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Abstract. Wind turbine applications that leverage nacelle-
mounted Doppler lidar are hampered by several sources of
uncertainty in the lidar measurement, affecting both bias
and random errors. Two problems encountered especially for
nacelle-mounted lidar are solid interference due to intersec-
tion of the line of sight with solid objects behind, within,
or in front of the measurement volume and spectral noise
due primarily to limited photon capture. These two uncer-
tainties, especially that due to solid interference, can be re-
duced with high-fidelity retrieval techniques (i.e., including
both quality assurance/quality control and subsequent pa-
rameter estimation). Our work compares three such tech-
niques, including conventional thresholding, advanced filter-
ing, and a novel application of supervised machine learn-
ing with ensemble neural networks, based on their ability
to reduce uncertainty introduced by the two observed non-
ideal spectral features while keeping data availability high.
The approach leverages data from a field experiment involv-
ing a continuous-wave (CW) SpinnerLidar from the Tech-
nical University of Denmark (DTU) that provided scans of
a wide range of flows both unwaked and waked by a field
turbine. Independent measurements from an adjacent mete-
orological tower within the sampling volume permit exper-
imental validation of the instantaneous velocity uncertainty
remaining after retrieval that stems from solid interference
and strong spectral noise, which is a validation that has not
been performed previously. All three methods perform sim-
ilarly for non-interfered returns, but the advanced filtering
and machine learning techniques perform better when solid
interference is present, which allows them to produce over-
all standard deviations of error between 0.2 and 0.3 ms!, or
a 1 %-22 % improvement versus the conventional threshold-
ing technique, over the rotor height for the unwaked cases.

Between the two improved techniques, the advanced filtering
produces 3.5 % higher overall data availability, while the ma-
chine learning offers a faster runtime (i.e., ~ 1 s to evaluate)
that is therefore more commensurate with the requirements
of real-time turbine control. The retrieval techniques are de-
scribed in terms of application to CW lidar, though they are
also relevant to pulsed lidar. Previous work by the authors
(Brown and Herges, 2020) explored a novel attempt to quan-
tify uncertainty in the output of a high-fidelity lidar retrieval
technique using simulated lidar returns; this article provides
true uncertainty quantification versus independent measure-
ment and does so for three techniques rather than one.

Copyright statement. This article has been authored by an em-
ployee of National Technology & Engineering Solutions of San-
dia, LLC under Contract No. DE-NA0003525 with the U.S. De-
partment of Energy (DOE). The employee owns all right, title
and interest in and to the article and is solely responsible for
its contents. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, ir-
revocable, world-wide license to publish or reproduce the pub-
lished form of this article or allow others to do so, for United
States Government purposes. The DOE will provide public access
to these results of federally sponsored research in accordance with
the DOE Public Access Plan https://www.energy.gov/downloads/
doe-public-access-plan (last access: 2 February 2022).

1 Introduction

Despite the continuing growth of wind energy technol-
ogy, several sub-fields of wind energy are still not mature
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(Veers et al., 2019). Real-time control of turbines within the
stochastic atmosphere and better understanding of turbine-
to-turbine wake interactions represent two areas needing
further advances and areas for which accurate wind field
sensing around the turbine is imperative. Such sensing is
enabled through Doppler lidar instruments, and nacelle-
mounted lidars, in particular, have made recent inroads with
applications in monitoring and control (Harris et al., 2006;
Mikkelsen et al., 2013; Sjoholm et al., 2013; Simley et al.,
2014, 2018) as well as wake aerodynamics model validation
(Doubrawa et al., 2020; Brown et al., 2020; Hsieh, 2021).
Continuing investment in such lidar technology includes ef-
forts to reduce the uncertainty of wind field measurements
over the whole field of view, which is critical for both
forward-mounted lidar used in feed-forward control appli-
cations and rear-mounted lidar used in wake measurements
for model validation. Uncertainties in processed lidar data
stem from both the lidar line-of-sight velocity, #'°%, readings
themselves and from imperfect assumptions in modeling ap-
proaches for reconstruction of the velocity vector (Lindelow-
Marsden, 2009; van Dooren, 2021). This work focuses on
quantification of the former, more fundamental source of li-
dar uncertainty that is present in all lidar measurements re-
gardless of any flow reconstruction approach that is later ap-
plied to the data.

An example of the raw return from a line-of-sight reading
of a CW lidar is given in Fig. 1. The fast-Fourier-transformed
power spectral density, s, returned from the scattering along
the laser path is distributed across a range of Doppler shift
frequencies, f, which are related to the line-of-sight veloc-
ity according to u!® = Af/2, where A is the wavelength of
the laser. Some aspects of the uncertainty in ' have been
found to be small for typical commercial and research lidar
setups such as the accuracy of the positioning of the line of
sight itself (Herges et al., 2017) and beam motion during data
capture (i.e., the blurring effect) (Simley et al., 2014). Other
aspects are well documented and can be quantified a priori
through virtual lidar techniques. Most notably, there is sig-
nificant broadening of the lidar spectra (and thus alteration
of the processed quantities of interest) from flow inhomo-
geneities such as mean gradients and turbulence within the
measurement volume (Stawiarski et al., 2013; Simley et al.,
2014; Wang et al., 2016; Forsting et al., 2017; Sekar et al.,
2020). This broadening, which is also a function of the line-
of-sight weighting distribution for a CW lidar, is observed
as the width of the region of interest (Rol) in Fig. 1. On the
other hand, we find several error sources in the measured li-
dar results whose impact cannot be known a priori. These
sources are due to spectral features embedded in the lidar
signal that stem from both instrument errors and non-aerosol
returns as shown in Fig. 1, and these are especially prevalent
for nacelle-mounted lidars as described below.

Amplitude noise in the spectrum of a CW Doppler lidar,
which is depicted by the localized peaks in Fig. 1, results in
a loss of precision (i.e., larger spread from the true value)
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Figure 1. Example of a power spectral density, s, distribution ver-
sus line-of-sight velocity, 115, of a raw CW lidar return illustrating
the contamination of the region of interest (Rol) by solid interfer-
ence and amplitude noise. The raw geometric median contains bias
error due to the solid interference as well as random error due to the
amplitude noise. Figure adapted from Brown and Herges (2020).

in the velocity estimation from the Rol. The intensity of the
noise, which for modern lidar is due primarily to shot noise
(Pefia and Bay Hasager, 2013), depends in part on the range-
resolved intensity of the backscatter. Therefore, appropriate
shot-noise error analyses should account for the unique noise
content observed in each lidar return, which cannot be deter-
mined a priori (Simley et al., 2014). A particular configura-
tion of interest to our work is a fast-scanning (i.e., ~ 500 Hz)
CW lidar that has been mounted on turbine nacelles (Sjoholm
et al., 2013; Mikkelsen et al., 2013). One drawback of this
configuration, however, is that the high temporal resolution
is a trade-off for shorter averaging times that yield higher
instrument error due to a low carrier-to-noise ratio or CNR
(Angelou et al., 2012).

Interference from solid surfaces that intersect the probe
volume introduces a source of bias in lidar readings, and
the severity of the interference again cannot be determined a
priori. For nacelle-mounted lidar, such interference is com-
mon and stems from the surrounding terrain, optical win-
dows (i.e., boresight interference, which occurs near the cen-
ter of the field of view for the SpinnerLidar configuration
when the line of sight is normal to the weatherization win-
dow; Brown and Herges, 2020), neighboring turbines, mete-
orological towers, and the turbine’s own blades for the case
of a forward-facing lidar mounted on the top of the nacelle
(rather than on the spinner). A characteristic spike shape in
the Doppler return near zero velocity indicates the presence
of solid interference.

The first tactic against spectral noise and solid interfer-
ence is quality assurance/quality control (QA/QC) process-
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ing. In the context of nonstationary atmospheric measure-
ments, the most simplistic QA/QC approach is threshold-
ing (Angelou et al., 2012; Pefia and Bay Hasager, 2013),
whereby spectral bins with s magnitudes less than a specified
threshold are nulled (if no signal remains below this thresh-
old, then the lidar data can be rejected; Frehlich, 1996). Noise
variance can be reduced by accumulating the spectra over
multiple laser pulses along a single line of sight (Rye and
Hardesty, 1993), and this approach has become mainstream
in both pulsed and CW lidar technologies. Conversely, if the
spectrum peak magnitude is too high, the data may be re-
jected on the grounds that a solid return has been captured.
Rather than reject such a solid return outright, Godwin et
al. (2012) worked to mitigate ground interference bias for
airborne pulsed lidar, though their approach was admittedly
subject to a large degree of subjectivity in defining certain
thresholds and was also unable to handle wind speeds near
the interference velocity. Herges and Keyantuo (2019) de-
veloped another technique that employs a user-defined set of
filters to carefully estimate the bounds of the Rol, thus re-
moving the impact of features due to solid interference and
spectral noise away from the Rol.

The next step in lidar retrieval is the mean frequency esti-
mation (i.e., parameter estimation of the Doppler frequency
shift, which yields the line-of-sight velocity estimate). Mean
frequency estimators (MFEs) have long been studied for
radar and lidar applications including recent work with pa-
rameter estimation on spectra from fast-Fourier-transformed
signals. Specific to pulsed lidar measurements, Lombard et
al. (2016) examined five such estimators including the max-
imum, centroid, matched filter, maximum likelihood, and
polynomial fit MFEs and found that all estimators save the
first offer suitable accuracy compared to the theoretical ideal
performance of the Cramer—Rao lower bound. Specific to
CW lidar measurements, Held and Mann (2018) examined
the maximum, centroid, and median MFEs and found the
highest accuracy when validating lidar results against sonic
anemometer measurements for the median MFE followed by
the centroid and finally maximum MFEs. Thus, the median
MFE has become the most common estimator used in wind
energy.

