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Abstract. Sentinel-2 satellite imagery has been shown by
studies to be capable of detecting and quantifying methane
emissions from oil and gas production. However, current
methods lack performance calibration with ground-truth test-
ing. This study developed a multi-band–multi-pass–multi-
comparison-date methane retrieval algorithm that enhances
Sentinel-2 sensitivity to methane plumes. The method was
calibrated using data from a large-scale controlled-release
test in Ehrenberg, Arizona, in fall 2021, with three algo-
rithm parameters tuned based on the true emission rates.
Tuned parameters are the pixel-level concentration upper-
bound threshold during extreme value removal, the number
of comparison dates, and the pixel-level methane concentra-
tion percentage threshold when determining the spatial ex-
tent of a plume. We found that a low value of the upper-
bound threshold during extreme value removal can result in
false negatives. A high number of comparison dates helps
enhance the algorithm sensitivity to the plumes in the target
date, but values in excess of 12 d are neither necessary nor
computationally efficient. A high percentage threshold when
determining the spatial extent of a plume helps enhance the
quantification accuracy, but it may harm the yes/no detection
accuracy. We found that there is a trade-off between quan-
tification accuracy and detection accuracy. In a scenario with
the highest quantification accuracy, we achieved the lowest
quantification error and had zero false-positive detections;
however, the algorithm missed three true plumes, which re-
duced the yes/no detection accuracy. In contrast, all of the
true plumes were detected in the highest detection accuracy

scenario, but the emission rate quantification had higher er-
rors. We illustrated a two-step method that updates the emis-
sion rate estimates in an interim step, which improves quan-
tification accuracy while keeping high yes/no detection accu-
racy. We also validated the algorithm’s ability to detect true
positives and true negatives in two application studies.

1 Introduction

Methane (CH4) emissions during oil and natural gas pro-
duction are receiving increased attention since CH4 is a po-
tent greenhouse gas (GHG) with radiative forcing 84 times
greater than that of CO2 over a 20-year time frame (MacKay
et al., 2021). During the 2008–2017 decade, around 60 % of
global methane emissions were from anthropogenic sources
(Saunois et al., 2020). Of these sources, fossil fuel (coal,
oil, and gas) production and use was estimated to have con-
tributed 81–154 Tg CH4 a−1 of methane emissions, account-
ing for around one-third of the global anthropogenic methane
fluxes (Saunois et al., 2020). Another estimate suggested that
> 80 Tg of methane emissions was from the oil and gas sec-
tor across the globe in 2021, ∼ 30 % higher than the 62 Tg
in 2000 (IEA, 2022). The most detailed studies to date have
been performed in the United States, where the methane loss
rate from oil and gas supply in 2015 was estimated at 2.3 %
of the gross natural gas production (Alvarez et al., 2018).
Studies also claim that the US official inventories have been
consistently underestimating methane emissions in oil and
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natural gas systems, suggesting a more important role for
methane in GHG emissions reduction in the oil and gas sec-
tor (Alvarez et al., 2018; Brandt et al., 2014; Zavala-Araiza
et al., 2015; Rutherford et al., 2021).

Reducing methane loss from oil and gas systems will re-
quire measurement and monitoring. Because of the large
spatial scale of the oil and gas industry, there has been
significant interest in methane measurement methods us-
ing aircraft or satellites to detect methane emissions across
large areas (Karion et al., 2013; Hausmann et al., 2016;
Frankenberg et al., 2016; Chen et al., 2022; Cusworth et
al., 2021). Satellite detection has been considered a par-
ticularly promising methane emissions monitoring technol-
ogy because of its frequent revisit time, wide spatial cov-
erage, and low labor cost. SCIAMACHY (2003–2012) and
the Greenhouse Gases Observing Satellite (GOSAT, 2009–
present) were the first two satellites to measure total methane
columns by solar backscatter in the shortwave infrared
(SWIR) (Jacob et al., 2016). The EO-1 Hyperion spectrom-
eter achieved the first orbital detection of a methane su-
peremitter plume from the Aliso Canyon release in 2016
(Thompson et al., 2016). The TROPOspheric Monitoring
Instrument (TROPOMI) on the Sentinel-5 Precursor satel-
lite (launched in 2017) maps methane columns with daily
global coverage at up to 7× 5.5 km2 resolution (Veefkind
et al., 2012; Hu et al., 2018). The GHGSAT constella-
tion instruments, launched from 2016 to 2022, each pro-
vide methane measurements with 25–50 m spatial resolution
over a ∼ 12× 12 km2 domain (Varon et al., 2018, 2020).
More recently, the Sentinel-2 twin land-surveying satellites
launched in 2015 and 2017 were shown to have moderate
sensitivity to methane at specific wavelength bands (Varon
et al., 2021). Other space-based sensors designed for land
surface monitoring, such as PRISMA (30 m spatial resolu-
tion), Landsat-8 (30 m spatial resolution), and WorldView-
3 (WV-3, 3.7 m spatial resolution), have similarly demon-
strated methane detection capabilities (Cusworth et al., 2019;
Ehret et al., 2022; Sánchez-García et al., 2022). Several stud-
ies in the last few years have reported methane enhancements
from oil- and gas-producing regions and monitored methane
“ultra-emitters” from oil and gas production based on the
data from these satellite instruments (Lauvaux et al., 2022;
Ehret et al., 2022; Irakulis-Loitxate et al., 2022; Cusworth et
al., 2021).

