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Abstract. Source apportionment studies have struggled to
quantitatively link secondary organic aerosols (SOAs) to
their precursor sources due largely to instrument limitations.
For example, aerosol mass spectrometer (AMS) provides
quantitative measurements of the total SOA fraction but lacks
the chemical resolution to resolve most SOA sources. In con-
trast, instruments based on soft ionisation techniques, such as
extractive electrospray ionisation mass spectrometry (EESI,
e.g. the EESI time-of-flight mass spectrometer, EESI-TOF),
have demonstrated the resolution to identify specific SOA
sources but provide only a semi-quantitative apportionment
due to uncertainties in the dependence of instrument sensi-
tivity on molecular identity. We address this challenge by
presenting a method for positive matrix factorisation (PMF)
analysis on a single dataset which includes measurements
from both AMS and EESI-TOF instruments, denoted “com-
bined PMF” (cPMF). Because each factor profile includes
both AMS and EESI-TOF components, the cPMF analysis
maintains the source resolution capability of the EESI-TOF
while also providing quantitative factor mass concentrations.
Therefore, the bulk EESI-TOF sensitivity to each factor can
also be directly determined from the analysis. We present
metrics for ensuring that both instruments are well repre-
sented in the solution, a method for optionally constraining
the profiles of factors that are detectable by one or both in-
struments, and a protocol for uncertainty analysis.

As a proof of concept, the cPMF analysis was applied to
summer and winter measurements in Zurich, Switzerland.

Factors related to biogenic and wood-burning-derived SOAs
are quantified, as well as POA sources such as wood burning,
cigarette smoke, cooking, and traffic. The retrieved EESI-
TOF factor-dependent sensitivities are consistent with both
laboratory measurements of SOA from model precursors and
bulk sensitivity parameterisations based on ion chemical for-
mulae. The cPMF analysis shows that, with the standalone
EESI-TOF PMF, in which factor-dependent sensitivities are
not accounted for, some factors are significantly under- or
overestimated. For example, when factor-dependent sensitiv-
ities are not considered in the winter dataset, the SOA frac-
tion is underestimated by ∼ 25 % due to the high EESI-TOF
sensitivity to components of primary biomass burning such
as levoglucosan. In the summer dataset, where both SOA and
total OA are dominated by monoterpene oxidation products,
the uncorrected EESI-TOF underestimates the fraction of
daytime SOA relative to nighttime SOA (in which organoni-
trates and less oxygenated CxHyOz molecules are enhanced).
Although applied here to an AMS and EESI-TOF pairing,
cPMF is suitable for the general case of a multi-instrument
dataset, thereby providing a framework for exploiting semi-
quantitative, high-resolution instrumentation for quantitative
source apportionment.
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1 Introduction

Atmospheric aerosols negatively affect visibility (Watson,
2002), human health (Pope et al., 2002; Laden et al., 2006;
Beelen et al., 2014), and urban air quality (Fenger, 1999;
Mayer, 1999) on local and regional scales. Aerosols also
provide the largest uncertainties for global radiation balance
and climate change (Lohmann and Feichter, 2005; Forster et
al., 2007; Penner et al., 2011; Myhre et al., 2013). Therefore,
to develop appropriate mitigation policies, it is of vital impor-
tance to understand aerosol chemical composition, sources,
and evolution. Organic aerosols (OAs) are a major compo-
nent of atmospheric aerosols and account for 20 % to 90 %
of the submicron aerosol mass (Jimenez et al., 2009). OAs
are typically classified as either primary organic aerosols
(POAs), which are directly emitted to the atmosphere, or sec-
ondary organic aerosols (SOAs), which are produced by at-
mospheric reactions of emitted volatile organic compounds
(VOCs). Both POAs and SOAs can exert serious health ef-
fects, including protein and DNA damage caused by reactive
oxygen species (ROS), which can be either contained in the
particles or induced by oxidation reactions following inhala-
tion (Halliwell and Cross, 1994; Li et al., 2003; Reuter et
al., 2010; Kelly and Fussell, 2012; Fuller et al., 2014). Recent
studies indicate that the oxidation potential of SOAs is source
dependent. Therefore, different sources likely carry differ-
ent health risks, highlighting the importance of OA source
identification and quantification (Zhou et al., 2018; Daellen-
bach et al., 2020). Previous studies have been relatively suc-
cessful in quantitatively linking POAs to their sources. How-
ever, quantification of SOA sources and/or formation path-
ways is more challenging due to (1) the chemical complexity
of SOA, which can consist of thousands of unique oxidation
products, including highly oxygenated molecules and high
molecular weight organic oligomers, and (2) the limitations
of traditional instrumentation for characterising OA chemi-
cal composition, especially the SOA fraction. Therefore, the
effects of individual SOA sources on health and climate re-
main poorly constrained.

Positive matrix factorisation (PMF) is a widely used
source apportionment technique. PMF is a bilinear receptor
model which represents the measured mass spectral time se-
ries as a linear combination of factor mass spectra and their
corresponding time-dependent concentrations (Paatero and
Tapper, 1994). These factors may then be related to emission
sources and/or to atmospheric processes, depending on their
chemical and temporal characteristics. PMF has been imple-
mented in extensive online and offline studies worldwide to
quantify OA sources. The Aerodyne aerosol mass spectrom-
eter (AMS) is widely used in OA source apportionment stud-
ies, because it provides online, quantitative measurements
of non-refractory PM1 or PM2.5 (particulate matter with an
aerodynamic diameter smaller than 1 or 2.5 µm, respectively)
chemical composition with high time resolution. Source ap-
portionment studies using PMF based on AMS data have suc-

cessfully separated and quantified POA sources based on dif-
ferent chemical signatures, e.g. hydrocarbon-like OA (HOA)
(Ng et al., 2011b; Zhang et al., 2014; Elser et al., 2016; Sun
et al., 2016a; Xu et al., 2019; Zhao et al., 2019), cooking-
related OA (COA) (Mohr et al., 2012; Crippa et al., 2013b;
Hu et al., 2016; Sun et al., 2016a, b; Xu et al., 2019;
Zhao et al., 2019), biomass-burning OA (BBOA) (Alfarra
et al., 2007; Lanz et al., 2007; Sun et al., 2011), and coal
combustion OA (CCOA) (Zhang et al., 2008, 2014; Elser
et al., 2016; Hu et al., 2016; Sun et al., 2016a). However,
SOAs are typically reported as either a single SOA factor
(denoted oxygenated organic aerosol, OOA) or as two fac-
tors distinguished by degree of oxygenation (i.e. less oxy-
genated OOA, LO-OOA, and more oxygenated OOA, MO-
OOA) or by volatility (i.e. semi-volatile OOA, SV-OOA, and
low-volatility OOA, LV-OOA) (Jimenez et al., 2009; Zhang
et al., 2011; Crippa et al., 2013b; Sun et al., 2013; Elser
et al., 2016; Sun et al., 2016a; Xu et al., 2019) rather than
in terms of sources and/or formation processes. This limi-
tation is due to the vaporisation and ionisation scheme in
the AMS, which causes significant thermal decomposition
and ionisation-induced fragmentation (DeCarlo et al., 2006).
The corresponding decrease in chemical resolution, partic-
ularly for multifunctional and/or highly oxygenated SOA
components (e.g. multifunctional acids, peroxides, organon-
itrates, organosulfates, oligomers), limits the resolution of
SOA source apportionment.

The development of continuous or semi-continuous instru-
ments with softer vaporisation and ionisation schemes has
provided new insights into SOA composition and is thus of
considerable interest for source apportionment. Recent ex-
amples include the (semi-continuous) Filter Inlet for Gases
and AEROsols chemical ionisation time-of-flight mass spec-
trometer (FIGAERO-CIMS) (Lopez-Hilfiker et al., 2014)
and the (continuous) extractive electrospray ionisation time-
of-flight mass spectrometer (EESI-TOF) (Lopez-Hilfiker et
al., 2019), which implement soft ionisation schemes at lower
temperatures than the AMS, thereby reducing thermal de-
composition and increasing chemical resolution (i.e. provid-
ing chemical formulae of molecular ions). A recent source
apportionment study using a FIGAERO-CIMS at a rural site
in the southeastern USA successfully resolved three SOA
factors, characterised by isoprene-derived species such as
carboxylic acids from aqueous phase processes, highlighting
the chemistry of biogenic species (Chen et al., 2020). An-
other source apportionment study from Lee et al. (2020) us-
ing FIGAERO-CIMS spectra successfully distinguished am-
bient SOA formation and ageing pathways into two forested
regions. Source apportionment studies in Zurich using an
EESI-TOF identified SOA factors from monoterpene ox-
idation in summer (Stefenelli et al., 2019) and oxidation
of biomass-burning emissions in winter (Qi et al., 2019).
EESI-TOF measurements identified SOA factors related to
solid fuel combustion and aqueous-phase processes in Bei-
jing (Tong et al., 2021) and SOA factors with aromatic and
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biogenic origins in Delhi (Kumar et al., 2022). However, to
date, the factor concentrations returned by PMF analyses us-
ing these instruments are not quantitative.

Quantification of the measurements by instruments such
as EESI-TOF and CIMS is challenging, because the instru-
ment sensitivity varies strongly with molecular identity. For
CIMS, the sensitivity to different compounds is determined
by the frequency of collisions between reagent ions and an-
alytes, the ion–molecule reaction time, and the transmis-
sion efficiency of product ions to the detector, which de-
pends on ion–molecule binding energy. Lopez-Hilfiker et
al. (2016) developed methods to estimate the binding en-
ergy of iodide (I−) adduct ions of multifunctional organic
compounds for species whose formation is collision limited,
providing a lower limit to their mass concentrations. An-
other method to explore the sensitivity is to measure single-
compound aerosols or SOAs generated from different precur-
sors by an EESI-TOF and a scanning mobility particle sizer
(SMPS) simultaneously to determine the mass concentration
(Lopez-Hilfiker et al., 2016). Lopez-Hilfiker et al. (2019)
explored EESI-TOF sensitivities to selected reference com-
pounds with different functional groups (including saccha-
rides, polyols, and carboxylic acids) and bulk SOAs gen-
erated from oxidation of a single precursor VOC. For pure
compounds, relative sensitivities vary by 2 orders of magni-
tude, with some composition-dependent trends evident (e.g.
increasing sensitivity of saccharides with decreasing molec-
ular weight and high sensitivities for polyols relative to other
functionalities). In addition, a trend of decreasing sensitiv-
ity with decreasing molecular weight of the precursors was
found for bulk SOAs. While calibration with standard com-
pounds is straightforward, the quantification of individual
species within SOAs is extremely challenging due to their
complex composition, the lack of chemical standards for
most molecules, and the potential for structural isomers to
have significantly different sensitivities. These issues were
investigated recently for the EESI-TOF by generating SOAs
in the presence of a variable seed surface area and comparing
the difference in SOA ion concentrations measured by the
EESI-TOF and the corresponding gas-phase concentrations
measured by a Vocus proton transfer reaction mass spectrom-
eter (Vocus-PTR-MS) (Wang et al., 2021). The observed sen-
sitivities for different SOA components produced from the
oxidation of limonene, o-cresol, or 1,3,5-trimethylbenzene
ranged from 103 to 105 ion s−1 ppb−1. A regression model
was developed that was able to predict the ion-by-ion sen-
sitivities to within a factor of 5 of the experimental value
when the precursor VOC is known a priori. However, the
study also showed significantly different sensitivities (up to
a factor of 20) for structural isomers derived from different
VOC precursors. Similar isomer sensitivity differences for
the I−-CIMS were also reported by Bi et al. (2021). The fact
that these isomers cannot be distinguished by 1-D mass spec-
trometry represents a fundamental limitation of calibration-
and parameterisation-based quantification and complicates

interpretation of the binding energy-based approach (Lopez-
Hilfiker et al., 2016), because ambient SOAs may derive
from unknown or complex mixtures of VOCs. Therefore,
for source apportionment purposes, source-based sensitivi-
ties are preferred and essential to quantify SOA sources and
formation processes.

