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Abstract. Spatially representative estimates of surface en-
ergy exchange from field measurements are required for
improving and validating Earth system models and satel-
lite remote sensing algorithms. The scarcity of flux mea-
surements can limit understanding of ecohydrological re-
sponses to climate warming, especially in remote regions
with limited infrastructure. Direct field measurements of-
ten apply the eddy covariance method on stationary tow-
ers, but recently, drone-based measurements of temperature,
humidity, and wind speed have been suggested as a viable
alternative to quantify the turbulent fluxes of sensible (H)
and latent heat (LE). A data assimilation framework to in-
fer uncertainty-aware surface flux estimates from sparse and
noisy drone-based observations is developed and tested us-
ing a turbulence-resolving large eddy simulation (LES) as a
forward model to connect surface fluxes to drone observa-
tions. The proposed framework explicitly represents the se-
quential collection of drone data, accounts for sensor noise,
includes uncertainty in boundary and initial conditions, and
jointly estimates the posterior distribution of a multivariate
parameter space. Assuming typical flight times and obser-
vational errors of light-weight, multi-rotor drone systems,
we first evaluate the information gain and performance of
different ensemble-based data assimilation schemes in ex-
periments with synthetically generated observations. It is
shown that an iterative ensemble smoother outperforms both
the non-iterative ensemble smoother and the particle batch
smoother in the given problem, yielding well-calibrated pos-
terior uncertainty with continuous ranked probability scores
of 12 W m−2 for both H and LE, with standard deviations

of 37 W m−2 (H) and 46 W m−2 (LE) for a 12 min vertical
step profile by a single drone. Increasing flight times, us-
ing observations from multiple drones, and further narrowing
the prior distributions of the initial conditions are viable for
reducing the posterior spread. Sampling strategies prioritiz-
ing space–time exploration without temporal averaging, in-
stead of hovering at fixed locations while averaging, enhance
the non-linearities in the forward model and can lead to bi-
ased flux results with ensemble-based assimilation schemes.
In a set of 18 real-world field experiments at two wetland
sites in Norway, drone data assimilation estimates agree
with independent eddy covariance estimates, with root mean
square error values of 37 W m−2 (H), 52 W m−2 (LE), and
58 W m−2 (H+LE) and correlation coefficients of 0.90 (H),
0.40 (LE), and 0.83 (H+LE). While this comparison uses
the simplifying assumptions of flux homogeneity, stationar-
ity, and flat terrain, it is emphasized that the drone data as-
similation framework is not confined to these assumptions
and can thus readily be extended to more complex cases and
other scalar fluxes, such as for trace gases in future studies.

1 Introduction

The significance of sensible (H) and latent (LE) heat fluxes
between an underlying surface and the atmosphere aloft is
not in dispute, given the plethora of problems spanning at-
mospheric, oceanographic, cryospheric, soil, and vegetation
dynamics, in which these turbulent exchange processes arise.
Direct measurements of these surface fluxes enable robust
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methods to evaluate and tune parametrizations used in cli-
mate models and to develop algorithms for indirect flux re-
trieval using satellite remote sensing. Traditionally, flux mea-
surements are collected on meteorological towers using the
so-called eddy covariance (EC) technique (or other micro-
meteorological approaches such as the Bowen ratio method).
While these stationary tower measurements are often con-
sidered the best available technique for surface flux estima-
tion, they are known to have limited spatial representative-
ness (Chu et al., 2021). Moreover, the link between mea-
sured turbulent heat flux at the tower and sources or sinks
at the surface becomes problematic when these sources and
sinks are spatially variable (Bou-Zeid et al., 2020). An indi-
rect manifestation of this problem is a failure to close the sur-
face energy balance, with underestimates in excess of 20 %
(on average) being reported across the sites of the FLUXNET
network (Stoy et al., 2013). This problem is by no means
confined to surface heterogeneity. A number of studies (Ste-
infeld et al., 2007; De Roo et al., 2018) showed that orga-
nized eddies can bias flux estimates even in homogeneous
environments, which explains part of the typically observed
lack of closure of the measured surface energy balance. One
approach to ameliorate these issues is to include spatially dis-
tributed measurements, which frames the scope of the work
herein. Airborne measurements from aircraft have a long
tradition in atmospheric sciences and are used to comple-
ment flux towers (Desjardins et al., 1989; Mahrt, 1998). Over
the past decade, developments in miniaturized sensors and
small unoccupied aircraft systems (hereafter referred to as
drones) have been opening possibilities for studies of land–
atmosphere interactions in ways not attempted before.

Drones measuring air temperature, humidity, and wind
speed are a promising tool for spatially distributed measure-
ments in meteorological studies (Lee et al., 2018; Barbieri
et al., 2019). Fixed-wing drones are typically equipped with
air speed sensors that allow for wind speed estimation (El-
ston et al., 2015). Multi-rotor drones introduce some distor-
tions to the turbulence field around them, but they can still
estimate horizontal wind speed based on their altitude de-
rived from inertial measurement unit (IMU) data (Neumann
and Bartholmai, 2015; Palomaki et al., 2017). Drones can
also “hover” in place at a point of interest or can sample
along a pre-programmed flight path, making them a sort of
intermediate between tethered-balloon soundings and heli-
copter platforms. Drone data have already been used for flux
estimation in several studies (Bonin et al., 2013; Hoffmann
et al., 2016; Kim and Kwon, 2019; Båserud et al., 2020),
typically using Monin–Obukhov similarity theory (MOST)
(Monin and Obukhov, 1954; Foken, 2006) with flux profile
(Högström, 1988) or flux variance (Katul and Hsieh, 1999)
relationships as well as vertically integrated heating and/or
drying rates to infer surface fluxes. Due to the stochastic
nature of turbulent transport, measurements are usually ag-
gregated over longer time periods or large spatial distances
where the statistical variability becomes predictable by mi-

crometeorological theories (though ergodicity is a priori as-
sumed in this case). Nonetheless, given the limited flight time
of drones, new trade offs in the spatio-temporal sampling
strategy could be developed to optimize flux estimates. Re-
cently, multi-platform systems or drone swarms, carrying a
mobile sensor network, have been shown to have capabilities
for estimating emissions from gas point sources (Hutchin-
son et al., 2017; Ristic et al., 2020). While the potential for
drone-based flux measurements as a relatively low-cost and
mobile complement to EC is promising, there are many open
questions regarding the uncertainties of the resulting flux
estimates, the optimal flight strategy, the required turbulent
transport model, and the data–model fusion algorithms.

Returning to the issue of spatial variability and scales,
the surface layer of the atmosphere constitutes a non-linear
system where variability exists across all scales (Wyngaard,
2010). To explicitly represent intermittent and inhomoge-
neous turbulent transport as well as coherent structures re-
quires high-resolution models that are computationally much
more expensive than the flux-related expressions encoded in
MOST. In particular, turbulence-resolving large eddy simu-
lations (LESs) are widely accepted tools to simulate bound-
ary layer dynamics, as they explicitly resolve the energy-
containing range of large eddies while they parametrize the
effect of sub-grid scales on the resolved scales (see e.g., Stull,
1988). While MOST describes planar-homogeneous and sta-
tionary turbulence statistics in the absence of subsidence,
LES allows for the analysis of turbulence time series at high
temporal resolutions so as to realistically represent turbu-
lence statistics collected at time scales of seconds to minutes.
Some studies have already paved the way (Sühring et al.,
2019) by performing idealized LES studies with known ini-
tial and boundary conditions and with virtual airborne mea-
surements to show the feasibility of airborne flux estimation
techniques, even above heterogeneous surfaces (but disre-
garding sensor noise). This indicates that drone observations
can be combined with LESs to estimate surface fluxes. That
is, the LES may be viewed as a mathematical operator that
takes surface boundary conditions and key large-scale me-
teorological forcing and provides statistics such as turbulent
fluxes and meteorological states at all points in the domain
of interest over a period of time. These statistics can then be
compared with “noisy” data obtained from drones. Surface
fluxes that optimally match the noisy measurements can then
be inferred.

This view implies that a mathematically optimal technique
for consistent data–model fusion can be formulated as a
kind of Bayesian inference problem (MacKay, 2003; Jaynes,
2003; Särkkä, 2013; Gelman et al., 2013), which is typically
referred to as data assimilation (DA) or inverse modeling in
the geosciences (Carrassi et al., 2018; Evensen et al., 2022).
Herein, we adopt a broad Bayesian definition of the field of
DA in line with Evensen et al. (2022). In addition to the con-
ventional DA problem of state estimation, this definition also
encompasses the problem of parameter estimation. The lat-
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ter is often referred to as an inverse problem (Stuart, 2010)
rather than a DA problem. Since the flux estimation prob-
lem at hand is precisely such a parameter estimation or in-
verse problem, we are also leaning on developments in this
field (Iglesias et al., 2013; Schillings and Stuart, 2017). In
this study, we do not make any distinction between DA and
inversion and take a unifying approach through the lens of
Bayesian inference following Särkkä (2013). Such a unified
view is especially helpful, as the methods used herein can be
applied in a hierarchical framework that jointly solves both
state and parameter estimation problems (Katzfuss et al.,
2020).