The Sentinel-2 constellation has two polar-orbiting satel-
lites placed in the same sun-synchronous orbit and phased at
180◦ to each other. The main Sentinel-2 data products are im-
agery from 13 spectral bands from the visible to the SWIR
(Phiri et al., 2020). Among these spectral bands, bands 11
(∼ 1560–1660 nm) and 12 (∼ 2090–2290 nm) integrate ra-
diances over methane’s 1650 and 2300 nm SWIR absorp-
tion features, thus enabling methane detection and quantifi-
cation. Because of its global coverage, fine spatial resolution
(20× 20 m2 in band 11 and 12), and frequent revisit time (2–
5 d), Sentinel-2 is believed to have potential for large-scale

high-frequency monitoring of methane plumes in oil and gas
producing regions (Ehret et al., 2022).

Varon et al. (2021) developed three retrieval approaches to
derive methane enhancements across a scene of a methane
point source based on the Sentinel-2 data in bands 11 and 12.
The single-band–multi-pass (SBMP) retrieval method uses
the changes in band 12 reflectance between a satellite pass
with a plume and a pass sampling a reference scene with no
plume to derive methane column enhancements. The multi-
band–single-pass (MBSP) retrieval compares reflectance in
band 11 and 12 on a single pass. The multi-band–multi-
pass (MBMP) retrieval applies two MBSP retrievals on two
satellite passes to remove artifacts from the retrieval field. In
that work, two case studies of applying these approaches to
methane point-source plume detection from oil and gas fa-
cilities were presented, one in the Hassi Messaoud oil field
of Algeria and the other in the Korpezhe oil and gas field of
Turkmenistan. The Korpezhe retrieval results were shown to
be consistent with GHGSAT-D satellite instrument observa-
tions in 2018–2019, albeit with higher observation density.
Among the three retrieval methods, the MBMP method gen-
erally performs the best, mainly because it increases the con-
trast of the plumes by combining two spectral bands and hav-
ing one pass sampling a reference scene.

However, the retrieval methods from Varon et al. (2021)
might still be improved. First, calibration of the retrieved
emission source rates with ground-truth values needs to be
done to validate the performance of the sensor and the re-
trieval method. Varon et al. (2021) validated the retrieval re-
sults by comparing them with GHGSAT observations since
GHGSAT has relatively higher precision; however, ground-
truth calibration with controlled-release volumes is still es-
sential in performance validation retrieval method fine tun-
ing. Second, the retrieval methods include tunable parame-
ters such as the percentage threshold during plume mask ex-
traction. Nevertheless, the optimal values of the tunable pa-
rameters were not discussed. Lastly, because of Sentinel-2’s
limited sensitivity to methane, the MBMP retrieval method
can generate false detections if the atmospheric conditions
between satellite passes are different or if some ground fea-
tures have higher reflectance in band 11 than band 12. Re-
moving these false detections still relies on manual verifica-
tion, such as checking if a similar shape occurs in the satellite
observation of the other bands or in the imagery basemap.
New modifications need to be made to remove the false de-
tections at scale in a reasonable and convenient way.

Here we present a multi-band–multi-pass–multi-
comparison-date (MBPD) retrieval algorithm based on
the MBMP approach from Varon et al. (2021). The new
algorithm extends the MBMP approach to enhance its
sensitivity to methane plumes and reduces false detections.
Additionally, we were able to calibrate the method using data
from a single-blind controlled release in Ehrenberg, Arizona,
in fall 2021. During calibration, three algorithm parameters
were tuned based on the ground-truth emission rates to
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improve the algorithm performance. Furthermore, we show
two simple application studies of the new algorithm, one
examining the ability of true positive detection, and the
other examining the ability of true negative detection. To our
knowledge, this is the first time that a methane detection and
quantification algorithm based on Sentinel-2 imagery has
been calibrated with ground-truth emission rates.