Here, we present a new approach for quantification of
SOA sources retrieved from source apportionment. This is
achieved by PMF analysis of a single input matrix consist-
ing of data from both a quantitative instrument with a lower
chemical resolution (i.e. AMS) and an instrument with a high
chemical resolution and a linear but molecule-dependent re-
sponse (i.e. EESI-TOF). This method is based on the com-
bined PMF (cPMF) analysis previously performed on com-
bined OA and VOC data from AMS and PTR-MS, respec-
tively (Slowik et al., 2010; Crippa et al., 2013a) but utilises
a more robust metric for ensuring adequate representation
of both instruments in the model solution, optionally allows
constraints to be placed on the factor profile contributions for
one or both instruments, and provides a method for uncer-
tainty analysis. The cPMF method is applied to AMS/EESI-
TOF datasets collected during summer and winter campaigns
in Zurich, Switzerland, for which single-instrument PMF
analyses were previously reported (Qi et al., 2019; Stefenelli
et al., 2019). The present study is the first application of
cPMF to a joint EESI-TOF–AMS dataset and the first quan-
titative EESI-TOF-driven source apportionment.

2 Methodologies

2.1 The measurement site and field campaigns

Field campaigns were conducted at the Swiss National Air
Pollution Monitoring Network (NABEL) station, an urban
background site located in the Alte Kaserne, central Zurich
(47◦22′ N, 8◦33′ E, 410 m above sea level), previously de-
scribed in detail (Lanz et al., 2007; Canonaco et al., 2013).
The measurements used in the current analysis are from
20 to 26 June 2016 and 25 January to 4 February 2017.
These periods are excerpted from longer campaigns and cor-
respond to the times during which both the AMS and EESI-
TOF achieved stable operation. The measurement site is lo-
cated in a courtyard, although influences from nearby restau-
rants, local minor roads, and human activities (e.g. cigarette
smoking) are often observed (Lanz et al., 2007; Daellenbach
et al., 2017; Qi et al., 2019; Stefenelli et al., 2019; Qi et
al., 2020). Gas-phase species – e.g. nitrogen dioxide (NO2),
nitrogen oxide (NO), and sulfur dioxide (SO2) – and meteo-
rological data – e.g. temperature (T ), relative humidity (RH),
radiation, wind speed (WS), and wind direction (WD) – are
recorded by the monitoring station.

During the intensive campaigns, a separate trailer was de-
ployed to house an additional suite of gas and particle in-
strumentation. A PM2.5 cyclone was installed∼ 75 cm above
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the trailer roof (∼ 5 m above ground) to remove coarse par-
ticles. After passing through the cyclone, the sampled air
passed through a stainless-steel (∼ 6 mm outer diameter,
O.D.) tube to the particle instrumentation, which included
a high-resolution time-of-flight aerosol mass spectrometer
(HR-TOF-AMS, Aerodyne Research Inc.) and an extrac-
tive electrospray ionisation time-of-flight mass spectrometer
(EESI-TOF) to measure the OA composition, and a scanning
mobility particle sizer (SMPS) to measure the particle con-
centration and size distribution. The summer and winter cam-
paign results, including OA source apportionment from the
standalone AMS and EESI-TOF datasets, were previously
presented in detail (Qi et al., 2019; Stefenelli et al., 2019). In
this study, we focus on the OA source apportionment using
positive matrix factorisation (PMF) on the combined dataset
from AMS and EESI-TOF, collected during the two cam-
paigns.

2.2 Instrumentation

2.2.1 High-resolution time-of-flight aerosol mass
spectrometer (HR-TOF-AMS)

The AMS (Aerodyne Research, Inc.) provides fast, online,
quantitative measurements of the size-resolved composition
of non-refractory PM1 (NR-PM1). A detailed description of
the instrument can be found elsewhere (DeCarlo et al., 2006;
Canagaratna et al., 2007), while operational details and data
treatment are documented in Stefenelli et al. (2019) and in
Qi et al. (2019). Briefly, in both campaigns, the organic
composition of NR-PM1 was measured by AMS with a
time resolution of 1 min. At the beginning and end of the
both campaigns, the instrument was calibrated for ionisa-
tion efficiency (IE) using 400 nm NH4NO3 particles, using
the mass-based method (Jimenez et al., 2003; Canagaratna
et al., 2007). The HR-TOF-AMS data were analysed using
the SQUIRREL (v.1.57) and PIKA (v.1.16) software pack-
ages in IGOR Pro 6.37 (Wavemetrics, Inc., Portland, OR,
USA). Before further single-instrument and cPMF analysis,
a composition-dependent collection efficiency (CDCE) was
implemented to correct the measured aerosol mass (Mid-
dlebrook et al., 2012). For both single-instrument PMF and
cPMF analysis, the input matrices consisted of the time series
of fitted OA ions from high-resolution mass spectral analy-
sis, together with their corresponding uncertainties estimated
from ion counting statistics and detector variability accord-
ing to Allan et al. (2003). Following Ulbrich et al. (2009), a
minimum error value was applied to the error matrix. Ions
with a signal-to-noise ratio (SNR) smaller than 0.2 were ex-
cluded in the further analysis, whereas ions with an SNR be-
tween 0.2 and 2 were downweighted by a factor of 2 (Paatero
and Hopke, 2003). The contribution of nitrate ions to CO+2
was estimated separately in each campaign from their respec-
tive NH4NO3 calibrations (Pieber et al., 2016).

The AMS PMF input matrices are identical to those used
by Stefenelli et al. (2019) and Qi et al. (2019), with the ex-
ception that they include not only the OA ions retrieved from
spectral analysis but also NO+ and NO+2 . These ions are
added, because they represent the major products measured
from organonitrate fragmentation (Farmer et al., 2010), and
standalone EESI-TOF PMF suggested a significant role for
organonitrates and other nitrogen-containing species during
both the summer and winter campaigns (Qi et al., 2019; Ste-
fenelli et al., 2019). Detailed descriptions of the final input
matrices from AMS (e.g. number of measurements, number
of ions, and time resolution) in summer and in winter are
presented in Table 1.

2.2.2 Extractive electrospray ionisation time-of-flight
mass spectrometer (EESI-TOF)

The EESI-TOF provides online, fast, near-molecular-level
measurement (i.e. chemical formulae of molecular ions)
of OA composition, without thermal decomposition or
ionisation-induced fragmentation. A detailed description can
be found elsewhere (Lopez-Hilfiker et al., 2019), and the
operational details for the summer and winter campaigns
are documented in Stefenelli et al. (2019) and in Qi et
al. (2019), respectively. Briefly, aerosol particles were con-
tinuously sampled through a 6 mm O.D., 5 cm long multi-
channel extruded carbon denuder. Particles then intersected
a spray of charged droplets generated by a conventional elec-
trospray probe, and the soluble fraction was extracted into
the droplets. The droplets passed through a heated stainless-
steel capillary (∼ 250 ◦C), wherein the electrospray solvent
evaporated, and ions were ejected into the mass spectrome-
ter. Due to the short residence time (∼ 1 ms) in the capillary,
no thermal decomposition was observed. The analyte ions
were detected by a high-resolution time-of-flight mass spec-
trometer with an atmospheric pressure interface (API-TOF)
(Junninen et al., 2010). In the summer campaign, the electro-
spray consisted of a 1 : 1 water /methanol (MeOH, UHPLC-
MS grade, LiChrosolv) mixture doped with 100 ppm NaI
(> 99 %, Sigma-Aldrich). In the winter campaign, a 1 : 1 wa-
ter / acetonitrile mixture (> 99.9 %, Sigma-Aldrich) mixture
with 100 ppm NaI (99 %, Sigma-Aldrich) was utilised, which
reduced background signal. In both campaigns, the mass
spectrometer was configured to detect positive ions. Because
of NaI use, analyte ions were detected almost exclusively as
[M]Na+, and other ionisation pathways were suppressed (the
only notable exception being nicotine, which was detected
as [C10H14N2]H+). This yields a linear response to mass,
avoids matrix effects, and simplifies spectral interpretation
(Lopez-Hilfiker et al., 2019). Adducts of an analyte with ace-
tonitrile or methanol molecule(s) may also be detected by
the instrument, depending on the voltage settings in the ion
transfer optics (i.e. collision energy), but these adducts were
observed to have negligible signals with our voltage configu-
rations in both campaigns. The EESI-TOF alternates between
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Table 1. Summary of parameters for the PMF analysis of re-analysed summer and winter datasets and the combined dataset. There are
257 ions that are found in PMF input matrices for both the summer and winter datasets (common ions are listed in the Table S1 in the
Supplement). All datasets include AMS measurements of NO+ and NO+2 .

EESI-TOF AMS Combined

Matrix dimensions
1779× 507 1779× 287 1779× 794

(time points ×m/z)

Summer Time period 20 to 26 June 2016 20 to 26 June 2016 20 to 26 June 2016

Time resolution (min) 5 5 5

Range of p analysed 6 6 5–10

Matrix dimensions
6142× 892 6142× 258 6142× 1150

(time points ×m/z)

Winter Time period 25 January to 4 February 2017 25 January to 4 February 2017 25 January to 4 February 2017

Time resolution (min) 1 1 1

Range of p analysed 12 8 7–14

direct sampling (8 min) and sampling through a particle filter
(3 min) to provide a measurement of instrument background
(including spray). No major changes between adjacent back-
ground measurements were observed in either campaign (Qi
et al., 2019; Stefenelli et al., 2019).

Data analysis, including high-resolution peak fitting, was
performed using Tofware version 2.5.7 (Tofwerk AG, Thun,
Switzerland). Detailed data treatment processes can be found
in Stefenelli et al. (2019) and Qi et al. (2019). The EESI-
TOF alternates between periods of direct ambient sampling
(Mamb) and filter sampling (Mbkgd), with the filter periods
interpolated to yield an estimated background spectrum dur-
ing ambient measurements (Mbkgd,est). The spectra corre-
sponding to aerosol composition (Mdiff) are determined by
the difference of Mamb and Mbkgd,est, as shown in Eq. (1a).
The corresponding error matrix was estimated by adding
in quadrature the uncertainties of the total sampling mea-
surement samb(i,j) and the filter sampling measurement
sbkdg,est(i,j) as shown in Eq. (1b), which are in turn cal-
culated from ion counting statistics and detector variability
(Allan et al., 2003):

Mdiff(i,j)=Mamb(i,j)−Mbkgd,est(i,j), (1a)

sdiff(i,j)=

√
s2

amb(i,j)+ s
2
bkgd,est(i,j), (1b)

where the unit of all quantities in both equations is counts per
second (cps). Ions with a mean SNR smaller than 2 were re-
moved from both matrices, because the signals of these ions
were predominantly caused by electrospray and/or instru-
mental background. Input matrix dimensions are summarised
in Table 1.

In theory, EESI-TOF signal for an ion x can be converted
from ion flux (cps) to mass concentration (µgm−3), accord-

ing to Eq. (2):

Massx = Ix ·
MWx

EEx +CEx + IEx +TEm/z
·

1
F
, (2)

where Massx and Ix are the mass concentration (in µgm−3)
and the ion flux (cps) reaching the detector for an ion x,
respectively. MWx represents the molecular weight of the
measured ion (e.g. [M]Na+) (Lopez-Hilfiker et al., 2019;
Qi et al., 2019; Stefenelli et al., 2019). EEx , CEx , IEx , and
TEm/z denote EESI extraction efficiency (the probability that
a molecule dissolves in the spray), EESI collection efficiency
(the probability that the analyte-laden droplet enters the inlet
capillary), ionisation efficiency (the probability that an ion
forms and subsequently survives declustering forces induced
by evaporation and electric fields), and ion transmission ef-
ficiency (the probability that a generated ion is transmitted
to the detector, which is independent from chemical identity
but depends only on m/z), respectively. F indicates the flow
rate. In practice, several of these parameters are ion depen-
dent and remain uncharacterised, and therefore, conversion
to mass concentration on an ion-by-ion basis cannot currently
be achieved (Lopez-Hilfiker et al., 2019). Instead, to facili-
tate comparison with bulk quantities, we define an “appar-
ent sensitivity (AS)” to describe the EESI-TOF response to a
measured concentration of species x, as shown in Eq. (2):

ASx =
EEx ·CEx · IEx ·TEm/z

MWx

=
Ix

Massx ·F
, (3)

where Ix is the measured ion flux (counts per second, cps) for
the ion or factor x detected by EESI-TOF; Massx is measured
mass concentration (µgm−3) from a reference instrument for
the same ion or factor x – thus, the AS is in the unit of cps
(µgm−3)−1. Equation (3) is used to determine the apparent
factor-specific sensitivities from cPMF outputs by defining
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the AMS contribution to the factor profile (µgm−3) as Massx
and the EESI-TOF contribution (cps) as Ix .