On regional scales, DA with mixed-layer models have
been used to estimate surface energy fluxes from surface tem-
perature measurements provided by satellite remote sensing
(Caparrini et al., 2004; Xu et al., 2018) or radiosonde pro-
files of potential temperature and specific humidity (Tajfar
et al., 2020). On much larger scales, Bayesian flux inver-
sions are also a common tool in atmospheric inverse mod-
eling to assess regional emissions of CO2 (Tans et al., 1989)
and methane (Thompson et al., 2018). Due to computational
limitations, studies using DA with LES models have only
recently become possible (Lunderman et al., 2020), and an
evaluation with drone observations together with indepen-
dent flux measurements remains lagging (or lacking all to-
gether).

In many practical applications, one typically omits
stochastic terms in the model and assumes it to be a per-
fect representation of reality (so-called strong-constraint data
assimilation) (Evensen, 2019). Even so, different DA tech-
niques will excel depending on model complexity and the
number of parameters in the problem. Variational DA com-
bines the model and the data through the optimization of a
cost function but requires taking derivatives of the forward
model with respect to its parameters (Bannister, 2017), which
is difficult or impossible for most LES codes. Particle-based
methods (van Leeuwen et al., 2019), such as the particle
batch smoother scheme (Margulis et al., 2015), are conceptu-
ally well suited for drone data assimilation given their limited
assumptions, but they are known to suffer from degeneracy
for problems in higher dimensional parameter spaces (Sny-
der et al., 2008). Ensemble Kalman-based methods, such as
the ensemble smoother (van Leeuwen and Evensen, 1996)
and its iterative variants (Emerick and Reynolds, 2013), on
the other hand, have been shown to overcome some of these
limitations for very large parameter spaces. However, these
approaches invoke Gaussian linear assumptions at the anal-
ysis phase when data and models are combined. These as-
sumptions can be problematic given that Gaussian random
variables do not respect physical bounds and that many for-
ward models in the geosciences are non-linear. This issue
motivated studies that sought to describe how the iterative
ensemble Kalman smoother can be used to improve urban
air pollution estimation by assimilating both mean wind
and gas concentrations with a Reynolds-averaged Navier–

Stokes (RANS) model (Defforge et al., 2021). Considering
the potential and limitations of the different DA schemes,
one may hypothesize that either ensemble Kalman-based or
particle-based approaches (or a combination thereof) could
be ideal for drone data assimilation in LESs.

The aim of the present study is to first perform observ-
ing system simulation experiments (Masutani et al., 2010) to
evaluate which DA scheme is most suited for the problem
of flux estimation from drone observations and to demon-
strate what flux results can be expected from typical light-
weight drone systems. We then apply the drone data assim-
ilation technique to real-world measurements from drones
and compare its results to concurrent eddy covariance flux
estimates to demonstrate the feasibility of the method. To be
clear, given the differences in footprint and underlying as-
sumptions, we do not argue that this comparison offers a val-
idation per se – only a plausibility check of the estimated
order of magnitude of fluxes and their relative variability.

2 Materials and methods

2.1 Data assimilation framework

The aim here is to infer surface fluxes of sensible and la-
tent heat using sparse and uncertain drone measurements of
meteorological variables in the atmospheric boundary layer.
Solving this inverse problem requires a forward (or data-
generating) model that maps the parameters, namely the sur-
face fluxes of interest and other uncertain boundary condi-
tions, to the drone observations through

y = G (x)+ ε , (1)

where y ∈ Rd is the observation vector, G (·) is the forward
model, x ∈ Rm is the target parameter vector, and ε ∈ Rd is
the observation error. In practice, G(·) is a composition of
multiple operations (see Evensen et al., 2022)

G(x)=H (M(T (x))) . (2)

The inner operation, T (·), is a transformation step that maps
the parameters from an unbounded space to a bounded phys-
ical space. This step helps satisfy the Gaussian assumption
of the ensemble Kalman methods while avoiding unphysical
values (Sect. 2.1.2), although it adds an extra layer of non-
linearity to the forward model. The subsequent middle op-
eration, M(·), is the dynamical model used to simulate the
state of the boundary layer given the boundary conditions
specified by the parameters. The outer operation, H(·), is the
observation operator that maps the states of the model to the
corresponding predicted observations by extracting the flight
paths of drones and (when necessary) performing temporal
aggregation (see Sect. 2.1.3). By employing a turbulence-
resolving LES as opposed to a RANS model for the dynamics
M(·) in our forward model G(·), we are able to generate the
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surface flux to drone observation mapping, since the LES is
run at an appropriate level of spatio-temporal detail.

Even in the absence of observation error, the inversion of
Eq. (1) will typically be an ill-posed problem in the sense
that a solution for the parameters x may not exist or be
unique (Stuart, 2010). As such, it is more instructive to aban-
don the quest for a single optimal solution, which does not
necessarily exist in a well-defined way, and rather approach
this problem in a probabilistic manner using Bayesian infer-
ence (Jaynes, 2003; MacKay, 2003; Särkkä, 2013). We do
this following a classical Bayesian approach in geosciences
known as data assimilation (DA), reviewed elsewhere (Wikle
and Berliner, 2007; Evensen et al., 2022), where we use a
prior distribution p(x) to represent our knowledge concern-
ing possible values for the model parameters x before tak-
ing the observed drone data y into account. We combine this
with a second distribution, the likelihood p(y|x), which de-
scribes the probability of generating the data for a given set
of parameters of the LES model. To help construct this likeli-
hood, conventional DA assumptions are followed (e.g., Car-
rassi et al., 2018) by using an additive Gaussian observation
error ε ∼ N(0,R) with zero mean and observation error co-
variance matrix R. Bayes’ theorem then yields a posterior
distribution of the parameters p(x|y) by taking the product
of the prior and the likelihood, i.e.,

p(x|y)=
p(y|x)p(x)

p(y)
, (3)

which represents our knowledge of the parameters and their
uncertainties in view of our uncertain prior knowledge, as
well as the data and their assumed error distribution. The so-
called model evidence p(y) in the denominator of Eq. (3)
simply plays the role of a normalizing constant in this con-
text. To solve this probabilistic inverse problem in practice,
various derivative-free ensemble-based DA schemes can be
used to estimate the posterior numerically by adopting parti-
cle and/or Gaussian approximations.

This problem formulation is implicitly conditioned on the
strong constraint (see Evensen et al., 2022) that the forward
model G is a perfect representation of reality. As George Box
humorously notes: even though all models are wrong, what
matters is the extent to which they are useful (Box, 1976).
From this perspective, synthetic experiments (described be-
low) are useful because the models are perfect by construc-
tion and thus useful for testing and comparing the DA algo-
rithms. In the real experiments, where we compare with inde-
pendent EC data, some of the mismatch between the EC es-
timates and drone-based inferences will undoubtedly be due
to the strong assumptions made in the respective approaches.
Given the level of realism in LESs, these structural model
errors that are introduced when moving the algorithm appli-
cation from synthetic to field data are likely dominated by
simplifications of topography and spatio-temporal flux vari-
ability. The Bayesian approach to inference also offers a way
to compare the relative usefulness of different models using

the model evidence (MacKay, 2003), although this will not
be pursued here.

2.1.1 LES model and parameters

The turbulence-resolving Parallelized Large-Eddy Simula-
tion Model (PALM) (Raasch and Schröter, 2001; Maronga
et al., 2015) version 6.0, is used as the forward model.
PALM solves the filtered Navier–Stokes equations and the
first law of thermodynamics with the Boussinesq approxi-
mation to explicitly resolve turbulent motions in the atmo-
spheric boundary layer. The effect of sub-grid-scale motions
on the flow is parameterized using the kinetic energy scheme
of Deardorff (1980) as the sub-grid model. It is widely used
in the boundary layer community to simulate neutral, stable,
and unstable boundary layers (Steinfeld et al., 2007; Cou-
vreux et al., 2020) as well as scalar transport (Ardeshiri et al.,
2020).

The number of grid points in the simulations is set to 256
by 256 longitudinally (along x) and laterally (along y) and
128 vertically (along z). The planar grid spacing is 10 m. Ver-
tically, the grid spacing is 5 m between the surface and the
height of 240 m, above which a grid stretching of 1.03 is ap-
plied. Thus, the modeling domain is 2560 m by 2560 m in the
x–y plane and 1950 m vertically. The computational grid is
chosen to be sufficiently fine to explicitly resolve small-scale
unorganized turbulence so that the sub-grid fluxes are small
compared to resolved-scale fluxes, even relatively close to
the surface. The size of the model domain is large enough
to include the evolution of large-scale organized structures
that can form in convective boundary layers and to mini-
mize the formation of superstructures that are larger than the
domain. Cyclic lateral boundary conditions are applied. Be-
tween the surface and the first grid level, a constant flux layer
with MOST (i.e., with stability correction) is assumed to con-
nect the surface to the atmosphere. Following Sühring et al.
(2019), each simulation starts with a constant potential tem-
perature and specific humidity profile to a height of 800 m,
above which a capping inversion with a vertical gradient of
1 K per 100 m for potential temperature and −0.5 g kg−1 per
100 m for specific humidity is used. To facilitate comparison,
we use the same simplifying assumptions as EC, namely ho-
mogeneity and stationarity of surface fluxes and flat terrain.

Boundary and initial conditions for H, LE, aerodynamic
roughness length (z0), initial potential temperature (θinit), ini-
tial specific humidity (qinit), and geostrophic wind speed at
the surface (ug) are varied in the LES ensemble simulations
according to prior distributions for each parameter (described
below). Of these six parameters, the primary interest is in H
and LE, while the remaining four parameters can be regarded
as “nuisance” parameters (Bretthorst, 1988; Jaynes, 2003;
Gelman et al., 2013). The nuisance parameters are still in-
ferred from the data but are then implicitly “integrated out”,
as we primarily focus on the marginal posterior distributions
of H and LE. Due to the planar-homogeneous surface, there
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is no need to use an extra parameter for the second lateral
component of the geostrophic wind speed at the surface.