2 Methodology

2.1 MBPD retrieval algorithm

The MBPD retrieval algorithm is an improved retrieval
method with modifications based on the MBMP retrieval
method from Varon et al. (2021). The new algorithm follows
the same logic of retrieving the vertical column concentra-
tions of atmospheric methane 1� (kg m−2) from Sentinel-2
SWIR reflectances. The main steps are shown in the flow
chart of Fig. 1. The main idea is retrieving methane col-
umn concentrations from one spectral measurement featur-
ing methane absorption and one not, such as two observa-
tions from different passes with or without a methane plume
or two adjacent spectral bands with different methane ab-
sorption properties. For a given scene, the method compares
the Sentinel-2 measurements with the top-of-atmosphere
(TOA) radiance simulated by a 100-layer, clear-sky radiative
transfer model at 0.02 nm spectral resolution over the band
11 and 12 wavelength ranges. The specific steps are as fol-
lows: first, in a specific pass (pass 1), the methane concentra-
tion enhancements are retrieved by minimizing the difference
between the fractional change of Sentinel-2 reflectance and
a fractional absorption model based on the simulated TOA
radiance in bands 11 and 12; the same process is then re-
peated in another pass (pass 2), and the difference of these
two retrieved column enhancements (two MBSP retrievals) is
the MBMP methane column enhancement in pass 1 (Eq. 1).
Here the subtraction between two passes aims to remove sys-
tematic errors in the MBSP retrieval due to wavelength sep-
aration between bands 11 and 12. In other words, the MBSP
retrieval in pass 2 is mainly used for removing artifacts of the
MBSP retrieval in pass 1. Therefore, in this paper we name
pass 1 as the “target date (TD)” and pass 2 as the “compar-
ison date (CD)” for clarification. The TD in our method is
the date for which the plume size is estimated. By default the
target date is here assumed to be chronologically after the
comparison date, although in practice this need not be the
case.

1�MBMP =1�MBSP,TD−1�MBSP,CD (kgm−2) (1)

We make some modifications during the column retrieval
process since the MBMP retrieval can still lead to false de-
tections, especially in the MBMP subtraction step (Eq. 1). In
theory, in the background with no methane plume, we expect
the two MBSP retrievals to have similar values of methane

column enhancements since they are at the same scene. How-
ever, this is not always true because (1) MBSP retrieval can
be greatly affected by the atmospheric conditions such as
cloud coverage, (2) the MBSP retrieval in one pass may have
similar spatial distribution but with all the pixel values higher
or lower than the MBSP retrieval in another pass due to dif-
ferences in various atmospheric or earth properties (e.g., so-
lar zenith angle, surface albedo) between different dates, and
(3) other unpredictable random measurement errors can oc-
cur in a specific pass. Therefore, we add the following steps
to further reduce the number of false detections (see Fig. 1
for sequence).

– Choose clear-view passes. First, we only select passes
with a clear view for both the target date and comparison
dates since clouds can result in false detections by af-
fecting reflectance. Here we use Sentinel-2 cloud prob-
ability, a data product created with the sentinel2-cloud-
detector library, to select clear-view passes with no large
cloud coverage. Specifically, we select the passes with
less than 10 % cloud coverage (i.e., the area with cloud
probability higher than 65 % is less than 10 % of the to-
tal area of the study region).

– Normalization. If two MBSP retrievals of Eq. (1) have a
uniform value difference in all the pixels, artifacts will
still be preserved after the MBMP subtraction. We nor-
malize both MBSP retrievals before the MBMP sub-
traction to maximize the effects of artifacts removal.
For example, in Fig. 2, the MBMP retrievals with nor-
malization show more plume contrast with the back-
ground compared with the ones without normalization.
Some artifacts, such as the straight line in the unnormal-
ized retrieval with 19 September 2021 as the compari-
son date, are also removed in the normalized retrieval.
Therefore, changing MBSP retrievals to the same scale
helps enhance the ability to detect true methane plumes.
However, note that the resulting concentration enhance-
ments after normalization are no longer “actual” en-
hancements, and thus they should not be used to cal-
culate the emission rates. In other words, normalization
is only used for detecting the plume location and shape.

– Remove extreme values. In some cases extremely high
methane column enhancements can be generated for a
small number of pixels because of the appearance of
random features in one of the two passes. Thus, we also
remove extreme values for the two MBSP retrievals be-
fore normalization. The removal method is based on set-
ting upper- and lower-bound thresholds, and truncating
values outside the bound thresholds to the threshold val-
ues. Here we set the lower-bound threshold as 0 kg m−2,
and the upper-bound threshold will be tuned using the
controlled-release experimental data below. Similar to
normalization, this step is only used for plume detec-
tion instead of quantification.
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Figure 1. Basic algorithm workflow. Solid boxes are specific steps of the multi-band–multi-pass (MBMP) retrieval. Dashed boxes are new
modifications added in this study. (a) Study region. (b) Sentinel-2 imagery in band 11 and 12 on both target date (TD, top row) and comparison
date (CD, bottom row), with pixel value as reflectance. (c) MBSP retrieval on both TD (top row) and CD (bottom row) with pixel value as
methane column concentration (kg m−2). (d) MBMP retrieval on TD, i.e., the result of subtracting the MBSP retrieval on TD by the MBSP
retrieval on CD. (e) Boolean plume mask generated from MBMP retrieval by selecting methane columns above some percentage threshold
for the scene and smoothing with a median filter (window size 3× 3) and a Gaussian filter (window size 3× 3). The basemap of (a) is the
ArcGIS Online World Imagery Basemap. The sources for the data used are as follows: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