2.2.3 Estimation of EESI-TOF sensitivities from a
multi-variate model

For comparison to the factor-dependent sensitivities deter-
mined by the cPMF analysis (Eq. 3), we also estimated sensi-
tivities for SOA factors from molecular formulae of individ-
ual analyte ions using parameterisations developed from lab-
oratory measurements of SOAs, generated from oxidation of
limonene (LMN) by ozone and of o-cresol (cresol) and 1,3,5-
trimethylbenzene (TMB) by OH radicals (Wang et al., 2021).
As discussed in Sect. 1, the parameterisation can predict the
relative sensitivities of ions measured by the EESI-TOF to
within a factor of 5, provided that the SOAs are derived from
a single, known VOC. However, for ambient data, SOAs de-
rive from multiple precursor VOCs, increasing uncertainties.
For example, SOA isomers generated from different precur-
sors can differ by up to a factor of 20 in relative sensitivity
(Wang et al., 2021). This represents a significant source of
uncertainty for calibration- and parameterisation-based ap-
proaches for quantifying SOA factors from source apportion-
ment but is nonetheless a useful point of comparison.

In the present study, we utilise a well-performing model
from Wang et al. (2021) – namely, the gradient boosting re-
gression, denoted GBR, developed in scikit-learn packages
in Spyder 4.1.4 and Python 3.8.3. The SOA parameterisa-
tion derived from LMN was used to predict the sensitivities
for summer SOAs (which are predominantly terpene-derived
SOAs), and SOA systems derived from cresol and TMB were
used to predict the sensitivities for winter SOAs (which are
characterised by aromatics from biomass-burning activities).
The regression models provide compound-dependent rela-
tive sensitivities (ASx) based only on molecular formulae.
Then, the EESI-TOF signals for each factor are calculated as
a signal-weighted average from the respective factor profiles,
as shown in Eq. (4):

ASfactor =

∑
xIx∑

x

(
Ix
/

ASx
) . (4)

Here, Ix denotes the contribution to the factor profile of each
ion x. Because the model parameterisations are based on lab-
oratory SOA that contained only the CHO group, while the
resolved OA sources in this study include both CHO and
CHON, we approximate the total factor sensitivity by as-
suming the average EESI-TOF sensitivity to CHON ions is
equal to the average sensitivity of CHO ions (on a factor-by-
factor basis). Note that the ions from the CHO group con-
tribute a major fraction in SOA mass for each factor, com-
prising 85.2 %, 78.1 %, 57.3 %, and 76.3 % for DaySOA1,
DaySOA2, NightSOA1, and NightSOA2 for summer and
77.9 % and 75.0 % to SOA1 and SOA2 for winter, reducing
the uncertainties introduced by this assumption. The factor-

Figure 1. Schematic of the combined EESI-TOF and AMS input
data matrix (X) for cPMF. Matrix dimensions for the summer and
winter datasets are provided in Table 1.

specific sensitivities derived from cPMF (Eq. 3) and from the
GBR model (Eq. 4) are compared in Sect. 3.2.

2.3 Combined positive matrix factorisation (cPMF)
method

The source apportionment model used in this study is based
on positive matrix factorisation (PMF), which is widely used
in the environmental studies. PMF is a bilinear receptor fac-
tor analysis model that decomposes time series of measured
variables (here related to particle composition) into factor
contributions and factor profiles. Different from conventional
PMF analysis, which is typically conducted on a dataset col-
lected by a single instrument, here, PMF is applied to a sin-
gle input dataset containing both AMS and EESI-TOF mass
spectral data. A conceptual schematic of the input data matrix
is shown in Fig. 1. Herein we denote the overall method gov-
erning analysis of such a merged dataset as “combined PMF”
(cPMF), while “PMF” denotes both the general PMF model
and single-run executions by the Multilinear Engine solver
(see Sect. 2.3.1), which are identical for PMF and cPMF.

This section presents an overview of the cPMF method,
with detailed descriptions of each step in the referenced sub-
sections. In Sect. S2 in the Supplement, we present details of
its application to the test datasets, including dataset-specific
decisions (e.g. which factors to constrain, criteria for accept-
ing or rejecting solutions) required during certain steps. The
overall procedure is outlined in Fig. 2, with the main steps as
follows:

1. PMF analyses are conducted on the standalone EESI-
TOF and AMS datasets with synchronised time reso-
lution, including constraints on factor profiles as nec-
essary. Residual distributions from the optimised solu-
tions are used later in step (3) as a criterion for assessing
relative instrument weight.

2. The EESI-TOF and AMS datasets with synchronised
time resolution are combined into a single input matrix.
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This input matrix contains OA spectra from EESI-TOF
and AMS as well as the NO+ and NO+2 ions measured
by the AMS due to the contributions of organonitrates
to these ions (Sect. 2.3.2).

3. For any factors that are to be constrained, joint
AMS/EESI-TOF profiles are constructed (Sects. 2.3.3
and S2.2).

4. An exploratory PMF analysis is conducted on the joint
AMS/EESI-TOF matrix. This consists of a 2-D ex-
ploration of the solution space defined by the num-
ber of factors (p) and relative instrument weight (C)
(Sect. 2.3.4). The instrument weight ensures that both
instruments are well represented in the solution and is
assessed by comparing residuals from cPMF and stan-
dalone PMF. For computational efficiency, the profiles
of all constrained factors are not allowed to deviate from
their reference profiles. Solutions in which both instru-
ments receive approximately equal weight are evaluated
for environmental interpretability, with the most inter-
pretable solution utilised as the base case for further
analysis. Note that the base case is fully defined by C,
p, and the set of constrained factor profiles.

5. From the selected base case, 1000 PMF runs are con-
ducted, which combine bootstrap analysis with random
selection of a values (i.e. tightness of constraint) for the
constrained factors within predetermined limits that are
defined on a factor-by-factor basis (Sect. 2.3.5). This re-
quires the following as prerequisites:

a. definition of dataset-specific criteria for acceptance
or rejection of individual runs (Sect. S2.4)

b. determination of the a-value range on a factor-by-
factor basis, giving a reasonable acceptance prob-
ability, i.e. sufficient rejection rate to ensure ade-
quate exploration while maintaining computational
efficiency (Sect. S2.4).

The final cPMF result is taken as the mean of all ac-
cepted solutions from the bootstrap and a-value analy-
sis, with uncertainties represented by the standard de-
viation. From this mean solution, quantitative time se-
ries and EESI-TOF factor-specific sensitivities are cal-
culated.

2.3.1 Positive matrix factorisation (PMF) principles

In this step, PMF analyses are conducted on the standalone
EESI-TOF and AMS datasets with synchronised time reso-
lution, including constraints on factor profiles as necessary.
Residuals from these solutions are used to derive a reference
quantity to retrieve a balanced solution (procedure described
in step 3). This step is a parallel step and a preparation for
the cPMF; therefore, we denote this step as step (0).

Figure 2. Flow chart summary of cPMF analysis workflow. Red
text denotes PMF model operations, while black text denotes inputs,
outputs, and/or analysis decisions.

Positive matrix factorisation (PMF) is implemented us-
ing the multilinear engine (ME-2) (Paatero, 1999), with
model configuration and post-analysis performed with the
source finder (SoFi, version 6B) (Canonaco et al., 2013), pro-
grammed in Igor Pro 6.39 (Wavemetrics, Inc.). PMF is a bi-
linear receptor model, which operates on an input data ma-
trix X (here the mass spectral time series collected by EESI-
TOF and/or AMS) and uncertainty matrix S, which corre-
sponds point by point to X. PMF describes X as a linear
combination of static factor profiles (in this case character-
istic mass spectra, representing specific sources and/or atmo-
spheric processes) and their corresponding time-dependent
source contributions, as described in Eq. (5):

X=G×F+E. (5)

Here, X has dimensions of m× n, representing m measure-
ments of n variables (here ions); G and F are, respectively,
the factor time series with the dimension of m×p and factor
profiles with the dimension of p× n, where p is the number
of factors in the PMF solution and is determined by the user.
E is the residual matrix and is defined by Eq. (5). The corre-
sponding uncertainty matrix S and residual matrix E are con-
structed in the same way (Slowik et al., 2010). Note that the
AMS component of X, S, and E is in µgm−3, and the EESI-
TOF component is in cps. Also, X includes not only organic
ions from the AMS but also NO+ and NO+2 , which contain a
large fraction of the AMS signal derived from organonitrates
(Farmer et al., 2010).

Equation (5) is solved by a least-squares algorithm that
iteratively minimises the quantity Q, which is defined in
Eq. (6) as the sum of the squares of the uncertainty-weighted
residuals:

Q=
∑
i

∑
j

(
eij

sij

)2

. (6)

Here, eij is an element in the residual matrix E, and sij is
the corresponding element in the uncertainty matrix, where
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i and j are the indices representing time and ion (or m/z),
respectively.

However, different combinations of the G and F matrices
may result in solutions with the same or similarQ (rotational
ambiguity), which in practice leads to mixed or unresolvable
factors. Here, we explore a subset of the possible PMF and
cPMF solutions in which one or more factor profiles are con-
strained using the a-value approach to direct solutions to-
wards environmentally meaningful rotations. These factors
are constrained using reference profiles, with the scalar a
(0≤ a ≤ 1) determining the tightness of constraint as fol-
lows:(
fk,j

)
sol =

(
fk,j

)
ref± a×

(
fk,j

)
ref. (7)

Here,
(
fk,j

)
ref represents the reference profile and

(
fk,j

)
sol

the final profile returned by the model. Due to the renormali-
sation of matrices after PMF runs, the final values in

(
fk,j

)
sol

may slightly exceed the prescribed range. This approach has
been shown to significantly improve the model performance
relative to unconstrained PMF (Canonaco et al., 2013; Crippa
et al., 2014; Daellenbach et al., 2016; Qi et al., 2019; Ste-
fenelli et al., 2019).

Due to the nature of the cPMF X matrix, each retrieved
factor has a single time series, which can be expressed in
the concentration units of either instrument, and the factor
profile contains both an AMS and an EESI-TOF component.
The factor time series for a single factor k is calculated as
follows:(
gi,k

)
inst = gi,k ·

∑
j=inst

fk,j . (8)

Here,
(
gi,k

)
inst refers generally to the time series in the

measurement units of a given instrument, which we denote(
gi,k

)
AMS or

(
gi,k

)
EESI, and the j = inst formalism denotes

the set of ions measured by the respective instrument. For
ease of interpretation, we report the instrument contribution
to each factor profile as the mass spectrum (in the respective
instrument units) that would be obtained for a factor mass
concentration of 1 µgm−3. This is expressed as follows for a
single factor k:

(
fk,j

)
inst =

(
fk,j

(
gi,k

)
AMS

g0

)
j=inst

. (9)

Here,
(
gi,k

)
AMS denotes the mean of the factor time series in

AMS units (µgm−3); g0 is a reference mass concentration
(chosen here as 1 µgm−3); the j = inst formulation again
refers to all ions measured by a given instrument. We re-
fer to the organic fraction of AMS profile components and
EESI-TOF profile components as

(
fk,j

)
AMS and

(
fk,j

)
EESI,

respectively. The EESI-TOF apparent sensitivity (ASx , de-
fined in Eq. 3) can then be calculated for a single factor k as

follows:

ASk =

((
gi,k

)
EESI(

gi,k
)

AMS

)
j=inst

. (10)

Evaluation of factor interpretability for PMF analysis of the
data from a single instrument typically includes the follow-
ing: (1) correlation of the time series with external data;
(2) comparison of factor diurnal cycles with known source
activity and previous measurements; (3) identification of
source-specific spectral features. In addition to these three
points, factors from cPMF were also interpreted by consid-
ering the consistency of spectral features between the AMS
and EESI-TOF; e.g. factors originating from fresh biomass-
burning activities are characterised by elevated signal from
C2H4O+2 in the AMS spectrum and levoglucosan in the
EESI-TOF spectrum.

