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Abstract. Due to rapid urbanization and intense human ac-
tivities, the urban heat island (UHI) effect has become a more
concerning climatic and environmental issue. A high-spatial-
resolution canopy UHI monitoring method would help better
understand the urban thermal environment. Taking the city
of Nanjing in China as an example, we propose a method for
evaluating canopy UHI intensity (CUHII) at high resolution
by using remote sensing data and machine learning with a
random forest (RF) model. Firstly, the observed environmen-
tal parameters, e.g., surface albedo, land use/land cover, im-
pervious surface, and anthropogenic heat flux (AHF), around
densely distributed meteorological stations were extracted
from satellite images. These parameters were used as inde-
pendent variables to construct an RF model for predicting
air temperature. The correlation coefficient between the pre-
dicted and observed air temperature in the test set was 0.73,
and the average root-mean-square error was 0.72 ◦C. Then,
the spatial distribution of CUHII was evaluated at 30 m res-
olution based on the output of the RF model. We found that
wind speed was negatively correlated with CUHII, and wind
direction was strongly correlated with the CUHII offset di-
rection. The CUHII reduced with the distance to the city cen-
ter, due to the decreasing proportion of built-up areas and re-
duced AHF in the same direction. The RF model framework
developed for real-time monitoring and assessment of high
spatial and temporal resolution (30 m and 1 h) CUHII pro-
vides scientific support for studying the changes and causes

of CUHII, as well as the spatial pattern of urban thermal en-
vironments.

1 Introduction

Throughout the world, cities have formed rapidly due to pop-
ulation growth and people gathering in certain areas to settle
and build their lives. Such urbanization brings not only eco-
nomic development but also the urban heat island (UHI) phe-
nomenon (Oke, 1982; Mirzaei, 2015; Cao et al., 2016; Zhao
et al., 2020). Two major types of UHIs can be distinguished:
(a) the canopy urban heat island (CUHI) and (b) the surface
urban heat island (SUHI). The particular type of UHI is de-
fined based on the height above the ground at which the phe-
nomenon is observed and measured (Oke, 1982). The UHI
effect has become an indisputable fact and brings adverse im-
pacts on urban ecology and energy consumption (Roth, 2007;
Yang et al., 2019; Y. Yang et al., 2020b; Zheng et al., 2020).
UHIs amplify thermal stress, so people residing in urban ar-
eas are more impacted during heatwave episodes (Koken et
al., 2003; Estrada et al., 2017). A recent study of the global
UHI predicted that about 30 % of the world’s population is
exposed to lethal high temperatures for at least 20 d yr−1, and
by 2100, this proportion was projected to reach 48 % (Mora
et al., 2017). UHIs also have the potential to impact vege-
tation phenology (Kabano et al., 2021), diurnal temperature

Published by Copernicus Publications on behalf of the European Geosciences Union.



736 S. Chen et al.: A monitoring approach of canopy urban heat island

range (Argüeso et al., 2014), water consumption, and general
thermal comfort (Salata et al., 2017). Due to its negative im-
pacts, the UHI effect has become a key challenge in achiev-
ing urban sustainability, and assessing this phenomenon has
attracted increasing interest over the last decade or so (Cor-
burn, 2009; Pandey et al., 2014; Malings et al., 2017). In
general, both background weather conditions (e.g., the wind
vector and heatwaves) and city-specific characteristics (in-
cluding the presence of urban green space, properties of
built-up materials, and the intensity of human activity) in-
fluence the UHI’s mean intensity and variation (Zhao et al.,
2014; Manoli et al., 2019). Concerning these factors, the UHI
also shows significant intracity variability since urban areas
are highly heterogeneous. Therefore, exploring the formation
and causes of UHIs is crucial for decision-makers involved
in the planning of urban developments and allocating public
resources.

There are two main approaches to studying UHIs: numeri-
cal simulation and observation. Numerical simulation can re-
duce the need for a large number of observations and reveal
mechanistic insights by investigating the impacts of cities on
meteorological variables (Chun and Guldmann, 2014; Zou et
al., 2014; Zhang et al., 2015; Taleghani et al., 2016; Li et
al., 2020). For instance, Zhang et al. (2015) investigated the
influence of land use/land cover (LULC) and anthropogenic
heat flux (AHF) on the structure of the urban boundary layer
in the Pearl River Delta region, China, through a series of
numerical experiments. However, it is important to acknowl-
edge that numerical simulation is a simplification of the real
world and cannot replace actual observations. Observational
studies of UHIs are arguably more robust in their findings
(Hu et al., 2016; Chakraborty and Lee, 2019; Dewan et al.,
2021) and can mainly be categorized into the following three
methods: (1) in situ (field) measurement, (2) mobile mea-
surements, and (3) remote sensing technology.

