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Abstract. Accurate automatic volcanic cloud detection by
means of satellite data is a challenging task and is of great
concern for both the scientific community and aviation stake-
holders due to well-known issues generated by strong erup-
tion events in relation to aviation safety and health impacts.
In this context, machine learning techniques applied to satel-
lite data acquired from recent spaceborne sensors have shown
promising results in the last few years.

This work focuses on the application of a neural-network-
based model to Sentinel-3 SLSTR (Sea and Land Surface
Temperature Radiometer) daytime products in order to detect
volcanic ash plumes generated by the 2019 Raikoke erup-
tion. A classification of meteorological clouds and of other
surfaces comprising the scene is also carried out. The neural
network has been trained with MODIS (Moderate Resolution
Imaging Spectroradiometer) daytime imagery collected dur-
ing the 2010 Eyjafjallajökull eruption. The similar acquisi-
tion channels of SLSTR and MODIS sensors and the compa-
rable latitudes of the eruptions permit an extension of the ap-
proach to SLSTR, thereby overcoming the lack in Sentinel-
3 products collected in previous mid- to high-latitude erup-
tions. The results show that the neural network model is able
to detect volcanic ash with good accuracy if compared to
RGB visual inspection and BTD (brightness temperature dif-
ference) procedures. Moreover, the comparison between the
ash cloud obtained by the neural network (NN) and a plume
mask manually generated for the specific SLSTR images

considered shows significant agreement, with an F-measure
of around 0.7. Thus, the proposed approach allows for an au-
tomatic image classification during eruption events, and it is
also considerably faster than time-consuming manual algo-
rithms. Furthermore, the whole image classification indicates
the overall reliability of the algorithm, particularly for recog-
nition and discrimination between volcanic clouds and other
objects.

1 Introduction

From the start of an eruptive event, volcanic emissions are
composed of a broad distribution of ash particles, from very
fine ash (particle diameters, d < 30 µm) increasing in size to
tephra (airborne pyroclastic material) with diameters in the
range of 2–64 mm. Larger fragments, which fall out quickly,
are also generated; these and ash with d > 30 µm are not
considered in this paper. The gaseous part of an eruptive
event is made up mainly of water vapor (H2O), carbon diox-
ide (CO2), and sulfur dioxide (SO2) gases (Oppenheimer et
al., 2011; Shinohara, 2008); a liquid part consisting of sulfate
aerosols is also present. Depending on the eruptive intensity,
the volcanic cloud can reach different altitudes in the atmo-
sphere, thus affecting the environment (Craig et al., 2016;
Delmelle et al., 2002), climate (Bourassa et al., 2012; Hay-
wood and Boucher, 2000; Solomon et al., 2011), human
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health (Delmelle et al., 2002; Horwell et al., 2013; Horwell
and Baxter, 2006; Mather et al., 2003), and aircraft safety
(Casadevall, 1994).

The detection procedure consists of identifying the pres-
ence of certain species in the atmosphere and distinguishing
them from other species. Thus, volcanic ash detection is re-
lated to the determination of the areas (pixels in an image)
which are affected by the presence of these particles. The
first evidence regarding the possibility of detecting volcanic
clouds by means of remote sensing data arose in the eight-
ies (Prata, 1989a, b). The method used for the detection of
volcanic ash particles relies on the ability to discriminate vol-
canic clouds from meteorological ice and liquid water clouds
by exploiting the different spectral absorptions in the ther-
mal infrared (TIR) spectral range (7–14 µm). In this interval,
the absorption of ash particles with radiuses between 0.5 and
15 µm at a wavelength of 11 µm is larger than the absorption
of ash particles at 12 µm. The opposite happens for meteo-
rological clouds, which absorb more significantly at longer
TIR wavelengths. Therefore, the brightness temperature dif-
ference (BTD) – i.e., the difference between the brightness
temperatures (BTs) at 11 and 12 µm – turns out to be neg-
ative (1T11−12 µm < 0 ◦C) for regions affected by volcanic
clouds and positive (1T11−12 µm > 0 ◦C) for regions affected
by meteorological clouds.

The BTD approach is the most used method for volcanic
cloud identification. It is effective and simple to apply, even if
it can, in some cases, lead to false alarms, e.g., over clear sur-
faces during the night, on soils containing large amounts of
quartz (such as deserts), on very cold or icy surfaces, or in the
presence of high water vapor content (Prata et al., 2001). As
already mentioned, the discrimination between volcanic and
meteorological clouds is a challenging task, since the region
of the overlap of the two shows mixed behaviors that are not
easily recognizable. In these mixed scenarios, the BTD can
be negative not only for volcanic clouds but also for meteo-
rological clouds; thus, some false positive results may occur,
as in the case of high meteorological clouds. False negative
results may arise in the case of high atmospheric water vapor
content: the water vapor contribution can hide and cancel out
the effects of ash particles on the BTD, and then the ashy
pixels cannot be revealed. In these cases, a correction proce-
dure can be applied (Corradini et al., 2008, 2009; Prata and
Grant, 2001). In addition to the described procedures, other
algorithms have been developed (Francis et al., 2012; Pavolo-
nis, 2010; Pavolonis and Sieglaff, 2012; Clarisse and Prata,
2016).

For these reasons, it seems appropriate to use advanced
classification schemes to address the task of ash detection –
e.g., using approaches which make use of machine learning
techniques, avoiding the need to find for each product the
best BTD threshold for manually creating the volcanic cloud
mask, which can be a time-consuming process.

For aerosol and meteorological cloud detection, a neural
network (NN)-based algorithm (Atkinson and Tatnall, 1997;

Bishop, 1994; Di Noia and Hasekamp, 2018) allows for the
solution of a classification problem. Starting from inputs con-
taining spectral radiance values acquired in a specific wave-
length band, the model generates a prediction as output by as-
signing to each pixel of the original image a predefined class.
In previous research, neural networks have already shown
significant effectiveness in terms of atmospheric parameter
extraction (Gardner and Dorling, 1998), specifically for vol-
canic eruption scenarios (Gray and Bennartz, 2015; Picchiani
et al., 2011, 2014; Piscini et al., 2014). A strong advantage
of using an NN-based approach for volcanic cloud detection
is that, once the model is trained on a statistically represen-
tative selection of test cases, new imagery acquired over new
eruptions can be accurately (depending on the training phase)
classified in near-real time, allowing for significant advan-
tages in critical situations and in emergency management.

In this work, we developed an NN-based algorithm for vol-
canic cloud detection using Sentinel-3 SLSTR (Sea and Land
Surface Temperature Radiometer) daytime data with a model
trained on MODIS (Moderate Resolution Imaging Spectro-
radiometer) daytime images. This is possible due to the two
sensors having similar spectral bands, and it represents an ad-
vantage, as there is currently limited use of SLSTR products
for eruptive events. The use of MODIS as a proxy for SLSTR
was already successfully tested in a previous work investigat-
ing the complex challenge of distinguishing between ice and
meteorological clouds (also containing ice) using neural net-
works on SLSTR data (Picchiani et al., 2018). As a test case,
the Raikoke 2019 eruption has been considered in this work.

2 Case study: the Raikoke 2019 eruption

The Raikoke volcano is located in the Kuril Island chain, near
the Kamchatka Peninsula in Russia (48.3◦ N, 153.2◦ E). On
21 June 2019, at about 18:00 UTC, Raikoke started erupting
and continued erupting until about 03:00 UTC on 22 June
2019. During this period, Raikoke released large amounts of
ash and SO2 into the stratosphere.