After the frequency estimation, another layer of QA/QC
can be applied through despiking techniques that reject out-
liers in a time series, such as the classical standard devia-
tion filter, iterative standard deviation filter (Hojstrup, 1993;
Vickers and Mahrt, 1997; Newman et al., 2016), or in-
terquartile range filter (Hoaglin et al., 1984; Wang et al.,
2015). Leveraging assumptions specifically related to li-
dar configurations, Forsting and Troldborg (2016) describe
a finite-difference-based despiking technique that impor-
tantly considers spatial as well as temporal gradients. Beck
and Kiihn (2017) introduced an adaptive filtering technique,
though it relies on the assumption of self-similar flow over a
span of time.
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Above we have reviewed how the type of QA/QC process-
ing and mean frequency estimation have bearing on the ac-
curacy of the final retrieved quantities of interest (Qols). All
the described techniques work to mitigate amplitude noise
and solid interference but involve a degree of subjectivity
in defining certain processing parameters. While appropriate
selections of these parameters can be found for specific con-
ditions and Doppler return shapes, there is no universal set of
optimal parameters even for the selection of the simple noise
threshold (Angelou et al., 2012; Gryning et al., 2016), which
makes the application of the de-noising techniques prone to
overestimating or underestimating Qols. Working towards a
solution, Brown and Herges (2020) quantified residual un-
certainty in Qols from a full retrieval technique by process-
ing synthetic spectra with known ground truth properties that
mimicked the shape of measured spectra.

The ultimate test of the accuracy of the Qol estimation,
however, is experimental validation against an independent
measurement. In terms of validation of the uncertainty of
lidar techniques, most work has been performed on time-
averaged samples, typically over a 10 min window as speci-
fied in the industry standard for power performance assess-
ment (Commission, 2005). For instance, Smith et al. (2006),
Albers et al. (2009), Slinger and Harris (2012), Gottschall
et al. (2012), Hasager et al. (2013), Wagner and Bejdic
(2014), Giyanani et al. (2015), and Cariou et al. (2013) all
compare lidar-derived velocities to traditional anemometer-
derived velocities over 10 min bins, often returning regres-
sion slopes and coefficients of determination within 0.01 of
unity.

For turbine control and model validation purposes, how-
ever, the uncertainty of interest is the instantaneous one, for
which values are significantly larger and the volume of pre-
vious work is significantly smaller. Courtney et al. (2008)
reported instantaneous errors between co-located lidar probe
volumes and cup anemometers to have standard deviation of
0.2ms~! and mean bias between —0.2 and 0.2 ms~ !, though
they noted that the actual values depend on the distribution
of wind speeds. A wind tunnel experiment by van Dooren et
al. (2022) showed instantaneous velocity from a co-located
lidar probe volume and hot-wire anemometer with coeffi-
cients of determination much smaller than the 10 min aver-
aged results above (i.e., 0.65 < R? < 0.95). As Pedersen and
Courtney (2021), for instance, have shown that the standard
error in line-of-sight velocity measured versus a hard target
for a CW lidar is on the order of 0.1 %, the main source of
errors observed by Courtney et al. (2008) and van Dooren et
al. (2022) is understood to be flow inhomogeneity and ampli-
tude noise (neither of these cases included solid interference
effects).

Like these last studies, this article considers instantaneous
data from CW lidars in the face of flow inhomogeneity and
amplitude noise. In contrast to the previous work, our work
explicitly compares the uncertainty of several end-to-end re-
trieval techniques and does so over a wider range of flows
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and lidar return types than has been done previously. Specif-
ically, we examine flows that are both unwaked and waked
by a field turbine, including those for which the specific
nacelle-mounted lidar problems of solid interference and am-
plitude noise present a particular challenge. The objective
is to bound the achieved uncertainty in each of the retrieval
techniques for the most common Qol: the spectral (i.e., ge-
ometric) median line-of-sight velocity, . To evaluate the
efficacy of the interference and noise rejection processes, we
compare 1'% to corresponding values measured from a mete-
orological tower co-located with the lidar focus point while
also tracking data availability associated with the different
retrieval techniques.

This work is novel not only by nature of the strides taken to
quantitatively determine instantaneous lidar Qol uncertain-
ties but also in the first-time exploration, benchmarking, and
stress testing of two high-fidelity retrieval techniques. The
study compares the accuracy of i1 as processed from mea-
sured lidar spectra in three parallel ways: (1) with the con-
ventional thresholding technique, (2) with the advanced fil-
tering technique of Herges and Keyantuo (2019), and (3) with
a novel application of an ensemble machine learning model
that is trained on spectral data mimicking those observed in
the field.

In the remainder of the article, the overview of the demon-
stration experiment is given in Sect. 2, followed by the
methodology underlying the three retrieval techniques in
Sect. 3, validation results in Sect. 4, discussion in Sect. 5,
and concluding remarks with future work in Sect. 6.

2 Experimental techniques
2.1 Facility

A validation case for the lidar retrieval techniques is derived
from data at the Scaled Wind Farm Technology (SWiFT)
facility in Lubbock, Texas, USA, as illustrated in Fig. 2.
The site features level terrain with minimal surface rough-
ness, and characterization of the atmospheric conditions is
given in Kelley and Ennis (2016) with recent benchmarking
and validation activities given in Doubrawa et al. (2020) and
Hsieh (2021).

Each of the three V27 wind turbine rotors on the site
are 27 m in diameter, D, and have hub heights of 31.5m.
Two meteorological towers are positioned 2.5D ahead of the
front-line turbines relative to the prevailing wind direction
as shown in Fig. 2. Data were taken with the lidar scanning
over the meteorological towers both with the rotors station-
ary and with the WTGal rotor operating, and we hereafter
refer to these cases as the inflow and waked cases, respec-
tively. These data derive from a 20162017 test campaign,
most of the data for which have been released into the public
domain through the A2e Data Archive and Portal (2019).
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Figure 2. (a) Rendering of the SWiFT facility in Lubbock, Texas,
USA. The nacelle of WTGal was outfitted with a rear-mounted
DTU SpinnerLidar, which scanned the flow at different focus
lengths according to the rosette patterns shown in red. Rendering
from Doubrawa et al. (2020). (b) Planform view of the site where
D =27 m. Adapted from Herges and Keyantuo (2019).

2.2 Ultrasonic anemometers

SATT series “A” style probe ultrasonic anemometers from
ATI Technologies, Inc. are located at 10.1, 18.3, 31.9, 45.4,
and 58.3 m above the ground on the METal and METb1 me-
teorological towers. The booms are due west (270° in the
coordinate system of Fig. 2) of the tower. The anemome-
ters sample data at 100 Hz and measure usopic, Usonic, and
Wsonic, Which are the velocity components in the site refer-
ence frame according to the coordinate system of Fig. 2. The
manufacturer-quoted accuracy of the ugopic and vgopic com-
ponents is =0.01 ms~!. The total uncertainty of the hori-
zontal wind direction measurement derived from the sonic
anemometers is estimated at 1.22°. There is an estimated 25—
30 ms delay from the end of each sample until when the GPS
time stamp is applied (i.e., ~ 20 ms internal delay in the in-
strument and 67 ms serial delay).

Occasional spurious spikes in the signal are removed in
pre-processing using a median absolute deviation filter with
a length of 10000 data points, or 100s. Data lying more
than 5 standard deviations away from the median are also
removed. In addition to these standard quality control pro-
cessing techniques used at SWiFT, this effort uses shape-
preserving piecewise cubic interpolation across any spans of

https://doi.org/10.5194/amt-15-7211-2022



K. A. Brown and T. G. Herges: Nacelle-mounted lidar including supervised machine learning

data up to 1s in length that have been omitted either due to
the removal process noted above or to malfunction of the in-
strumentation. Longer segments of instrument cutout were
removed from consideration to be used in this study. No
blockage correction was made for the presence of the tower
or anemometers in this study.

2.3 Laser anemometer (lidar)

Scans from the DTU SpinnerLidar (Sjoholm et al., 2013)
mounted on WTGal will be considered below. The beam
pointing accuracy of the instrument is not quantified ex-
actly, but the pointing direction has been verified with in-
frared photogrammetry in the lab (Herges et al., 2017), and
the beam position in the field is known from the combina-
tion of Theodolite total station measurements of the lidar
location in the stationary nacelle, the lidar accelerometers,
and the turbine yaw heading. The scans of interest were fo-
cused 2.5D from WTGal. At this focus length, the full-width
half-maximum (FWHM) averaging length of the beam is
8.45m as defined by a truncated Gaussian weighting func-
tion. Integrating the weighting function over a length of 16x
FWHM centered around this focus length captures over 99 %
of the area under the full weighting function; see Debnath
et al. (2019) for more information. The probe volume av-
eraging acts as a low-pass filter for the time series of #'*
from the lidar, but the filtered small-scale turbulence content
is returned in each scan as additional power density spectral
width, which in some cases can be used to improve turbu-
lence estimates (Branlard et al., 2013; Peiia et al., 2017).

The rosette scan patterns of the SpinnerLidar are com-
pleted in 2—4 s and consist of 984—-1968 measurement loca-
tions, some of which are eliminated from the measurement
domain when the focus distance falls below the surface of
the ground. Within each scan, the lidar samples at 100 MHz,
and power spectra are calculated from sequences of 512 sam-
ples to yield 256 fast-Fourier-transformed bins so that the
returned power spectrum for each measurement location is
the average of ~ 400 consecutive spectra. The delay time be-
tween sample and GPS time stamp is less than 1 ps.

The CNR is calculated from the lidar spectra according to
a wideband defined as Eq. (1):

los
max

1 <
/ (s — Mnoise)du]ma (1

los
min

u

CNR = (Mnoise <ulg§x - ul?lfn))

where 1'% is the minimum or maximum line-of-sight veloc-
ity sensed by the lidar according to the subscript and pnoise 1S
the mean noise floor level in the spectrum as calculated over
the last 100 bins of each spectrum. For the lidar used here,
ulds is 38.40ms~! and 4! is 0.75ms™! (velocities lower
than 0.75ms~! are removed due to high relative intensity
noise; Lindelow, 2007). Practically, the integral in Eq. (1)

https://doi.org/10.5194/amt-15-7211-2022

7215

is evaluated discretely using trapezoidal integration over the
bin width of 0.15ms ™.

2.4 Pre-processing

Our work compares estimated velocities from the lidar spec-
tra to point measurements from the sonic anemometers for
cases when the lidar beam passed within a certain distance
of the anemometers. Several steps are necessary to enable an
appropriate and meaningful comparison as described below.