In situ (field) measurements include conventional mea-
surements from national meteorological stations which are
usually located in rural areas and high-density microclimate
observations from experiments or high-density automatic
sites over various underlying surfaces. It is easy to compare
long-term series of air temperature (AT) between urban and
rural stations based on meteorological observation data (Liu
et al., 2006, 2008; Qiu et al., 2008; Yang et al., 2012; Scott
et al., 2018; Nganyiyimana et al., 2020). With the analysis
of meteorological data in a long time series, the contribution
and trend changes of UHI intensity (UHII) can be clearly
discovered. Meanwhile, however, due to the limitations of
meteorological sites in terms of their spatial representation,
it is difficult to build a comprehensive understanding of the
spatial distribution of urban thermal environment parameters
(such as urban canopy temperature, land surface temperature
(LST) and vegetation) (Liu et al., 2008; Nganyiyimana et al.,
2020). To overcome these limitations, high-density observa-
tion stations are used to explore the spatial distribution of the
urban thermal environment and its relationship with the sur-

rounding environment (Hu et al., 2016; Bassett et al., 2016;
Ching et al., 2018; An et al., 2020). Deploying denser ob-
servation stations or urban microclimate surveys can to some
extent compensate for the limitation of a coarse spatial reso-
lution. However, such approaches are usually unsuitable for
large-scale studies due to restrictions imposed by certain nat-
ural conditions, social activities, as well as the high cost of
construction and maintenance (An et al., 2020). For exam-
ple, mobile transect surveys have been used in many studies
(Merbitz et al., 2012; Akdemir and Tagarakis, 2014; Hankey
and Marshall, 2015; Al-Ameri et al., 2016; Liu et al., 2017;
Popovici et al., 2018), as they can easily obtain the distribu-
tion of parameters along a designed route using only a set of
equipment attached to a mobile vehicle. However, it is rather
costly to obtain observations at a fine resolution, broad cov-
erage, and high synchronicity with such an approach.

To overcome these possible issues, LST data from aerial
sensors and Earth-observing satellites are commonly em-
ployed in UHI studies, and so remote sensing data such as
those from the Advanced Very High Resolution Radiometer
(AVHRR) (Roth et al., 1989; Caselles et al., 1991; Gallo et
al., 1993a), Landsat (Chen et al., 2007; Zhou et al., 2015;
Zhao et al., 2016), MODIS (Peng et al., 2012; Zhou et al.,
2015; Li et al., 2017; Yang et al., 2018; Chakraborty and
Lee, 2019), aerial images (Buyadi et al., 2013; Heusinkveld
et al., 2014; Yu et al., 2020), and so on (Zhao et al., 2020;
Gallo et al., 1993b; Qin et al., 2001; Chakraborty et al.,
2020) are widely used to explain the spatial distribution of
the surface UHI and its relationship with the local environ-
ment (e.g., LULC). Remote sensing data have good applica-
tion prospects, as they can provide fine resolution and wide
data coverage at times when other ground-based observa-
tions cannot. However, due to the influence of precipitation
and clouds, the retrieval of LST sometimes can be challeng-
ing. In addition, each satellite remote sensing dataset has its
own characteristics (Zhao et al., 2016; Chakraborty and Lee,
2019). For example, Landsat images have a high spatial reso-
lution (30 m) that can show urban block sizes, but the tempo-
ral resolution is rather low (16 d). The MODIS LST dataset
has the advantage of high temporal resolution (four times
per day), but the spatial resolution is only 1 km (Yang et al.,
2018).

LST derived by satellites has become an important indi-
cator for exploring variation characteristics of the SUHI, be-
cause LST is closely related to the land cover type/structure,
population density, anthropogenic heat release, etc., and it
also can significantly influence surface air temperature, wind
field, humidity, and surface fluxes in the urban region (Ho
et al., 2016; Yang et al., 2019; Li et al., 2020, 2021). How-
ever, the LST can only quantify the SUHI effect, which is
seriously affected by meteorological factors, e.g., clouds and
evaporation. In contrast, as an important indicator reflect-
ing the energy exchange between the atmosphere and land
in the urban canopy, AT is more representative than LST.
In particular, AT is more related with human health and
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ecological changes in cities (Ho et al., 2016). While UHI
studies based on AT observed by meteorological sites suffer
from limited spatial coverage, which impedes a comprehen-
sive understanding of the influencing factors and causes of
canopy UHI (CUHI). Thus, there is an urgent need to develop
rapid, high-spatiotemporal-resolution AT, and refined CUHI
intensity (CUHII) estimation methods to explore the mech-
anisms under which anthropogenic factors (e.g., urban land-
use changes, anthropogenic heat emissions, urban morphol-
ogy, and size) and natural factors (e.g., meteorological con-
ditions and geographical differences) influence the CUHIs of
complex and diverse cities.