Figure 1 shows a time series of 11 µm brightness temper-
atures (BTs) determined by the Himawari-8 AHI (Advanced
Himawari Imager) sensor at 10 min intervals for the first 18 h
of the eruption. With the purpose of searching for high (cold),
vertically ascending clouds resulting from an eruption and
not of meteorological origin, discrete eruptions were identi-
fied by comparing AHI BTs near the vent with those some
distance upwind from the vent. The Himawari-8 time series
shows a sequence of eruptions (12 in all) and a sustained
period of activity between 22:40 of 21 June and 02:10 of
22 June, when the majority of ash and gas was emitted. The
estimated time of an eruption event was determined by ex-
amining animated images, and consequently, the times of
the eruptions shown do not always coincide with the cold-
est cloud top. It is estimated from the AHI data that the June
2019 Raikoke eruption produced approximately 0.4–1.8 Tg
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of ash (Bruckert et al., 2022; Muser et al., 2020; Prata et
al., 2022) and 1–2 Tg of SO2 (Bruckert et al., 2022; Gorkavyi
et al., 2021). The amount of water vapor emitted is unknown
but would have been considerable, as is common in most
volcanic eruptions (Glaze et al., 1997; McKee et al., 2021;
Millán et al., 2022; Murcray et al., 1981; Xu et al., 2022).
These emissions would have led to copious amounts of water
and ice clouds being produced (McKee et al., 2021; Rose et
al., 1995), making the composition of the transported clouds
both complex and changing with time.

3 Instruments

In this section, the specifications of the instruments that
provide the products used to conduct the research are de-
scribed. The MODIS sensor on board Terra and Aqua satel-
lites has been used to set up the training dataset of an NN-
based model. The SLSTR sensor on board Sentinel-3A and
Sentinel-3B satellites has been used for the application of the
aforementioned model.

3.1 MODIS instrument

MODIS aboard NASA Terra and Aqua polar orbit satellites
is a multispectral instrument, with 36 channels from VIS to
TIR, ranging from 0.4 to 14.4 µm, and with spatial resolu-
tions of 0.25 km for bands 1–2, 0.5 km for bands 3–7, and
1 km for bands 8–36. The two spacecraft fly at a 705 km
altitude in a sun-synchronous orbit, with a revisit cycle of
about 1 or 2 d. The Terra spacecraft was launched in 1999,
and its equatorial crossing time is 10:30 UTC (descending
node), while Aqua was launched in 2002, and its equatorial
crossing time is 13:30 UTC (ascending node).

In our work, we used several MODIS products from
both Terra and Aqua platforms: Level-1A geolocation fields
(MOD/MYD03) (see Nishihama et al., 1997, for details);
Level-1B calibrated radiances (MOD/MYD021KM) (see
Toller et al., 2017, for details), which has been used to
generate the brightness temperatures (BTs); Level-2 sur-
face reflectance (MOD/MYD09) (see Vermote and Ver-
meulen, 1999, for details); and Level-2 cloud product (MOD-
/MYD06_L2) (see Menzel et al., 2015, for details).

3.2 SLSTR instrument

The Sea and Land Surface Temperature Radiometer
(SLSTR) is one of the instruments on board the Sentinel-
3A (S3A) and Sentinel-3B (S3B) polar satellites launched
in 2016 and 2018, respectively. Sentinel-3 is designed for a
sun-synchronous orbit at 814.5 km of altitude, with a local
equatorial crossing time of 10:00 UTC. The revisit time is
0.9 d at the Equator for a two-operational spacecraft configu-
ration. The orbits of the two satellites are equal, but S3B flies
±140◦ out of phase with S3A. The basic SLSTR technique
is inherited from the technique used by the series of conical

scanning radiometers starting with the ATSR. The instrument
includes the set of channels used by ATSR-2 and AATSR
(0.555–0.865 µm for VIS channels, 1.61 µm for SWIR chan-
nel, 3.74–12 µm for MWIR/TIR channels), ensuring conti-
nuity of data, together with two new channels at wavelengths
of 1.375 and 2.25 µm in support of cloud clearing for sur-
face temperature retrieval. The SLSTR radiometer measures
a nadir and an along-track scan, each of which also inter-
sects the calibration black bodies and the visible calibration
unit once per cycle (two successive scans). Each scan mea-
sures two along-track pixels of 1 km (4 or 8 pixels at 0.5 km
resolution for VIS–NIR channels and SWIR channels, re-
spectively) simultaneously. This configuration increases the
swath width in both views and also provides a 0.5 km res-
olution in the solar channels. Our procedure makes use of
the SLSTR Level-1 TOA (top-of-atmosphere) radiances and
brightness temperature product from both platform S3A and
S3B – see Cox et al. (2021) for details of SLSTR Level-1
product.

4 Methodology

In this section, the adopted methodology is described. The
procedure has been developed in a MATLAB environment,
and the source codes are available upon request, as explained
in the Code Availability section. In particular, the MATLAB
deep learning toolbox has been used to implement the NN.

A multilayer perceptron neural network (MLP NN) was
trained with MODIS daytime data, and then it was applied to
Sentinel-3 SLSTR daytime products in order to discriminate
ashy pixels from others, following the scheme reported in
Fig. 2.

The MLP NN model (Atkinson and Tatnall, 1997; Gardner
and Dorling, 1998) consists of a multilayer architecture with
three types of layers. The first type of layer is the input layer,
where the nodes represent the elements of a feature vector.
The second type of layer is the hidden layer and consists of
only processing units. The third type of layer is the output
layer, and it represents the output data, which are the classes
to be distinguished – these are set to 1 (that of the chosen
class) or 0 (all other nodes) in image classification problems.
All nodes (i.e., neurons) are interconnected, and a weight is
associated to each connection. Each node in each layer passes
the signal to the nodes in the next layer in a feed-forward
way, and in this passage, the signal is modified by the weight.
The receiving node sums the signals from all the nodes in
the previous layer and elaborates them through an activation
function before passing them to the next layer.

The output of the proposed model is the SLSTR image
fully classified in eight different species: ash over sea, ash
over cloud, ash over land, sea, land and ice surfaces, liquid
water clouds, and ice clouds. This approach has been used
because of the readily available time series of MODIS data,
the quality of MODIS products (Picchiani et al., 2011, 2014;
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Figure 1. Time series of the eruptions from Raikoke during the first 18 h of activity. The times of the eruptions were estimated from
the imagery and do not always coincide with the coldest cloud tops. The black line is the average within a box bounded by the latitude and
longitude coordinates: 153.25–153.35◦ E, 48.32–48.42◦ N. The red line (upwind) is the average within a box bounded by: 153.10–153.20◦ E,
48.32–48.42◦ N.

Figure 2. Overall diagram of the procedure followed for the classification process with NN model.

Piscini et al., 2014), and the spatial and spectral similari-
ties between MODIS and SLSTR. The SLSTR and MODIS
channels which are used in our research are shown in Table 1,
along with the spectral characteristics of the two sensors.

The first step of our procedure consists of generating the
training patterns – that is, the ground truth to be passed to the
NN model during the training phase. This step represents a
crucial aspect in building an NN model, since the more the
training dataset is accurate and representative of the problem
we want to address, the more the NN would be efficient in
solving that problem. For this scope, MODIS products have
been used as inputs to a semi-automatic procedure for iden-

tifying the different classes to be discriminated by the NN
model in the output image. Some of these classes do not exist
as MODIS standard products (e.g., the ash classes and the ice
surface class); for this reason, we derived them by means of
different operations in our semi-automatic procedure devel-
oped in MATLAB. Other classes are, instead, already present
as MODIS standard products (e.g., the land and sea mask).

The training set from which we extracted the training pat-
terns (i.e., identifying classification classes) consists of nine
MODIS granules acquired over the Eyjafjallajökull volcano
area during the 2010 eruption (from 6 to 13 May) for a total
of about 5400 patterns for each class available for the training
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Table 1. Correspondence between MODIS and SLSTR channels.

SLSTR channel λ center Bandwidth MODIS channel λ center Bandwidth
(µm) (nm) (µm) (µm)

S1 0.554 19.26 4 0.555 0.545–0.565
S2 0.659 19.25 1 0.659 0.620–0.670
S3 0.868 20.60 2 0.865 0.841–0.876
S4 1.375 20.80 26 1.375 1.360–1.390
S5 1.61 60.68 6 1.64 1.628–1.652
S6 2.25 50.15 7 2.13 2.105–2.155
S7 3.74 398.00 20 3.75 3.660–3.840
S8 10.85 776.00 31 11.03 10.780–11.280
S9 12.02 905.00 32 12.02 11.770–12.270

Table 2. Training set (MODIS) from the Eyjafjallajökull 2010 erup-
tion; Sentinel-3 SLSTR Raikoke 2019 classified products.