Each simulation starts with a spin-up period during which
turbulence generation is triggered by adding artificial random
perturbations until turbulence starts to develop freely. The
time series of the maximum vertical wind velocity and the
resolved-scale turbulence kinetic energy shown in Figure S1
(see Supplementary material) indicate that 4680 s typically
suffices to achieve stationary turbulence statistics in most
simulations (corresponding to about 10 eddy turnover times).
Some ensemble members will represent parameter combi-
nations that hardly allow for a turbulent flow regime, e.g.,
during strongly stable conditions with very negative sensible
heat fluxes and low geostrophic wind speeds, and will there-
fore not develop stationary turbulence. Some of the prior pa-
rameter combinations might, in reality, also be physically im-
probable and would therefore yield extremely unlikely model
predictions. Consequently, the inferred posterior probability
will be low for such cases, given that the drone data were
generated under different regimes.

Figure 1 shows examples of ensemble members from an
ensemble of LES simulations as cross sections of poten-
tial temperature after the spin-up period. Heating of the sur-
face induces thermal convection in organized structures that
works together with shear-driven (mechanical) turbulence to
transport heat away from the surface and momentum towards
the surface. On average, this boundary layer gradually warms
up and humidifies over time in a manner that can be con-
sidered quasi-stationary after spin up. Spatial differences of
about 1.0 K can be seen in the surface layer in this simula-
tion. At the top of the boundary layer, warm and dry air is
mixed into the boundary layer (entrainment), while the cap-
ping inversion effectively limits turbulent mixing further up.
The x–y cross sections (Fig. 1, right) show a few of the spa-
tial structures that are typically included in the ensemble.

2.1.2 Prior distributions

The prior distributions for H and LE are set to be normal (i.e.,
Gaussian) distributions centered at 0 with standard deviations
of 150 W m−2 each. For ug and z0, log-normal prior distri-
butions were specified (to ensure strictly positive support)
with means (of the underlying normal distribution) of 0.7 and
−1.2 and standard deviations of 0.7 and 0.5, respectively.
The priors for θinit and qinit are set to be normal distributions
with mean values that are determined separately for each ex-
periment to account for the large differences in mean tem-
perature and humidity between our experiments. For these
variables only, we follow the empirical Bayesian approach
to constructing priors (Murphy, 2022) and determine these
mean values from the drone observations themselves based
on the observed temperature and humidity range. For the syn-
thetic experiments, we chose priors for θinit and qinit that in-
clude the true values but are not centered on them (approxi-
mately 0.5 standard deviations offset). This bias of the priors

for these nuisance parameters makes subsequent inference
more challenging and realistic. The standard deviation of the
priors of θinit and qinit are 0.3 K and 0.1 g kg−1, respectively.
These values relate to the observation errors described below.
To test the sensitivity to the uncertainty in initial conditions,
we also conducted synthetic experiments with narrower prior
distributions for θinit and qinit (0.06 K and 0.03 g kg−1), la-
beled “narrow init” below.

Note that we effectively use a so-called weakly informa-
tive prior (Banner et al., 2020) to limit the need for strong
background information about the parameters. Moreover, we
have adopted priors that are (or can be readily be transformed
to) Gaussian distributions, both for simplicity and because of
the assumptions in the ensemble Kalman-based methods (see
e.g., Carrassi et al., 2018) that we use. In theory, these meth-
ods assume a Gaussian prior and are thus closer to optimal
when this assumption is satisfied. In practice, we can satisfy
this assumption by using Gaussian anamorphosis techniques
to transform bounded physical variables to an unbounded
Gaussian space (Bertino et al., 2003; Aalstad et al., 2018).
We have also included the possibility to add further infor-
mation to these priors through correlations between individ-
ual parameters because we know that, in reality, some condi-
tions can make others more probable. For example, based on
experience from EC flux measurements, we see that a large
sensible heat flux makes a large latent heat flux more likely
(as necessitated by the energy balance), with typical correla-
tions of 0.5 to 0.8 in data from our sites. To accommodate
such prior knowledge, our framework allows us to draw cor-
related samples for the parameters from a joint prior distri-
bution with a specified covariance matrix. For the analysis of
the real-world drone measurements (later described), we pre-
scribe a prior correlation between H and LE of 0.5. All other
prior correlations are left at 0. For ease of interpretation in
the synthetic experiments, we kept the prior correlations be-
tween H and LE at 0.

2.1.3 Drone measurements, observations, and errors

Throughout this study, small multi-rotor drones equipped
with light-weight sensors for air temperature and relative
humidity are used along with a flight controller that esti-
mates the drone’s tilt angle for an indirect measurement of
the horizontal wind speed U . This drone system is used
for the real-world measurements and emulated for the syn-
thetic experiments. A thin type-K thermocouple connected
to a high-accuracy thermocouple amplifier (MCP9600, Mi-
crochip Technology, USA) is employed to measure air tem-
perature. A BME280 (Bosch, Germany) capacitive relative
humidity sensor is used, which also measures barometric
pressure (and thus elevation). These sensors sample every
10 s, which is slower than the actual response times of these
sensors and the time steps of our LES runs. In practice, these
sensors have slightly different response functions, with time
constants of a few seconds, but for simplicity, we consider the
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Figure 1. (a) Instantaneous potential temperature θ in the x–z cross section at the center of the domain for the truth run at 1 h simulation
time. The vertical axis is scaled with a power law function for better visibility of the boundary layer. (b) Instantaneous potential temperature
x–y cross section at 100 m height for the truth run (lower left panel) and eight typical ensemble members at 1 h simulation time. The color
scale is independent for each ensemble member and omitted for clarity, since we would like to emphasize relative differences in the spatial
structure of the turbulent fields. In all plots, the white box indicates the domain for possible drone measurements.

samples to represent near-instantaneous values (at least for
computing the mean observations). The data are converted to
potential temperature θ and specific humidity q (for which
the measurements of air pressure are used). Instead of mount-
ing an anemometer on the drone to measure wind, we follow
a common force-balance method using the drone’s tilt an-
gle during hovering to infer the wind speed (Neumann and
Bartholmai, 2015; Palomaki et al., 2017). The tilt angle is es-
timated by the drone’s state estimator (an extended Kalman
filter implemented in the PX4 flight stack) based on the flight
controller’s (Pixhawk 4, Holybro, China) IMU sensors. Us-
ing the quadratic drag law, the drag on the drone’s body can
be estimated as

D =mg tan(α)=
1
2
CDρAv

2 , (4)

wherem is the mass of the drone (1.9 kg), g the gravitational
acceleration (9.81 m s−2), CD the drone’s drag coefficient
(estimated as 2.8 using wind tunnel experiments; Neumann
and Bartholmai, 2015), α the tilt angle and ρ the air density
(both estimated by the flight controller), A the drone’s ex-
posed area (estimated as 150 cm2 from all directions), and v
the relative horizontal wind speed. When the drone hovers at
a fixed position, the horizontal wind speed U can be assumed
to be equal to v. This method does not explicitly account for
drag forces from rotor movements, which introduces addi-
tional uncertainty in the wind speed estimation. We used an
X500 kit (Holybro) as the drone platform, which typically
provides a total flight time of 15 min with the battery and
payload that we employed (see photos in Fig. 2).

The 10 s measurements of θ , q, and U are aggregated to
mean values of all measurements taken when the drone hov-

ers at a fixed position (denoted as θ , q, and U ). We addi-
tionally compute the differences between subsequent mean
values to add local mean gradients to our observations (de-
noted as 1θ , 1q, and 1U ). This is done in a cyclic manner
through the measurement locations so that the local gradient
at the first position is calculated as the difference to the last
location.

The assumed error statistics of these observations are
based on noise in the measurements caused by sensor imper-
fections and the mismatch between the scale of the observa-
tion and the scale of the model (representativeness error, see
van Leeuwen, 2015), which is typical in meteorological data
(Gandin, 1988). The related spatio-temporal representative-
ness errors are affected by the rotor wash from the drone that
mixes the air around the drone and makes its measurements
more representative for spatial scales similar to the LES grid
spacing. We first estimate the measurement error of the 10 s
samples and then calculate the corresponding observation er-
ror by scaling the standard deviation of the (near-) instanta-
neous measurement error with the inverse square root of the
number of samples that are temporally aggregated to an ob-
servation. Based on the central limit theorem (e.g., Chopin
and Papaspiliopoulos, 2020), the error model assumes this
observation error to be Gaussian, independent, and uncor-
related between different variables, which corresponds to a
diagonal observation error covariance matrix. Systematic er-
rors that occur for error distributions that are asymmetrically
distributed with respect to zero are assumed to be negligible.
This leads to the following definition for the diagonal obser-
vation error covariance matrix R ∈ Rd×d employed in this
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study:

R= diag
(
τ � σ 2

)
, (5)

where diag(·) is the diagonal operator that converts a vector
to a diagonal matrix, τ ∈ Rd is a scaling vector, � denotes
the element-wise product, and σ ∈ Rd contains the measure-
ment error standard deviation for each observation. The ele-
ments of the scaling vector are defined as follows:

τi =

{
1/S if mean,

2/S if local mean gradient,
(6)

where S is the number of measurement samples that are av-
eraged to form an observation. As elaborated in Sect. 2.2, we
test two types of flight plans. The first type involves step-wise
vertical profiles while the drones hover in place for a 2 min
averaging period with a 10 s sampling interval, such that
S = 12. The second type involves random exploration where
no averaging is performed, such that S = 1. In summary, fol-
lowing independent Gaussian error propagation, this obser-
vation error covariance matrix implies that observation er-
rors are uncorrelated, decrease with number of samples S in
an averaging period, and are larger for local mean gradients
than for means.