– Include multiple comparison dates. Instead of using a
single comparison date, we include multiple compari-
son dates to help with plume detection. Different from
the “sliding window” method from Ehret et al. (2022),
which uses a multi-linear regression onto 1–20 previ-
ous passes, we directly take the average of comparison
date retrievals as the subtrahend in the MBMP subtrac-
tion. Using multiple comparison days helps to stabilize
the background since the background values can vary
among different passes due to weather, temperature, sur-
face albedo difference, and other variation. Shown in
Fig. 3, more comparison dates provide a more stable
background and therefore are more likely to increase
the contrast of the plumes. On the other hand, it is pos-
sible that in real application, the comparison date may
also have methane plumes at the same location with a
similar shape as the plumes in the target date. In this
case, it is harder for the algorithm to detect the target
date plumes after the MBMP subtraction. Therefore,
using the average of multiple comparison dates helps
lower the possibility of the occurrence of a high-volume
methane plume in the subtrahend, thus enhancing the
algorithm sensitivity to the plumes in the target date.
Here the comparison dates are selected as continuous
clear-view passes before the target date, and the number

of comparison dates is a parameter that will be tuned
using the controlled-release experimental data below.
Because the new algorithm considers multiple compar-
ison dates for the multi-band–multi-pass approach, it is
named the “Multi-band–multi-pass–multi-comparison-
date” (MBPD) retrieval algorithm.

After column retrieval, the methane column enhancements
1�MBPD are further used to calculate the emission source
rate Q using the integrated mass enhancement (IME) method
described by Varon et al. (2021) (Eq. 2) (Frankenberg et al.,
2016; Varon et al., 2018). In this equation, IME is the in-
tegrated mass enhancement (kg), Ueff is the effective wind
speed (m/s), and L is the plume size (m).

Q= 3.6×
IME×Ueff

L
(t h−1) (2)

To calculate IME, we first generate Boolean plume masks
based on 1�MBPD by selecting methane columns above
some percentage threshold for the scene and smooth with a
3× 3 median filter and a 3× 3 Gaussian filter (see Fig. 1e).
Here the percentage threshold is a parameter that will be
tuned using the controlled-release experimental data below.
This plume mask generation step sets the location and shape
of the methane plumes.
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Figure 2. Examples of normalization. Here are two MBMP retrieval examples, one with 19 October 2021 as target date (TD) and 14 October
2021 as comparison date (CD) and another with 19 October 2021 as TD and 10 September 2021 as CD. In each example, we show MBMP
plume observation without and with normalization (see figures of the third and fourth column from left). In both examples, the normalized
MBMP retrieval shows more plume contrast with the background than the one without normalization. In the second example with 10 Septem-
ber 2021 as CD, there is a particularly straight line artifact in the MBMP retrieval without normalization, and it is removed in the normalized
MBMP retrieval. This illustrates the fact that normalization improves the effect of artifact removal by making MBSP retrievals of TD and
CD conform to the same scale.

Figure 3. Examples of including multiple comparison dates. In the MBMP subtraction, we include multiple comparison dates and take
their average MBSP retrievals as the subtrahend to stabilize the varying background in different dates. Here n is the number of comparison
dates. From left to right (n= 1, 7, and 15, respectively), we can see that a higher n provides a “cleaner” background in the MBPD retrieval,
particularly in the lower right area, and thus increases the contrast of the plume.

Then the IME is defined as the sum of multiplication of
column enhancements and pixel-level area of all the mask
pixels. Note that the column enhancements here are the orig-
inal enhancements without any data transformation such as
normalization or extreme value removal applied to aid de-
tection of the plume shape. The effective wind speed Ueff
is the function of the local 10 m wind speed U10 derived by
Varon et al. (2021), calibrated with large-eddy simulations.
We collect local wind speed data from the high-resolution
rapid refresh (HRRR) atmospheric model from the US Na-

tional Oceanic and Atmospheric Administration (US NOAA,
2021). The plume size L is taken in a simplified form as the
square root of the plume mask area.

2.2 Performance assessment

To validate the performance of the new algorithm, calibra-
tion is required to compare the algorithm outcome with the
ground truth. The goal of calibration is to assess the algo-
rithm performance in both detection and quantification. Ac-
curate yes/no detection is defined as the algorithm being
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able to detect a methane plume when it appears and detect-
ing nothing when no plume appears. Accurate quantification
means that the emission rate estimates derived from the algo-
rithm are consistent with the ground-truth measured release
volumes.

Additionally, the algorithm performance can also be im-
proved by parameter tuning to best match the ground truth.
Here the following three parameters in the new algorithm are
tuned: (1) the upper bound threshold during extreme value
removal bu, (2) the number of comparison dates for each tar-
get date n, and (3) the percentage threshold during the plume
mask generation p. The way each parameter affects the algo-
rithm outcome is described as follows.

– The upper-bound threshold bu. bu is a parameter that
occurs during the extreme value removal, during which
the retrieval values higher than it are considered to be
extreme outliers and are replaced by the threshold value.
Thus, a lower bu means a more strict constraint during
extreme value removal. Ideally, an optimal bu helps re-
move false detections due to the extreme highs. How-
ever, if bu is too low, a true methane plume may also be
ignored since its retrieval values could be removed.