Date Time Platform Training or
UTC application

6 May 2010 (JD 126) 11:55 Terra Training
9 May 2010 (JD 129) 12:25 Terra Training
11 May 2010 (JD 131) 12:10 Terra Training
11 May 2010 (JD 131) 12:15 Terra Training
11 May 2010 (JD 131) 13:50 Terra Training
11 May 2010 (JD 131) 14:05 Aqua Training
12 May 2010 (JD 132) 12:55 Terra Training
13 May 2010 (JD 133) 12:00 Terra Training
13 May 2010 (JD 133) 13:40 Terra Training
22 June 2019 (JD 173) 00:07 Sentinel-3A Application
22 June 2019 (JD 173) 23:01 Sentinel-3B Application

of the model. The single training pattern (i.e., training exam-
ple) corresponds to a single pixel of a specific target class,
as identified in MODIS images through the semi-automatic
procedure aforementioned; this means that one class is rep-
resented by several patterns. In particular, not all the pixels
of the MODIS images considered are contained in the train-
ing dataset (i.e., the ensemble of the training patterns), but
rather, only a part of them are randomly included. The total
number of patterns we collected has been divided into three
subsets: 75 % training set, 20 % validation set, 5 % test set.
An NN with two hidden layers was trained and then applied
to Sentinel-3 SLSTR RBT (radiance and brightness tempera-
ture) Level 1 images collected during the Raikoke 2019 erup-
tion. Table 2 shows the details of MODIS and SLSTR data
used for this work.

In order to build the NN training patterns, a semi-
automatic procedure that exploits MODIS radiances and
standard products has been developed. The MODIS products
considered for the extraction of the training patterns are the
following:

– MOD/MYD021KM, Level 1B calibrated radiances –
1 km, which gives the radiance values for each MODIS
band;

– MOD/MYD03, geolocation – 1 km, which is used for
creating the land and sea mask;

– MOD/MYD06_L2, cloud product, which contains
cloud parameters used for creating the cloud mask;

– MOD/MYD09, surface reflectance product, which con-
tains an estimate of the surface spectral reflectance mea-
sured at ground level; it is used for generating the ice
mask.

It is noted that “MOD” and “MYD” stand for MODIS-Terra
and MODIS-Aqua products, respectively.

The semi-automatic procedure for the extraction of train-
ing patterns starting from MODIS data basically consists
of using MODIS products to create binary “masks” iden-
tifying the different species and then replacing them with
“classes”. For each element of the class, the radiance val-
ues (W (m2 sr µm)−1) are extracted from the MODIS prod-
uct MOD/MYD021KM. In this way, each object is radio-
metrically characterized. The identification of the ashy pixel
is pursued by creating a mask according to specific BTD
thresholds (from 0.0 to −0.4 ◦C) for each MODIS image. For
this purpose, the MOD/MYD021KM product has been used
to derive the brightness temperatures required to compute
the BTD. The MODIS products used for training the model
were acquired in near-nadir view only. The other species are
identified using both MODIS Level 1 radiances and MODIS
standard products. Once each object and surface has been de-
fined, they are associated with the corresponding class. Then
a set of input–output samples for the training phase is gen-
erated, where the input consists of the set of radiances mea-
sured for the given pixel and where the output is a binary
vector with value 1 associated with the corresponding class
and value 0 for the other classes. Table 3 shows the classi-
fication map legend for each classified product presented in
this work, in which eight classes are discriminated, each one
representing a surface or object.
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Table 3. Classification map legend.

Class ID Surface or object Name Color

1 Ash over sea Ash_sea
2 Ash over clouds Ash_cloud
3 Sea surface Sea
4 Liquid water clouds Cloud
5 Snow or ice surface Ice
6 Ash over land Ash_land
7 Land surface Land
8 Ice clouds Cloud_ice
– Masked-out pixels Not classified

The NN final model consists of nine inputs, which are the
radiances in the SLSTR selected channels, while the output
space is composed of eight classes, which are the surfaces
which the net has to classify. After doing several tests, the op-
timum topology of the NN turns out to be the combination of
two hidden layers with 20 and 15 neurons, respectively. For
each neuron, we set the hyperbolic tangent activation func-
tion (Vogl et al., 1988). The final neural network architecture
used for ash detection in this work is shown in Fig. 3. The
proposed algorithm includes a post-processing operation in
order to avoid false positive results for land and sea classes.
This a posteriori filter is applied to both the resulting NN
land and sea classes. It allows for the masking out of the
pixels which the NN classifies as land or sea which do not
belong to the Sentinel-3 SLSTR land and sea mask standard
product, which is always available and can thus be used to
increase the precision of the algorithm. The filtered-out pix-
els have been inserted in a class named “not classified”, as
reported in Table 3. For classification problems approached
with machine learning algorithms, one of the most used accu-
racy metrics for the performance evaluation is the confusion
matrix (Fawcett, 2006), where each predicted output class is
compared to the corresponding ground truth considered in
the validation dataset. An overall accuracy of 90.9 % was ob-
tained at the end of the NN training phase for the proposed
neural network model (see Fig. 4).

The target class represents the ground truth of each class,
while the output class refers to the prediction of the NN.
The diagonal shows that most of the total of the pixels have
been correctly classified (green boxes). The number of pix-
els incorrectly classified are placed out of the diagonal. False
positives (false detection) and false negatives (missed detec-
tion) are reported in the last gray column and row, respec-
tively. The code of the procedure ran with a CPU i7-9850H
(6 core, processor base frequency at 2.60 GHz): it takes less
than 30 min to train the adopted model and a few seconds to
apply it.

5 Results and discussion

The neural network algorithm previously described was ap-
plied to Sentinel-3 SLSTR daytime images acquired for
Raikoke during the 2019 eruption. The Sentinel-3A SLSTR
and Sentinel-3B SLSTR products collected on 22 June 2019
at 00:07 and 23:01 UTC, respectively, have been considered
(see Table 2).

Figure 5a shows the RGB color composite of the S3A
SLSTR image acquired for Raikoke for 22 June 2019 at
00:07 UTC. The RGB composite has been carried out by con-
sidering the SLSTR visible (VIS) channels S3 (868 nm), S2
(659 nm), and S1 (554 nm) for R, G, and B, respectively. In
Fig. 5b, the BTD map – where red and blue pixels repre-
sent negative and positive BTD, respectively – is displayed.
The BTD is computed by making the difference between the
brightness temperature of the SLSTR thermal infrared chan-
nels S8 and S9 centered at 10.8 and 12 µm, respectively. The
output of the NN classification is shown in Fig. 5c with the
corresponding color legend, where each color represents the
classified surface or object.

As Fig. 5a shows, the RGB composite shows the presence
of a wide distribution of meteorological clouds and a signif-
icant signal derived from the volcanic cloud (brown pixels).
The BTD (Fig. 5b), obtained with a threshold of 0 ◦C, shows
the presence of the volcanic cloud together with a significant
number of false negatives (volcanic cloud pixels not identi-
fied near the vents) and false positives (pixels identified as
volcanic cloud while, actually, they are not – see light red
pixels below the volcanic cloud and along the right edge of
the scene).

Despite the challenging scenario, the NN algorithm shows
its ability to detect volcanic cloud and to classify the
whole image by detecting with good accuracy meteorolog-
ical clouds composed of water droplets (yellow) and ice
(gray), sea (blue) and land (green) surfaces, and volcanic ash
clouds, as reported in Fig. 5c. Looking at the cloud masks
generated with the NN algorithm (yellow and gray) and by
comparing them with the RGB natural color composite of
the SLSTR product, a high degree of agreement in terms of
spatial features can been observed. From the comparison be-
tween NN output classes and RGB composite, we can also
observe that land (green) and sea (blue) pixels are properly
detected in the areas where they actually lie.