The elements of σ are determined by the measurement
error standard deviation of the respective sensors. For tem-
perature measurements on drones, observational errors stem
from radiative and adiabatic heating (due to air pressure fluc-
tuations around the drone), and typical absolute root mean
square errors are in the range 0.2 to 0.3 K (Wildmann et al.,
2013). Here, we assume a standard deviation of 0.3 K for
the measurement error. The standard deviation of the mea-
surement error for q is estimated as 3 % relative humidity
(corresponding to about 0.1 g kg−1 specific humidity at typ-
ical air temperatures) that is based on the stated accuracy of
the capacitive humidity sensor (BME280). For the horizontal
wind speedU , the standard deviation for the measurement er-
ror is conservatively estimated to be 2.0 m s−1. Other studies
using inertial measurement unit data of multi-copter drones
for wind estimation report measurement uncertainties of less
than 0.5 m s−1 (Palomaki et al., 2017), but since we did not
evaluate this uncertainty for our drones, we decided to use a
somewhat larger value to avoid underestimating this uncer-
tainty.

2.1.4 Data assimilation schemes

We implemented four data assimilation schemes and as-
sessed their performance for the problem at hand (i.e., in-
ference of H and LE). We used Ne = 100 model realizations
(referred to as “ensemble members” or “particles” in data as-
similation), each with a different set of parameter values, to
represent the prior probability distribution.

For the first scheme, the particle batch smoother (PBS)
introduced by Margulis et al. (2015) is used. The PBS is a

batch-smoother version of the particle filter that is widely
used in the snow data assimilation community (Fiddes et al.,
2019; Alonso-González et al., 2021). It is effectively a par-
ticle filter without resampling, tantamount to basic sequen-
tial importance sampling. This scheme is obtained by using a
particle representation, i.e., mixture of Dirac delta functions
δ(·), of the prior which serves as the proposal distribution to
perform importance-sampling-based Bayesian inference, as
outlined in Appendix A. The resulting posterior is effectively
a weighted sum of particles p(x|y)=

∑Ne
i=1wiδ(x− xi),

where the weights are given by the likelihood ratio

wi =
exp

(
−

1
2ε

T
i R−1εi

)
∑Ne
k=1exp

(
−

1
2ε

T
kR−1εk

) , (7)

in which (·)T denotes the transpose, and εi = y− ŷi are the
predicted observation errors where ŷi = G(xi) are the pre-
dicted observations from the forward model based on pa-
rameters that have been drawn from the prior x(i) ∼ p(x).
It has been shown that the direct application of basic par-
ticle methods (i.e., importance sampling using the prior as
the proposal) such as this often does not work well in high-
dimensional systems (Snyder et al., 2008), but several more
sophisticated variants are shown to have potential to over-
come this limitation (van Leeuwen et al., 2019).

For the second scheme, the classic (stochastic) version of
the ensemble smoother (ES) that involves perturbing the ob-
servations (van Leeuwen and Evensen, 1996; Burgers et al.,
1998) is implemented. Although van Leeuwen (2020) re-
cently showed that, to be consistent with Bayesian theory,
this stochastic scheme should perturb the predicted (i.e.,
modeled) observations rather than the actual observations,
this does not have any practical impact on the results due
to the symmetric nature of the Gaussian perturbations. The
ES scheme is a fixed-interval batch smoother version of the
widely used ensemble Kalman filter (EnKF; Evensen, 1994)
that assimilates all observations simultaneously in a batch
rather than sequentially. Such batch assimilation is more
suitable for the inverse problem pursued herein (Evensen,
2018). Ensemble Kalman filtering (EnKF) methods are suc-
cessfully used in data assimilation applications in meteorol-
ogy and oceanography, with tens of millions of dimensions
(Carrassi et al., 2018). While the EnKF assumes that the for-
ward model is linear and that all distributions are Gaussian,
it turns out that the EnKF is robust with respect to deviations
from these assumptions in many applications (Katzfuss et al.,
2016). These methods and the underlying equations are de-
scribed in Appendix B.

For the third scheme, we use the ensemble smoother
with multiple data assimilation (ES-MDA) (Emerick and
Reynolds, 2013). The ES-MDA is an iterative ensemble
smoother that has been suggested as a more viable alternative
to the non-iterative ES for highly non-linear forward mod-
els. In this iterative scheme, the same data are assimilated
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multiple times with an inflated observation error covariance
matrix to better handle the non-linear mapping between the
parameters of interest and the observations. In particular, the
gradual updating reduces the impact of the linear assump-
tion in the ES update step. Despite using the data more than
once, this iterative scheme remains consistent in a Bayesian
sense, since inflation is performed in such a way that the it-
erations are equivalent to assimilating the data once with a
linear model. At the root of these iterative schemes, we find
the idea of tempered transitions, which is a technique that is
widely used in challenging Bayesian inference tasks (Neal,
1996; Stordal and Elsheikh, 2015; Iglesias and Yang, 2021).
This tempering, in combination with its derivative-free im-
plementation, has placed iterative ensemble Kalman meth-
ods at the frontier of ongoing research in Bayesian inverse
problems (Stuart, 2010; Iglesias et al., 2013; Schillings and
Stuart, 2017), which is helping to both formalize, improve,
and generalize this family of methods (Garbuno-Inigo et al.,
2020; Iglesias and Yang, 2021; Cleary et al., 2021; Dunbar
et al., 2022a). The equations and workflow for the ES-MDA
scheme used herein are presented in Appendix B.

As a fourth scheme, a combination of the schemes de-
scribed above is developed and implemented in a particle-
adjusted iterative ensemble smoother (PIES). The PIES
scheme is obtained by using the output of an iterative en-
semble smoother, i.e., a Gaussian distribution, as the pro-
posal distribution in importance sampling, as outlined in Ap-
pendix A. Herein, we use the estimated Gaussian distribution
from the penultimate iteration of the ES-MDA scheme as the
proposal distribution. This new PIES scheme is an adapta-
tion of the weighted EnKF described elsewhere (Papadakis
et al., 2010) and the iterative ensemble smoothers. As with
the PBS, the resulting posterior is effectively a weighted sum
of particles p(x|y)'

∑Ne
i=1wiδ(x− xi), with weights given

by

wi =
exp

(
−

1
2ε

T
i R−1εi −

1
2 x̃

T
i C
−1x̃i +

1
2 x̂

T
i Ĉ
−1
x̂i

)
∑Ne
k=1exp

(
−

1
2ε

T
kR−1εk −

1
2 x̃

T
kC
−1x̃k +

1
2 x̂

T
k Ĉ
−1
x̂k

) ,
(8)

where x̃i = xi −µ are the anomalies from the prior mean
(µ), C is the prior covariance matrix, x̂i = xi − µ̂ are the
anomalies from the mean of the penultimate ES-MDA itera-
tion (µ̂), and Ĉ is the covariance matrix from the penultimate
ES-MDA iteration; the particles have been sampled from
the Gaussian distribution estimated from the penultimate ES-
MDA iteration such that xi ∼ N(µ̂, Ĉ) with predicted obser-
vations εi = y− ŷi with ŷi = G(xi). Importance sampling
is more effective the closer the proposal is to the target pos-
terior distribution (MacKay, 2003). So in theory, it would
be better to use the posterior estimate from the final (rather
than penultimate) iteration of the ES-MDA for the proposal
in PIES, but this would come at a high computational cost
of requiring an additional round of runs of the LES ensem-

ble. The motivation for pursuing the PIES scheme is that the
ES-MDA produces a biased approximation of the posterior
for non-linear forward models (Stordal and Elsheikh, 2015).
Although this bias is typically less severe than that of non-
iterative ensemble Kalman methods (Emerick and Reynolds,
2013), it would nonetheless be advantageous to find efficient
methods to reduce it. PIES is a straightforward translation
of the scheme of Papadakis et al. (2010) to iterative ensem-
ble smoothers such as the ES-MDA. As such, PIES can be
viewed as a simple extension of the ES-MDA that does not
necessarily impose any noticeable computational burden and
might improve performance. As with all particle methods,
the effective sample size can be used to diagnose degeneracy
in the ensemble of particles (Chopin and Papaspiliopoulos,
2020). A low (�Ne) effective sample size indicates degen-
eracy due to the fact that the proposal is too far from the
target posterior.

2.2 Synthetic experiments

To compare the performance of different DA schemes and
observation strategies, a set of so-called synthetic (or twin)
experiments were conducted. The experiments were per-
formed by extracting synthetic measurements from one for-
ward model run, labeled “truth”, where the true values of
each parameter are assumed to be known. These measure-
ments were then intentionally corrupted with noise based
on the assumed measurement error model and converted to
drone-based observations of mean values and local mean
gradients. The true values of the six parameters were cho-
sen to represent typical summertime conditions during day-
time above high-latitude wetlands with a sparse tree cover
(H = 160 W m−2, LE = 120 W m−2, z0 = 0.25 m, θinit =

294.1 K, qinit = 5.55 g kg−1, ug = 1.5 m s−1). Experiments
with higher wind speed using ug = 6.0 m s−1 were also per-
formed to test how increased mixing from mechanical tur-
bulence (as opposed to buoyancy-driven turbulence) and the
correspondingly reduced spatial gradients affect the drone
data assimilation flux estimates.