– The number of comparison dates n. We expect that the
higher n is, the more stable the background is, thus the
contrast of the plume is increased. However, this stabil-
ity increase is not linear, so the increase in n may not
help much in the case of a very large n. In addition, the
computation workload also increases along with higher
n, approximately linearly with n.

– The percentage threshold p. The higher p is, the fewer
pixels are included in the plume mask. Thus, a higher p

means a smaller plume mask area. This may help with
removing false positives and enhancing quantification
accuracy, but may also lead to false negatives or result
in underestimation of plume volume if selected at too
high of a value.

To quantify the algorithm performance, we use two assess-
ment factors with focus on different aspects. First, we choose
F1 score to assess the performance of detection. F1 score is
a function of “precision” and “recall”, measures of false pos-
itives and false negatives, respectively (Eqs. 3–5). F1 score
has a range of 0 to 1, with higher values representing better
algorithm performance. In addition, we choose the average
absolute error (AAE) to assess the performance of quantifi-
cation (Eq. 6, where xi and x̂i are the emission rate estimate
and ground-truth emission rate in day i, and N is the number
of days). AAE has a range of 0 to∞ with lower values sug-
gesting better algorithm performance. Absolute error is used
so that under- and over-estimates do not cancel each other
out.

F1= 2×
precision · recall

precision+ recall
(3)

precision= 2×
#True Positive

#True Positive+ #False Positive
(4)

recall= 2×
#True Positive

#True Positive+ #False Negative
(5)

AAE=

N∑
i=1

∣∣xi − x̂i

∣∣
N

(6)

3 Results

In fall 2021, a single-blind controlled-release test was con-
ducted by the Stanford University Environmental Assess-
ment & Optimization Group. The test was performed in
Ehrenberg, Arizona, the testing methods are described in de-
tail in Sherwin et al. (2021) and Rutherford et al. (2022), and
the test was generally similar to previous tests of airplane-
based methane plume detection from the same group (Sher-
win et al., 2021). This test aimed at assessing the perfor-
mance of various aircraft and satellite methane detection
technologies. During the test, the participants were given the
information of time and location of the potential release, al-
though the methane plume volumes (including zero, i.e., no
methane plume) were unknown to them. Participants were
asked to estimate the mass emissions rate during each obser-
vation (in kg CH4 h−1). Specifically for Sentinel-2, there are
seven clear-view satellite passes and one cloud-covered pass
covered in this test from 17 October 2021 to 3 November
2021. Here we consider only the seven clear-view passes and
also add three dates after the test with zero emission, so that
in total 10 target dates with ground-truth emission rates are
used to do the ground-truth calibration. Of the 10 target dates,
5 have methane plumes with non-zero emission rates and 5
have no methane plumes. Region A in Fig. 4 is the study
region that covers the controlled-release point source. After
calibration, we also provided two simple application studies
to validate the algorithm performance (Sect. 3.2). Because
we lacked other ground-truth data to use as a blind test set,
one goal of these application studies was to test if the algo-
rithm can avoid generating false positives in the case of no
methane plumes.

3.1 Controlled-release calibration

We selected a wide value range for each algorithm parameter
during the parameter tuning. For bu, we noticed that the mag-
nitudes of the pixel-level column enhancements of a methane
plume are usually from 10−3 to 10−1 kg m−2. Thus, we se-
lected 10 values from 0.01 to 0.1 kg m−2 with increments
of 0.01 kg m−2 and four other values 0.005, 0.12, 0.15, and
0.20 kg m−2. For n, for each target date 15 clear-view passes
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Figure 4. Study regions. Region A covers the controlled-release point source (red-marked, 33.6306◦ N, 114.4878◦W) and is mainly used for
the controlled-release calibration. Region B is to the east of region A with the same area and is used for the application study. The basemap
is the ArcGIS Online World Imagery Basemap. The sources for the data used are as follows: Esri, DigitalGlobe, GeoEye, i-cubed, USDA
FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

were selected with the earliest comparison date around 45 d
before the target date, so n ranges from 1 to 15 with incre-
ments of 1. For p, 16 values were selected from 0.80 to 0.95
with increments of 0.01. Therefore, there are in total 3360
scenarios of different combinations of three parameters. Each
of these 3360 parameter settings were run to quantify vol-
umes from all 10 study days.

Figure 5 shows how each parameter affects the algorithm
outcome. In each figure, an assessment factor (AAE or F1
score) is shown as a function of two parameters, based on a
fixed value of the third parameter (i.e., a “slice” through 2
parameters keeping the third constant). Here the fixed values
are from the parameter setting with the lowest AAE. Fig-
ure 5a and b show that a small bu value (0.005–0.02 kg m−2)
leads to bad algorithm performance with high AAE and low
F1 score (AAE > 1.3, F1 score < 0.4). This suggests that the
bu constraint is too strict in this range and removes retrievals
not only from the extreme highs but also from true methane
plumes. Thus, the algorithm starts to generate false negatives.
Particularly in Fig. 5b when bu is 0.005 kg m−2, we see NAN
values of F1 score because there is no true positive detection
at all. Aside from the low-value range, AAE and F1 score
show less sensitivity to bu at the other values. Therefore, the
conclusion from bu tuning is that one should avoid exces-
sively low values of bu (< 0.02 kg m−2).