2.3.2 Dataset combination and synchronisation

In this step, the time resolution of the EESI-TOF and AMS
are synchronised, and the datasets with overlapping temporal
coverage are combined into a single input matrix, as shown
in Fig. 1. This input matrix contains OA spectra from EESI-
TOF and AMS, as well as the NO+ and NO+2 ions mea-
sured by the AMS due to the contributions of organonitrates
to these ions. The corresponding error matrix is also con-
structed in the same way.

2.3.3 Constraints on factor profiles

If one or more factors are constrained in the step in
Sect. 2.3.1, these factors should also be constrained in this
step, in which the principle of the a-value approach in Eq. (7)
applies here too. In the cPMF, it may be desirable to con-
strain a factor for which a single reference profile incorporat-
ing both AMS and EESI-TOF mass spectra is not available.
For example, a factor may be detectable by only one instru-
ment, or reference profiles may have been retrieved indepen-
dently for each instrument (e.g. from different studies). In
such cases, the cPMF reference profile,

(
fk,j

)
j=all,ref is con-

structed from merged individual profiles as follows:

(
fk,j

)
j=all,ref

1µgm−3 =


(fk,j )j∑
j (fk,j )j

, j ∈ AMS, ref

ASk ·

(
fk,j

)
j∑

j

(
fk,j

)
j

, j ∈ EESI, ref
. (11)

Here
(
fk,j

)
j

denotes standalone reference profiles for
the AMS and EESI-TOF, respectively. Note that although
Eq. (11) requires an initial value of ASk to be assumed prior
to PMF execution and utilised during the exploratory phase
of cPMF (Sect. 2.3, step 3), selection of a non-zero a value
during bootstrap analysis (Sect. 2.3, step 4) allows the final
ASk to be determined by the algorithm within the designated
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boundaries. Therefore, only a reasonable a priori estimate is
required. In the case that a factor is undetectable by the EESI-
TOF (e.g. non-oxygenated hydrocarbons comprising traffic-
related factors), a value of ASk is assumed that fixes the
EESI-TOF contribution near zero, as discussed in Sect. S1.
In the present study, we utilised ASk = 0.01 cps (µgm−3)−1

when this situation arose (e.g. HOA and InorgNit reference
profiles are constructed using this method). For contrast, ASk
for factors detectable by both instruments ranged from ap-
proximately 100 to 1000 cps (µgm−3)−1.

2.3.4 Exploratory phase of cPMF

In this step, an exploratory PMF analysis is conducted on the
joint AMS/EESI-TOF matrix. This consists of a 2-D explo-
ration of the solution space defined by the number of factors
(p) and relative instrument weight (C). For both factor inter-
pretation and quantitative analysis, it is important that both
instruments be well-represented in any accepted PMF solu-
tion. In principle, the extent to which PMF can explain a vari-
able xi,j is limited by the measurement uncertainty si,j ; that
is, the expectation value of the scaled residual (ei,j/si,j ) is 1
(i.e. Q/Qexpect ∼ 1). In practice, ei,j/si,j may be systemati-
cally above or below 1 and may differ between instruments
for several reasons. First, the accuracy of the error calculation
may be systematically different between instruments, lead-
ing to systematic differences in the effect of residuals from
a given instrument on Q. Second, the extent of internal cor-
relations in the dataset may differ between instruments. For
example, fragmentation and thermal decomposition in the
AMS can lead to sequences of correlated ions (e.g. CnH+2n+1
for alkanes). In contrast, for the EESI-TOF measurement
of individual molecular ions, ion-to-ion correlations depend
solely on particle composition. Finally, even for a case where
ion-by-ion signal to noise and the extent of internal correla-
tions is equal between instruments, the relative number of
variables (ions) included in the dataset may affect the weight
due to small drifts in instrument performance, modelling er-
rors in PMF, and the prevalence of transient and/or variable
sources not fully captured by PMF. Therefore, it is important
to assess the relative weight of the two instruments and to
rebalance if necessary. We define a balanced solution as one
in which there are no systematic differences between quality
of fit for different instruments (Slowik et al., 2010; Crippa
et al., 2013a). However, note that variable-to-variable differ-
ences in the ei,j/si,j within the dataset of a single instrument
are permitted (as in standalone PMF).

The instrument weighting process follows the method pre-
viously proposed by Slowik et al. (2010), in which weight-
ing is performed by applying a weighting factor C to the
uncertainties and evaluated by comparison of the AMS vs.
EESI-TOF residuals. Here, we utilise the same weighting
method but propose an improved evaluation metric. Instru-
ment weighting is performed by applying a weighting factor
C to the components of the uncertainty matrix S correspond-

ing to one of the two instruments. This increases or decreases
the contribution of that instrument’s residuals to Q, thereby
changing its weight within the PMF solver. In this paper, we
applied the weighting factor, denoted CEESI, to the columns
of S corresponding to ions measured by the EESI-TOF, ac-
cording to Eq. (12):
(
s′i,j

)
j=EESI =

(si,j )j=EESI
CEESI(

s′i,j
)
j=AMS =

(
si,j
)
j=AMS

. (12)

Note that CEESI = 1 is equivalent to an unweighted solution,
and CEESI > 1 means the uncertainty matrix of EESI-TOF
decreases, which upweights the EESI-TOF.

As noted above, a balanced solution is defined as one in
which the quality of fit to a given ion (assessed via scaled
residuals, eij/sij ) is independent of the instrument perform-
ing the measurement. In previous work (Slowik et al., 2010;
Crippa et al., 2013a), the metric used to assess this was the
mean of the absolute scaled residuals. This metric assumes
that the optimised solution for each individual instrument
yields approximately the sameQ/Qexp. In practice, this may
vary between instruments for the reasons described above.
Further, this metric can be unduly influenced by a few large
outliers. Therefore, we employ a new approach which refer-
ences the residuals from the combined dataset to those ob-
tained from the final solutions from single-instrument PMF,
which, having been selected as the optimal representation of
environmental data, are assumed to likewise provide the op-
timised distributions of single-instrument residuals. The new
method is as follows:

1. From the result of each single-instrument PMF (here
AMS PMF, EESI-TOF PMF), calculate the scaled resid-
ual (eij/sij ) probability distribution over the entire
(single-instrument) dataset. Here, we denote the scaled
residual probability distribution function in the scaled
residual (eij/sij ) space for EESI-TOF and AMS as
PEESI(eij/sij ) and PAMS(eij /sij ), respectively.

2. Calculate the overlap fraction Foverlap between the AMS
and EESI-TOF scaled residual probability distribu-
tions from the single-instrument solutions, according to
Eq. (13):

Foverlap =

∫
min

(
PEESI

(
eij

sij

)
,PAMS

(
eij

sij

))
, (13)

where PEESI(eij/sij ) and PAMS(eij/sij ) indicate the
probability of occurrence of AMS and EESI-TOF at
the point eij/sij in scaled residual space, respectively.
Given the previously mentioned assumption that the
single-instrument solutions represent the optimal rep-
resentation of the data for the individual instruments,
the Foverlap calculated at this step is the value that
should likewise be obtained from a balanced solution
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to the combined dataset. Therefore, we define the quan-
tity F ∗overlap as the Foverlap of the final single-instrument
PMF solutions.

3. For the combined dataset, calculate Foverlap as a func-
tion of a two-dimensional exploration of the space de-
fined by weighing factor (CEESI) and the number of
factors (p). This exploration is necessary, because the
scaled residuals have been empirically observed to de-
pend not only on C but also on p (Slowik et al., 2010;
Crippa et al., 2013a), likely because p affects the de-
grees of freedom in the solution. We select for further
analysis the set of solutions in which Foverlap does not
greatly differ from F ∗overlap, as given by Eq. (14):∣∣∣Foverlap(C,p)−F

∗

overlap

∣∣∣< β, (14)

where the threshold of absolute difference is defined as
β. Here, β is a subjective parameter chosen to allow a
manageable number of solutions to be selected for de-
tailed inspection. For computational efficiency, if one
or more factors are constrained, we choose a = 0 for all
constrained factors at this preliminary exploration stage
and will explore the a-value range(s) for constraint(s)
for further bootstrapping analysis once the C and p are
determined.

The balanced solutions satisfying Eq. (14) are then eval-
uated using the same metrics as in standard PMF analysis
to select the solution with the greatest explanatory power.
This solution is used as the base case for bootstrap analy-
sis and, if one or more factors are constrained, simultaneous
randomised a-value trials.

2.3.5 Bootstrap and constraint sensitivity analysis on
the combined dataset

Bootstrap analysis (Davison and Hinkley, 1997) is frequently
used to characterise solution stability and reproducibility and
to estimate uncertainties. In typical bootstrap analysis, a set
of new input and error matrices are created by random re-
sampling of rows from the original input data and error ma-
trices. The resulting resampled matrices preserve the orig-
inal dimensions of the input data matrix but randomly du-
plicate some time points while excluding others (Paatero et
al., 2014). In the present analysis, we combined bootstrap
analysis with randomised selection of a values for all con-
strained factors within predetermined limits defined on a
factor-by-factor basis. Since the constrained factors use refer-
ence profiles constructed with an estimated ASk (see Eq. 11),
this combined bootstrap and constraint analysis allows recal-
culation of ASk within PMF for any factor with a non-zero a
value. As a result, the final reported solution is the average of
all accepted bootstrap runs, with uncertainties in factor pro-
files and time series taken as the standard deviation. To min-
imise the effect of estimated ASk on constrained factors, we

suggest that, in the future, this method could be improved by
initialisation of constrained factor profiles with randomised
ASk within a predefined range in conjunction with the exist-
ing a-value and bootstrap routine.

Within this analysis, the range of a values explored for
a given factor may have a significant effect on the accep-
tance probability. A very low acceptance probability is un-
desirable, because it is computationally inefficient, while a
very high acceptance probability is also undesirable, because
it implies the solution space is inadequately explored due
to excessively restrictive a values (Canonaco et al., 2021).
Therefore, we conduct pre-tests to estimate the a-value range
leading to a reasonable acceptance probability. This is done
by a set of two-dimensional a-value (“multi-2D”) scans in
which the a values of two constrained factors are varied
stepwise from 0 to 1 with a step size of 0.1 (i.e. 121 runs),
while the a values of other constrained factors are held at 0.
The results of all multi-2D runs for a given factor are com-
bined to determine the acceptance probability as a function
of a value, and upper and lower a-value boundaries are as-
sessed. The acceptance criteria are dataset-specific and dis-
cussed in Sect. S2.4. When the number of constrained fac-
tors (pref)= 2, the multi-2D algorithm is equivalent to an ex-
plicit exploration of all possible a-value combinations. How-
ever, for pref > 2, multi-2D is much more computationally
efficient, because it increases as pref(pref− 1)/2, whereas
the explicit method increases as the factorial of pref. For the
datasets used here, in which pref is 3 (summer) and 4 (win-
ter), the multi-2D approach decreases the number of runs re-
quired for a-value pre-scans by factors of ∼ 4 and ∼ 20, re-
spectively.