To evaluate the performance of the DA schemes, we use
standard point metrics such as the root mean square error
(RMSE) and bias (mean error) of the ensemble medians with
respect to the true values. To also measure the quality of the
entire ensemble, we employ the continuous ranked probabil-
ity score (CRPS; Hersbach, 2000), which is a widely used
score for ensemble verification in numerical weather predic-
tion that generalizes the mean absolute error to an ensemble.
It measures the distance between the entire ensemble and a
deterministic reference value, in our case the truth, with 0 be-
ing the best possible score that only occurs for a degenerate
ensemble centered on the truth. To quantify the overall infor-
mation gain in an experiment, we also calculate a Kullback–
Leibler divergence (KLD; see e.g. Murphy, 2022) that mea-
sures the distance between the posterior and prior distribu-
tion (Perez-Cruz, 2008). We use nats as a unit for informa-
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tion content, where 1 nat corresponds to the information con-
tent of an event when the probability of that event occurring
is 1/e. These four metrics quantify different aspects of the
fit and information gain of parameter distributions and can
hence give a more holistic evaluation of a synthetic experi-
ment.

Two different types of flight plans were used to generate
the observations, both adhering to most countries’ legal con-
straints that drones must not fly above altitudes of 120 m and
that they must stay within visual range (a lateral domain es-
timated to be 500 m by 500 m). Based on MOST, we expect
mean vertical gradients in measurements to increase towards
the surface. For the first type of flight plan, we thus used a
step-wise vertical profile with step sizes that increased with
altitude. In particular, given the limited flight time of small
multi-rotor drones, we used six vertical levels (at 10, 20, 30,
50, 70, and 100 m), with the drone hovering in place at each
level for 2 min. We also performed synthetic experiments
with flight times of 24 min, flying this step profile twice. The
second type of flight plan tested explores a larger spatial do-
main instead of hovering at a fixed position for 2 min. We
implemented this approach using a random walk with biased
directionality that is based on movement models used for bi-
ological systems (Codling et al., 2008). Here, every 10 s, the
drone can stay at its position or move 20 m laterally (x or y
dimension) and/or 10 m vertically (z dimension), i.e., moving
two LES grid cells. These moves are random, but to explore
a larger space, the probability to continue moving (or stay-
ing) in the same direction for each spatial dimension is 0.8
compared to a probability of 0.1 for the other two options.
Examples of these random exploration flights are shown in
Figure S2 (see Supplement). For this random exploration, the
instantaneous (10 s) measurements are assimilated as obser-
vations.

We also include the possibility of using multi-drone obser-
vations to test the performance of a mobile sensor network
on a drone swarm. For this purpose, we assume individual
drones to be identical in sensor specifications and flight time
corresponding to a so-called homogeneous swarm (see e.g.
Ferreira-Filho and Pimenta, 2019).

2.3 Field experiments

Field campaigns at two ecohydrological research sites with
different climatic conditions were conducted: a boreal wet-
land in south eastern Norway (Hisåsen, 61.11◦ N, 12.26◦ E;
elevation 680 m a.s.l.; mean annual air temperature 2.7 ◦C at
the closest weather station) and a palsa mire in the discontin-
uous permafrost zone in northern Norway (Iškoras, 69.34◦ N,
25.30◦ E; 355 m a.s.l.; mean annual air temperature −1.6 ◦C
at the closest weather station). Figure 2 shows photos of the
two sites to give an impression of the settings.

These sites feature independent flux measurements from
EC systems installed at 2.8 m a.g.l. at both sites. A CSAT3
sonic anemometer (Campbell Scientific) was used at Iškoras

and a HS50 (Gill) at Hisåsen. Both sites use an Li-7200 in-
frared gas analyzer (Li-Cor) for H2O mixing ratios. Raw data
from these instruments are sampled at 20 Hz and processed
to 30 min flux data following the FLUXNET convention im-
plemented in EddyPro version 6.2.0 (Li-Cor). We use block
average Reynolds decomposition to extract turbulent fluctu-
ations, an anemometer tilt correction by double rotation, a
constant time lag compensation, and a high- and low-pass
filter correction (Moncrieff et al., 2005, 1997). For quality
control, the flagging system proposed in FLUXNET (Foken
and Wichura, 1996) was adopted, and only flux data with
the highest quality (flag 0) were used here. A drone flight is
only considered successful if the EC fluxes of the 30 min in-
terval that contains the drone takeoff time meet this quality
condition. Along with the EC fluxes, EddyPro also estimates
their random error (the variance of the flux covariance) due
to sampling errors that arise from the small number of large
eddies that dominate the flux during typical sampling periods
following Finkelstein and Sims (2001).

One field campaign was conducted at the Iškoras site
in July 2020, resulting in two successful drone flights. At
Hisåsen, intensive campaigns were carried out in June 2020
with 12 successful flights, in October 2020 with one suc-
cessful flight, and in September 2021 with three success-
ful flights. An overview of the conditions and EC fluxes at
Hisåsen in June 2020 (see Fig. S3 in the Supplement) shows
that EC fluxes have best quality flags during daytime, with
random flux error estimates of around 10 W m−2.

We used the vertical step profile flight plan in all these
flights. As these drone measurements are taken at altitudes up
to 100 m a.g.l., the resulting flux estimates represent a larger
surface footprint area (kilometer scale) compared to the EC
method (tens to hundreds of meters). At both field sites, the
footprint of the EC tower is dominated by wetlands, while
the larger-scale surroundings feature forested areas with po-
tentially different turbulent heat flux characteristics.

3 Results

3.1 Synthetic experiments

Figure 3 shows the prior and estimated posterior distributions
for a synthetic experiment with observations from one drone
flying a step profile for 12 min. The PBS and PIES schemes
tend to assign most weight to only a few ensemble members.
These almost-degenerate posterior distributions are therefore
visualized by their central 95th percentile range instead of
their kernel-density-estimated probability density function in
Fig. 3. Both the ES and ES-MDA yield a posterior with a con-
strained spread that is approximately centered at the truth. In
this experiment, there is a marked information gain from the
prior and posterior of both the ES and the ES-MDA schemes,
with KLDs of 2.9 and 3.6 nat, respectively. The KLDs for
PBS and PIES are 4.6 and 6.5 nat, respectively, but the pos-
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Figure 2. Examples of field sites and equipment. (a) Eddy covariance tower at the Iškoras palsa mire. (b) Drone above the Hisåsen site
(photo by Pierre-Marie Lefeuvre). (c) Drone with sensors.

terior distributions are practically degenerate with effective
sample sizes of 1.0 and 1.2, respectively. The marginal dis-
tributions of both sensible heat flux H and latent heat flux LE
show a considerable update towards their true values when
moving from the prior to the posterior distribution, especially
for the ES-MDA, as evidenced by a low continuous ranked
probability score of about 12 W m−2 in this synthetic exper-
iment. In line with the KLD results, the ES-MDA gives a
smaller posterior spread compared to the ES, with a stan-
dard deviation of 37 W m−2 for H and 46 W m−2 for LE.
The slightly wider posterior spread for LE is expected due
to the relatively large observational error for specific humid-
ity, which contains most information about LE. We see that
the drone observations do not include much information to
constrain the roughness length z0, as this nuisance parameter
appears to be hardly updated. This lack of adjustment of z0
can be explained by the relatively large observational error
associated with the wind speed estimates. Hence, our prior
belief strongly governs the distribution of this parameter. It is
nonetheless important to account for uncertainty in this nui-
sance parameter so as to avoid overconfident and possibly
wrong inferences about the fluxes of interest. External infor-
mation, e.g., from remotely sensed land cover data, may help
constrain this parameter (see Sect. 4.2). The two parameters
for the initial conditions update slightly towards the true val-
ues of this synthetic experiment. We see a noteworthy equifi-
nality issue (Beven, 2006) related to the initial conditions in
the given problem. In the posterior parameter estimates, there

is a negative correlation between the parameters H and θinit
(R =−0.89), as well as between LE and qinit (R =−0.80).
This negative correlation suggests that an ensemble member
with low initial temperature and large sensible heat flux gives
similar temperature predictions as an ensemble member with
high initial temperature and small sensible heat flux. While
this may not be a surprising result, at least a posteriori (or
with hindsight), it emphasizes the importance of initial con-
ditions for drone-based surface flux estimations. Despite the
relatively large observational error associated with the wind
speed estimates, we see that ug updates considerably towards
the truth for all DA schemes.

Varying the sampling strategies (step profile vs. random
exploration), flight time (12 vs. 24 min), number of drones
(1 vs. 5), uncertainty in initial conditions (narrow vs broad),
and the geostrophic wind speed (1.5 vs. 6.0 m s−1) led to a
total of 16 synthetic experiments. Table 1 compares the four
DA schemes with respect to their evaluation metrics across
all synthetic experiments. The error-based evaluation met-
rics, i.e., the RMSE, bias, and CRPS, indicate that the ES-
MDA scheme performs best. For example, the ES-MDA pro-
vides a mean fractional improvement in RMSE of 76% rela-
tive to the prior, which is considerably higher than the other
schemes with values at 64% (PIES), 64% (ES), and 46%
(PBS). The ES-MDA scheme gives the largest information
gain from the prior to posterior, as indicated by its KLD.