2.4.1 Bin selection

Similar to Gottschall et al. (2012), filtering of the 10 min bins
for the present campaign was performed to isolate cases of
specific interest. Several filters were applied to all 10 min
averaged bins. Bins without the lidar activated were disre-
garded, as were bins with the yaw heading more than 60°
from zero since the lidar measurement volume would not
overlap the meteorological tower for those cases. The wind
direction was also constrained to be within a certain tolerance
of the line of sight of the lidar beam so that the lidar could
resolve a significant component of the wind speed, and this
tolerance was 30 and 60° for the inflow and waked cases, re-
spectively. For the inflow cases, which have a larger database
than the waked cases, additional filters were applied requir-
ing all five sonic anemometers to be functioning and limit-
ing the mean sonic wind speed at 31.9 m to be less than or
equal to 6ms~!. This second constraint is imposed because
the lower velocity cases are the ones for which high-fidelity
retrieval becomes most difficult in the presence of solid in-
terference, which is a major focus of this article. Both inflow
and waked cases, however, were required to have mean wind
speed greater than 2ms~!.

The filtering resulted in 69 10 min bins for the inflow cases
as shown in Table 1 and five 10 min bins for the waked cases
as shown in Table 2. These data cover multiple seasons, span-
ning 16 January to 11 July 2017. Data cover a range of stabil-
ity states of the atmospheric boundary layer (ABL) as can be
inferred from the more than 1 order of magnitude variation in
the standard deviation of wind speed, which corresponds to
turbulence intensities of 1 %—29 % for Table 1 and 6 %-21 %
for Table 2.

2.4.2 Within-bin filtering

Within each bin scans were removed when the lidar was fo-
cused at distances other than 2.5D (i.e., the nominal distance
to the meteorological tower), when the sonic anemometers
were malfunctioning, and when there was more than 2m
of separation between the lidar beam path and the sonic
anemometer in the x = —2.5D plane as described in the
following subsection. The within-bin filtering resulted in
net comparison times of at least 355 and 14 min per sonic
anemometer location for the validation study of the inflow
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Table 1. Summary statistics of the 69 10 min bins used for the validation study of inflow data. Data shown correspond to the sonic anemometer
at 31.9m. The values wsgopjc and wdgopic are the horizontal wind speed and wind direction, respectively. The value y is the turbine yaw

heading, which corresponds to clockwise rotation in the reference frame of Fig. 2.

I

f —— — —— 2 _

Ugonic Usonic Wsonic WSsonic \/(wssonic - wssonic)z Wdsonic \/(stonic - U)dsonic) 14

ms™hH (ms™H)  ms7hH  (msTh) (ms~h) ©) ©) ©)

Minimum 2.69 —1.31 —0.26 2.82 0.08 165.01 094 346.98
Mean 4.56 0.18 0.02 4.63 0.42 177.81 5.25 347.06
Maximum 5.96 1.28 0.34 5.98 1.37 194.45 21.73  347.11

Table 2. Summary statistics of the five 10 min bins used for the validation study of waked data. Data shown correspond to the sonic anemome-
ter at 31.9 m. The values wsggpic and wdggpic are the horizontal wind speed and wind direction, respectively. The value y is the turbine yaw
heading, which corresponds to clockwise rotation in the reference frame of Fig. 2.

Usonic Usonic Wsonic ~ WSsonic \/(wssonic - wssonic)2 wdsonic \/(stonic - wdsonic)2 Y

ms™h  (ms7H  (ms™hH  msTh (ms~1) ©) ©) ©)

Minimum —6.29 —3.27 —-0.20 4.24 0.25 331.03 3.59 32495
Mean —5.37 —1.07 —0.04 5.89 0.67 346.81 6.51 338.10
Maximum —4.02 2.96 0.11 6.84 1.07 386.83 9.41 378.55

and waked cases, respectively (the small sample size of the
waked cases will be discussed below).

Various levels of other filtering, or sub-binning, are also
explored in Sect. 4 to bin data on certain Qols. The high-
est level of such sub-binning determines whether an individ-
ual return includes solid interference or not. This determi-
nation is performed similarly to the thresholding technique
to be described in Sect. 3.1; a return is designated as hav-
ing solid interference if the first useable velocity bin of the
spectrum lies above the threshold to be described further be-
low (see Eq. 3), which often occurs when solid interference is
present. Other sub-binning operations include those based on
the lidar CNR as well as on the time-local standard deviation
of velocity from the sonic anemometers. For the latter, cal-
culations are made using a running standard deviation with
a window span corresponding to 16 x FWHM (the relation-
ship between time window span and probe length is approx-
imated by invoking Taylor’s hypothesis to translate the time
stamps of each sonic anemometer reading to horizontal dis-
tances from the lidar focus point for any given lidar scan).
Note that the resulting quantity is related to the streamwise
turbulence intensity by division of the streamwise velocity,
but the absolute magnitude of the fluctuations in the atmo-
sphere is considered here to be more relevant than the con-
ventional normalized quantity in the context of the compar-
isons to be made below.

2.4.3 Spatiotemporal syncing
Once a 2-4s scan window has been deemed valid for the

validation analysis, a process is used to isolate the exact scan
indices within each window when the lidar beam was pointed

Atmos. Meas. Tech., 15, 7211-7234, 2022

closest to each of the sonic anemometers. The lidar beam po-
sition is known in the coordinate system depicted in Fig. 2 as
described in Sect. 2.3. For the waked cases, the turbine yaw
setting was variable as indicated in Table 2, which resulted in
high variability of the closest-passing scan indices within the
rosette scan pattern. For the inflow cases, the turbine setting
was usually fixed at 347°, so the closest-passing scan index
was more predictable. For all cases, the closest-passing scan
index was only retained for this work if there was less than
2 m of separation between the lidar beam path and the sonic
anemometer in the x = —2.5D plane as shown in Fig. 3. Note
that for scan indices with § # 0, the focus point of the probe
volume is slightly offset from the x = —2.5D plane accord-
ing to the 2.5D radius of the hemispherical scan geometry.
Once the closest-passing index is identified, the data from the
nearby sonic anemometer are cubically interpolated in time
to the moment when the lidar beam sampled near it.

It is noted that the above procedure of comparing mea-
surements between a stationary sensor and a nonstationary
sensor requires good temporal synchronization. The synchro-
nization is accomplished with GPS time stamps on all sen-
sors. The synchronization accuracy then becomes a function
of any delay occurring between the data-capturing and time-
stamping processes, especially for the nonstationary sensor.
For the nonstationary SpinnerLidar, the delay of < 1 ps intro-
duces negligible error in the perceived position of the beam,
as it is more than 3 orders of magnitude smaller than the sam-
ple period of each individual measurement location in the
rosette pattern. For the stationary ultrasonic anemometers,
the delay of 25-30 ms is small compared to the timescales
of the flow being resolved by the 8.45 m lidar probe volume.
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Sonic
ancmomcter

Laser

Figure 3. Rendering of WTGal and METal, with the former yawed
to 347° (i.e., nearly 180° from the orientation shown in Fig. 2) to
cover the latter with the lidar scan pattern. Guy wires have been re-
moved for clarity. The value x is the horizontal directional offset
angle of the lidar beam from the —x axis, and ¢ is the elevation
angle of the beam, which becomes —18.2, —11.6, 0.2, 11.7, and
22.0° when the beam is pointed at the center of the five respective
anemometers at z = 10.1, 18.3, 31.9, 45.4, and 58.3 m. The maxi-
mum distance, d, in the x = —2.5D plane between the lidar beam
and the center of the sonic anemometer probe for the considered
data is 2 m. Note that the lidar beam is thickened for clarity; the ac-
tual beam diameter at the waist is 2.7 mm for the 2.5D focus point.

2.4.4 Projection of velocity components

Although the lidar and sonic anemometer feature signifi-
cantly different measurement volumes and can thus never be
compared to the highest degree of confidence, projecting the
sonic anemometer velocity data onto the line of sight of the
lidar beam is an important step toward removing some of the
uncertainty of the comparison. Projection was performed for
each of the five closest individual scan indices identified in

Sect. 2.4.3 to produce the line-of-sight velocity, u}%ﬁlic, for
each sonic anemometer according to Eq. (2):
uls‘());ic = [ cos(x) cos (8) sin(x)cos(8) sin(8) ]
Usonic
Usonic s 2
Wsonic

where x is the horizontal directional offset of the lidar beam
from the —x axis, and § is the elevation angle of the beam as
described by Fig. 3.
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2.5 Time-averaging error

The uncertainty bands on the ensemble data shown at vari-
ous instances in Sect. 4 below correspond to the statistical
time-averaging error (i.e., random uncertainty) and are de-
rived from 10000 bootstrap resamples with a 95 % confi-
dence level (Benedict and Gould, 1996).

3 Retrieval techniques

The three techniques for retrieval of nacelle-mounted lidar
data are described in this section.

3.1 Thresholding

The thresholding technique used herein is related to the
conventional thresholding approaches given in Angelou et
al. (2012) and Pefia and Bay Hasager (2013). First, a check
is made on the magnitude of the first useable velocity bin
of the spectrum, and the return is rejected if this magnitude
is the maximum among the bins (i.e., the maximum over all
Ulos), Which often occurs when dominant solid interference
is present. Otherwise, the mean noise floor level in the spec-
trum, fnoise, and standard deviation of noise, opeise, are cal-
culated over the last 100 bins of each spectrum, similar to
Simley et al. (2014). These last 100 bins are in the tail of the
spectrum sufficiently away from the Rol (beyond the right
edge of Fig. 1). The thresholded power spectrum, sy, is then
calculated from the raw spectrum, s, via Eq. (3):

Sth = 8 — MUnoise — "o Onoise> 3

where n, is a tunable parameter for the number of oygise
above the noise floor of the desired threshold level. Negative
values of sy, are subsequently set to zero, and the spectral me-
dian is calculated according to standard practice as embodied
in the MATLAB function medfreq, which defines the median
frequency as that which divides the spectrum into two equal
areas.

As thresholding requires a degree of data loss, there is a
trade-off between reduction in random error in a thresholded
time series due to rejection of spurious spectral noise and
an increase in random and bias errors due to reduced CNR
and altered skew of the distribution, respectively. The opti-
mal value of n, for CW lidar depends at least on the spectral
width as described in Angelou et al. (2012), and we choose
an n, of 5 so that any signal above this threshold can conser-
vatively be regarded as from the wind rather than from noise
(Pefia and Bay Hasager, 2013).