From a qualitative comparison between the NN plume
mask and the RGB composite, we can state that the NN cor-
rectly identifies the volcanic cloud class in the area where it
seems actually present, even if some pixels are misclassified
as ash over land (magenta pixels) instead of ash above mete-
orological cloud. As Fig. 5 shows, the NN algorithm is able
to detect a wide volcanic cloud area and more ash, especially
in the opaque regions, compared to the BTD approach. In
particular, the difference found near the vents could be due to
the complete opacity of the cloud. Here, the ash cloud optical
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Figure 3. NN topology for ash detection.

Figure 4. Confusion matrix on validation set.

thickness is so high that there is no spectral difference, and
the BTD approach has no sensitivity.

Following the same visualization scheme as Fig. 5, the re-
sults derived from the application of the trained NN model
to the S3B SLSTR image acquired on 22 June 2019 at
23:01 UTC are reported in Fig. 6. In this second image,
all the ashy pixels are classified by the NN model as ash
above meteorological clouds (cyan pixels). This seems rea-
sonable, being the scenario mostly dominated by meteoro-

logical clouds, as we can also observe looking at the NN
classification, which assigns the majority of the pixels to the
liquid water cloud class (yellow) and to the ice cloud class
(gray). The NN classification also shows the presence of sea
pixels (blue), which are located in the same area identifiable
using the RGB composite. In this case, from the RGB com-
posite (Fig. 6a), unlike what is seen in the 00:07 UTC im-
age, it is not straightforward to identify the volcanic plume
by visual inspection. Indeed, this image was collected about
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Figure 5. S3A SLSTR image collected for Raikoke on 22 June 2019 at 00:07 UTC, nadir view. (a) RGB; (b) BTD; (c) NN classification.

24 h later than the previous one, and thus, the plume has been
transported through the atmosphere and dispersed. A qualita-
tive comparison between the NN classification (Fig. 6c) and
the BTD map (Fig. 6b) shows considerable differences be-
tween the two methods. The BTD, obtained with a threshold
of 0 ◦C, identifies a wider area (red pixels) affected by the
volcanic cloud with respect to the NN ash mask (cyan pix-
els). We can notice that the BTD map includes some aircraft
condensation trails (recognizable by the shape in the RGB
composite) in the ash mask, which can be identified as false
ash detections. The reasons for these misclassifications are
not fully understood but may be due to multilayer cloud ef-
fects, pixel heterogeneity, or viewing angle.

Our results suggest that the NN technique is robust and
have shown that it is possible to transfer the NN model from
one single eruption event to others occurring at similar lati-
tudes. However, the complexity of the application suggests
that the generalization of the methodology to all types of
eruptions is not straightforward. For example, the change
of latitude has an impact on the characteristics of the atmo-
sphere. At the same time, different volcanoes emit different
types of ash, affecting the variability of the radiance values
detected by the sensors. A possible solution to give the pro-

posed technique a broader applicability could be to train dif-
ferent NN models for specific latitude belts, which can then
be defined to cover the whole globe.

Overall, we can summarize the main uncertainties and the
limitations of the presented model in the following points:

1. Model transferability is significantly related to the
spatial-temporal data availability for the generation of
a training dataset which is statistically representative of
all the possible scenarios.

2. The lack of standard ground truth data for training and
validation phases requires that the BTD threshold be se-
lected by an operator, which prevents the method from
being fully objective.

Vicarious validation

The capability of the NN to correctly detect pixels containing
ash was validated by making a pixel-per-pixel comparison
with a manually generated reference plume mask (hereafter
MPM) in order to obtain the most accurate ground truth as
possible in each SLSTR product. The choice of taking the
MPM as a reference is derived from the lack of ash standard
products. For the image collected at 00:07 UTC, the MPM
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Figure 6. S3B SLSTR image collected for Raikoke on 22 June 2019 at 23:01 UTC, nadir view. (a) RGB, (b) BTD, (c) NN classification.

creation was performed by selecting a region around the vol-
canic cloud (clearly recognizable, as it is at the beginning of
the eruption) and then considering only the pixels with 11 µm
brightness temperature< 270 K (see Fig. 1). In this case, the
BTD alone is not very useful, as the high value of the ash
optical thickness of the cloud (especially close to the vent)
produces many pixels with BTD values near 0, not distin-
guishable from adjacent pixels characterized by meteorolog-
ical clouds. For the image collected at 23:01 UTC, the iden-
tification of the volcanic cloud is much more difficult due
to its larger spread and dilution; in this case, the MPM was
obtained considering the pixels with BTD<−0.25 ◦C, even
if this choice probably implies that some ashy pixels were
discarded. On the other hand, using a higher BTD thresh-
old will produce a lot of false positive pixels. In general,
the creation of an accurate manual plume mask is time con-
suming and case sensitive and often requires the presence
of an operator; considering this, the generation of a volcanic
cloud mask with a fast, automatic, and case-independent pro-
cedure would be a rather significant improvement. Because
the MPM does not distinguish between the different surfaces
under the ash cloud, the validation is performed by consider-
ing the total of the ashy pixels detected from the NN (i.e., the
sum between ash_land, ash_sea and ash_cloud).

Figure 7 shows the MPM, created as described above,
and the comparison between the NN plume mask (hereafter
NNPM) and the MPM for the S3A SLSTR image collected
for Raikoke on 22 June 2019 at 00:07 UTC (Fig. 7a and b)
and the S3B SLSTR image collected for Raikoke on 22 June
2019 at 23:01 UTC (Fig. 7c and d).

In relation to the images which display the comparison be-
tween NN output and MPM (Fig. 7b and d), green areas in-
dicate the pixels for which both the MPM and NN ash masks
detect the presence of volcanic cloud; red pixels represent
the areas classified as ash only by the MPM; blue pixels are
classified as ash only according to the NN model. We can ob-
serve that most of the volcanic cloud is displayed in green for
both products (00:07 and 23:01 UTC), indicating good agree-
ment between the two approaches. This is also confirmed by
the scores in Table 4, which allow quantitative conclusions
regarding the accuracy of the proposed NN model approach
compared to the MPM considered as ground truth. The clas-
sification metrics considered are precision, recall, F-measure,
and accuracy (Fawcett, 2006), which range from 0 to 1 (per-
fect classifier).

The score differences for the two classified products are
mainly related to the significant higher number of cor-
rectly classified ashy pixels contained in the 23:01 UTC
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Figure 7. (a) Manual plume mask (MPM) obtained from the analysis of the S3A SLSTR image collected for Raikoke on 22 June 2019 at
00:07 UTC (nadir view) – red pixels identify the MPM; (b) comparison between volcanic ash detected by NN and MPM for the S3A SLSTR
image collected for Raikoke on 22 June 2019 at 00:07 UTC (nadir view); (c) MPM obtained from the analysis of the S3B SLSTR image
collected for Raikoke on 22 June 2019 at 23:01 UTC (nadir view) – red pixels identify the MPM; (d) comparison between volcanic ash
detected by NN and MPM for the S3B SLSTR image collected for Raikoke on 22 June 2019 at 23:01 UTC (nadir view). (b, d) Green pixels
indicate the areas for which both NN and MPM detect ashy pixels; red pixels indicate the areas for which only MPM detects ashy pixels;
blue pixels indicate the areas for which only NN detects ashy pixels.

Table 4. NN and BTD volcanic cloud detection accuracies using classification metrics derived from the comparison between the plume mask
obtained from the two approaches and the manual plume mask (MPM) for each SLSTR considered product, respectively.