Figure 4 shows the comparison of the ES-MDA (with two
iterations) posterior distributions for H and LE for our set
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Figure 3. Marginal parameter distributions for the prior (black) as well as the ES-MDA (with Na = two iterations, red), ES (blue), PBS
(yellow shading shows the central 95th percentile range), and PIES (green shading shows the central 95th percentile range) posterior estimates
along with the location of the truth (black dashed vertical line) in a synthetic experiment with one drone flying a step profile for 12 min.

Table 1. Average evaluation statistics across all 16 synthetic experiments for different DA schemes.

RMSE [W m−2] Bias [W m−2] CRPS [W m−2] KLD (post.||prior)
Scheme H LE H LE H LE [nat]

PBS 70.0 90.8 −49.8 −38.9 70.2 81.0 4.6
ES 36.4 73.7 13.7 −41.9 21.6 47.2 5.9
ES-MDA 29.2 43.0 4.3 −18.3 18.6 28.6 7.7
PIES 44.9 64.0 −7.7 −40.1 31.2 52.8 7.4
Prior 144.2 153.1 −144.2 −153.1 92.3 77.3 0.0

of synthetic experiments. Attention is drawn to the posterior
spread and whether the true flux values are encompassed by
the posterior distributions. For the case of one drone flying
one step profile, we see comparable results for high and low
wind speeds. Recall that the experiment with ug = 1.5 m s−1

corresponds to the experiment shown in Fig. 3. As expected,
increasing the flight time from 12 to 24 min, i.e., flying two
consecutive step profiles, narrows the posterior distributions
(but by less than a factor of 2). Using observations from five
drones flying step profiles, the posterior distributions become
even narrower while still encompassing the “truth”. A simi-
lar reduction in flux uncertainty is achieved by the narrower
priors for the initial conditions θinit and qinit. Using the bio-
logically inspired random-exploration flight strategy, we find

that several of the posterior distributions can become nar-
rower than their step-profile counterparts but do not always
include the true flux value, which is a symptom of the ES-
MDA assimilation results being overconfident. This effect
can be related to random exploration containing more obser-
vations (but without aggregation of multiple measurements)
compared to step profiles.

3.2 Field experiments

Figure 5 shows an example of the observed field data and
the posterior-predicted LES data by the ES-MDA scheme
from one flight at the Iškoras site. Both the drone observa-
tions and ensemble posterior predictions show an increase in
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Figure 4. Assessment of observation strategies from synthetic experiments with true H = 160 W m−2 and LE = 120 W m−2. Violins show
the kernel-density-estimated posterior distributions of surface sensible (a) and latent (b) heat fluxes obtained by the ES-MDA method with
two iterations. The caps of the violins mark the extrema of the ensemble, and the dots mark the mean values. Colors denote two different
wind speeds ug. The experiment with one drone flying a step profile corresponds to the case shown in Fig. 3. Flight plans for the different
observation strategies are shown in Fig. S2 in the Supplement.

potential temperature and specific humidity towards the sur-
face, indicating a positive H and LE. Due to the friction at
the surface, wind speeds tend to decrease at lower altitudes
and roughly follow the characteristic logarithmic mean wind
profile (modified by the stability effects of the given temper-
ature stratification) that MOST predicts for average values.
The measured mean values and local mean gradients are gen-
erally well reproduced by the posterior LES ensemble. There
is a small tendency that the measured profiles have stronger
vertical gradients in the lowest 30 m than the LES ensemble,
possibly indicating an effect at the field site that is not in-
cluded in LES runs, such as surface heterogeneity in sources
and sinks as well as roughness elements.

Figure 6 shows the surface flux comparisons with EC from
all the field experiments. For the sensible heat flux, good
agreement between the two methods is noted at both sites
with a high correlation coefficient (R = 0.90). The drone
data assimilation flux estimates tend to yield higher fluxes
than the EC method, which might be a real effect given
the different footprints of the two methods (i.e., wetlands
dominating the EC footprint have lower H and higher LE
than their surroundings). For the latent heat flux estimates,
the drone data assimilation typically yields larger flux un-
certainty, and the correlation with EC fluxes is only 0.40.
There is a particularly large deviation between the methods in
the three flights with the largest LE flux estimates from EC.
Again, this deviation could be due to real flux differences be-
tween the wetland-dominated vicinity of the EC tower and
the surrounding forest. We also emphasize that the EC fluxes
do not necessarily represent the “truth” in this comparison,
even though we only used EC estimates with the highest
quality flags. For the sum H+LE, which is constrained by the

available energy at the surface and may therefore be more ho-
mogeneous, the close agreement (RMSE= 58 W m−2) and
high correlation coefficient (R = 0.83) are noteworthy. As
the drone DA uncertainty estimates are largely a result of
our experimental design (flight time, sensor noise, etc.) and
the used prior distributions, all 18 flights show largely the
same epistemic uncertainty. For the EC estimates, error bars
in Fig. 6 only indicate the absolute aleatoric uncertainty due
to sampling limitations, which is expected to increase with
flux magnitude (Finkelstein and Sims, 2001).

4 Discussion

4.1 Potential and limitations of drone data assimilation

In this study, we show how ensemble-based data assimila-
tion of drone observations in an LES model can realistically
estimate homogeneous and stationary surface energy fluxes.
Using the same assumptions as the EC technique, we find
acceptable agreement of these two independent methods un-
der field conditions where the assumptions are only approx-
imately fulfilled, particularly for the sensible heat flux. The
agreement of the methods is worse for the latent heat flux,
especially at high EC estimates of LE. Since wetland LE is
known to increase more than forest LE with increasing vapor
pressure deficits (Helbig et al., 2020), this deviation could
be due to the larger footprint of the drone data assimilation
method covering more of the wetland–forest mosaic at our
sites. This hypothesis could be tested in a future study with
additional measurements using scintillometers, which yield
fluxes that are more representative for larger areas than EC.
The new method operates over a large range of heat fluxes
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Figure 5. Drone observations and posterior ensemble predictions from the ES-MDA for flight 1 of the Iškoras campaign, a step profile on
27 July 2020 with takeoff at 15:20 local time. The upper panels show the successive 2 min mean values, whereas the lower panels show the
local mean gradients. The line colors of the vertical profiles for the Ne = 100 posterior ensemble members from the ES-MDA correspond to
their log likelihood, with more likely values in yellow and less likely values in blue. The prior predictions are not shown because their range
is so wide that one could not see any details in the posterior profiles.

Figure 6. Comparison of flux estimates by EC towers and drone data assimilation, as estimated by posterior distributions of the ES-MDA
method with two iterations, for a total of 18 separate flights at two different sites. Error bars for drone data assimilation fluxes indicate the
interquartile range, and points indicate the median value. Error bars for EC fluxes indicate the random flux error estimated by EddyPro.

and wind speeds, but it remains to be tested how strongly
stable conditions (e.g., during nighttime and/or winter) affect
the technique.

The basis for these results is that drone measurements and
LESs capture variability at approximately the same spatial
and temporal scales. During hovering, the drone position is
kept fixed to within about 1 m based on GPS and barome-
ter measurements. The drone’s rotor wash, however, creates
local mixing of air so that the temperature and humidity mea-

surements represent a volume average around the drone, with
a scale similar to the LES grid resolution. Incidentally, the
LES time steps are at approximately the same temporal scale
as sensor response times. In future studies, any remaining
representativeness errors can also, in theory, be accounted for
formally in the data assimilation framework by using an ap-
propriate observation operator (van Leeuwen, 2015). How-
ever, a remaining limitation is that the LES output at grid
levels close to the surface is affected by the sub-grid scheme
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and the coupling to the surface, which is typically conducted
using MOST.

Using typical sensor configuration and flight times of
small drones, we find a relatively large posterior spread of the
surface fluxes compared to the uncertainty estimates of the
EC technique that solely account for sampling errors arising
from the small number of large eddies captured in the 30 min
flux interval. While this may be expected given the non-linear
and chaotic nature of the turbulent transport process, the un-
certainty estimate here is based on explicitly stated error dis-
tributions of the observations and epistemic uncertainties in
the dynamical system related to initial and boundary condi-
tions and parameters. It is therefore feasible to study and re-
duce flux uncertainties in our framework. For example, fur-
ther observing system simulation experiments can be carried
out to test the impact of sensor quality, observation strategies,
and large-scale meteorological forcing (see Sect. 4.2).

Drone flux estimation provides a relatively low-cost and
mobile complement to traditional methods like EC. Most ap-
plications of drones are currently still restricted to manual
flights with a human pilot in charge of the system (see, e.g.,
Bassi (2020) for a discussion of European airspace regula-
tions). For fully automated and continuous drone flux mea-
surements, a number of engineering and legal limitations
need to be overcome. Nonetheless, even under the current
constraints, the resulting flux temporal snapshots cover a
much larger area than the typical EC footprints and can there-
fore be more suitable for large-scale aggregate flux measure-
ments. These snapshots may thus assist Earth system model
improvement through targeted testing of different process
formulations and parameter settings, e.g., for new plant func-
tional types (Dagon et al., 2020) or snow schemes (Aalstad
et al., 2018).