Acceptance criteria consist of both the assessment of spe-
cific features of selected factor profiles and time series (see
Sect S2.4) as well as a general evaluation of whether the so-
lution is qualitatively similar to the base case. That is, we
require that the time series of each factor from a PMF run be
unambiguously related to the corresponding base-case fac-
tor (Stefenelli et al., 2019; Vlachou et al., 2019; Tong et
al., 2021). The key steps of this method are summarised be-
low: (1) identify a base case, which, as discussed above, is
defined by a weighting factor C, number of factors p, and
set of constrained factors with the a value set to 0; (2) cal-
culate the Spearman correlation between the time series of
base case and the multi-2D scans, which yields a correlation
matrix with the highest correlation values on the diagonal;
(3) each correlation coefficient on the matrix diagonal must
be by a more statistically significant margin (using different
confidence levels from a t test) than any value on the inter-
secting row or column. In the current study, we selected a
confidence level of 0 for this base-case and bootstrap corre-
lation test, representing the most permissive application of
this criterion. That is, we require only that the diagonal ma-
trix mentioned above can be constructed, i.e. that there is a
unique 1 : 1 correspondence between base-case factors and
factors from the bootstrap and a-value analysis.
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The final set of PMF runs consisted of 1000 bootstrap runs,
conducted at a single combination of CEESI and p, with a
values randomly selected with a step size of 0.05 for summer
and 0.1 for winter within the factor-specific limits determined
via the multi-2D pre-scans. The same acceptance criteria
utilised for the multi-2D pre-scans were also used for the
bootstrap runs. As a final solution, we report the mean factor
profiles and time series determined from all accepted boot-
strap runs, with the standard deviation taken to represent the
uncertainty of the analysis procedure. Although not currently
implemented within the analysis software used, we note that,
in theory, it would be possible to additionally include random
CEESI selection (within a predefined range corresponding to
balanced solutions) and randomised ASk for constrained pro-
files (within a user-defined range) in this stage of the analysis
and in calculation of the final model outputs.

3 Results

We have conducted cPMF analysis on datasets collected from
the summer and winter campaigns. The parameters for the
PMF analysis of the combined dataset and the re-analysed
summer and winter datasets are summarised in Table 1. We
re-ran the conventional PMF on the summer and the winter
data, obtaining results similar to Stefenelli et al. (2019) and
Qi et al. (2019), as discussed in Sect. S2. Other technical
details of method validation and solution selections are also
explained in the Supplement (from Sect. S2.2 to S2.4), in-
cluding reference profile construction, the determination of
CEESI and number of factors p, and the determination of a
case-specific a-value range and acceptance criteria for boot-
strap analysis. Table 2 summarises these case-specific facts
for summer and winter datasets, including the a-value range
for constrained factors, criteria for the a-value range and ac-
cepted bootstrap run selection, and the number of accepted
runs from the final combined bootstrap.

Here, we present final results from the cPMF analysis of
the summer and winter campaigns in Sect. 3.1.1 and 3.1.2, re-
spectively. The final solutions are reported as the average of
all accepted bootstrap and a-value randomisation runs (764
for summer, 308 for winter), with uncertainties correspond-
ing to the standard deviation. As the NO+ and NO+2 signals
are included in these two datasets and can result from either
organic or inorganic nitrate, we estimate the organic and in-
organic contributions to the NO+ and NO+2 signal in each
factor using the method of Kiendler-Scharr et al. (2016) (see
Sect. S3). We compare the cPMF factors to their counterparts
from the standalone AMS and EESI-TOF solutions for cases
where a clear factor-to-factor correspondence exists. The fur-
ther exploration on EESI-TOF sensitivities to resolved fac-
tors are discussed in Sect 3.2.

Due to the complexity of the analysed datasets (2 sea-
sons ×3 PMF methods), we use the following convention
for identifying factors: factorNameseason,method, where “fac-

torName” is the name of the factor (e.g. COA for cooking-
related organic aerosol), “season” denotes either the sum-
mer (“S”) or winter (“W”) dataset, and “method” refers to
PMF on a standalone AMS dataset (“A”), standalone EESI-
TOF dataset (“E”), or combined dataset (“C”). For example,
COAS,C stands for the cooking-related factor retrieved from
cPMF applied to the summer dataset.

3.1 cPMF results

3.1.1 cPMF analysis: Zurich summer

Eight factors were resolved from the Zurich summer cam-
paign: HOAS,C, COAS,C, CSOAS,C, InorgNitS,C, two day-
time SOA factors (DaySOA1S,C and DaySOA2S,C), and two
nighttime SOA factors (NightSOA1S,C and NightSOA2S,C).
The mean time series, diurnal cycles, and the mass spec-
tra of these factors over 764 accepted runs are shown in
Fig. 3, together with the time series from AMS-only PMF
and/or EESI-TOF-only PMF when the corresponding stan-
dalone factor(s) exist. An estimate of campaign-average per-
cent uncertainty in the mass concentration of each factor, cal-
culated as the median of the standard deviation across all ac-
cepted runs, is given in Table S2. Many factor characteristics
from cPMF resemble those previously discussed in detail for
single-instrument AMS PMF and/or EESI-TOF PMF (Ste-
fenelli et al., 2019). Therefore, only a summary discussion
of these characteristics is presented here, and we focus on
new information and/or differences obtained by the cPMF
analysis. Recall that factor profiles for HOAS,C, COAS,C, and
InorgNitS,C are constrained as discussed above.

HOAS,C . The AMS mass spectrum is dominated by the
CnH+2n+1, and CnH+2n−1 series, consistent with n-alkanes and
branched alkanes (Zhang et al., 2005; Lanz et al., 2007; Ul-
brich et al., 2009; Ng et al., 2011a; Qi et al., 2019; Stefenelli
et al., 2019). The diurnal cycle of HOAS,C has three clear
peaks (see Fig. 3b); however, compared to HOAS,A from Ste-
fenelli et al. (2019), their intensities are weaker. Specifically,
the morning peak intensity ratio to the evening peak intensity
is almost 1 in the HOAS,A factor, whereas in HOAS,C, the
morning peak is ∼ one-third of the evening peak. In terms
of contribution to total OAs, the HOAS,A factor contributes
5.8 % (0.177 µgm−3) of the total OAs, whereas in the cPMF
analysis, this factor only contributes 3.1 % (0.092 µgm−3) of
the total OAs.

COAS,C . This factor is characterised by long-chain fatty
acids and alcohols, e.g. coronaric acid and/or its isomers at
m/z 319.2 ([C18H32O3]Na+), oleic acid and/or its isomers at
m/z 305.2 ([C18H34O2]Na+), and 2-oxo-tetradecanoic acid
and/or its isomers atm/z 293.2 ([C16H30O3]Na+). Similar to
previous work, the AMS profile shows both alkyl fragments
and slightly oxygenated ions, consistent with aliphatic acids
from cooking oils (Hu et al., 2016). The AMS profile is char-
acterised by a high ratio of C3H3O+ to C3H5O+ (∼ 5 here),
slightly higher than in other studies (Sun et al., 2016a, b; Xu
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Figure 3. Mean factor time series (a), diurnal cycles (b), and factor profiles (c) from the 764 accepted bootstrap runs from cPMF analysis. In
panel (a), the average factor time series are shown in red, and corresponding AMS and/or EESI-TOF factors from standalone PMF are shown
in green and blue, respectively. Shaded areas represent the standard deviation across all accepted runs and are summarised in Table S2. In
panel (b), the average diurnal cycles are displayed as solid red lines. Shaded areas denote the standard deviation over the average diurnal
from individual solutions over all 764 accepted runs. Dashed lines denote the maximum and minimum mean diurnal observed within these
764 runs. For comparison, the AMS and EESI-TOF PMF factor time series and diurnal cycles from the individual dataset in Stefenelli et
al. (2019) are shown in green and blue, respectively, for related factors. In panel (c), the average factor profiles are coloured by different ion
families. Here, the AMS factor profiles are in the unit of µgm−3 (each factor sums to 1 µgm−3), whereas the EESI-TOF spectra are in the
unit of cps (each factor sums to the total signal derived from 1 µgm−3 of the factor). Note that the NO+ and NO+2 signal is divided into
inorganic and organic contributions.
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Table 2. Summary of a-value range for constrained factors, criteria for a value range and accepted bootstrap run selection, and the number
of accepted runs from the final combined bootstrap and a-value analysis for the summer and winter datasets.

Dataset Constrained factor a-value range Criteria Accepted runs

Zurich summer HOAS,C 0≤ a ≤ 0.2 (1) COAS,C: C3H3O+
C3H5O+ ≥ 5

COAS,C 0≤ a ≤ 0.2 (2) InorgNitS,C:
CO+2

NO++NO+2
≤ 0.035 764 (76.4 %)

Inorganic nitrate 0≤ a ≤ 0.5 (3) Base case vs. bootstrap correlation test
(InorgNitS,C) at confidence level = 0

Zurich winter HOAW,C 0≤ a ≤ 0.9 (1) CSOAW,C: fmass(nicotine)≥ 0.96

COAW,C 0≤ a ≤ 0.3 (2) C2H4O+2 intensity: LABBW,C−MABBW,C > 0

Inorganic nitrate 0≤ a ≤ 0.5 (3) C6H10O5 intensity: LABBW,C−MABBW,C > 0 308 (30.8 %)
(InorgNitW,C) (4) Base case vs. bootstrap correlation test

CSOAW,C 0≤ a ≤ 0.6 at confidence level = 0

et al., 2019; Zhao et al., 2019), as well as high contributions
from C5H8O+, C6H10O+, and C7H12O+. Both cPMF and
single-instrument PMF analyses yield peaks during lunch
(∼ 11:30 to 13:30 local time, UTC+2) and dinner (∼ 18:30
to 20:30 local time, UTC+2). The time series of COAS,C is
strongly correlated with those of the single-instrument solu-
tions, with Pearson’s r2 of 0.846 and 0.634 against COAS,A
and COAS,E, respectively.

CSOAS,C . The EESI-TOF factor profile is dominated by
nicotine (detected as [C10H13N2]H+) atm/z 163.12 and lev-
oglucosan at m/z 185.042 ([C6H10O5]Na+), which derives
from pyrolysis of the cellulose present in tobacco (Talhout
et al., 2006). In the AMS profile, this factor accounts for
79.3 % of the signal from C5H10N+ at m/z 84.081, which
is attributed to a fragment of n-methyl pyrrolidine and was
previously identified as a tracer for cigarette smoke (Struck-
meier et al., 2016). The time series of CSOAS,C correlates
with that of the AMS-only and EESI-TOF solutions, with r2

of 0.922 and 0.965, respectively. The diurnal cycles from the
combined- and single-instrument solutions are likewise cor-
related, showing high concentrations at night and low con-
centration during daytime.

InorgNitS,C . Among the accepted bootstrap runs, the mean
CO+2 /(NO++NO+2 ) ratio is 0.0346, slightly higher than the
ratio of 0.0345 observed during the NH4NO3 calibration pe-
riod, probably due to (1) uncertainties in the constrained pro-
file and/or (2) a small amount of OA apportioned to this fac-
tor. The time series of this factor correlates with AMS ni-
trate (NO−3 ), NO+, and NO+2 time series, with r2 of 0.654,
0.645, and 0.956, respectively. Regarding the mass fraction,
approximately 48.5 % of the NO+ signal and 78.0 % of the
NO+2 signal are apportioned to this factor, followed by the
two NightSOAS,C factors. This is consistent with the over-
all NO+ and NO+2 signals deriving not only from inorganic
nitrate but also from organonitrates (in other factors).