Classified product Plume mask source Precision Recall F-measure Accuracy

S3A/SLSTR at 00:07 UTC NN classification 0.709 0.683 0.696 0.993
S3A/SLSTR at 00:07 UTC BTD < 0 ◦C 0.164 0.647 0.261 0.955
S3B/SLSTR at 23:01 UTC NN classification 0.773 0.657 0.710 0.935
S3B/SLSTR at 23:01 UTC BTD < 0 ◦C 0.417 0.998 0.588 0.829

(136 435 pixels) with respect to 00:07 UTC (13 545 pixels)
if compared to the total number of classified pixels in the im-
ages which are similar (1 614 405 pixels for the S3A SLSTR
at 00:07 UTC image and 1 701 319 for the S3B SLSTR at
23:01 UTC image, respectively). However, the metrics are
aligned for both classified data, with encouraging values for
each index suggesting the reasonability of the results. In par-

ticular, the F-measure results are around 0.7 for both classifi-
cations. Moreover, using MPM as a benchmark, the compar-
ison of the metrics obtained with the BTD< 0 ◦C approach
with those derived with the NN model indicates that the neu-
ral network performs a more accurate volcanic cloud detec-
tion for both considered test cases.
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Besides the NN plume mask validation, we also compared
the pixels which the NN model classified as being affected
by meteorological clouds (hereafter referred to as NNCM)
with the SLSTR standard product for meteorological clouds.
Among the cloud masks available in the SLSTR L1RBT
product, the confidence_in_summary_cloud mask (hereafter
CSCM) is considered. The CSCM is a cloud mask which dis-
criminates cloud pixels (true) and cloud-free pixels (false); it
is an ultimate cloud mask product derived from several sepa-
rated cloud tests (Polehampton et al., 2021). As the CSCM
does not distinguish between meteorological liquid water
clouds and meteorological ice clouds while the NN algorithm
does, the comparison is realized by considering the whole of
the NN meteorological cloud classes (i.e., the sum between
Cloud and Cloud_ice).

Figure 8 displays the RGB composite, in which the
Sentinel-3 sun glint mask is highlighted (right part of the
scene), and the comparison between NN cloud mask and S3
cloud mask for the S3A SLSTR image collected for Raikoke
on 22 June 2019 at 00:07 UTC (Fig. 8a and b) and for the
S3B SLSTR image collected for Raikoke on 22 June 2019 at
23:01 UTC (Fig. 8c and d). Also in this case, for the images
displaying the comparison between the two types of cloud
masks (Fig. 8b and d), green indicates the pixels classified as
meteorological cloud for both procedures, while red and blue
indicate the pixels classified as meteorological cloud only
by the SLSTR standard product and NN, respectively. Pixels
that are not colored are associated with a cloud-free condi-
tion for both the NN and the S3 cloud mask. Looking at the
comparison, a very good agreement between the NN meteo-
rological cloud mask and the SLSTR standard cloud mask
can be observed. The metrics in Table 5 show very good
performance, reaching an F-measure around 0.9. Moreover,
looking at the red pixels in the 23:01 UTC image especially,
it can be noted that the SLSTR cloud mask also includes the
volcanic cloud.

From the validation procedure we have carried out, a con-
siderable point which has to be underlined is that, unlike
adopting a time-consuming and case-specific approach like
MPM, which also needs a manual operation by setting var-
ious thresholds for each case under examination, the NN
model can be used to discriminate ash plumes in satellite im-
ages with good accuracy in a fast and automatic way. This
saves a significant amount of time by eliminating the need
for manual intervention.

6 Conclusions

In this work, the results of a new neural-network-based ap-
proach for volcanic cloud detection are described. The algo-
rithm, developed to process Sentinel-3 SLSTR daytime im-
ages, exploits the use of MODIS daytime data as training.
The procedure allows the full characterization of the SLSTR
image by identifying, besides volcanic cloud, surfaces un-

der the cloud itself, meteorological clouds (and phases), and
land and sea surfaces. As test cases, the S3A-S3B SLSTR im-
ages collected over the Raikoke volcano area during the June
2019 eruption have been considered. The proposed neural-
network-based approach for volcanic ash detection and im-
age classification shows an overall good accuracy for the ash
class, which is the main target of the algorithm, and for the
meteorological cloud class. The strong effectiveness of the
NN classification is indeed also related to the cloudy pixel
recognition, with the ability to distinguish between two dif-
ferent types of meteorological clouds composed of water
droplets and ice, respectively. It has to be remembered that
the wide distribution of meteorological clouds in the scenario
under consideration makes the ash detection task particularly
complex.

A point to be underlined is the valuable advantage of the
procedure with regard to the creation of products (the eight
classes) that are not all currently available as SLSTR stan-
dard products; this fact represents a considerable step for-
ward for the generation of novel types of S3 SLSTR prod-
ucts.

A post-processing has been applied to NN outputs by ex-
ploiting the land and sea mask available in the SLSTR stan-
dard products in order to mitigate the insurgence of NN land
and sea failure. The comparison between the NN plume mask
and a reference plume mask (MPM) taken as ground truth
shows a good agreement between the two techniques (F-
measure of around 0.7). This significant result lies in the
fact that the overall good performance of the NN output is
achieved in an automatic way and with a brief processing
time compared to the plume mask specifically generated,
which instead requires a longer time, is case specific, and
requires the presence of an operator. The other considerable
achievement of the NN procedure is that, once the NN model
has been properly trained, it can be used to detect the ash
plume for each SLSTR image related to the Raikoke erup-
tion, while the creation of the MPM has to be made sep-
arately for each image. The comparison between the NN
cloud mask and the cloud mask derived from SLSTR stan-
dard products has also been carried out, resulting in a high
percentage of agreement between the two products.

A promising outcome is related to the ability of the NN
model to generalize over different data in terms of spatio-
temporal and geographical characteristics, being the NN
model trained with data collected over the Iceland region in
2010 and then applied to data acquired over the Kamchatka
Peninsula in Russia in 2019. Something under consideration
for future improvements is to enhance the ability of the NN
to generalize over various eruptive scenarios by integrating
different training datasets (in terms of regions, type of erup-
tion, time interval, etc). In fact, the current methodology has
been applied to just a few test cases, and more validation is
required in order to give the technique broader applicability.
For example, the effects of varying moisture and atmospheric
conditions has not been fully explored. On the other hand,
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Figure 8. (a) S3A SLSTR image collected for Raikoke on 22 June 2019 at 00:07 UTC (nadir view), RGB color composite; (b) comparison
between cloud mask retrieved by NN and standard Sentinel-3 confidence-in-summary cloud mask (CSCM) for the S3A SLSTR image
collected for Raikoke on 22 June 2019 at 00:07 UTC (nadir view); (c) S3B SLSTR image collected for Raikoke on 22 June 2019 at 23:01 UTC
(nadir view), RGB color composite; (d) comparison between cloud mask retrieved by NN and standard CSCM for the S3B SLSTR image
collected for Raikoke on 22 June 2019 at 23:01 UTC (nadir view). (b, d) Green pixels indicate the areas for which both NN and CSCM
detect cloudy pixels; red pixels indicate the areas for which only CSCM detects cloudy pixels; blue pixels indicate the areas for which only
NN detects cloudy pixels; white pixels indicate the areas for which neither NN nor CSCM detect cloudy pixels.

Table 5. NN meteorological cloud detection accuracy using classification metrics derived from the comparison between the NN cloud mask
(NNCM) and the confidence-in-summary cloud mask (CSCM) for each SLSTR product considered which has been assumed as ground truth.

Classified product Precision Recall F-measure Accuracy

S3A/SLSTR at 00:07 UTC 0.891 0.936 0.913 0.842
S3B/SLSTR at 23:01 UTC 0.952 0.820 0.881 0.795

the generation of an appropriate number of examples, which
must be statistically representative of all the possible scenar-
ios, to be included in the training dataset may represent a
very difficult task. A possible approach could be the design
of different neural networks, each associated with a specific
scenario.