Figure 5a and c show a rough decreasing trend of AAE
along with higher n when n < 12. This suggests that a higher
n helps with quantification accuracy by providing a more sta-
ble background and lowering the possibility of high-volume
plume in the comparison dates. However, AAE does not
show an obvious decrease when n≥ 12, which suggests that
12 or more comparison dates are not necessary or at least
cease to improve performance. Figure 5b and d show low F1
scores when n is low (for example, F1 scores < 0.67 when

n= 2). This is because some target dates have their earlier
comparison dates with higher methane plume volumes, and
a low value of n does not effectively reduce the average vol-
ume in the comparison dates, thus resulting in more false
negatives. In real applications, this may be a more serious
problem if the plume is continuous across a long time pe-
riod with varying volumes. Additionally, computational cost
is roughly proportional to n, so too high of a value of n can
have excessive computational costs with little benefit to ac-
curacy. Therefore, the value of n should not be too low or too
high, and from the figures we can conclude that a reasonable
choice of n is in the range 10–12.

Figure 5c and e show that AAE decreases with higher p

at first but starts to increase when p > 0.92. The decreasing
trend is due to smaller plume volumes and fewer false posi-
tives resulting from smaller plume masks during the Boolean
plume mask generation. The increasing trend in high p range,
however, is because p becomes sufficiently high such that
no mask is generated even for the dates with real methane
plumes. This also explains why in Fig. 5d and f that the F1
score is low in high p ranges. Low AAEs occur in the p

range 0.91–0.93, while high F1 scores occur in the p range
0.85–0.86. This suggests a trade-off between accurate quan-
tification and accurate yes/no detection: accurate quantifica-
tion usually requires a high p value, but accurate yes/no de-
tection needs a lower p value (though not excessively low).
Therefore, when selecting the best p value, we can choose to
emphasize quantification accuracy and accept the possibil-
ity of missing plumes (p > 0.90), or we can choose to detect
more plumes and accept the possibility of emission rate over-
estimation (p≈ 0.85).

Here two specific scenarios shown in Tables 1 and 2 fur-
ther illustrate the trade-off between accurate quantification
and accurate yes/no detection. The “min AAE” scenario is
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Figure 5. Parameter tuning scenarios. Three algorithm parameters are tuned: the upper bound threshold during extreme value removal bu,
the number of comparison dates for each target date n, and the percentage threshold during the plume mask generation p. Two assessment
factors are used with focus on different aspects: the average absolute error (AAE) assesses quantification performance, and F1 score assesses
detection performance. A total of 3360 parameter settings were run with wide value ranges of three parameters. Panels (a) and (b) show how
AAE and F1 score change with bu and n, respectively, with p= 0.91; (c) and (d) show how two assessment factors change with n and p

with bu= 0.03; (e) and (f) show how they change with p and bu with n= 12. The fixed values are from the parameter setting with the lowest
AAE. White space indicates a not a number (NAN) value of F1 score resulted from zero true positive.

an example of pursuing quantification accuracy. It has the
lowest AAE of all the parameter settings and the highest pre-
cision, meaning that it also has the minimum amount of false
positives. However, this scenario has three false negatives
that reduce the F1 score. Aside from this specific scenario,

the top 1 % scenarios with low AAEs have their bu ranging
widely at 0.03–0.15, n in a middle-to-high range of 7–14, and
p staying high at 0.91–0.92. On the other hand, the “max F1
score” scenario has the highest F1 score. It does not have
false negatives, but in order to find all plumes it becomes
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Table 1. Scenario examples of three parameters.

Scenarios bu n p AAE F1 no. of false no. of false
score positives negatives

Min AAE 0.03 12 0.91 0.94 0.57 0 3
Max F1 score 0.02 14 0.84 1.20 0.91 1 0
Base case 0.04 10 0.87 1.18 0.67 1 2
Two-step hybrid 0.04 10 0.87→ 0.91 1.09 0.67 1 2

“Min AAE” scenario is the scenario with the lowest AAE, “max F1 score” scenario is the scenario with the highest F1
score; “base case” scenario is the base case of the two-step application method example, “two-step hybrid” scenario is the
two-step application method example.

Table 2. Emission rate estimates of scenario examples.

Ground truth Min AAE Max F1 score Base case Two-step hybrid
(t h−1) (t h−1) (t h−1) (t h−1) (t h−1)

17 October 2021 0 0 0 0 0
19 October 2021 7.38 6.29 6.04 6.07 6.25
22 October 2021 1.69 0 0.64 0.50 0.50
27 October 2021 3.60 3.67 5.55 4.86 4.06
29 October 2021 5.18 0 1.03 0 0
1 November 2021 0 0 2.56 1.54 1.54
3 November 2021 1.40 0 0.43 0 0
6 November 2021 0 0 0 0 0
8 November 2021 0 0 0 0 0
11 November 2021 0 0 0 0 0

“Min AAE” scenario is the scenario with the lowest AAE, “max F1 score” scenario is the scenario with the highest F1 score, “base
case” scenario is the base case of the two-step application method example, “two-step hybrid” scenario is the two-step application
method example.

too aggressive, leading to one false positive. Note that mul-
tiple scenarios have the same highest F1 score, and the sce-
nario we show here is the one with the lowest AAE among
them. The top 1 % scenarios with high F1 scores have their
bu ranging widely at 0.02–0.12, n in a wide range of 1–15,
and p in the middle range of 0.82–0.85.