Furthermore, it is worth highlighting that trace gas fluxes
can also be estimated with this drone data assimilation tech-
nique, which would be particularly relevant for CO2 and
methane emissions from heterogeneous permafrost environ-
ments (Pirk et al., 2017). Gas concentration measurements
from drones are already emerging as a cost-efficient tool for
the petroleum industry (Asadzadeh et al., 2022) and the agri-
culture sector (Daube et al., 2019), where greenhouse gas
emissions can contribute to climate warming. Drone data as-
similation could thus be a valuable tool to help monitor such
hidden – and sometimes avoidable – emission sources.

4.2 Possible improvements

Improved surface flux inferences can be achieved in a num-
ber of different ways, including technical improvements dur-
ing data collection, such as using higher quality sensors and
more drones, better quantifying initial and boundary con-
ditions, and modifying the data assimilation framework by
using a larger ensemble size to improve the Monte Carlo
approximation, more assimilation cycles to better account
for nonlinearity, emulators to increase the smoothness of the

likelihood function (Cleary et al., 2021), and a higher spa-
tial resolution of the LES model to reduce structural model
errors. The present study shows a choice of settings that we
intuitively considered reasonable or practically possible, but
more work should go into systematically exploring the many
orthogonal dimensions involved in the optimal experimental
design of the drone data assimilation framework.

More effort could also go into formulating the priors, es-
pecially because some parts of the covered parameter space
might, in reality, be physically improbable (e.g., inclusion of
the energy balance). Our framework allows one to add further
information to the priors through correlations between indi-
vidual parameters, which we only used for H and LE in our
field experiments. The effect of these prior parameter correla-
tions was mostly a slightly more effective exploration of the
parameter space, but future studies could investigate how this
feature can be used to reduce the computational costs of ex-
pensive models like LESs. Other parts of the parameter space
could be constrained based on independent information, for
example, by using downscaled reanalysis datasets that com-
bine other Earth observation data (e.g., Fiddes et al., 2019;
Alonso-González et al., 2021). A complementary approach
could also be to directly incorporate land cover information,
e.g., from satellite retrievals (Aalstad et al., 2020), into the
design of flux maps in the turbulence simulation, as was done
in van der Valk et al. (2022). The boundary layer height or the
height of the prescribed capping inversion has been assumed
to be known herein and was thus not included as a nuisance
parameter in the DA scheme. Future studies should further
test the validity of this assumption and explore the sensitiv-
ity of drone flux measurements to entrainment fluxes at the
top of the boundary layer, which are known to affect turbu-
lent quantities in the surface layer (van de Boer et al., 2014).

An extension of the list of uncertain parameters should
ideally also be accompanied with the inclusion of more ob-
servational constraints. In the current study, we assimilated
observations of the mean values over short periods of times
and their local mean gradients. Higher order moments (such
as variances and covariances), atmospheric structure func-
tions (Arenas and Chorin, 2006), or other features could also
be used to capture more information from the drone measure-
ments in future studies.

The flight strategy used for the collection of observations
could also be optimized. The determination of the optimal
sampling strategy for mobile sensors networks (giving sparse
and noisy data) can more generally be regarded as an exam-
ple of the exploration–exploitation dilemma (Box and Youle,
1955; Friston et al., 2015). In practice, the choice or trade-
off between fewer, high-quality observations and more, low-
quality observations becomes an active choice of the inves-
tigator. We have only tested two simple strategies: (i) what
we called an intuitive approach that involved flying a ver-
tical step profile with averaging times of 2 min, and (ii) a
more exploratory approach based on directed random walks
without averaging. The results indicate that both methods can
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constrain the surface fluxes, but random exploration with-
out averaging multiple measurements for an observation can
give biased flux results. These biases are likely due to short-
comings of the assimilation schemes used when dealing with
strongly non-linear forward models rather than the sampling
strategy itself and so could be alleviated by improving the
assimilation algorithms. Future studies could moreover for-
malize and optimize the trade off between exploration and
exploitation more specifically, using a calibrate–emulate–
sample framework (Cleary et al., 2021; Dunbar et al., 2022b)
to determine the optimal strategy for a given flux-mapping
task.

While we only applied drone data assimilation to cases
with homogeneous and stationary surface fluxes and flat ter-
rain (as a logical first step to facilitate comparability with
EC), it is clear that the method can also explicitly account
for more realistic representations of these effects. Complex
terrain and flux heterogeneity can be explicitly included in
the LES steering data, and some field sites might even re-
quire a more detailed LES setup to account for energy flux
heterogeneity (Ramtvedt and Pirk, 2022). Representing the
mesoscale meteorological setting more realistically could
also be achieved through a newly developed mesoscale nest-
ing of PALM (Lin et al., 2021). Finally, even non-stationary
fluxes could be included by going from a smoothing to
a filtering data assimilation framework. This might, in fu-
ture, help to complement EC measurements and maybe even
improve on them by identifying assumption violations that
are causing the energy balance closure problem of the EC
method (Stoy et al., 2013).

4.3 Data assimilation schemes for turbulent transport

Spatio-temporal data assimilation with LESs is relatively
complex mathematically and not commonly studied. In this
case, the forward model for the data assimilation becomes
highly non-linear, which violates the assumptions of com-
monly used methods for higher-dimensional problems, such
as ensemble Kalman filters and smoothers. To avoid biased
results, the degree of violation must be reduced, which can
be achieved by the iterative approach implemented in the
ES-MDA scheme. Our results, particularly Fig. 3 and Ta-
ble 1, show that the ES-MDA scheme can markedly out-
perform both the ES and the particle-based methods tested
herein. These findings are in close agreement with earlier
snow data assimilation experiments (Aalstad et al., 2018;
Alonso-González et al., 2022) that compared these schemes
with similarly (i.e., medium) sized parameter spaces, albeit
with considerably less complex forward models. For rela-
tively small numbers of iterations, it was suggested that non-
uniform error inflation for the sequence of assimilation cy-
cles (leading to non-uniform update steps) could be benefi-
cial for the results of the ES-MDA scheme (Evensen, 2018).
We tested this idea in a small number of synthetic experi-
ments (not shown) but did not find a striking improvement

of the results. Still, we are of the opinion that related ideas
to improve the tempering should be tested more extensively
in future studies, for example, by following the adaptive ap-
proach outlined by Iglesias and Yang (2021).

The PBS scheme is less affected by this problem, but a
six-dimensional parameter space is already so large that the
method cannot effectively represent the posterior distribution
due to the curse of dimensionality that plagues importance-
sampling-based methods (Snyder et al., 2008). The PIES
scheme presented here aims to overcome this issue by com-
bining the ES-MDA scheme with the PBS scheme to take ad-
vantage of their individual strengths. In particular, the PIES
scheme is (unlike the PBS) not confined to simply weighting
the initial samples drawn from the prior. Instead, a proposal
distribution based on the ES-MDA is used to guide the at-
tention of the importance sampling to areas of higher poste-
rior probability mass. As such, we see that the PIES scheme
markedly outperforms the PBS in terms of RMSE (see Ta-
ble 1) but nonetheless still suffers from degeneracy. To fur-
ther improve the PIES scheme, and potentially avoid degen-
eracy, future studies could explore the possibility of using
more iterations in the ES-MDA that is used for the proposal
distribution. An alternative path would be to explore iterative
particle methods (Chopin and Papaspiliopoulos, 2020).

We have not used the gold standard technique for Bayesian
inference, namely Markov chain Monte Carlo methods (e.g.,
MacKay, 2003; Gelman et al., 2013), because our likelihood
evaluations are so expensive that the sequential exploration
of the parameter space with tens or even hundreds of thou-
sands of steps would not be possible in a realistic time frame.
New data assimilation schemes, some of which are specifi-
cally designed to handle problems with expensive likelihoods
(Garbuno-Inigo et al., 2020), could open new possibilities for
drone flux measurements. Among these schemes, a partic-
ularly promising route could be to explore the adoption of
machine-learning-based emulators (Cleary et al., 2021) and
active learning (e.g. Murphy, 2022) as steps to further im-
prove the posterior estimates without considerably increasing
the computational cost. The majority of this computational
burden stems not primarily from the update steps themselves
but rather from the need to iteratively run an ensemble of
LESs. The cost of running a single LES with PALM given
our experimental setup is, on average, in the order of 50 CPU
hours. The cost of running PALM with a particular parameter
combination varies considerably given the adaptive time step
in PALM, but this average cost gives an indication of the con-
siderable computational effort involved. As such, the compu-
tational cost of the DA schemes can be measured directly in
terms of the number of runs of LES (Nr) required to infer the
posterior flux estimates. Herein, these fluxes are parameters
rather than states, so we do not strictly need to run poste-
rior predictions, thus lowering the computational costs. Still,
the ES-MDA with Na = 2 iterations and Ne = 100 ensem-
ble members requires Nr =Na×Ne = 200 LESs. The PIES
scheme requires exactly the same number of LESs as the ES-

https://doi.org/10.5194/amt-15-7293-2022 Atmos. Meas. Tech., 15, 7293–7314, 2022



7308 N. Pirk et al.: Drone data assimilation in LESs

MDA. The non-iterative ES and PBS schemes, on the other
hand, have a lower cost of Nr =Ne = 100 LESs. Performing
these DA schemes together in the same experiment, i.e., with
the same prior ensemble, has a lower cost than running them
separately. In particular, while running the ES-MDA, all the
other schemes can effectively be run for free as benchmarks
without the need for any additional LESs. The total num-
ber of LESs undertaken in this study was nonetheless con-
siderable given that we performed 16 synthetic experiments
and 18 real experiments, each with Nr = 200, amounting to
a total of around 6800 LESs. It is worth noting that this is
still considerably less than the cost of a single Markov chain
Monte Carlo experiment, which typically requires in the or-
der of 105 model evaluations. Nonetheless, the cost of these
simulations placed a considerable constraint on the number
of experiments we could perform to explore an otherwise
vast space of design choices that should be investigated in
future studies.