3.2 Advanced filtering

The advanced filtering technique described by Herges and
Keyantuo (2019) and also implemented in this article builds
on the thresholding technique to maintain greater data avail-
ability while reducing both random and bias errors. The tech-
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Figure 4. Unprocessed Doppler spectra shown in three forms with tracking of seven example cases (indicated by the letters a—g): (a) image
of noise-subtracted and rescaled power spectral density, (s — inoise)/Smax> Where smax = 216 _1:(b) (s — Inoise)/Smax Vversus line-of-sight
velocity, u!®S: and (c) color map of spectral median line-of-sight velocity, 7195 over the rosette scan pattern including the wake (as indicated

by the red line and center dot) and relative location to the downstream turbine. In (c), yjigar and zjigar are the lateral and vertical coordinates,

respectively, of the lidar coordinate system.

nique leverages the lidar spectral data throughout an entire
scan (i.e., incorporating information from adjacent scan po-
sitions) to isolate the velocity field of interest within the spec-
tra, remove signals from solid returns, and reduce noise using
a bilateral filter. The advanced filtering technique was devel-
oped by matching known erroneous measurements within the
lidar scan rosette to patterns determined from feature identifi-
cation within the Doppler spectral image, which includes the
spectral information throughout the entire scan. The feature
identification within the spectral image is used to identify
and remove hard targets, low signal returns, and returns from
nearby nonstationary wind turbine blades. An additional out-
lier detection was developed as a two-dimensional imple-
mentation of traditional despiking methods to catch remain-
ing outliers within the scan pattern. An overview of the tech-
nique is provided below, while Herges and Keyantuo (2019)
explain the advanced filtering technique in greater detail.

A single 2 s example rosette scan with 984 points, or scan
indices, shown in Fig. 4, was chosen to describe how the ad-
vanced filtering method works, and this method holds for all

Atmos. Meas. Tech., 15, 7211-7234, 2022

DTU SpinnerLidar data collected at the SWiFT site, includ-
ing data with inflow variations in wind speed, turbulence,
shear, veer, and aerosol particulate concentrations, through-
out all focus distances (1.0, 1.5, 2.0, 2.5,, 3.0, 4.0, and 5.0D)
and scan-head motor speed rates (500, 1000, 2000 rpm). This
example scan, which was taken with the lidar and turbine in a
different orientation than for the rest of the article, was mea-
sured with a focus distance of 5D, or 135 m, in the direction
of a downstream turbine (i.e., WT'Ga2 in Fig. 2) that was op-
erating within the lidar field of view and a wake from the
lidar’s own turbine (i.e., WTGal).

Figure 4 shows the unprocessed input to the advanced fil-
tering technique. The figure includes the spectral image cre-
ated after noise subtraction and rescaling from all 984 power
spectral density distributions concatenated in time along the
scan index (a), seven example distributions from (a) plot-
ted versus ' (b), and the rosette scan pattern with initial
i1 estimates (c). The advanced filtering technique primar-
ily uses the data format of the spectral image in Fig. 4a, with
Fig. 4b and c included here to help interpret the information
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contained in the image. The different line colors demarcate
the seven scan indices of interest; the indices were chosen
to help demonstrate the advanced filtering technique across a
wide subset of return types (i.e., even wider than will be con-
sidered in the later sections of this paper). As seen in Fig. 4c,
the indices of interest include example returns from each of
the following: the undisturbed free stream of the atmospheric
boundary layer, the center of the wake, the edge of the wake,
the boresight, the ground, and the rotating downstream rotor.
Note that Fig. 4c also shows an outline of WTGa2 and the
wake from WTGal (in red) to give a reference for what was
physically occurring at the locations in the scan relative to
the seven example locations.

Figure 5 displays the effects of the primary steps of the ad-
vanced filtering technique on the seven example u!* traces.
The first step (i.e., moving between Figs. 4b and 5a) was to
remove the effects of the solid returns within the spectral im-
age using a mask. The mask was created by proportionally
projecting the signal strength at the lowest velocity bin into
higher velocity bins. The values for the linear projection were
determined empirically and may be specific to a given lidar
device. However, the values held for the SpinnerLidar in this
experiment throughout all focus distances. The mask regions
were then increased to include two additional scan indices
in both directions using the image processing technique of
morphological dilation to ensure the regions fully masked
the effect of the solid returns. The regions within the spectral
image covered by the mask were zeroed out. Note that the
high-strength ground return portion of the “low signal” ex-
ample was removed, while the low-strength portion returned
from the aerosols remains.

The next step in the technique (i.e., moving be-
tween Fig. 5a and b) includes a combination of filtering to re-
move shot noise, thresholding, and identification of the Rol,
the latter of which includes flow information from both the
atmospheric boundary layer and wake. A weak bilateral fil-
ter!, the effect of which can be observed by comparing the
noise in the wake edge distribution between Fig. 5a and b,
is believed to be more effective and accurate at reducing
shot noise compared to a one-dimensional filter because it
utilizes the Doppler information from surrounding measure-
ment points within the continuous flow field. The Rol within
the spectral image was created by preserving the (noise-
subtracted and rescaled) Doppler spectra above the thresh-
old of 0.015. Smaller regions of spectra outside the Rol re-
mained because of noise values above the threshold or signal
returns from rotating blades, and these regions were removed
if they were not interconnected with the primary flow-field
Rol, which is determined as the large region that intersects

1A bilateral filter is an edge-preserving nonlinear filter that re-
places the intensity of each pixel with a Gaussian-weighted average
of intensity values from nearby pixels, which is a common filtering
technique for reducing shot noise within images (Phelippeau et al.,
2008).
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the expected i1 values. The thresholding value was chosen
empirically as a value that approaches zero without includ-
ing regions of noise interconnected with the primary Rol.
Remaining invalid measurements from cases that are inter-
connected with the flow-field Rol and have a low CNR or
are interconnected with the rotating downstream rotor blades
were addressed in subsequent steps.

Two additional filters were used in the final step (i.e., mov-
ing between Fig. 5b and c) to remove the remaining invalid
measurements. The first filter is a combination of two out-
lier detection methods that are used to capture the returns
from nonstationary solid targets when the flow field among
neighboring scan indices has similar velocities. The first out-
lier detection method uses a spatially smoothed scan pattern
that is a time-weighted average of ', calculated from the
spectral median of the u'* traces in the filtered spectral im-
age, within a sliding neighborhood to detect outliers from the
difference between the spatially smoothed scan and the un-
smoothed pattern. The second outlier detection method uses
the peak prominence of the noise-subtracted and rescaled
power spectral density of the filtered spectral image at each
scan point to again isolate peak return signals from the op-
erational rotor. The velocity difference smoothing and signal
peak outlier detections were combined to robustly capture the
effect of the operational rotor at all focus distances, remov-
ing only data that qualified as outliers using both detection
methods and thus effectively removing the erroneous non-
stationary solid targets. The second filter applied during the
final step removes power spectra distributions with low sig-
nal quality. This filter uses the reciprocal of a signal quality
metric of the filtered spectral image and removes low-quality
cases in the ground region as well as cases from scans with
periods of reduced aerosol within the atmospheric boundary
layer.

Figure 5c shows the final result of the example traces using
the advanced filtering method, leaving only the Rols in the
free stream, wake center, and wake edge cases, from which
the spectral median is calculated in the same way as with the
thresholding technique above. The figure also demonstrates
the preservation of a wide distribution of line-of-sight veloci-
ties within the probe volume when measuring the shear layer
of the wake edge. The need for expert development of the
above technique and potential difficulty in adapting to new
types of signal returns are part of the motivation for develop-
ment of the machine learning approach described next.

3.3 Machine learning

The machine learning technique is an application of super-
vised machine learning regression via ensemble neural net-
works. The approach follows from the one-time construction
of a high-dimensional parametric database of synthetic lidar
spectra. A model of correspondence is then developed be-
tween the raw spectral shape and the Qol. The subsections
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Figure 5. Traces of noise-subtracted and rescaled power spectral density, (s — poise)/Smax, VErsus 1% where smax = 210 — 1. These cases
demonstrate the progression of the primary advanced filtering steps: (a) removal of hard targets; (b) bilateral filtering, thresholding, and

isolation of Rol; and (c¢) combined outlier detection method and low signal quality filter.

below describe the neural network architecture, the training
and testing approach, and prediction confidence level.

3.3.1 Architecture

The network architecture is depicted in Fig. 6. The individ-
ual network architecture is six hidden layers with 48 nodes
each. Each node features a sigmoid symmetric transfer func-
tion, and model learning is based on mean square error eval-
uation and backpropagation using the Levenberg—Marquardt
method. The input layer receives the spectral magnitudes of
the first 129 bins in the spectrum, which correspond to a !
range of 0.75-19.95ms~! and is more than wide enough to
capture the Rol of all the cases studied below.

Ensembles of the individual networks are generated to in-
crease the regression performance by addressing the bias—
variance trade-off; the relatively large number of nodes in
the individual networks produces low bias estimates, while
cross-referencing results from multiple networks attenu-
ates the high variance associated with such large individ-
ual networks. The ensemble training approach is a classi-
cal one of bootstrap aggregating (often referred to as bag-
ging) (Breiman, 1996), whereby B individual networks are
trained by bootstrapping samples with replacement from the
training dataset such that the number of bootstrapped sam-
ples is the same as the training data size. The bagging ap-
proach has been found to be resistant to model misspecifica-
tion and overfitting (Tibshirani, 1996). Typical values of B
are between 20 and 200 (Tibshirani, 1996); we use B = 32.

Once the one-time training of the B individual neural net-
works is complete, we calculate the Qol from the median
output of all B individual networks in the ensemble. In our
work to be shown below, the Qol is i7'°%, though it is also pos-
sible to generate estimates for other Qols such as the spectral
standard deviation.
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Figure 6. Depiction of the ensemble neural network structure. Note
that input and output layers are omitted for clarity.

3.3.2 Training and testing

The individual networks are implemented and trained
through MATLAB’s parallelized trainNeuralNetwork func-
tion. This function requires a training dataset, as well as a
validation dataset to determine when to terminate the model
refinement (i.e., to determine when the model begins to lose
generality and overfit the training data). A third dataset is
completely isolated from the training process to test the final
model for generality. The split of training, validation, and
testing data is 70 %, 15 %, and 15 %, respectively.
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The synthetic spectra to be used for the training, vali-
dation, and testing of the ML model are generated from
full-factorial parametric sweeps through a gridded seven-
dimensional space designed to replicate the range of spectral
shape parameters observed in the field. The process of repli-
cating the range of observed shapes, which is described in
Appendix A, is important since a trained model only pro-
duces valid output if the input data fall within the distribu-
tion of the training data. Related to this aspect, several limi-
tations of the synthetic spectra database for this effort to bear
in mind are the bound on the peak prominence of the Rol,
which is required to be 4oyise above Lpoise (see Appendix A
for more on these two noise parameters), the bound on ﬁ}fdsm,
which is set to be no less than 2ms~L, and the inclusion
of only single-peaked spectra (i.e., no double-peaked spec-
tra often found at the shear layer of a wind turbine wake). In
addition to relaxing some of these constraints, future efforts
might also benefit from generating synthetic spectra that sat-
isfy not only the range but also the probability distribution of
the statistics from the field data.