DaySOA1S,C and DaySOA2S,C . The cPMF analysis yields
two SOA factors that are elevated during daytime, de-
noted DaySOA1S,C and DaySOA2S,C. The EESI-TOF spec-
tra are similar to two factors retrieved from EESI-TOF-
only PMF analysis by Stefenelli et al. (2019) but were not
resolved in AMS-only PMF, where only more- and less-
oxygenated SOA factors (MO-OOAS,A and LO-OOAS,A)
were obtained. These factors contain strong signatures from
terpene oxidation products, e.g. monoterpene-derived ions
(C10H16Ox , x = 5, 6, 7) and sesquiterpene oxidation prod-
ucts (C15H24Ox , x = 3, 4, 5). A detailed comparison of the
two DaySOA factors from the cPMF analysis to the LO-
OOAS,A and MO-OOAS,A factors from AMS-only PMF is
shown in Fig. S31 in the Supplement, and a comparison
between the two DaySOAS,C factors and DaySOAS,E fac-
tors is shown in Fig. S32a and b, respectively. The AMS
ions in these two factors are characterised by a strong CO+2
signal, similar to the LO-OOAS,A and MO-OOAS,A fac-
tors, indicating that they largely consist of oxygenated OA,
consistent with the EESI-TOF spectra. We calculate fracON
for DaySOA1S,C and DaySOA2S,C to be 0.869 and 1.000,
respectively, demonstrating that the NO+ and NO+2 signal
in these factors is dominated by organonitrates. Regard-
ing the time series, DaySOA1S,C and DaySOA2S,C corre-
late strongly with DaySOA1S,E and DaySOA2S,E, with r2

of 0.883 and 0.977, respectively. The diurnal patterns of
DaySOA1S,C and DaySOA2S,C are consistent with the diur-
nal patterns of DaySOA1S,E and DaySOA2S,E. The diurnal
patterns of both factors show an enhancement in the after-
noon and the evening, which distinguishes these SOAs from
other SOAs: DaySOA1S,C exhibits almost a factor of 2 en-
hancement in signal between 15:00 and 21:00 compared to
the morning, whereas the DaySOA2S,C exhibits the same
magnitude of enhancement in signal around 12:00 to 17:00.

NightSOA1S,C and NightSOA2S,C . We retrieve two SOA
factors that are enhanced overnight and in the early morn-
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ing, denoted NightSOA1S,C and NightSOA2S,C. Their fac-
tor profiles and time series and/or diurnals closely resemble
those of NightSOA1S,E and NightSOA2S,E (see Fig. S32c
and d). Similar to the DaySOAS,C factors, terpene oxi-
dation products are evident. However, the composition is
weighted towards less-oxygenated and more-volatile ter-
pene oxidation products, e.g. C10H16O2 and C10H16O3,
which likely partition to the particle phase at night when
temperature decreases. In addition, signals consistent with
monoterpene-derived organonitrates are also evident, e.g. the
C10H17O6−8N and C10H15O6−9N series, which are consis-
tent with nighttime oxidation of monoterpenes by NO3 radi-
cals (Xu et al., 2015; Faxon et al., 2018; Zhang et al., 2018).
The AMS ions in these two factors are characterised by
a strong CO+2 signal and also a relatively high NO+ sig-
nal compared to 6DaySOAsS,C. The ratio of NO+/NO+2 is
4.55 and 8.24 for NightSOA1S,C and NightSOA2S,C, respec-
tively, yielding fracON for NightSOA1S,C and NightSOA2S,C
of 0.798 and 1, indicating high organonitrate content. These
two factors correlate well with 6NightSOAsS,E, reaching r2

of 0.975 and 0.897, generally following the same diurnal pat-
terns, with NightSOA1S,C peaking from 22:00 to 05:00 lo-
cal time, UTC+2 and NightSOA1S,C peaking from 04:00 to
12:00 local time, UTC+2.

3.1.2 cPMF analysis: Zurich winter

Twelve factors were resolved from cPMF analysis of the
Zurich winter campaign: HOAW,C, COAW,C, InorgNitW,C,
CSOAW,C, SOA1W,C, SOA2W,C, a more-aged biomass-
burning OA (MABBW,C), two less-aged biomass-burning
OAs (LABB1W,C and LABB2W,C), two nitrogen-containing
OA factors (NitOA1W,C and NitOA2W,C), and a factor
related to a specific local event (EVENTW,C). Because
no significant chemical differences are apparent between
LABB1W,C and LABB2W,C (see Figs. S33 and S34), they
are aggregated to a single LABBW,C factor for presentation.
Therefore, there are 11 factors presented below. The aver-
age time series and mass spectra of these factors among
308 accepted runs are shown in Fig. 4. The factor pro-
files for HOAW,C, COAW,C, InorgNitW,C, and CSOAW,C are
constrained as described previously. Similar to the summer
dataset, uncertainties in the factor mass concentrations are
summarised in Table S2.

HOAW,C. This factor is dominated by the CnH+2n+1 and
CnH+2n−1 series, consistent with n alkanes and branched alka-
nes, with lower CO+ and CO+2 content than the HOAS,C. The
HOAW,C time series correlates strongly with HOAW,A (r2 of
0.913).

COAW,C . The COAW,C profile is characterised by long-
chain fatty acids and alcohols, e.g. coronaric acid and/or
its isomers at m/z 319.2 ([C18H32O3]Na+), oleic acid
and/or its isomers at m/z 305.2 ([C18H34O2]Na+), and 2-
oxo-tetredecanoic acid and/or its isomers at m/z 293.2
([C16H30O3]Na+), and in the AMS, a combination of

alkyl fragments and slightly oxygenated ions from aliphatic
acids from cooking oils, including C5H8O+, C6H10O+, and
C7H12O+. These are key features of the constrained refer-
ence profile (0≤ a ≤ 0.3) (Qi et al., 2019) and COA fac-
tors found in other studies (Stefenelli et al., 2019; Tong et
al., 2021). The COAW,C time series correlates with the corre-
sponding single-instrument analyses, exhibiting r2 of 0.894
and 0.798 with COAW,A and COAW,E, respectively.

InorgNitW,C . As noted in Sect. S2.2, the NO+/NO+2 ra-
tio of this factor (2.42) is higher than that of pure NH4NO3
measured on site (1.58), consistent with the presence of other
inorganic nitrate sources such as KNO3. Also, the mean
CO+2 /(NO++NO+2 ) ratio is 0.0371, higher than the ratio
of 0.0261 from the constructed InorgNitW,C profile, which
is probably due to (1) uncertainties in the constrained profile
and/or (2) a small amount of OA apportioned to this factor.
The time series of this factor shows high correlations with
the AMS nitrate (NO−3 ), NO+, and NO+2 time series, with r2

of 0.739, 0.792, and 0.754, respectively. Regarding the mass
fraction, only 13.7 % of the NO+ signal and 13.2 % of the
NO+2 signal are apportioned to this factor. The considerable
fractions of the NO+ and NO+2 signals from inorganic nitrate
and organonitrates in other factors are estimated as discussed
above (Kiendler-Scharr et al., 2016) and will be interpreted
later for the relevant factors (as summarised in Table S1).

CSOAW,C . Similar to CSOAS,C, nicotine at m/z 163.12
and levoglucosan at m/z 185.042 were found to be the two
highest peaks in the EESI-TOF mass spectra, contributing
8.75 % and 4.56 % of the EESI-TOF signal. The time series
of this factor resolved from cPMF analysis correlates with
CSOAW,E (r2

= 0.662). Similar to CSOAW,C, the fragment
of cigarette smoke tracer n-methyl pyrrolidine C5H10N+ at
m/z 84.081 is also found here. This is a minor factor, com-
prising 2.4 % of OAs.

SOA1W,C and SOA2W,C . These two factors have different
temporal patterns. SOA1W,C decreased gradually from 26 to
30 January, whereas SOA2W,C increased from 26 January,
fluctuated at high levels from 28 to 31 January, and then
decreased from 1 February on. From the AMS perspective,
both factors are characterised by high NO+, NO+2 , and CO+2
signals compared to other organic ions. Organonitrates ac-
count for all NO+ and NO+2 signals in SOA1W,C but con-
tribute nothing in SOA2W,C. Aside from the NO+ and NO+2
ions, these AMS spectra are similar to the profiles of MO-
OOAW,A and LO-OOAW,A, which are characterised by high
CO+2 signals. Major ions in the EESI-TOF profile include
C10H16Ox (x = 3, 4, 5), C9H14Ox (x = 3, 4), C8H12Ox (x =
4, 5), C10H18O4, and C10H14O5, which are also found in
secondary biomass burning (three MABBW,E factors) and/or
terpene oxidation factors (SOA1W,E and SOA2W,E) from
Qi et al. (2019). However, the H : C ratio of these two fac-
tors from the EESI-TOF component (1.578 and 1.588 for
SOA1W,C and SOA2W,C, respectively) is less than that of
DaySOA1S,C (1.650) and DaySOA2S,C (1.672), suggesting
an increased contribution from aromatic precursors.
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Figure 4. Average factor time series (a) and factor profiles (b), which are calculated as the mean of all accepted bootstrap runs (308 runs
in total). In panel (a), the average factor time series are shown in red, and corresponding AMS and/or EESI-TOF factors from standalone
PMF are shown in green and blue, respectively. Shaded areas represent the standard deviation across all accepted runs and are summarised
in Table S2. In panel (b), the average factor profiles are coloured by different ion families. Here, the AMS factor profiles are in the unit of
µgm−3 (each factor sums to 1 µgm−3), whereas the EESI-TOF spectra are in the unit of cps (each factor sums to total signal derived from
1 µg m−3 of the factor). Note that the NO+ and NO+2 signals are divided into inorganic and organic contributions.
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Biomass-burning factors (LABBW,C and MABBW,C). We
resolve a less-aged biomass-burning factor (LABBW,C,
which, as mentioned above, is the aggregate of two simi-
lar LABB factors) and a more-aged biomass-burning factor
(MABBW,C). Consistent with Qi et al. (2019), the EESI-TOF
component of LABBW,C is characterised by a large signal
from [C6H10O5]Na+ (mainly levoglucosan) (20.4 %), and
MABBW,C by a smaller but notably non-zero one (6.21 %).
In addition, 76.7 % and 11.9 % of the total levoglucosan
signal is apportioned to LABBW,C and MABBW,C, respec-
tively. The difference in the fraction of total levoglucosan
apportioned to these two factors suggests different degrees
of ageing of biomass-burning-emitted OAs. The AMS spec-
trum of the BBOAW,A factor is characterised by C2H4O+2
and C3H5O+2 , which are typical fragments of anhydrosugars,
such as levoglucosan (Alfarra et al., 2007; Lanz et al., 2007;
Sun et al., 2011). These ions are also present in LABBW,C
and MABBW,C and are higher in LABBW,C (1.91 % vs.
0.879 % for C2H4O+2 and 0.978 % vs. 0.323 % for C3H5O+2 ).
In addition, the ratio of C2H4O+2 to CO+2 is 0.396 and 0.092
for LABBW,C and MABBW,C, respectively, supporting the
separation of these factors based on different degrees of age-
ing.

EVENTW,C. This factor is low throughout the cam-
paign, except for the nights of 28 and 29 January from
00:00 to 07:00 UTC+2, where large peaks are observed.
Therefore, it likely corresponds to a specific event near
the sampling location. The mass spectrum features ions
at m/z 174.08, 185.04, and 195.06, tentatively assigned
to [C8H11N2O]Na+, [C6H10O5]Na+, and [C8H12O4]Na+

from the EESI-TOF part and at m/z 15.024 (CH+3 ), 27.027
(C2H+3 ), 31.018 (CH3O+), and 43.018 (C2H3O+) from the
AMS part. Qi et al. (2019) observed a very similar fac-
tor in standalone EESI-TOF PMF, which was tentatively at-
tributed to the Zurich gaming festival and/or plastic burning
in a nearby restaurant. The factor includes large contributions
from C8H12O4, which likely represents 1,2-cyclohexane di-
carboxylic acid diisononyl ester, a plasticiser for the manu-
facture of food packaging. In the AMS spectrum, large sig-
nals from NO+ (7.36 %) and NO+2 (2.03 %) are also ob-
served, with 46.6 % of the NO+ signal and 23.6 % of the
NO+2 signal assigned to organonitrates. Similar to Qi et
al. (2019), the AMS spectrum is also dominated by the ions
in the CxHyO+z group.