5 Conclusions

To facilitate the development of drone flux measurements, a
data assimilation framework for estimation of turbulent heat
fluxes at the surfaces from sparse and noisy drone-based ob-
servations is presented using LESs as a forward model. This
framework allows explicit representation of the sequential
collection of drone data, accounts for sensor noise, and in-
cludes uncertainty in boundary and initial conditions during
the flux estimation. Different data assimilation schemes have
been shown to markedly constrain the surface fluxes by using
drone observations, with the ES-MDA scheme outperform-
ing the three other tested schemes. Both synthetic and field
experiments show promising results for homogeneous and
stationary fluxes, which are in reasonable agreement with in-
dependent EC flux estimates. Increasing flight times, using
observations from multiple drones, and narrowing the prior
distributions of the initial conditions are viable methods to
further improve flux results. Sampling strategies prioritizing
spatial exploration instead of temporal averaging at fixed po-
sitions enhance the non-linearities in the forward problem
and can lead to biased flux results.

While the comparison here uses the simplifying assump-
tions of flux homogeneity, stationarity, and flat terrain, we
emphasize that the drone data assimilation framework is not
confined to these assumptions (as long as they can be ac-
commodated in the forward model) and can thus readily be
extended to more complex cases in future studies. Future ef-
fort could aim to apply this framework to estimate gas fluxes
of, e.g., CO2 and methane, which would be another valuable
contribution to Earth system science.

Appendix A: Particle methods

Importance sampling lies at the core of particle (or sequen-
tial Monte Carlo) methods such as PIES and PBS. Rather
than directly sampling from a target distribution of interest,
this sampling method estimates expectations with respect to
a target distribution through indirect Monte Carlo integration
by drawing from a proposal (also known as importance) dis-
tribution that is easier to sample from (MacKay, 2003). In
DA, and in Bayesian inference more generally, the posterior
is the target distribution of interest, and the expectation of
some functions g(x) with respect to the posterior is defined
as (Särkkä, 2013)

E
[
g(x)|y

]
=

∫
g(x)p(x|y)dx , (A1)

where, for example, the expectation of g(x)= x yields the
posterior mean. GivenNe independent samples from the pos-
terior, xi ∼ p(x|y), we could approximate the expectation
in Eq. (A1) numerically using direct Monte Carlo integra-
tion through E

[
g(x)|y

]
'

1
Ne

∑Ne
i=1g

(
x(i)

)
. Due to the law

of large numbers and the central limit theorem, this approxi-
mation will converge almost surely to the true expectation as
Ne→∞with a standard error inversely proportional to

√
Ne

(Chopin and Papaspiliopoulos, 2020). In practice, it is rarely
possible to generate independent samples directly from the
posterior.

In importance sampling, we adopt a tractable proposal dis-
tribution q(x) with (at least) the same support as the poste-
rior. Multiplying the integrand with 1= q(x)/q(x), Eq. (A1)
can be expressed as

E
[
g(x)|y

]
=

∫
g(x)

p(x|y)

q(x)
q(x)dx '

1
Ne

Ne∑
i=1

g(xi)ŵi , (A2)

where the scheme draws from xi ∼ q(x) so that the nor-
malized weights can be defined as ŵi = p(xi |y)/q(xi). An
obstacle remains in that we can only directly evaluate the
unnormalized posterior f (x)= p(y|x)p(x) and not the ev-
idence p(y) in the denominator of Eq. (3) because it is
the integral of f (x). Nonetheless, we can also approxi-
mate the evidence with importance sampling through p(y)=∫
f (x)dx ' 1

Ne

∑Ne
i=1w̃i , where w̃i = f (xi)/q(xi) are the

unnormalized-weights. With this evidence approximation,
we can now approximate Eq. (A1) as

E
[
g(x)|y

]
=

∫
g(x)f (x)

q(x)p(y)
q(x)dx '

1
Ne

Ne∑
i=1

g(xi)wi ,

(A3)

where the (auto-normalized) weights are given by wi =

w̃i

[∑Ne
k=1w̃k

]−1
with the property being the

∑Ne
i=1wi = 1.

To ensure numerical stability, we use the log-sum-exp trans-
formation when computing these weights (Murphy, 2022).
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The PBS scheme is obtained by using the prior as the pro-
posal, i.e., q(x)= p(x), where Eq. (7) is for the particular
case of a Gaussian prior and the likelihood used herein. Sim-
ilarly, the novel PIES scheme in Eq. (8) is obtained by using
the Gaussian distribution N(µ̂, Ĉ) from the penultimate ES-
MDA iteration as the proposal distribution.

As a final point, we emphasize that importance sampling
results in a particle representation of the posterior through a
sum of weighted Dirac delta functions centered on the sam-
pled states xi ∼ q(x) of the form p(x|y)'

∑Ne
i=1wiδ(x−

xi) (Särkkä, 2013). This point can be appreciated by recall-
ing that the Dirac delta has the properties

∫
δ(x−xi)dx = 1

and
∫
g(x)δ(x−xi)dx = g (xi) so that, if we insert the par-

ticle representation in Eq. (A1), then

E
[
g(x)|y

]
'

∫ Ne∑
i=1

g(x)wiδ (x− xi) dx =
Ne∑
i=1

g(xi)wi ,

(A4)

which is the same as the result in Eq. (A3). Under this par-
ticle representation, we can conceptualize the posterior dis-
tribution as a set of particles (or points) in parameter space,
whose probability masses are given by their weights.

Appendix B: Ensemble Kalman methods

The ensemble Kalman filter (EnKF; Evensen, 1994) is a
Monte Carlo version of the Kalman filter (Jazwinski, 1970;
Särkkä, 2013). These schemes both make a Gaussian lin-
ear assumption on top of the usual filtering assumptions of
Markovian dynamics and conditionally independent obser-
vations. When these assumptions are satisfied, the exact fil-
tering distribution is a Gaussian that is available analytically
in closed form through the Kalman filtering equations. Un-
like the original Kalman filter, the EnKF can still be used
when these assumptions are violated. In fact, it is remark-
ably robust with respect to such violations, which explains
why it is a widely used method for the typically nonlin-
ear and high-dimensional problems that arise in geoscien-
tific data assimilation (Carrassi et al., 2018). These ensem-
ble Kalman methods can also be applied to solving more
general smoothing problems in which asynchronous obser-
vations are assimilated (Cosme et al., 2012). The ensemble
smoother (ES; van Leeuwen and Evensen, 1996), a batch-
smoother version of the EnKF, and its iterative variants such
as the ES-MDA (Emerick and Reynolds, 2013) have been
shown to be particularly useful in the context of estimating
static parameters in inverse problems (e.g. Evensen, 2018;
Aalstad et al., 2018; Evensen, 2019; Garbuno-Inigo et al.,
2020; Cleary et al., 2021; Alonso-González et al., 2022).

Here, the equations for both the stochastic ES and the
ES-MDA are presented while noting that a full deriva-
tion of the ensemble Kalman analysis equations can be
found elsewhere (e.g. Evensen et al., 2022). Let Na de-

note the number of assimilation cycles, then for the ES,
we set Na = 1, while for the ES-MDA Na > 1, typically
with Na = 4. The superscript ` indexes these iterations. Let
X(`) =

[
x
(`)
1 , . . .,x

(`)
i , . . .,x

(`)
N

]
denote them×Ne parameter

matrix containing the ensemble (i = 1, . . .,Ne) of parame-
ter vectors x(`)i for iteration `. The subset of these param-
eters that are physically bounded have undergone the rel-
evant analytic transformations for Gaussian anamorphosis
(Bertino et al., 2003; Aalstad et al., 2018), and the corre-
sponding inverse transforms are applied back to physical
space when these are passed through the forward model G.
Similarly, let Ŷ(`) =

[̂
y
(`)
1 , . . ., ŷ

(`)
i , . . ., ŷ

(`)
N

]
denote the pre-

dicted observation matrix containing the ensemble of pre-
dicted observations ŷ(`)i = G

(
x
(`)
i

)
. Then these stochastic

ensemble Kalman methods proceed by initially drawing the
initial parameters from the prior x(`=0)

∼ p(x) then for `=
0 : (Na− 1) iterations:

X(`+1)
= X(`)+K(`)

[
Y−

(
Ŷ(`)+E(`)α

)]
, (B1)

where Y is an d ×Ne matrix with Ne copies of the obser-
vation vector y, while the observation error term is E(`)α =√

α(`)R1/2ζ (`), in which ζ (`) is an d ×Ne matrix containing
draws from a standard Gaussian N(0,1), and α(`) =Na is the
observation error inflation coefficient. The so-called (ensem-
ble) Kalman gain K(`) is the m× d matrix

K(`)
= C(`)

XŶ

(
C(`)

ŶŶ
+α(`)R

)−1
, (B2)

where C(`)
XŶ
=

1
N

X(`)′Ŷ(`)′T and C(`)
ŶŶ
=

1
N

Ŷ(`)′Ŷ(`)′T are the
m×d parameter-predicted observation covariance matrix and
the d × d predicted observation covariance matrix, respec-
tively, in which primes (·)′ denote deviations from the en-
semble mean.
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