The use of the ~ 58 000 training cases and ~ 13 000 val-
idation cases produces convergence of the root mean square
(rms) error calculated on the ~ 13 000 isolated testing cases
to 0.141 ms~!. Figure 7 shows the performance of the en-
semble network on the testing cases in which only the data
points in gray, which represent the predictions with highest
confidence as explained in the next subsection, are used in
the linear regression and rms error calculations. The magni-
tude of the residuals is relatively constant with velocity ex-
cept near the origin where the parameter estimation process
can be complicated by the presence of the inverse function as
described in Appendix A.

The variance component of error in neural networks often
dominates the bias component (Geman et al., 1992), and this
scenario is borne out even for our ensemble neural network,
which has rms error much larger than mean error. However,
the variance error is still relatively low in the context of wind
energy applications. In practice, the variance (and bias) will
be shown to be larger because of the presence of inhomo-
geneity within the lidar probe volume.

3.3.3 Prediction confidence

The ensemble strategy provides not only an estimate of a Qol
via the median of the individual network outputs but also
an associated estimate of the uncertainty of the Qol based
on the distribution of the outputs from the individual net-
works. We calculate the standard error of the ensemble es-
timate as /(B — 1)1/2, where 6 is the standard deviation of
the individual network outputs. This approach, which bene-
fits from the bootstrapping performed in the training process
as described above, was found to provide a better estimate of
standard error from multilayer perceptrons than several other
approaches reviewed by Tibshirani (1996), and our own ini-
tial experience showed better performance with this approach
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Figure 7. Relationship between machine-learning-predicted
spectral median, 12}315, and the true value, ﬁ{ﬁfe, from the 13383
testing cases. The red data indicate predictions with low confidence
as explained in Sect. 3.3.3. Removing these data points, which was
done before the regression fitting, leaves partial data availability as

indicated. Note that the y = x line is mostly obstructed from view
by the linear fit line.

than with one that trains a separate ensemble on the residual
errors of the first ensemble.

In our implementation, we leverage the standard error to
flag spectra that produce relatively large variation in the Qol
across the ensemble members. Specifically, we set a thresh-
old of standard error of 0.09 ms~!, above which data are re-
jected as unreliable. This threshold provides an acceptable
balance between data availability and variance error based on
a parameter sweep applied to the synthetic dataset, though
the trade-off has not yet been studied on the experimental
dataset.

4 Validation results

This section presents the results of the validation study. Sec-
tion 4.1 gives examples to demonstrate the retrieval tech-
niques qualitatively, while Sect. 4.2 and 4.3 give the valida-
tion exercises for the inflow and waked cases, respectively.
Due to the larger sample size for the inflow cases, we spend
significantly more time analyzing these cases.

4.1 Retrieval examples
An example of an instantaneous comparison between a lidar
return and sonic anemometer data is shown in Fig. 8. This

example case illustrates several features observed throughout
the full dataset.
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since the raw data precede the MFE process. Note that the maximum value of panels (¢)—(g) is always unity because the authors used the

scaled version of the SpinnerLidar output; see Branlard et al. (2013) for context.

U

First, the turbine is yawed at 347°, as it was for all of the
inflow cases, and the location of the five closest lidar scan in-
dices in Fig. 8a relative to the five sonic anemometers is thus
representative of most of the inflow cases, the only excep-
tion being several 10 min bins that were measured with the
lidar mounted at a nonzero yaw of —15.1°, which caused the
closest lidar scan indices to fall at the plane of symmetry of
the rosette scan pattern. For the handful of waked cases, the
turbine yaw setting was continuously variable, which led to
a wider range of scan indices being used for the validation.

In Fig. 8b, the velocity estimates of the sonic anemome-
ter indicate a roughly logarithmic boundary layer profile at
this instant, and the disagreements between uls‘;iﬁc and ﬁﬁ’dsar
are congruous with our understanding of the lidar measure-
ment principles and processing. The smallest error between
the two instruments occurs at the middle lidar location cor-
responding to § =0.2°, while there is added error away
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from this § setting, because the lidar probe volume samples
through a vertically nonhomogeneous ABL and because of
truncation of the spectra at low velocities by the unusable
bins at the beginning of the spectra.

Insight into the comparison of the three lidar retrieval tech-
niques in Fig. 8b is provided with the help of panels (c)-
(g), which show the spectral returns for each index. In gen-
eral, we find that the advanced filtering and machine learning
techniques have similar estimates of ﬁ%?dsa:’ while the thresh-
olding technique shows significant deviations for indices 532
(Fig. 8c) and 222 (Fig. 8e). As before in Fig. 8b, the thresh-
olding technique gives no estimate whatsoever for index 532
in Fig. 8c since the high magnitude of the first useable ve-
locity bin flags this spectra as a full solid return, which
the thresholding technique therefore rejects as described in
Sect. 3.1. This solid return is due to ground interference,
which is a common scenario for the scan indices with rela-
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tively large negative § like index 532, depending on the scat-
tering behavior of the laser at the exact location of intersec-
tion with the ground. For index 222 in Fig. 8e, the thresh-
olding technique does give an estimate, but the estimate is
strongly biased because of a partial solid return. This return
is due to interference from the meteorological tower or sonic
anemometer itself and is a common occurrence in our valida-
tion dataset because of the proximity of the lidar scan to the
meteorological tower, particularly for the § = 0.2° indices.
Both the advanced filtering and machine learning techniques
successfully ignore the signature of this solid interference
and estimate ﬂ%fgar near to ui‘(’;lc

It is also worth noting the small differences in spectral
shape between the thresholding and advanced filtering tech-
niques above the threshold limit, which are due to the bilat-
eral smoothing process across adjacent scans of the advanced
filtering technique. The machine learning technique implic-
itly performs its own smoothing operation (without regard
to adjacent scans), but no visualization of this smoothing is
possible since the machine learning technique generates no
output spectra.

Next, we show sample processed data from 10 min bins in
Fig. 9 that illustrate several points about the time series of
processed lidar data. Figure 9a represents a bin with low tur-
bulence intensity and one for which ﬁ}i";al from the three lidar
retrieval techniques tracks uls‘(’);ic qualitatively well. Figure 9b
shows a case of higher turbulence intensity, in which all
three retrieval methods again perform similarly well, though
small discrepancies between methods are observable. Fig-
ure 9c shows a bin where solid returns produce a number
of instances in which none of the three retrieval techniques
yield an estimate. Figure 9d is a wake case, and there are a
handful of instances in which the thresholding and machine
learning approaches again do not produce estimates because
of strong solid returns from the meteorological tower. While
the advanced filtering technique produces higher data avail-
ability for this bin, a stronger bias is detected in these results
for the estimates between 03:14 and 03:16 than for the other
two techniques. Note that the first half of the bin is removed
from the comparison because the separation between the li-
dar beam and sonic anemometer in the x = —2.5D plane ex-
ceeds the 2 m tolerance.

Other than the cases with solid returns, the agreement of
all three retrieval methods with the reconstructed data is qual-
itatively good. The following sections provide a more quan-
titative statistical perspective of the performance of each of
the retrieval methods.

4.2 Inflow cases

This section contains the results from our analysis of the 69
bins with inflow cases described in Table 1. First, we offer
insight on the trends in the lidar errors for the cases without
and with solid interference, which have total return counts
of 47927 and 7183, respectively. Next is a description of the
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practical significance of these trends for wind turbine appli-
cations.

4.2.1 Error trends without solid interference

Considered first is the inflow data filtered to exclude any
returns with solid interference present as described in
Sect. 2.4.2. Figure 10 shows scatterplots of all such results
differentiated by height for the three retrieval techniques. The
similarity of the three panels is expected, and all three tech-
niques produce roughly the same mean and random error
when no solid interference is present. Notably, the data avail-
ability for the machine learning technique is 3 % lower than
for the other two techniques (see Sect. 3.3.3 for the explana-
tion), though this gap might be helped with an improved ma-
chine learning architecture and training scheme. While the
overall performance between the three techniques for these
cases of non-interfered returns appears fairly similar, further
analysis is warranted to better understand several nuances of
the nacelle-mounted CW lidar retrieval problem.

The sources of bias observed in Fig. 10 are several, though
only one is likely related to the retrieval technique. This
retrieval-related bias source is the truncation of Rols that fall
at least partially over the unusable velocity bins at the begin-
ning of the spectra. This truncation will artificially increase
ﬁ{i";ar for low velocities, which is indeed the trend observed
comparing ﬂ%?dsar and ulg‘(’fmc at the 10 m height (i.e., where ve-
locities are the lowest on average). While the machine learn-
ing technique offers the possibility to eliminate such a bias
as noted in Appendix A, we do not observe any practically
significant differences in the mean offset or slope of the lin-
ear trend lines between retrieval techniques in the dataset in
Fig. 10. More advanced or exhaustive training may be needed
to reap this benefit from the machine learning approach.

A bias of ﬁﬁ’cfa . remains even at higher velocities in Fig. 10,
which suggests the presence of another, most likely more
dominant source of bias. This source probably stems from
the difference between the spatial distribution of the mea-
surement volumes of the sonic anemometer and the lidar. For
example, the asymptotic character of the ABL mean veloc-
ity profile with increasing height can produce a reduction in
the height-averaged ﬁ{ﬁfar compared to a point at the center
of the probe volume (e.g., a sonic anemometer at the height
of the lidar focus point), which is in fact the trend observed
for the comparisons with the sonic anemometer at 58 m (see
also Fig. 8b).