As a compromise, we developed a method to apply the
MBPD algorithm in sequence to reduce the quantification
error further while keeping a high F1 score. The specific
steps are (1) apply a scenario with high F1 score as the base
case to generate the first round of emission rate estimates,
(2) raise the value of p and apply the updated scenario again
to generate the second round of emission rate estimates, and
(3) for the passes with non-zero emission rates in both sce-
narios, update the base case estimates to the new ones since
they are likely to be closer to the ground-truth volumes. We
name this method the “two-step application” method. Here
we only change the value of p since the mask extraction step
where p is applied is after the column retrieval step where
bu and n are applied. So a consistent bu and n greatly re-
duce the computation workload as we only need to redo the
mask extraction. Different from the direct application of the
MBPD algorithm, this method is specifically designed to ad-
dress the trade-off issue between quantification accuracy and

detection accuracy. Table 1 shows an example of the two-
step application (“two-step hybrid” scenario) with the “base
case” scenario. Results show that the two-step hybrid sce-
nario achieves lower AAE than the base case scenario with
F1 score remaining the same. Specific locations and shapes
of detected plumes in min AAE, max F1 score, and two-step
hybrid scenarios are shown in Fig. 6.

We also compared the performance of MBPD algorithm
with the MBMP, MBSP, and SBMP methods from Varon et
al. (2021) in Fig. 7. The top row is for a true emission rate of
7.38 t CH4 h−1, while the bottom row is for a true emission
rate of 0 t CH4 h−1. Results show that the MBPD algorithm
performs the best with both true positive and true negative de-
tections. Its emission rate estimates are also the closest to the
ground-truth volumes. The MBMP method has true negative
detection in 17 October 2021 but shows a small false positive
detection in 19 October 2021. Its emission rate estimate for
this date is also much lower than the ground truth. This im-
plies that the steps of normalization and inclusion of multiple
comparison dates in the MBPD method contribute to a higher
sensitivity to the true plume than the MBMP method. MBSP
and SBMP retrievals perform worst with multiple large-area
false positive plumes. The SBMP method is likely to produce
false detections if the surface albedo changes across different
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Figure 6. Locations and shapes of the detected plumes. All the dates with plumes detected in “min AAE”, “max F1 score”, and “two-step
hybrid” scenarios are shown. Plumes that are too small with only few pixels are marked in red, although they are not necessarily the full
plume extent. Each figure also has the methane plume emission rate shown in the upper-right area and wind speed and direction shown in
the lower-right area. Note that the plumes at 1 November 2021 are false positives since the ground-truth volume in this day is 0, and the
dates with multiple plumes detected are also likely to include false positives, although this is hard to validate. The basemap is the ArcGIS
Online World Imagery Basemap. The sources for the data used are as follows: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS,
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

Figure 7. Comparison of four retrieval methods. The performance of multi-band–multi-pass–multi-comparison-date (MBPD) algorithm
is compared with multi-band–multi-pass (MBMP) method, multi-band–single-pass (MBSP) method and single-band–multi-pass (SBMP)
method from Varon et al. (2021) for two dates, one with a methane plume (19 October 2021) and one with no plume (17 October 2021).
The MBPD algorithm performs the best with correct yes/no detection and emission rate estimates closest to the ground-truth volumes. The
MBMP retrieval has a small-area false positive detection on 19 October 2021 (red circle), and its emission rate estimate is much lower than
the ground truth. MBSP and SBMP methods perform the worst with multiple large-area false positive plumes. The basemap is the ArcGIS
Online World Imagery Basemap. The sources for the data used are as follows: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS,
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.
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Figure 8. Examination of true positives. The application site is in the Permian basin during the summer of 2020 studied in Ehret et al. (2022)
(31.7335◦ N, 102.0421◦W). The first and third rows show plume observation of this study, and the second and fourth rows show plume
observation from Ehret et al. (2022) (image source: Ehret et al., 2022). All nine plumes represented in Ehret et al. (2022) were detected with
similar shapes in this study. The emission rate estimate difference is within ±55 % of Ehret et al. (2022).

passes, and the MBPD method reduces the effect of changing
surface albedo by including different spectral bands and mul-
tiple comparison dates. The MBSP method can produce false
detections because of the wavelength separation between two
spectral bands, and the MBPD method largely removes these
artifacts by subtracting the MBSP retrieval between different
passes.