We also aim at further investigating some aspects in order
to improve the classification accuracy, such as the introduc-
tion of other output classes – such as volcanic ice clouds –
and the integration of other variables in the model – such as
the sensor view angle.
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Figure 9. (a, b) S3A SLSTR image collected for Raikoke on 22 June 2019 at 00:07 UTC, oblique view; (c, d) S3B SLSTR image collected
for Raikoke on 22 June 2019 at 23:01 UTC, oblique view. (a, c) RGB; (b, d) NN classification.

Moreover, a fully comprehensive study of the sensitivity
of the NN detection on the observation angle could be an-
other possible future development of the study. Here, we
briefly addressed this point by applying the trained network
to SLSTR oblique-view products, characterized by a view
zenith angle of about 55◦ (Polehampton et al., 2021). Fi-
gure 9 shows the RGB composite and the NN classification
for the SLSTR oblique-view product collected on 22 June
2019 at 00:07 UTC (Fig. 9a and b) and 23:01 UTC (Fig. 9c
and d), respectively. It is interesting, as a preliminary re-
sult, to show how the main features of the classification
map obtained using a NN model trained only on near-nadir-
view-acquired products and used for classifying oblique view
data are mostly conserved, especially for the 23:01 UTC im-

age, where the opacity of the volcanic cloud is lower. How-
ever, the complexity brought in by the difference in the slant
optical depth, which may translate to a noticeable difference
in top-of-atmosphere signal levels, needs to be investigated
in a full, dedicated study. Finally, the possibility of using S3
SLSTR products to train a neural network that is able to de-
tect volcanic clouds in Sentinel-3 SLSTR granules might im-
prove the overall accuracy of the classification.

Code availability. The whole methodology was developed in a
MATLAB environment. The source codes are available upon re-
quest to ilaria.petracca@uniroma2.it.
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distributed from the Level-1 and Atmosphere Archive & Distribu-
tion System (LAADS) Distributed Active Archive Center (DAAC),
and they are available at https://ladsweb.modaps.eosdis.nasa.gov/
search/ (last access: 16 January 2021; LAADS DAAC, 2021).

Sentinel-3 SLSTR data are distributed from the Copernicus Open
Access Hub, and they are available at https://scihub.copernicus.eu/
dhus/#/home (last access: 4 February 2021; ESA, 2021).

The dataset used for this study is freely available on the Zen-
odo platform (https://doi.org/10.5281/zenodo.7050771; Petracca
and De Santis, 2022).

Author contributions. IP and DDS developed the algorithms, ana-
lyzed the data and results, and wrote the manuscript; MP developed
the algorithms and methodology, analyzed the data and results, and
reviewed the manuscript; SC and LG analyzed the data and results,
provided reference data for the validation task, and wrote and re-
viewed the manuscript; FP supported the analysis of the data and
results, worked on the Himawari-8 analysis part of the manuscript,
and reviewed the manuscript; LM and DS supported the analysis of
the data and results; FDF reviewed the manuscript, supervised the
research, and contributed to funding acquisition; GiSa supported the
analysis of the data and results and worked on validation; GiSc sup-
ported the research and contributed to funding acquisition.

All authors have read and agreed to the published version of the
manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Satellite observations, in situ measurements and model simulations
of the 2019 Raikoke eruption (ACP/AMT/GMD inter-journal SI)”.
It is not associated with a conference.

Acknowledgements. The results shown in this work were obtained
in the framework of the VISTA (Volcanic monItoring using Sen-
Tinel sensors by an integrated Approach) project, which was funded
by ESA within the “EO Science for Society framework” (https:
//eo4society.esa.int/projects/vista/, last access: 22 November 2022).

Financial support. This research has been supported by the Euro-
pean Space Agency (ESA Contract No. 4000128399).

Review statement. This paper was edited by Claudia Timmreck and
reviewed by three anonymous referees.

References

Atkinson, P. M. and Tatnall, A. R. L.: Introduction Neural net-
works in remote sensing, Int. J. Remote Sens., 18, 699–709,
https://doi.org/10.1080/014311697218700, 1997.

Bishop, C. M.: Neural networks and their applications, Rev. Sci. In-
strum., 65, 1803–1832, https://doi.org/10.1063/1.1144830, 1994.

Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger,
L. A., Lloyd, N. D., Llewellyn, E. J. (Ted), and Degen-
stein, D. A.: Large Volcanic Aerosol Load in the Stratosphere
Linked to Asian Monsoon Transport, Science, 337, 78–81,
https://doi.org/10.1126/science.1219371, 2012.

Bruckert, J., Hoshyaripour, G. A., Horváth, Á., Muser, L. O., Prata,
F. J., Hoose, C., and Vogel, B.: Online treatment of eruption dy-
namics improves the volcanic ash and SO2 dispersion forecast:
case of the 2019 Raikoke eruption, Atmos. Chem. Phys., 22,
3535–3552, https://doi.org/10.5194/acp-22-3535-2022, 2022.

Casadevall, T. J.: The 1989–1990 eruption of Redoubt Volcano,
Alaska: Impacts on aircraft operations, J. Volcanol. Geoth. Res.,
62, 301–316, https://doi.org/10.1016/0377-0273(94)90038-8,
1994.

Clarisse, L. and Prata, F.: Infrared Sounding of Volcanic Ash, in:
Volcanic Ash, Elsevier, 189–215, https://doi.org/10.1016/B978-
0-08-100405-0.00017-3, 2016.

Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M.
F., Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash re-
trieval and sensitivity analysis using Moderate Resolution Imag-
ing Spectroradiometer measurements, J. Appl. Remote Sens., 2,
023550, https://doi.org/10.1117/1.3046674, 2008.

Corradini, S., Merucci, L., and Prata, A. J.: Retrieval of SO2 from
thermal infrared satellite measurements: correction procedures
for the effects of volcanic ash, Atmos. Meas. Tech., 2, 177–191,
https://doi.org/10.5194/amt-2-177-2009, 2009.

Cox, C., Polehampton, E., and Smith, D.: Sentinel-3 SLSTR
Level-1 ATBD, Doc. No.: S3-TN-RAL-SL-032, 171 pp.,
https://sentinels.copernicus.eu/documents/247904/2731673/
S3_TN_RAL_SL_032+-Issue+8.0+version1.0-++SLSTR+
L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=
1656685672747, last access: 12 October 2021.

Craig, H., Wilson, T., Stewart, C., Outes, V., Villarosa, G., and
Baxter, P.: Impacts to agriculture and critical infrastructure in
Argentina after ashfall from the 2011 eruption of the Cordón
Caulle volcanic complex: An assessment of published damage
and function thresholds, Journal of Applied Volcanology, 5, 7,
https://doi.org/10.1186/s13617-016-0046-1, 2016.

Delmelle, P., Stix, J., Baxter, P., Garcia-Alvarez, J., and Barquero,
J.: Atmospheric dispersion, environmental effects and poten-
tial health hazard associated with the low-altitude gas plume
of Masaya volcano, Nicaragua, B. Volcanol., 64, 423–434,
https://doi.org/10.1007/s00445-002-0221-6, 2022.

Di Noia, A. and Hasekamp, O. P.: Neural Networks and Support
Vector Machines and Their Application to Aerosol and Cloud
Remote Sensing: A Review, in: Springer Series in Light Scat-
tering, Springer, Cham, 279–329, https://doi.org/10.1007/978-3-
319-70796-9_4, 2018.

ESA: Copernicus Open Access Hub, ESA, https://scihub.
copernicus.eu/dhus/#/home, last access: 16 January 2021.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn.
Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010,
2006.