Another source of bias is that introduced due to local flow
blockage around the sonic anemometers, boom arms, and
meteorological tower, which may not be sensed by the li-
dar beam depending on its relative position (note that direct
waking of the sonic anemometers from the meteorological
tower should not be encountered in this study because of the
boom orientation and constraint on wind direction mentioned
above). Furthermore, there is clearly potential for internal
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Figure 10. Instantaneous lidar line-of-sight spectral median velocity estimates, ﬁﬁ’gm, versus sonic anemometer line-of-sight velocity esti-

los
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niques. The variations shown for the coefficient of determination value, R2, the linear fit slope, m, and the linear fit offset, b, correspond to
the ranges observed across the fits at all five comparison heights.

mates, u for inflow cases without solid interference from the (a) thresholding, (b) advanced filtering, and (¢) machine learning tech-

bias in the sonic anemometers and lidar (Lindelow-Marsden, the latter, especially in high turbulence conditions since the
2009). rms error due to the lidar’s probe volume averaging scales

Related to scatter, two main sources in Fig. 10 are the linearly with turbulence magnitude. An approximately linear
spectral width resulting from turbulence within the lidar scaling is validated in Fig. 11a, which bins the data for four
probe volume and amplitude noise. Based on the findings of of the five comparison heights based on the running standard

Simley et al. (2014), we expect the former to be larger than deviation of velocity from the sonic anemometer along the
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line of sight, Tslgjic, as described in Sect. 2.4.2 (the bottom
comparison height was omitted because of irregular trends
possibly related to proximity of the Rols to the unusable bins
of the lidar). Figure 11a can be interpreted to suggest that
much of the random error is a function of turbulence mag-
nitude. On the other hand, one can extrapolate the trend to
Tslgrfic = 0 to estimate that there is a baseline standard devia-
tion of error of roughly 0.08 to 0.15 m s ™!, which is primarily
due to the interference of amplitude noise in the parameter
estimation problem. Because of the coarse resolution of the
binning and the possibility of the trend line flattening out as
Tlos 5 () due to the discretization of the lidar spectra, we

sonic
conservatively take the value at the first 7/%. bin to be the

estimated contribution of amplitude noise, :)(;/rﬁich is 0.13 and
0.16ms~! for the higher and lower ranges of CNR, respec-
tively, of the thresholding and advanced filtering techniques.
These values are 0.15 and 0.17ms™ 1, respectively, for the
machine learning technique. Note that the uncertainty of the
sonic anemometer velocity, quoted at £0.01 m s~! for Usonic
and vgonic, 18 small relative to the above values.

The effect of the amplitude noise on random error, which
is a function in part of the retrieval technique, can be drawn
out explicitly as in Fig. 11b, where the influence of Tslglfic is
nominally removed by the scaling of the ordinate and where
the standard deviation of errors has been binned on CNR
instead (CNR calculations are performed using the output
spectra from the advanced filtering technique since this pro-
vides a more complete Rol than the thresholded spectra and
since the machine learning technique does not produce out-
put spectra). Figure 11b shows a principle derived from the
Cramer—Rao lower bound (Rye and Hardesty, 1993), which
is that the minimum attainable variance of the spectral esti-
mation process is an inverse function of CNR. The slightly
better parameter estimation performance of the advanced fil-
tering versus the thresholding technique is a result of (1) the
larger effective CNR of the Rol and (2) the bilateral filtering
of the advanced filtering approach. The increase in error for
the lower two CNR levels of the thresholding technique com-
pared to the advanced filtering technique is expected since
the thresholding process removes a larger and larger percent-
age of the signal as CNR — 0. The estimation performance
of the machine learning technique is better than that of the
other two techniques at low CNR and worse than that of
the other two techniques at high CNR, though the variations
in performance between techniques are relatively small for
these cases without solid interference.

The overall performance of each lidar retrieval technique
as a function of height is tabulated in Table 3. Except for the
10 m position, the bias errors are smaller than the random er-
rors and are consistent between the three retrieval techniques,
which is expected based on the results of Fig. 10. The stan-
dard deviations of the errors are between 0.23 and 0.33 ms ™!
for the advanced filtering and machine learning techniques,
while the thresholding technique has 1 %-3 % higher values.
Between the advanced filtering and machine learning tech-
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Figure 11. Convergence of the standard deviation, SD, of error with
the (a) magnitude of time-local turbulent fluctuations, Tsl(())rslic’ and
(b) carrier-to-noise ratio, CNR, for inflow cases without solid in-
terference across the four higher comparison heights. Tslgsi o Is the
running standard deviation of velocity from the sonic anemome-
ter along the line of sight based on the filtering window described
in Sect. 2.4.2. The CNR values are calculated from the advanced
filtering technique’s output spectra as described in Sect. 2.3. Data
plotted derive from all the comparison heights except the bottom

z =10.1 m position.

niques, the former is overall the more effective within the
bounds of the data considered in this study because of higher
data availability and slightly better noise rejection.

4.2.2 Error trends with solid interference

Figure 12 shows the data and linear fit of the comparison of
all inflow cases with the solid interference flag. The lower
coefficient of determination values, RZ, of the thresholding
technique are primarily a consequence of a handful of partial
solid returns that are not filtered out and that manifest as the
outliers near the bottom of Fig. 12a. As described for the data
without solid interference, a bias again exists for all three
retrieval techniques near lower velocities. Note that unlike
in Fig. 10, Fig. 12 is dominated by the data from the low-
est sonic anemometer position, which follows because the
strongest source of solid interference in our configuration is
the ground.

Atmos. Meas. Tech., 15, 7211-7234, 2022
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Table 3. Performance of lidar retrieval techniques versus sonic anemometer for inflow cases without solid interference. The abbreviations
are threshold (th), advanced filter (af), and machine learning (ml). SD refers to standard deviation.

Height (m) Mean [il%5 —ul%. 1 (ms™) | SD [l —ul%. 1(ms™!) | Availability (-)
th af ml ‘ th af ml ‘ th af ml
10 0.47+£0.01 0.48£0.01 0.48+0.01 | 0.34+0.01 0.33+£0.01 033+£0.01 | 100% 100% 97 %
18 0.00£0.01 0.00£0.01 0.00£0.01 | 0.29+£0.01 0.28+£0.01 0.28+£0.01 | 100% 100% 97 %
32 —0.04+0.00 —0.04£0.00 —-0.05+0.01 | 0.25+£0.01 0.24+0.01 0.25+£0.01 | 100% 100% 97 %
45 0.07 £0.00 0.07 £0.00 0.07£0.00 | 0.24+£0.01 0.23+£0.01 0.23+£0.01 | 100% 100% 96 %
58 —0.19+£0.01 —-0.19£0.01 —-0.20£0.01 | 0.334£0.01 0.324+0.01 0.32+0.01 | 100% 100% 98 %
Combined 0.03£0.00 0.03£0.00 0.02+£0.00 | 0.35+£0.00 0.35+0.00 0.35+£0.00 | 100% 100% 97 %
Colors: = z=10m z=18m = z=32m = z=4bm = z2=58m
Markers/lines: + Instantancous measurement Linear Fit === Line:y = x
(a) (b (©)
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Figure 12. Instantaneous lidar line-of-sight spectral median velocity estimates, ﬁ%?gar, versus sonic anemometer line-of-sight velocity esti-

los

mates, u".

for inflow cases with solid interference from the (a) thresholding, (b) advanced filtering, and (¢) machine learning techniques.

The variations shown for the coefficient of determination value, R2, the linear fit slope, m, and the linear fit offset, b, correspond to the ranges

observed across the fits at all five comparison heights.

The tabulated data in Table 4 show several of the same
trends as described for the non-interfered data in Table 3.
Namely, the bias errors are generally much smaller than
the random errors, and the advanced filtering and machine
learning techniques outperform the thresholding technique in
terms of random error. The notable differences from Table 3
are that the standard deviations of the errors for the advanced
filtering and machine learning techniques have a larger range
from 0.08 to 0.38ms~! (compared to 0.23 to 0.33ms™!
before) and that the thresholding technique now has up to
154 % higher values (compared to a maximum of 3 % before)
due mostly to the handful of outliers described for Fig. 12a.
The thresholding technique thus has much poorer perfor-
mance than the other two techniques in terms of random er-
ror, as well as in terms of data availability, which is around
30 % lower than for the other techniques over all compari-
son locations. Between the advanced filtering and machine
learning techniques, machine learning provides an average
improvement of 0.02 and 0.01 ms~! for the mean and stan-
dard deviation of error, respectively, across all comparison
heights, but these small gains are traded for 6 % lower data
availability across all comparison heights.

Atmos. Meas. Tech., 15, 7211-7234, 2022

Figure 13 gives example spectra from the cases with solid
interference to illustrate several features and deficiencies of
the different retrieval techniques. Figure 13a is a common
case, similar to the one shown in Fig. 8c, in which the thresh-
olding technique does not make a prediction because of over-
whelming solid interference, but the advanced filtering and
machine learning techniques successfully produce a value of
ﬂ}ﬁfar approximately equal to uls‘(’;m Figure 13b corresponds
to one of the outliers described above in Fig. 12a, where
the thresholding technique exhibits a strong bias in its esti-
mate because the magnitude of the interference spike is high
enough to exceed the threshold but not high enough to be
flagged as a solid return. Figure 13c is a case of a nonstation-
ary solid return as evidenced by the strong peak just above
1 ms~!. The thresholding technique is again strongly biased,
the advanced filtering technique produces a valid estimate,
and the machine learning technique gives an estimate that
does not meet its confidence threshold, which is not surpris-
ing since the technique was not trained on nonstationary solid
returns. While it is unknown what moving object was present
within the lidar beam path for this particular return, nonsta-
tionary solid returns are common when scanning nearby ro-
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Table 4. Performance of lidar retrieval techniques versus sonic anemometer for inflow cases with solid interference. The abbreviations are
threshold (th), advanced filter (af), and machine learning (ml). SD refers to standard deviation. N/A refers to cases in which no statistics are

available because data availability is zero.

Height (m) Mean [} —ul%. 1 (ms™1) | SD [l%s —ul%. 1(ms™!) | Availability (-)

th af ml | th af ml | th af ml
10 029002 0414001  037£001 | 039£001 0384001 036001 | 56% 98% 96%
18 —0.10£0.01  —0.08£0.01 —0.094£0.01 | 0.28+0.01 0274001 0.28+£001 | 93% 98% 89%
32 —0.16+0.04 —0.02£0.01 —0.04£0.01 | 0.574£0.10 022£0.01 024+001 | 63% 97% 83%
45 N/A  0.10£0.06 N/A N/A~ 0.08+£0.04 NA | 0% 55% 0%
58 N/A  —0.13£0.29 N/A N/A  0.2940.24 NA | 0% 60% 0%
Combined ~ 0.0740.01  021£0.01  0.194£0.01 | 0.46+0.03 040£0.01 039+001 | 65% 98% 92%

tating turbines. Figure 13d is a difficult case in which the ad-
vanced filtering technique does not give an estimate because
the data are obscured by ground returns, and the solid return
mask, applied when moving between Fig. 5a and b, removes
the Rol signal, although the machine learning technique pro-
duces an approximately correct estimate. Evidenced by the
last two panels, there is still development work to improve
the advanced filtering and machine learning techniques for
cases with the combination of low velocity and solid inter-
ference.

