CSH/3B-
MONTH/06 (GPM Science Team, 2017a); GPM DPR
Spectral Latent Heating Profiles L3 1 month 0.5◦× 0.5◦

V07, Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC), accessed at
https://doi.org/10.5067/GPM/DPR/SLH/3A-MONTH/07 (GPM
Science Team, 2022; Version 06 is used in this study, but no longer
available in the website); and GPM DPR and GMI combined
stratiform heating L2 1.5 h 5 km V06, Greenbelt, MD, USA,
Goddard Earth Sciences Data and Information Services Center
(GES DISC), https://doi.org/10.5067/GPM/DPRGMI/CSH/2H/06
(GPM Science Team, 2017b). Past MRMS datasets are available
at Iowa Environmental Mesonet (MRMS Archiving). HRRR data
are obtained from Google Cloud, NOAA (High Resolution Rapid
Refresh Model (HRRR)).
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