NitOA1W,C . This factor is characterised by a high signal of
C5H10N+ atm/z 84.081, contributing 4.02 % to the AMS in-
tensity in this factor (no other factor exceeds 0.16 %), while
97.0 % of the C5H10N+ mass is apportioned to this factor.
This ion is considered to be a tracer of cigarette smoking
(Struckmeier et al., 2016); however, different from typical
CSOA mass spectra, this factor also has high signal from
CO+2 , suggesting a contribution from secondary formation
processes. Similar to other OA factors, this factor also has
a considerable fraction of NO+ and NO+2 signals, attributed
entirely to organonitrates. For the EESI-TOF component, this

factor is characterised by [C8H11N2O]Na+, levoglucosan
and [C8H11N2O]Na+, [C6H10O5]Na+, [C9H12O4]Na+, and
[C11H14O4]Na+, suggesting this factor may also be influ-
enced by fresh biomass burning.

NitOA2W,C . This factor is characterised by a high frac-
tion of total signals from the CHON group in the EESI-
TOF analysis (38.5 %). Among these ions, [C7H11O6N]Na+

at m/z 228.048, [C10H15O6N]Na+ at m/z 268.079, and
[C10H17O7N]Na+ at m/z 286.090 are the three highest ions,
contributing 1.65 %, 1,99 %, and 1.98 %, respectively. There
are also some typical ions with high intensity from biomass-
burning ageing (Qi et al., 2019; Stefenelli et al., 2019),
e.g. [C9H14O4]Na+ at m/z 209.078, [C10H14O6]Na+ at
m/z 253.068, and [C10H16O6]Na+ at m/z 255.084, con-
tributing 6.47 %, 2.85 %, and 4.39 %, respectively. This may
suggest a contribution from biomass-burning activities. From
the AMS perspective, this factor is characterised by high
NO+ and NO+2 signals, in which all of the NO+ and NO+2
signals are produced from inorganic nitrates (see Table S1),
with the other ions being qualitatively similar to OOA-type
spectra.

3.2 EESI-TOF sensitivity to resolved factors

AMS and EESI-TOF contributions to the factor profiles are
intrinsically linked by cPMF. That is, for each individual fac-
tor, the two instrument profiles by definition describe the
same OA fraction. Therefore, the EESI-TOF sensitivity to
a factor ASk can be calculated according to Eq. (10). Note
that this calculation depends on the following assumptions:
(1) both instruments are well-represented in the solution;
(2) the PMF solution is of high quality (i.e. factors are all
meaningful and well-separated, without significant mixing
or splitting); (3) solution uncertainties are not so high as to
preclude quantitative interpretation of the results. Assump-
tion (1) was discussed earlier in the context of instrument
weighting, and assumption (2) is supported by the inter-
pretability of the factors, as presented in the previous sec-
tion. By performing the cPMF analysis on a large number of
runs combining bootstrap analysis and a-value exploration,
we can estimate uncertainties in the calculated sensitivities
imposed by the analysis model, as presented below, thereby
addressing assumptions (2) and (3).

The datasets analysed here were taken from the first field
deployments of the EESI-TOF. As a result, operational pro-
tocols were not yet fully standardised across campaigns.
Specifically, we lack reliable on-site calibration with a chem-
ical standard common to the two campaigns (this was at-
tempted, but the measurements were evaluated to be un-
reliable during post-analysis due to operational problems).
Therefore, to enable comparison of relative factor sensitiv-
ities between the summer and winter campaigns, we se-
lect COA as a reference. That is, we assume ASCOA =

ASCOAS,C = ASCOAW,C . We choose COA, because it is the
only factor that both (1) appears in all four single-instrument
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datasets (i.e. summer and winter, AMS and EESI-TOF) and
(2) compared to other factors, is less likely to significantly
change in composition between the campaigns (in contrast
to, e.g. SOAs in Zurich, which are known to have signif-
icantly different precursors in summer and winter). There-
fore, all sensitivities below are reported as (ASk/ASCOA),
in which ASk is calculated in every bootstrap run and then
referenced to ASCOA (the mean ASCOA calculated over all
bootstrap runs). Here, k denotes a given factor from the (sum-
mer or winter) cPMF solutions. Note that EESI-TOF sensi-
tivities to HOA and InorgNit are not discussed here, since
they are undetectable by the EESI-TOF (as configured for
these campaigns; see Sect. 2.2.2) and therefore constrained
to be ∼ 0.01 cps (µgm−3)−1. The mean and standard devi-
ation of factor-dependent ASk/ASCOA for the summer and
winter datasets are shown in Fig. 5, with histograms sum-
marising all accepted runs shown in Figs. S35 and S36. For
ease of viewing, the factors in Fig. 5 are collected into related
groups. We also calculate the ASk’s for several factor aggre-
gations. First, five factors that are likely related to biomass
burning (LABBW,C, MABBW,C, NitOA1W,C, NitOA2W,C,
and EVENTW,C) are denoted as the “6BB” factor. Addi-
tionally, we separately aggregate the two DaySOAS,C and
two NightSOAS,C factors, denoted “6DaySOAsS,C” and
“6NightSOAsS,C”, respectively. As seen in Fig. 5 (as well as
in Figs. S35 and S36 and Table S3), the relative uncertainty
from the summer factors is systematically lower than for the
winter factors within the accepted solutions. This may indi-
cate higher source apportionment quality and solution sta-
bility for the former but is also related to the sub-division of
factors related to primary biomass-burning-related factors, as
discussed later.

For COAS,C and COAW,C, the mean relative sensitivi-
ties are 1 by definition, though uncertainties are still calcu-
lated due to non-zero a values, while the reference profile
utilised for CSOAW,C ensures that CSOAW,C and CSOAS,C
will have similar sensitivities. Interestingly, the distribution
of the sensitivities of COAS,C, COAW,C, and CSOAW,C in
Figs. S32 and S33 is clearly multi-modal despite a-value
constraints (although the overall COAS,C and COAW,C dis-
tributions remain relatively narrow), but the reason for this is
unknown.

The next group of factors (LABBW,C, MABBW,C,
NitOA1W,C, NitOA2W,C, and EVENTW,C) includes non-
negligible contributions from levoglucosan (C6H10O5), pro-
duced typically from biomass-burning (BB)-related activi-
ties. Previous work has demonstrated that the EESI-TOF sen-
sitivity to levoglucosan is higher than that of many other
compounds and bulk SOA from representative precursors
(Lopez-Hilfiker et al., 2019; Brown et al., 2021). Indeed,
although the set of studied compounds is far from compre-
hensive, the relative sensitivity of the EESI-TOF to levoglu-
cosan is among the highest yet recorded. Therefore, despite
the variation in composition of the POA-influenced factors,
the effect of the C6H10O5 content on the overall factor sensi-

tivity is often considerable for cases where this ion is strongly
influenced by levoglucosan. Figure 6 shows ASk as a func-
tion of the C6H10O5 fraction for all factors for which the
C6H10O5 signal is believed to result largely from levoglu-
cosan. This analysis accounts for all factors resolved from
the cPMF of the winter dataset, except for CSOAW,C, be-
cause CSOAW,C is dominated by the signal from the pro-
tonated nicotine ([C10H14N2]H+) ion, which is both chem-
ically different (reduced nitrogen) and has a different ion-
isation pathway than other measured ions. The four sum-
mer SOA factors are excluded as well, because the contribu-
tion from C6H10O5 in these factors was previously attributed
to terpene and/or aromatic oxidation products (Stefenelli et
al., 2019). An obvious qualitative trend of increasing sensi-
tivity with increasing levoglucosan fraction is evident, with
Pearson r2 of 0.676, indicating the overwhelming influence
of the high-sensitivity species levoglucosan on the factor-
apparent sensitivity.

For the primary BB-related factors, the uncertain-
ties are generally higher than for the other factors
(see Fig. S36). In contrast, the aggregated BB fac-
tor (6BBW,C and 6BBW,C =MABBW,C+LABBW,C+

NitOA1W,C+NitOA2W,C+EVENTW,C) is less uncertain
and has a narrower sensitivity distribution. This suggests that
the overall classification of signal as biomass-burning related
is robust, but the subdivision into more specific BB-related
sources carries higher uncertainties. Likewise, the relative
sensitivities of 6DaySOAsS,C and 6NightSOAsS,C are less
uncertain compared to individual corresponding SOA factors
in summer (as shown in Fig. S35). This contrast suggests
that coarse classifications of factors may have higher preci-
sion but may provide less information, whereas fine classifi-
cations of factors may have higher uncertainties but may po-
tentially provide more information from each factor. It also
suggests that, at least for these datasets, factor mixing occurs
primarily between factors with closely related sources. De-
spite their higher uncertainties, the finest classification levels
explored here still appear to be meaningful. We also note that
both datasets investigated here are of relatively short dura-
tion, and factor separation may improve in longer datasets.

The final group of factors in Fig. 5 corresponds to SOAs.
The relative sensitivities of the SOA factors in winter are
shown to be lower than any of the SOA factors resolved dur-
ing summer. This is consistent with expectations regarding
the seasonal differences in the dominant SOA precursors and
the expected ASk of the resulting SOAs. At this site, SOA
precursors are expected to be dominated by monoterpenes in
summer and by biomass burning (increasing the contribution
of phenols, naphthalenes, and other aromatics) in winter,
with traffic making a lesser contribution in both seasons
(Daellenbach et al., 2016; Qi et al., 2020). This is supported
by analysis of the characteristics of the retrieved factors,
as discussed above (Qi et al., 2019; Stefenelli et al., 2019).
Previous studies have shown differences in the EESI-TOF
bulk sensitivity to SOAs from different precursors, with
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Figure 5. Comparison of ASk/ASCOAC of different factors resolved from the cPMF on the summer and winter datasets. Mean values are
shown as bars, and error bars indicate the standard deviation over all accepted bootstrap runs. The following factor aggregations are also
shown:6BBW,C =MABBW,C+LABBW,C+NitOA1W,C+NitOA2W,C+EVENTW,C.;6DaySOAsS,C = DaySOA1S,C+DaySOA2S,C;
and 6NightSOAsS,C = NightSOA1S,C+NightSOA2S,C.

Figure 6. Relative apparent sensitivity ASk/ASCOAW,C as a func-
tion of levoglucosan fraction for all factors resolved from the cPMF
of the winter dataset, except for CSOAW,C. Error bars denote stan-
dard deviation.

terpene-derived SOAs generally exhibiting higher sensitivity
than SOAs from light aromatics (Lopez-Hilfiker et al., 2019;
Wang et al., 2021). Figure 7 shows the AS/ASCOA for two
DaySOAS,C and NightSOAS,C factors in summer, as well
as the 6DaySOAsS,C and 6NightSOAsS,C – which are the
aggregates of the individual DaySOAS,C and NightSOAS,C

factors (6DaySOAsS,C = DaySOA1S,C+DaySOA2S_C
and 6NightSOAsS,C = NightSOA1S,C+NightSOA2S,C),
respectively – and two SOAW,C factors in winter as a
function of their H : C ratio calculated from the EESI-TOF
component. A trend of increasing sensitivity with increasing
H : C ratio is observed for the summer SOAs and winter
SOAs (SOA1W,C and SOA2W,C), with an overall Spear-
man’s rank correlation of 0.833. Consistent with Wang et
al. (2021), H : C is found to be a better predictor of ASk than
either O : C or OSc, yielding Spearman’s rank correlation
of 0.833 for ASk vs. H : C, −0.167 for ASk vs. O : C, and
−0.452 for ASk vs. OSc (Fig. S37a and b).