4.2.3 Practical significance

The error trends reviewed above for inflow cases have im-
plications for wind turbine applications featuring nacelle-
mounted, forward-facing lidar. Figure 14 shows the aggre-
gate (i.e., both with and without solid interference) error re-
sults as a function of height relative to the wind turbine rotor
of the current dataset. Typically, the most important informa-
tion about the inflow from a wind turbine control perspective
is the flow within the swept area of the rotor, which will be
examined below.

The mean errors within the rotor height are small at less
than 0.08 ms~! and consistent between the three retrieval
techniques as shown in Fig. 14a. The standard deviation of
the errors within the rotor height as shown in Fig. 14b, how-
ever, are between 0.23 and 0.29 ms~! for the advanced fil-
tering and machine learning techniques, and the threshold-
ing technique has 0.002-0.05ms™! (1 %—22 %) higher val-
ues depending on scan position because of its poor han-
dling of solid returns. In terms of aggregated data availabil-
ity, the advanced filtering technique has 99.7 % availability,
followed by the machine learning technique at 96.2 % and
the thresholding technique at 95.5 %. Between the two better-
performing techniques, the advanced filtering is overall more
effective than machine learning within the bounds of the data
considered in this study because of higher data availability
and slightly better noise rejection.

In practice, the value of the line-of-sight uncertainties
quoted above will be increased by reprojection onto the wind
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direction. Assuming the lidar center axis is aligned with the
wind direction and allowing § = +11.7° (which corresponds
to the vertical limits of the rotor height in this study for
the given focus distance), the 1/cos(8) correction will be no
more than an increase of 2 %, which does not change any
of the values quoted in the previous paragraph by more than
0.01 ms~!. Instead considering a £30° limit on the devia-
tion of the line of sight from the wind direction (which cor-
responds to the outer cone angle of the DTU SpinnerLidar
in this study), the correction will be an increase of <15 %.
A further increase in uncertainty is introduced by the as-
sumptions typically required about the local wind direction
when inferring a velocity from a single line of sight, and
these directional biases scale on (1) the rms magnitude of
the transverse (i.e., y—z plane) wind components at the scan
perimeter of interest and (2) the tangent of the deviation of
the line-of-sight angle from the mean wind direction (Simley
etal., 2014).

4.3 Waked cases

This section contains the results from our analysis of the five
bins with waked cases described in Table 2. Below, we forego
the bulk of the analysis of error trends performed in the pre-
vious section, primarily because the smaller sample size of
waked cases does not permit a strong study. Rather, we show
results that, despite the relatively large error bars on the data,
hint at the practical significance of the lidar errors and varia-
tions between retrieval techniques for rear-mounted lidars on
wind turbines.

Tables 5—6 and Fig. 15 are analogous to Tables 3—4 and
Fig. 14, respectively, but for the waked rather than the in-
flow cases. Again, the ranking of efficacy of the three re-
trieval techniques (from highest to lowest) is advanced fil-
tering, machine learning, and thresholding, and again the
standard deviations of errors are substantially larger than the
mean errors. For the advanced filtering and machine learn-
ing techniques, the ranges of the standard deviation of er-
rors for cases within the rotor height and without solid in-
terference are 0.29 to 0.45ms™!, and these increase to 0.34

Atmos. Meas. Tech., 15, 7211-7234, 2022
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Figure 14. Aggregate results from inflow cases for (a) mean error, (b), standard deviation (SD) of error, and (c) data availability plotted versus
height off the ground. The dimensions of a V27 turbine as used in the experiment are shown for reference. The line colors are thresholding

(red), advanced filtering (blue), and machine learning (green).

to 0.49ms~! for cases with solid interference. The increase
in the upper bound of the standard deviations compared to
the inflow cases is expected since the wake presents a rela-
tively turbulent environment, which works against the preci-
sion of the lidar in comparison to a point measurement from
a sonic anemometer as demonstrated by Fig. 11a. As shown
in Fig. 15, both the thresholding and machine learning tech-
niques have significantly lower data availability in the waked
cases than in the previous inflow cases (note the difference in
the horizontal axis limits between Figs. 14 and 15), which is
related to a higher proportion of solid returns from the mete-
orological tower in the waked dataset due to the less control

Atmos. Meas. Tech., 15, 7211-7234, 2022

that was asserted on the yaw position of the turbine for the
waked cases.

The previously mentioned increase in uncertainty intro-
duced by the assumptions required about the local wind di-
rection have been specifically quantified for the waked case
in Kelley et al. (2018), who simulated the SpinnerLidar with
a 3D focus length in a turbulent wake at SWiFT using large
eddy simulation. They found an additional mean error after
projection on the order of 3 % due to deviations of the wake
velocity direction from the nominal flow direction. Consid-
ering this increase in mean error, as well as the maximum
2 % increase in all errors due to reprojection onto the wind
direction from § = +11.7°, the maximum mean and standard
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Figure 15. Aggregate results from waked cases for (a) mean error, (b), standard deviation (SD) of error, and (c) data availability plotted versus
height off the ground. The dimensions of a V27 turbine as used in the experiment are shown for reference. The line colors are thresholding
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deviation of error for the aggregated waked cases within the
rotor height can be estimated at 0.13 and 0.45 ms™!, respec-
tively, for the advanced filtering technique and at 0.17 and
0.47 ms™!, respectively, for the machine learning technique.

As noted, the sample size of five bins is too small for a
complete analysis. Furthermore, the spatial inhomogeneity
of a waked flow adds further uncertainty to the results since
a full analysis should ideally be blocked to account for dif-
ferences in retrieval performance at different points of inter-
est within the wake such as the shear layer and hub flow re-
gions, for instance, and at different turbine thrust conditions.
A more exhaustive dataset is needed and will be sought in
future work.

5 Discussion

All three lidar retrieval techniques can produce similar per-
formance when no solid interference is present (assum-
ing the machine learning model is not exposed to out-of-
distribution samples). However, the advanced filtering and
machine learning approaches generally give better perfor-
mance than the thresholding technique when solid interfer-
ence is present.

While the thresholding technique’s merit for use within
the rotor height in this study may be unfairly penalized by
the setup of our validation study that features lidar scans di-
rectly over the solid obstruction of the meteorological tower,
we note that inflow lidar scans in the field may, in fact, be
required near existing meteorological towers in order to pro-
duce higher spatial resolution of the incoming flow. Other
cases that are not considered in the current datasets for which
the ability to effectively reject non-aerosol returns is im-
portant are for interference from the optical window (i.e.,
the boresight interference that affects SpinnerLidar measure-
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ments), nearby turbines, and precipitation. Nearby turbines
can present a particularly complicated case because of non-
stationary rotor blades, which shift the solid interference
peak away from the typically assumed location at zero veloc-
ity. The much poorer performance of the thresholding tech-
nique observed above for all kinds of cases with solid inter-
ference represents a main motivation for using higher-fidelity
techniques.

Comparing the advanced filtering and machine learning
approaches, a slight performance advantage was demon-
strated by the former for the data considered in our study.
However, the potential for improvement of the machine
learning technique may be higher. The advanced filtering
technique, which required significant investment during de-
velopment by subject matter experts, still requires continu-
ing development for out-of-distribution cases as shown by
the outliers and data loss in Fig. 12, for instance. On the
other hand, continuing development can be accommodated
with relatively low (computational) expense for the machine
learning technique by increasing the size of the networks
and/or the diversity of training cases, and this process re-
quires less expert involvement. The machine learning ap-
proach therefore removes the ongoing expert commitment
to the lidar retrieval problem, instead shifting the workload
to a computer. Further, the machine learning technique does
not truncate returns that fall at the beginning of the spectra
but implicitly accounts for these (as well as potentially neg-
ative) velocities in the Qol estimation process. The machine
learning approach thus provides the framework for both more
efficient workflow development and higher accuracy than is
possible by a series of advanced user-generated filters.

Another advantage of the ensemble machine learning ap-
proach is the inherent ability to estimate uncertainty associ-
ated with each estimate. While this feature is employed rather

Atmos. Meas. Tech., 15, 7211-7234, 2022



7230

K. A. Brown and T. G. Herges: Nacelle-mounted lidar including supervised machine learning

Table 5. Performance of lidar retrieval techniques versus sonic anemometer for waked cases without solid interference. The abbreviations
are threshold (th), advanced filter (af), and machine learning (ml). SD refers to standard deviation.

Height (m) Mean [il% — ul%. 1 (ms™!) | SD [il% — ul%S. 1 (ms™!) | Availability (-)

th af ml th af ml ‘ th af ml
10 N/A N/A N/A N/A N/A NA| NA NA NA
18 —0.03£0.05 —0.014£0.05 —0.01£0.05 | 0.30£0.04 030+0.04 029+£0.04 | 99% 100% 100%
32 0.08+0.04  0.12£0.04  0.15£0.05 | 034£0.06 0.36£0.05 040£0.07 | 100% 100%  93%
45 —0.03£0.05 —0.024£0.04  0.03£005 | 046£0.06 0424£0.05 045£0.04 | 100% 100%  96%
58 0.0740.03  0.07£0.03  0.074£0.02 | 024£0.03 0.24£0.03 023£0.03 | 100% 100% 100%
Combined ~ 0.03£0.02  0.04£0.02  0.06£0.02 | 0.37£0.03 035+£0.02 0374003 | 100% 100% 97%

Table 6. Performance of lidar retrieval techniques versus sonic anemometer for waked cases with solid interference. The abbreviations are

threshold (th), advanced filter (af), and machine learning (ml). SD refers to standard deviation.

los

Height (m) Mean [il% — ul%. 1(ms™!) | SD [l — ul%. 1(ms™h | Availability (-)

th af ml | th af m | th af ml
10 —0.08+0.27 —026+0.03 —0.184+0.02 | 0264022 0.36+0.04 0274003 | 0% 100% 79%
18 —0.024£0.06  0.04+0.03  0.052£0.04 | 0.364+0.06 0.34+£0.03 036+0.04 | 36% 100% 86%
32 0274029  0.13£0.06  0.19+£0.08 | 0.92+£0.92 038+0.06 0414+0.10 | 21% 100% 55%
45 0.11£0.10  0.18+£0.10  0.2140.11 | 0.344+0.14 048+0.08 0.49+0.09 | 40% 100% 74%
58 —0.144£0.08 —0.14+0.06 —0.132£0.07 | 0274+0.07 0.32+£0.06 033+0.07 | 43% 100% 90%
Combined 0.02+£0.06 —0.10£0.02 —0.06+£0.02 | 0.48+£0.24 0.40+0.03 036+0.02 | 17% 100% 78%

simplistically in this study by providing just a confidence
threshold, the ensemble approach could enable more rigor-
ous uncertainty quantification by leveraging other spectral
estimators such as the higher-order moments and spectral
entropy of the distribution of estimates from the individ-
ual members of the ensemble. Other machine learning ap-
proaches with uncertainty quantification capability such as
the mean variance, Monte Carlo dropout, and Bayesian ones
could also be tested. It is cautioned that the machine learning
technique should not generally be trusted to correctly pre-
dict confidence in cases that are out of bounds of its training
data, though so-called out-of-distribution detection (Yang
et al., 2021) could offer an avenue for improvement. It is
also noted that more targeted improvements to the machine
learning technique might be possible if the technique was
designed to produce intermediate filtered spectra rather than
only estimating the final Qol.