Atmos. Meas. Tech., 15, 7195–7210, 2022 https://doi.org/10.5194/amt-15-7195-2022

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://doi.org/10.5281/zenodo.7050771
https://eo4society.esa.int/projects/vista/
https://eo4society.esa.int/projects/vista/
https://doi.org/10.1080/014311697218700
https://doi.org/10.1063/1.1144830
https://doi.org/10.1126/science.1219371
https://doi.org/10.5194/acp-22-3535-2022
https://doi.org/10.1016/0377-0273(94)90038-8
https://doi.org/10.1016/B978-0-08-100405-0.00017-3
https://doi.org/10.1016/B978-0-08-100405-0.00017-3
https://doi.org/10.1117/1.3046674
https://doi.org/10.5194/amt-2-177-2009
https://sentinels.copernicus.eu/documents/247904/2731673/S3_TN_RAL_SL_032+-Issue+8.0+version1.0-++SLSTR+L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=1656685672747
https://sentinels.copernicus.eu/documents/247904/2731673/S3_TN_RAL_SL_032+-Issue+8.0+version1.0-++SLSTR+L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=1656685672747
https://sentinels.copernicus.eu/documents/247904/2731673/S3_TN_RAL_SL_032+-Issue+8.0+version1.0-++SLSTR+L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=1656685672747
https://sentinels.copernicus.eu/documents/247904/2731673/S3_TN_RAL_SL_032+-Issue+8.0+version1.0-++SLSTR+L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=1656685672747
https://doi.org/10.1186/s13617-016-0046-1
https://doi.org/10.1007/s00445-002-0221-6
https://doi.org/10.1007/978-3-319-70796-9_4
https://doi.org/10.1007/978-3-319-70796-9_4
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://doi.org/10.1016/j.patrec.2005.10.010


I. Petracca et al.: Volcanic cloud detection using S3 data and NNs 7209

Francis, P. N., Cooke, M. C., and Saunders, R. W.: Retrieval of phys-
ical properties of volcanic ash using Meteosat: A case study from
the 2010 Eyjafjallajökull eruption, J. Geophys. Res.-Atmos.,
117, D00U09, https://doi.org/10.1029/2011JD016788, 2012.

Gardner, M. W. and Dorling, S. R.: Artificial neural networks
(the multilayer perceptron) – a review of applications in
the atmospheric sciences, Atmos. Environ., 32, 2627–2636,
https://doi.org/10.1016/S1352-2310(97)00447-0, 1998.

Glaze, L. S., Baloga, S. M., and Wilson, L.: Trans-
port of atmospheric water vapor by volcanic eruption
columns, J. Geophys. Res.-Atmos., 102, 6099–6108,
https://doi.org/10.1029/96JD03125, 1997.

Gorkavyi, N., Krotkov, N., Li, C., Lait, L., Colarco, P., Carn,
S., DeLand, M., Newman, P., Schoeberl, M., Taha, G.,
Torres, O., Vasilkov, A., and Joiner, J.: Tracking aerosols
and SO2 clouds from the Raikoke eruption: 3D view from
satellite observations, Atmos. Meas. Tech., 14, 7545–7563,
https://doi.org/10.5194/amt-14-7545-2021, 2021.

Gray, T. M. and Bennartz, R.: Automatic volcanic ash detec-
tion from MODIS observations using a back-propagation
neural network, Atmos. Meas. Tech., 8, 5089–5097,
https://doi.org/10.5194/amt-8-5089-2015, 2015.

Haywood, J. and Boucher, O.: Estimates of the direct and indirect
radiative forcing due to tropospheric aerosols: A review, Rev.
Geophys., 38, 513–543, https://doi.org/10.1029/1999RG000078,
2000.

Horwell, C. J. and Baxter, P. J.: The respiratory health hazards of
volcanic ash: A review for volcanic risk mitigation, B. Volcanol.,
69, 1–24, https://doi.org/10.1007/s00445-006-0052-y, 2006.

Horwell, C. J., Baxter, P. J., Hillman, S. E., Calkins, J. A.,
Damby, D. E., Delmelle, P., Donaldson, K., Dunster, C., Fu-
bini, B., Kelly, F. J., Le Blond, J. S., Livi, K. J. T., Mur-
phy, F., Nattrass, C., Sweeney, S., Tetley, T. D., Thordarson,
T., and Tomatis, M.: Physicochemical and toxicological pro-
filing of ash from the 2010 and 2011 eruptions of Eyjafjalla-
jökull and Grímsvötn volcanoes, Iceland using a rapid respi-
ratory hazard assessment protocol, Environ. Res., 127, 63–73,
https://doi.org/10.1016/j.envres.2013.08.011, 2013.

LAADS DAAC (Level-1 and Atmosphere Archive & Distribu-
tion System Distributed Active Archive Center): https://ladsweb.
modaps.eosdis.nasa.gov/search/, last access: 4 February 2021.

Mather, T. A., Pyle, D. M., and Oppenheimer, C.: Tropo-
spheric volcanic aerosol, in: Volcanism and the Earth’s Atmo-
sphere, edited by: Robock, A. and Oppenheimer, C., Geophys-
ical Monograph-American Geophysical Union, 139, 189–212,
https://doi.org/10.1029/139GM12, 2003.

McKee, K., Smith, C. M., Reath, K., Snee, E., Maher, S., Matoza,
R. S., Carn, S., Mastin, L., Anderson, K., Damby, D., Roman,
D. C., Degterev, A., Rybin, A., Chibisova, M., Assink, J. D.,
de Negri Leiva, R., and Perttu, A.: Evaluating the state-of-the-
art in remote volcanic eruption characterization Part I: Raikoke
volcano, Kuril Islands, J. Volcanol. Geoth. Res., 419, 107354,
https://doi.org/10.1016/j.jvolgeores.2021.107354, 2021.

Menzel, W. P., Frey, R. A., and Baum, B. A.: Cloud top properties
and cloud phase ATBD, https://atmosphere-imager.gsfc.nasa.
gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_
1.pdf (last access: 23 September 2021), 2015.

Millán, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner,
F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L.,

Wang, Y., Su, H., Wu, L., Read, W. G., and Froide-
vaux, L.: The Hunga Tonga-Hunga Ha’apai Hydration of
the Stratosphere, Geophys. Res. Lett., 49, e2022GL099381,
https://doi.org/10.1029/2022GL099381, 2022.

Murcray, D. G., Murcray, F. J., Barker, D. B., and Masten-
brook, H. J.: Changes in Stratospheric Water Vapor Associated
with the Mount St. Helens Eruption, Science, 211, 823–824,
https://doi.org/10.1126/science.211.4484.823, 1981.

Muser, L. O., Hoshyaripour, G. A., Bruckert, J., Horváth, Á., Ma-
linina, E., Wallis, S., Prata, F. J., Rozanov, A., von Savigny, C.,
Vogel, H., and Vogel, B.: Particle aging and aerosol–radiation
interaction affect volcanic plume dispersion: evidence from the
Raikoke 2019 eruption, Atmos. Chem. Phys., 20, 15015–15036,
https://doi.org/10.5194/acp-20-15015-2020, 2020.

Nishihama, M., Blanchette, J., Fleig, A., Freeze, M., Patt, F., and
Wolfe, R.: MODIS Level 1A Earth Location ATBD, https://
modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf (last access:
23 September 2021), 1997.

Oppenheimer, C., Scaillet, B., and Martin, R. S.: Sulfur Degassing
From Volcanoes: Source Conditions, Surveillance, Plume Chem-
istry and Earth System Impacts, Rev. Mineral. Geochem., 73,
363–421, https://doi.org/10.2138/rmg.2011.73.13, 2011, 2011.

Pavolonis, M. and Sieglaff, J.: GOES-R Advanced Baseline Imager
ATBD for Volcanic Ash, https://www.star.nesdis.noaa.gov/goesr/
docs/ATBD/VolAsh.pdf (last access: 22 November 2021), 2012.

Pavolonis, M. J.: Advances in Extracting Cloud Composi-
tion Information from Spaceborne Infrared Radiances –
A Robust Alternative to Brightness Temperatures. Part
I: Theory, J. Appl. Meteorol. Clim., 49, 1992–2012,
https://doi.org/10.1175/2010JAMC2433.1, 2010.

Petracca, I. and De Santis, D.: Sentinel-3 SLSTR and MODIS satel-
lite images of Raikoke 2019 and Eyjafjallajökull 2010 eruptions,
Zenodo [data set], https://doi.org/10.5281/zenodo.7050771,
2022.

Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del
Frate, F., and Stramondo, S.: Volcanic ash detection and retrievals
using MODIS data by means of neural networks, Atmos. Meas.
Tech., 4, 2619–2631, https://doi.org/10.5194/amt-4-2619-2011,
2011.

Picchiani, M., Chini, M., Corradini, S., Merucci, L., Piscini, A.,
and Frate, F. D.: Neural network multispectral satellite images
classification of volcanic ash plumes in a cloudy scenario, Ann.
Geophys.-Italy, 57, 6638, https://doi.org/10.4401/ag-6638, 2014.

Picchiani, M., Del Frate, F., and Sist, M.: A Neural Network Sea-Ice
Cloud Classification Algorithm for Copernicus Sentinel-3 Sea
and Land Surface Temperature Radiometer, in: Proceedings of
IGARSS 2018-2018 IEEE International Geoscience and Remote
Sensing Symposium, Valencia, Spain, 22–27 July 2018, IEEE,
3015–3018, https://doi.org/10.1109/IGARSS.2018.8517857,
2018.

Piscini, A., Carboni, E., Del Frate, F., and Grainger, R. G.: Simul-
taneous retrieval of volcanic sulphur dioxide and plume height
from hyperspectral data using artificial neural networks, Geo-
phys. J. Int., 198, 697–709, https://doi.org/10.1093/gji/ggu152,
2014.

Polehampton, E., Cox, C., Smith, D., Ghent, D.,
Wooster, M., Xu, W., Bruniquel, J., and Drans-
feld, S.: Copernicus Sentinel-3 SLSTR Land User
Handbook, https://sentinels.copernicus.eu/documents/

https://doi.org/10.5194/amt-15-7195-2022 Atmos. Meas. Tech., 15, 7195–7210, 2022

https://doi.org/10.1029/2011JD016788
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1029/96JD03125
https://doi.org/10.5194/amt-14-7545-2021
https://doi.org/10.5194/amt-8-5089-2015
https://doi.org/10.1029/1999RG000078
https://doi.org/10.1007/s00445-006-0052-y
https://doi.org/10.1016/j.envres.2013.08.011
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://doi.org/10.1029/139GM12
https://doi.org/10.1016/j.jvolgeores.2021.107354
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_1.pdf
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_1.pdf
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_1.pdf
https://doi.org/10.1029/2022GL099381
https://doi.org/10.1126/science.211.4484.823
https://doi.org/10.5194/acp-20-15015-2020
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf
https://doi.org/10.2138/rmg.2011.73.13
https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/VolAsh.pdf
https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/VolAsh.pdf
https://doi.org/10.1175/2010JAMC2433.1
https://doi.org/10.5281/zenodo.7050771
https://doi.org/10.5194/amt-4-2619-2011
https://doi.org/10.4401/ag-6638
https://doi.org/10.1109/IGARSS.2018.8517857
https://doi.org/10.1093/gji/ggu152
https://sentinels.copernicus.eu/documents/247904/4598082/Sentinel-3-SLSTR-Land-Handbook.pdf/bee342eb-40d4-9b31-babb-8bea2748264a?t=1663336317087


7210 I. Petracca et al.: Volcanic cloud detection using S3 data and NNs

247904/4598082/Sentinel-3-SLSTR-Land-Handbook.pdf/
bee342eb-40d4-9b31-babb-8bea2748264a?t=1663336317087
(last access: 15 January 2022), 2021.

Prata, A. J.: Infrared radiative transfer calculations for vol-
canic ash clouds, Geophys. Res. Lett., 16, 1293–1296,
https://doi.org/10.1029/GL016i011p01293, 1989a.

Prata, A. J.: Observations of volcanic ash clouds in the 10–12 µm
window using AVHRR/2 data, Int. J. Remote Sens., 10, 751–761,
https://doi.org/10.1080/01431168908903916, 1989b.

Prata, A. J. and Grant, I. F.: Determination of mass loadings and
plume heights of volcanic ash clouds from satellite data, CSIRO
Atmospheric Research, Aspendale, Vic., Australia, http://hdl.
handle.net/102.100.100/204502?index=1 (last access: 23 June
2021), 2001.

Prata, A. T., Grainger, R. G., Taylor, I. A., Povey, A. C., Proud,
S. R., and Poulsen, C. A.: Uncertainty-bounded estimates of ash
cloud properties using the ORAC algorithm: application to the
2019 Raikoke eruption, Atmos. Meas. Tech., 15, 5985–6010,
https://doi.org/10.5194/amt-15-5985-2022, 2022.

Prata, F., Bluth, G., Rose, B., Schneider, D., and Tupper, A.:
Comments on “Failures in detecting volcanic ash from a
satellite-based technique”, Remote Sens. Environ., 78, 341–346,
https://doi.org/10.1016/S0034-4257(01)00231-0, 2001.

Rose, W. I., Delene, D. J., Schneider, D. J., Bluth, G. J. S., Krueger,
A. J., Sprod, I., McKee, C., Davies, H. L., and Ernst, G. G.
J.: Ice in the 1994 Rabaul eruption cloud: Implications for vol-
cano hazard and atmospheric effects, Nature, 375, 477–479,
https://doi.org/10.1038/375477a0, 1995.

Shinohara, H.: Excess degassing from volcanoes and its role on
eruptive and intrusive activity, Rev. Geophys., 46, RG4005,
https://doi.org/10.1029/2007RG000244, 2008.

Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J.-P., Dutton, E. G.,
and Thomason, L. W.: The Persistently Variable “Background”
Stratospheric Aerosol Layer and Global Climate Change, Sci-
ence, 333, 866–870, https://doi.org/10.1126/science.1206027,
2011.

Toller, G. N., Isaacman, A., Kuyper J., Geng, X. and
Xiong, J.: MODIS Level 1B Product User’s Guide,
https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/
M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf
(last access: 14 September 2021), 2017.

Vermote, E. F. and Vermeulen, A.: Atmospheric correction al-
gorithm: spectral reflectance, https://eospso.gsfc.nasa.gov/sites/
default/files/atbd/atbd_mod08.pdf (last access: 6 May 2021),
1999.

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T.,
and Alkon, D. L.: Accelerating the convergence of the
back-propagation method, Biol. Cybern., 59, 257–263,
https://doi.org/10.1007/BF00332914, 1998.

Xu, J., Li, D., Bai, Z., Tao, M., and Bian, J.: Large Amounts of
Water Vapor Were Injected into the Stratosphere by the Hunga
Tonga–Hunga Ha’apai Volcano Eruption, Atmosphere, 13, 912,
https://doi.org/10.3390/atmos13060912, 2022.

Atmos. Meas. Tech., 15, 7195–7210, 2022 https://doi.org/10.5194/amt-15-7195-2022

https://sentinels.copernicus.eu/documents/247904/4598082/Sentinel-3-SLSTR-Land-Handbook.pdf/bee342eb-40d4-9b31-babb-8bea2748264a?t=1663336317087
https://sentinels.copernicus.eu/documents/247904/4598082/Sentinel-3-SLSTR-Land-Handbook.pdf/bee342eb-40d4-9b31-babb-8bea2748264a?t=1663336317087
https://doi.org/10.1029/GL016i011p01293
https://doi.org/10.1080/01431168908903916
http://hdl.handle.net/102.100.100/204502?index=1
http://hdl.handle.net/102.100.100/204502?index=1
https://doi.org/10.5194/amt-15-5985-2022
https://doi.org/10.1016/S0034-4257(01)00231-0
https://doi.org/10.1038/375477a0
https://doi.org/10.1029/2007RG000244
https://doi.org/10.1126/science.1206027
https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf
https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf
https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod08.pdf
https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod08.pdf
https://doi.org/10.1007/BF00332914
https://doi.org/10.3390/atmos13060912

	Abstract
	Introduction
	Case study: the Raikoke 2019 eruption
	Instruments
	MODIS instrument
	SLSTR instrument

	Methodology
	Results and discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