For the SOA factors, we compare ASk retrieved to ASk
predicted using a molecular formula-based parameterisation
trained with laboratory SOA measurements, as described
in Sect. 2.2.3 (Wang et al., 2021). No parameterisations
presently exist for POA factors, so these are excluded from
the comparison, although to allow comparison between cam-
paigns, the model is used to calculate a reference value for
ASCOA. Figure 8 compares the ASk values based on model
predictions against values determined from cPMF. For sum-
mer SOAs, the LMN (limonene)-based parameterisation is
applied as a surrogate for terpene oxidation products. Re-
garding the winter SOAs, three scenarios (cresol, LMN, and
TMB) are applied, as the winter SOAs in Zurich are mainly
related to oxidation of biomass-burning emissions, which in-
clude monoterpenes, phenols, naphthalenes, and other aro-
matics (Rouvière et al., 2006; Bruns et al., 2016; Kelly et
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Figure 7. ASk/ASCOAC of SOA factors retrieved from the summer
and winter datasets as a function of the H : C ratio. Error bars denote
standard deviation across all accepted runs. Spearman correlation is
0.833, as indicated in the top-left corner.

al., 2018). In Fig. 8, 1 : 1, 1 : 2, 1 : 4, and 1 : 8 lines are pro-
vided to guide the eye, although a 1 : 1 correspondence is
not expected, because the models are not trained on primary
COAs. The figure shows a monotonic increase in model sen-
sitivity predictions with increasing cPMF-derived sensitiv-
ities, with the sole exception of SOA2W,C. Specifically, the
summer-derived points fall mainly between the 1 : 1 and 1 : 2
lines, while for SOA1W,C, the model predictions are roughly
a factor of 2 lower relative to the cPMF results. This offset
may reflect differences in the appropriateness of the selected
precursor surrogate. The SOA2W,C factor is a slight outlier,
probably because the ASk for this factor is more uncertain
than the others (and not fully captured by the error bars in
Fig. 5) due to the high contribution from inorganic nitrate
(∼ 80 % of mass) in its factor profile. Given the limitations
of the multi-variate parameterisation (see Sect. 2.2.3) and the
several-orders-of-magnitude variation in EESI-TOF sensitiv-
ities to individual compounds, the qualitative agreement be-
tween ASk values independently retrieved from multivariate
parameterisation and cPMF provide support for both meth-
ods.

4 Atmospheric implications

The application of factor-dependent sensitivities can qualita-
tively and quantitatively affect the source apportionment re-
sults. Figure 9a and b compare the source apportionment re-
sults from cPMF on the summer and winter datasets using the
calculated factor sensitivities (ASk) (i.e. direct outputs of the
cPMF analysis) vs. using a single bulk sensitivity (ASbulk)
for all factors, where the latter is calculated as the ratio of the
total OA measured by the EESI-TOF (cps) to that measured

Figure 8. The estimated relative apparent sensitivity to COAs
(ASk/ASCOAC ) from the gradient-boosting regression (GBR)
model as a function of cPMF-derived relative apparent sensitivity
to COA (ASk/ASCOAC ). The symbols indicate the different oxida-
tion precursor systems (LMN for SOAs produced from oxidation
of limonene by ozone, cresol and TMB for SOAs produced from
oxidation of o-cresol and 1,3,5-trimethylbenzene by OH radicals,
respectively).

by the AMS (µgm−3). Figure 10a and b compare the total
OA concentrations returned from the cPMF using ASk and
ASbulk to the total OA measured by the AMS. Table S3 sum-
marises the retrieved ASk values for each factor (note that,
although the relative ASk are believed to be intrinsic proper-
ties of the factors, the absolute sensitivities are instrument-
and tuning-dependent and will vary between campaigns).

In the Zurich summer campaign, the bulk OA sensi-
tivity ASbulkS,C (1254.0 cps (µgm−3)−1) is higher than that
of ASCOAS,C (509.8 cps (µgm−3)−1). Four factors (HOAS,C,
COAS,C, DaySOA1S,C, and NightSOA1S,C) are underesti-
mated, whereas three factors (CSOAS,C, DaySOA2S,C, and
NightSOA2S,C) are overestimated when ASbulkS,C is used.
Using the calculated ASk , the contribution of COAS,C to
total OA more than doubles from 4.5 % to 11.7 %, as
shown in Fig. 9a. Similarly, the application of ASk increases
the contributions of DaySOA1S,C and NightSOA1S,C from
22.7 % to 35.2 % and from 10.3 % to 17.1 %, respectively.
Among the overestimated factors, the largest decrease post-
correction is found for NightSOA2S,C, the contribution of
which decreases by approximately a factor of 3 (from 29.7 %
to 10.3 %). Smaller post-correction decreases are observed
for the contributions of CSOAS,C (12.9 % to 7.7 %) and
DaySOA2S,C (19.9 % to 14.9 %). If factor-dependent sen-
sitivities were ignored, NightSOA2S,C would be the largest
contributor to total OA, followed by DaySOA1S,C, whereas
the full analysis indicates that DaySOA1S,C is the largest
contributor.

Similar to the summer campaign, application of ASk
significantly affects the source apportionment results in
winter. CSOAW,C, MABBW,C, and LABBW,C are shown
to be overestimated, while HOAW,C, COAW,C, SOA1W,C,
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Figure 9. Comparison of source apportionment results between direct output from cPMF (i.e. accounting for factor-dependent sensitivities)
and application of a single bulk OA sensitivity, applied to the Zurich summer (a) and winter (b) datasets. Stack plots of factor time series
directly from combined PMF and factor time series calculated from bulk OA sensitivity compared with total AMS OA concentration are
shown in the upper and lower panel, respectively, in each subfigure, together with the corresponding factor contribution shown in the pie
chart. Note that, here, the contribution of the InorgNit factor and the contributions of NO+ and NO+2 from inorganic nitrate in each factor
are excluded to account only for the total OA.

NitOA1W,C, NitOA2W,C, and EVENTW,C are underesti-
mated. If factor-dependent sensitivities were not considered,
LABBW,C and MABBW,C would appear to be the domi-
nant contributors to total OA (35.7 % and 18.2 %, respec-
tively) due to their high levoglucosan content. However, the
full cPMF analysis indicates the LABBW,C and MABBW,C
contributions to be 14.9 % and 14.4 %, respectively, whereas

accounting for ASk increases the contribution of SOA1W,C
from 12.7 % to 22.0 %, making it the largest contributor.

For both the summer and winter datasets, calculation of
total OA from cPMF results using factor-specific ASk signif-
icantly outperforms that using a single ASbulk. This is evident
from an increased r2 (0.966 vs. 0.821) for summer. However,
the r2 is similar between the two approaches in winter (0.947
vs. 0.943). The difference after applying ASk and ASbulk in
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Figure 10. Comparison between the sum of factor concentrations
in each time point with (in red) and without (in blue) taking the
factor-dependent sensitivity into account and total OA measured by
AMS for summer in panel (a) and winter in panel (b). A linear fit
is conducted based on the Levenberg–Marquardt least-orthogonal-
distance method. Note that, here, the contribution of the InorgNit
factor and the contributions of NO+ and NO+2 from inorganic ni-
trate in each factor are excluded.

r2 might be related to the extent to which the contribution
from factors with high ASk and low ASk to total OA changes
over time during the campaign, which can vary in different
datasets.

Box-and-whisker diagrams of factor contributions to to-
tal OA with and without applying ASk values for summer
and winter are presented in Fig. 11. In the Zurich sum-
mer campaign, the box plots of the corrected contributions
of all six factors fall completely outside of the interquar-

Figure 11. Box-and-whisker diagrams of factor contributions to to-
tal OA with and without applying the factor dependent sensitivities
for (a) summer and (b) winter within accepted solutions. For each
pair of factors, the contribution without factor-dependent sensitivity
applied is shown in the left box (open symbols), whereas the con-
tribution corrected by factor-dependent sensitivity is shown in the
right box (filled symbols). The box-and-whisker diagram shows the
mean (open and filled circle), median (horizontal bar), interquartile
range (rectangle, the 25th percentile is the lower edge, and the 75th
is the upper edge), and minimum and maximum values (whiskers).
Note that, here, the contribution of the InorgNit factor and the con-
tributions of NO+ and NO+2 from inorganic nitrate in each factor
are excluded.

tile range (IQR) of the uncorrected results, suggesting that
the use of a single ASbulk would lead to significant biases.
In contrast, the winter campaign exhibits a lack of overlap
between the ASk- and ASbulk-derived results for eight fac-
tors (HOAW,C, COAW,C, CSOAW,C, SOA1W,C, SOA2W,C,
NitOA1W,C, NitOA2W,C, and EVENTW,C), whereas two
factors overlap (SOA2W,C and MABBW,C). This may re-
sult from statistical uncertainties in bootstrap analysis cou-
pled with a less robust division between certain factors,
yielding a wide distribution, e.g. MABBW,C, and/or ASk
values that are similar to ASbulk (2271.1 cps (µgm−3)−1),
e.g. SOA2W,C (2253.2 cps (µgm−3)−1) and MABBW,C
(2619.0 cps (µgm−3)−1).
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5 Conclusions

We address the longstanding challenges in achieving quanti-
tative source apportionment of SOA sources by conducting
a positive matrix factorisation (PMF) analysis of a dataset
combining measurements from an aerosol mass spectrome-
ter (AMS) and an extractive electrospray ionisation time-of-
flight mass spectrometer (EESI-TOF). This approach com-
bines the strengths of the two instruments – namely, the quan-
tification ability of the AMS and the chemical resolution of
the EESI-TOF. We demonstrate the utility of this approach by
PMF analysis of combined EESI-TOF and AMS datasets col-
lected during summer and winter in Zurich, Switzerland. The
results retain the chemical resolution of the standalone EESI-
TOF PMF while additionally providing quantitative factor
time series and the EESI-TOF bulk sensitivity to different
OA factors.

Note that, while these methods provide a general proce-
dure for cPMF analysis, the specific parameters employed
(i.e. the number of factors, p; instrument weighting parame-
ter, Cinst; and the factors to be constrained and the tightness
of constraints, a-value ranges) are dataset specific and should
be determined independently for each new analysis.

The cPMF method intrinsically provides factor-dependent
sensitivities (cps (µgm−3)−1) for the EESI-TOF. To account
for organonitrate content, the AMS ions NO+ and NO+2 are
included in the cPMF analysis. Organic and inorganic contri-
butions to these ions are estimated on a factor-by-factor basis
using the method of Kiendler-Scharr et al. (2016).

For practical reasons, sensitivities between winter and
summer campaigns are compared using cooking-related OA
(COA) as a common reference. The retrieved factor sensitivi-
ties range from approximately 1.3 to 7.5 times the sensitivity
of COA. The relative sensitivities of SOA factors are pre-
cursor dependent and are qualitatively consistent with trends
observed in laboratory measurements of SOAs from single
precursors (Lopez-Hilfiker et al., 2019). The SOA sensitiv-
ities estimated using our cPMF approach also agree with
the sensitivities predicted by multi-variate regression mod-
els (Wang et al., 2021), which further demonstrates that SOA
sensitivities are precursor and/or source dependent. Compar-
ison of source apportionment results using factor-dependent
sensitivities to uncorrected results show substantial differ-
ences, highlighting the importance of quantitative analysis.
For example, before applying factor-dependent sensitivities,
the contribution of a daytime SOA factor is underestimated
by about 30 % (22.7 % before vs. 35.2 % after), whereas the
contribution of a nighttime SOA factor is almost overesti-
mated by a factor of 3 in the summer campaign (29.7 % be-
fore vs. 10.3 % after). As for the winter campaign, the con-
tribution of a less-aged biomass-burning factor to total OAs
in the Zurich winter dataset is 35.7 %, making it a major fac-
tor in winter without considering its factor-dependent sensi-
tivity. However, this factor is significantly overestimated by
more than a factor of 2 (35.7 %, before vs. 14.9 % after). In

contrast, the SOA1 factor in winter is underestimated, with
its contribution increasing from 12.7 % to 22.0 %.

These considerable differences in the source contributions
between the uncorrected EESI-TOF and cPMF results high-
light the challenges in interpreting standalone source appor-
tionment results for instruments where ion-specific sensitiv-
ity information is not readily available, such as EESI-TOF or
FIGAERO-CIMS. Although the time trends of such analyses
are likely robust, interpretation of the relative composition
requires caution. Therefore, if such interpretation is desired,
it is advised to employ analysis strategies such as cPMF that
are capable of integrating quantitative measurements from
reference instruments.

The cPMF method presented herein can be utilised as is,
not only for the AMS/EESI-TOF combination but for any
dataset comprising data from multiple instruments. As such,
it provides a promising strategy for utilising instruments with
high chemical resolutions but semi-quantitative performance
(i.e. a linear but hard-to-calibrate response to mass) within
the framework of a quantitative source apportionment.
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