A final consideration is computational efficiency. The ma-
chine learning technique requires ~ 1 s to evaluate a full 984-
point rosette pattern (i.e., typically 2 s of scan time) on a per-
sonal computer compared to ~ 50 s for the advanced filtering
technique, which makes the former more feasible in its cur-
rent state for real-time control applications.

6 Conclusions and future work

Three lidar retrieval techniques suited for wind turbine
nacelle-mounted lidar were compared and validated using
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field data including both inflow and waked cases. The valida-
tion study was performed against point measurements from
sonic anemometers mounted to a meteorological tower. Us-
ing such a setup, some level of mean and random error is
unavoidable due to flow inhomogeneity coupled with the dif-
ference in sample volumes of the two techniques. However,
the retrieval techniques worked to mitigate uncertainty due
to two other sources, amplitude noise and solid interference,
while keeping data availability high, and most of the ben-
efit of the higher-fidelity techniques stemmed from the re-
duction of error from solid interference. Most of the anal-
ysis was performed on inflow cases due to the larger sam-
ple size and thus higher statistical confidence in the results.
In terms of mean errors for these inflow cases, the three li-
dar retrieval techniques performed similarly and showed less
than 0.08 m s~! deviation from the sonic anemometer data. In
terms of the standard deviation of errors, the advanced filter-
ing and machine learning techniques, which showed aggre-
gate errors within the rotor height between 0.2 and 0.3 ms™!,
performed 1 %—-22 % better than the conventional threshold-
ing technique, which could not always filter out solid object
returns coming from the meteorological tower and/or ground
surface. In terms of aggregated data availability, the advanced
filtering technique had 99.7 % availability, followed by the
machine learning technique at 96.2 % and the thresholding
technique at 95.5 %. When no solid interference was present,
all techniques performed similarly, showing the expected
convergence of error with turbulence magnitude and CNR.

https://doi.org/10.5194/amt-15-7211-2022
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For the waked cases, aggregate standard deviations of errors
were larger and on the order of 0.3 to 0.5ms~! within the
rotor height for the advanced filtering and machine learning
techniques, though this may be attributable in part to a rela-
tively large number of solid returns in the data analyzed due
to the experimental setup. The error values above increase by
at most 15 % due to projection correction based on a maxi-
mum of 30° deviation of the line of sight from the wind direc-
tion (which corresponds to the outer cone angle of the DTU
SpinnerLidar in this study), and small additional errors are
introduced especially for the waked cases due to uncertainty
in the wind direction.

The machine learning technique showed promise as an ap-
proach capable of providing not only less expensive devel-
opment for difficult QA/QC scenarios but also faster evalu-
ation. Future work may include expansion of the paramet-
ric training database to include a wider range of realistic
spectral return shapes or development of the workflow to
train the model directly on experimental returns sampled near
the sonic anemometers, as well as refinement of the machine
learning technique to improve confidence levels for each ve-
locity estimate.

New work may also be aimed at validating estimates of
spectral standard deviation of each lidar return, since the in-
herent spectral width of a volume-averaged lidar measure-
ment may allow for derivation of small-scale turbulence in-
formation. Towards these ends, exploratory work not pre-
sented here has shown the advanced filtering and machine
learning techniques to be most capable of accurately locat-
ing the tails of the lidar spectrum.

Appendix A: Generation of synthetic spectra

The source of truth during the machine learning training
process is synthetic spectra with known statistics. This Ap-
pendix describes the creation of idealized power spectral
densities (PSDs) for this purpose. For clarity, we drop the
notation of “los” here in the superscript of u that has been
used to denote line-of-sight velocities above.

The synthetic PSD of the Rol, srey, is generated as a
function of u from a scaled epsilon-skew-normal distribution
(Mudholkar and Hutson, 2000) as in Eq. (A1):

2
_%< u=mip o1 >
SRol = mORoIe "2Rol (lq:m3RoI) s (Al)

where moy,, is a magnitude parameter in counts of 16-bit dy-
namic range, ni,, is a location parameter in ms~!, mag,,
is a width parameter in ms™!, m3,,, is a nondimensional
skew parameter whose absolute value is less than 1, and the
F takes the sign opposite of the numerator of the exponent.
Note that when numerically calculating the true values of
the spectral median from sgo[, our discretization extends be-
low 0.75ms~! in order to preclude any truncation of sgep
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by the first several bins that are removed from the spectra as
described in Sect. 2.3. Note that only single-peaked spectra
(i.e., no double-peaked spectra often found at the shear layer
of a wind turbine wake) are included in the synthetic dataset
since Eq. (A1) generates only single peaks.

The synthetic PSD of the solid interference, ssolig, is gen-
erated as an inverse function of u according to Eq. (A2):

Dsolid
1+ (1 — Usolid) / Wsolid

(A2)

Ssolid =

where psolig is the prominence of the solid interference spike,
Ugolid 18 the velocity at pgolig (Which in our case is the min-
imum u of 0.75ms™! that can be sensed by the lidar), and
Weolid 18 the full-width half-maximum of the interference
spectrum.

Modeling of the PSD must also include amplitude noise
that adheres to the probability density function of the mea-
sured noise content. The statistics of the noise within each
PSD bin are known to follow a scaled chi-squared distribu-
tion (Rye and Hardesty, 1993; Garber, 1993). By the central
limit theorem, the chi-squared distribution asymptotes to a
Gaussian distribution for sufficiently large sample sizes such
as for the hundreds of individual spectra that are averaged
in typical lidar measurements. In such cases, randomized
instances of the time-averaged noise spectrum, Spoise, can
be generated given a standard deviation, opeise, and mean,
Unoises Within each spectral bin. These noise parameters are
taken to be uniform here over the spectrum (i.e., we assume
white noise).

The combined synthetic PSD, s, is constructed in Eq. (A3):

§ = SRol + Ssolid + Snoise- (A3)

Collectively, there are eight unknown parameters implicit
to Eq. (A3) including four from Eq. (A1), two from Eq. (A2),
and two from the noise contribution. In practice, we retain
only seven of these parameters; the only independent noise
parameter is opojse because fipoise 18 determined by the scal-
ing approach described next.

To mimic the scaled version of the SpinnerLidar data out-
put (see Branlard et al., 2013), a vertical translation is applied
to each s curve so that the maximum value of the curve is the
full magnitude of the 16-bit SpinnerLidar output. Depending
on the maximum prominence of s, this translation effectively
Sets [noise-

For each of the seven parameters, a full-factorial sweep
across a range of values that have been observed in measure-
ments provided a database of lidar spectra to train and test
the machine learning model. In order to ensure that this para-
metric space is representative of the true population of ob-
served lidar spectral shapes (notwithstanding the limitations
due to using only single-peaked spectra), the range of varia-
tion of the parameters was drawn from 3.2e8 individual lidar
returns taken over more than 180 h of wake sampling, which
included both daytime and nighttime conditions, as well as
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Table A1. Ranges of parameters used for the generation of the synthetic spectral dataset.

MOgor Migpor mM2por M3por Psolid Wsolid Onoise
Minimum  1.2x 103 20x100 75x1072 —2.5x 100 0 12x107!1 51x107!
Maximum 4.0 x 10t* 1.3 x 10" 1.0x 100 25x100  6.0x10M  6.0x109 32x10%3

the winter, spring, and summer seasons. These results, which
included lidar returns at focus lengths of 1.0 1.5, 2.0, 2.5,
3.0, 4.0, and 5.0D, represent the full dataset from the exper-
iments at the SWiFT site during the 2016-2017 wake steer-
ing campaign as described in the A2e Data Archive and Por-
tal (2019). Note that this dataset is substantially larger than
the selection of bins described in Sect. 2.4.1.

Table A1l shows the approximate ranges of parameters ex-
tracted from the full dataset. In several cases, the range listed
in the table (and used for model development) is reduced
slightly from the extracted values to lessen the complexity
of the training dataset given the limited number of training
cases to be generated. Most notably, m 1, ; has a minimum of
2ms~! since the interaction between the Rol and the solid
interference signature is increasingly difficult for the ma-
chine learning model as these two regions converge.

Within the ranges given in Table Al, the full-factorial
synthetic data are generated from four uniform or logarith-
mically spaced intervals across the range depending on the
parameter (as noted in the main text, our synthetic dataset
matches the ranges of the observed parameters but not yet
the distributions). This results in 78 125 training cases, and
the training process was found to be more robust if parame-
ter values for each case were randomized within their inter-
val. An additional 16741 validation cases and 16741 test-
ing cases were generated using a uniform random distribu-
tion over the parametric space, and these cases were used to
determine when to terminate model refinement and to test
the final ensemble predictions, respectively, as described in
Sect. 3.3.2. Before initiating the training process, the train-
ing, validation, and testing data are filtered based on a re-
quirement that mqg; > 40noise, Wwhich reduces the number of
synthetic cases to 58 407, 13428, and 13 383, respectively (a
field implementation of the current machine learning tech-
nique could feature a pre-processing thresholding operation
to flag and/or reject cases of the lowest CNR that fall outside
this bound of the training data).

Data availability. The data can be made available upon request.
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