3.2 Broader application in cases of unknown emission
rates

3.2.1 Examine true positives

To test the algorithm’s performance in detecting true posi-
tives, we applied the algorithm in a methane-emitting site
in the Permian basin during the summer of 2020 studied in
Ehret et al. (2022). We used the parameters of the max F1

score scenario, which achieved the highest detection accu-
racy in the ground-truth calibration above. We detected all
plumes from the 9 d covered in Ehret et al. (2022) with sim-
ilar plume shapes and the emission rate estimate difference
within ±55 %. This test validates the performance of detect-
ing true positives of our method (Fig. 8).

3.2.2 Examine true negatives

To test the algorithm’s performance in detecting true nega-
tives, we applied the algorithm with the min AAE scenario
since it achieved zero false positives in the ground-truth cal-
ibration above. Two application studies were designed, one
in an extended 3-month time period from 1 October 2021
to 31 December 2021 in the same region as the controlled-
release test (Fig. 4, region A) and one in a different region
(Fig. 4, region B) in the same time period. The algorithm
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Figure 9. Two examples of application studies. Panels (a) and (b) show an application case on 2 October 2021 in region A, and (c) and (d)
show a case on 19 October 2021 in region B. Both examples have true negative detection. All of the other dates in the application studies
have true negative detection as well.

shows zero emissions in all the passes of both two studies,
which validates its performance of detecting true negatives.
Two detection examples are shown in Fig. 9.

4 Conclusion

This study presented a multi-band–multi-pass–multi-
comparison-date (MBPD) methane retrieval algorithm using
Sentinel-2 satellite imagery with several modifications
based on the multi-band–multi-pass (MBMP) retrieval
method from Varon et al. (2021). The major modification is
including multiple comparison dates into the retrieval, which
helps increase the contrast of the plume by stabilizing the
background.

The new retrieval algorithm was then calibrated by a
controlled-release test in Ehrenberg, Arizona in fall 2021.
During calibration, three algorithm parameters were tuned
based on the ground-truth emission rates to improve the al-
gorithm performance. They are the pixel-level concentration
upper-bound threshold bu for extreme value removal, the
number of comparison dates n, and the pixel-level methane

concentration percentage threshold p when determining the
spatial extent of a plume. We found that although the algo-
rithm sensitivity to bu is generally not very high, a low bu
value can decrease its accuracy by resulting in false nega-
tives. The n value should be high enough to enhance the al-
gorithm sensitivity to the plumes in the target date, but val-
ues > 12 are neither necessary nor computationally efficient.
A high p value helps enhance the quantification accuracy, but
it may harm the yes/no detection accuracy by missing some
true plumes.

The controlled-release calibration suggests that there is a
trade-off between quantification accuracy and detection ac-
curacy. If the algorithm aims to guarantee the quantification
accuracy, then a bu in range 0.03–0.15, a n in range 7–14 and
a p in range 0.91–0.92 are preferable. If the algorithm is ex-
pected to guarantee the detection accuracy, particularly with
the fewest false negatives, then it would be more appropriate
to choose bu at 0.02–0.12, n in the range 1–15, and p in the
range 0.82–0.85. We also illustrate a two-step method that
changes the parameter values and updates the emission rate
estimates in an interim step, which improves quantification
accuracy while keeping high yes/no detection accuracy.
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To our knowledge, this is the first study that validates the
performance of a Sentinel-2 methane detection and quantifi-
cation algorithm by calibrating it with the ground-truth emis-
sion rates. We believe the ground-truth calibration offers re-
searchers an opportunity to optimally tune methane retrieval
algorithms and have confidence in their widespread deploy-
ment. In the future, the MBPD algorithm can be validated
with more systematic experiments wherein the algorithm can
be adjusted or tuned to meet different detection expectations.

We believe that the algorithm can still be improved fur-
ther in the following aspects. First, the optimal values of
three parameters may vary in different situations. For ex-
ample, bu may vary with the methane plume volumes, n is
affected by whether the plume is continuous or discrete in
time, and p also depends on the area of the plume and the
area of the study region, and thus it may vary with the study
region size. In particular, this study is based on a homoge-
neous study area, and results may not generalize to heteroge-
neous sites with changing surface features during the study
time period (e.g., due to seasonal shifts in vegetation). How
to filter out outliers and define the true plume in a hetero-
geneous site is still difficult to answer since our controlled-
release test covers only one region over a single month. In fu-
ture controlled-release tests, we hope to explore these ques-
tions further based on more abundant ground-truth data in
areas with more complex background features. Additionally,
the current algorithm focuses more on removing false posi-
tives resulting from the background noise of the comparison
dates. In real applications, however, more false positives due
to the background noise of the target dates may be gener-
ated. Removing these false positives requires more work af-
ter the plume mask generation, such as removing the plume
masks that are far away from well-known pad or pipeline lo-
cations. Other options may involve developing an automatic
approach of outlier filtering and plume definition, as in Ehret
et al. (2022), or applying machine vision based shape learn-
ing methods to filter out plume masks with shapes unlikely
to be generated by a gas cloud. We hope to develop an ef-
ficient method of false detection removal so that Sentinel-2
can play a more important role in routine oil and gas methane
monitoring in the global scale.
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