Therefore, in this study, we (1) based on remote sensing
data, AT and wind speed data as well as other environmen-
tal information from meteorological observations, retrieved
the AT data at a 30 m spatial and 1 h temporal resolution in
the study area by using machine learning; (2) calculated the
CUHII distribution based on the retrieved AT data, and fur-
ther explored the shape, intensity, and influencing factors of
the CUHI by combining local LULC, wind vector, and urban
morphology data.

2 Materials and methods

2.1 Study areas

Nanjing, the capital city of Jiangsu province in China, is lo-
cated along the lower reaches of the Yangtze River and, as
part of the Yangtze River Delta urban agglomeration, has a
high level of urbanization. In fact, Nanjing has been expe-
riencing rapid urbanization since China’s economic reform
in 1978. According to the National Bureau of Statistics, the
population in Nanjing increased from 6.13 million in 2000 to
8.34 million inhabitants in 2018. In 2016, the built-up area
of Nanjing expanded to 773.79 km2, pushing the city to rank
as the ninth-largest among all Chinese cities (R. Wang et al.,
2020). The total GDP in 2020 was about CNY 1.48 trillion,
ranking ninth among all Chinese cities.

2.2 Data

All of the satellite remote sensing data employed in this study
are from the geospatial data cloud (https://www.gscloud.cn/,
last access: 10 April 2021), including those gathered by the
Landsat 8 Operational Land Imager (OLI). OLI has nine
bands, including a coastal band, blue band, green band, red
band, near-infrared band, two shortwave infrared bands, a
panchromatic band, and a cirrus band. Due to the low tem-
poral resolution (16 d) of the Landsat 8 OLI dataset and the
vulnerability to cloud cover, data from three instances of
cloudless conditions over Nanjing were selected for use in
this paper – namely, 10:43 local time (LT) on 11 August
2013, 2 September 2015, and 21 July 2017. The specific band
ranges and uses of Landsat 8 OLI are shown in Table S1 of
the Supplement.

High-density automatic meteorological observation data,
including AT (with resolution of 0.5◦ on 11 August 2013 and
0.1◦ on 2 September 2015 and 21 July 2017), wind speed,
and wind direction, at 11:00 LT on the day closest to the
satellite transit time, were selected. All weather stations in
operation on those three days were included, numbering 218
totally and 63, 79, and 76, respectively (Fig. 1). Figure 1
shows the 2 m AT and LULC on these three days. Compared
with the LULC, the spatial patterns of AT on these three days
are quite different (Fig. 1).

In addition to global climate change, the influence of hu-
man activities on the CUHI cannot be ignored. Previous stud-
ies have pointed out that AHF is closely related to the change
in built-up areas and population density around the stations,
which reflects the fact that the effects from both anthro-
pogenic emissions and land-use change are related to latent
heat flux and sensible heat flux (Zhou et al., 2012; Y. Yang et
al., 2020a; L. Wang et al., 2020; Zhang et al., 2021). There-
fore, AHF was retrieved via a physical method (Chen and
Shi, 2012; Chen et al., 2012, 2014) based on 1000 m spa-
tial resolution NOAA nighttime lighting data and with local
economic development and energy consumption data, and
the AHF data at the same time in Nanjing were provided
by Chen and Shi (2012) and Chen et al. (2012, 2014). Note
that the AHF here varied annually. We expect that AHF dis-
tribution can shape the main morphology of urban thermal
environment. We cannot get AHF data at diurnal and sea-
sonal scales. In future, if we obtain high-temporal-resolution
AHF data, we will update them in the model. And lastly, the
digital elevation model (DEM) data (30 m spatial resolution)
used in this study are based on the second version of ASTER-
GDEM, which is provided by the Geospatial Data Cloud site,
Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn, last access: 10 April 2021).

3 Random forest model framework for air temperature
retrieval

3.1 Construction of random forest model

The random forest (RF) model is a highly flexible machine
learning algorithm that can analyze data with missing val-
ues or noise and has good anti-interference ability. To date,
the RF model has been widely used as a feature selection
tool for high-dimensional data to, for example, identify the
importance of variables and predict or classify related vari-
ables. In this study, an RF model was constructed for each
time’s dataset to evaluate the AT using the RF package in R
language.

3.1.1 Data preparation

The process of urbanization will have a significant impact on
CUHIs (Zhou et al., 2015). To comprehensively take into ac-
count the local urban environment, 18 factors were selected
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Figure 1. Anthropogenic heat flux of Nanjing city and locations of high-density automatic meteorological stations in Nanjing with recorded
air temperature: (a) location map of Nanjing in China; (b, e) 11:00 LT on 11 August 2013; (c, f) 11:00 LT on 2 September 2015;
(d, g) 11:00 LT on 21 July 2017.
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as independent variables, including anthropogenic parame-
ters (i.e., AHF), geometric parameters (distance from the city
center, proportion of LULC area, altitude, longitude, lati-
tude, slope, aspect), and physical parameters: proportion of
impervious surface (IS) area, albedo, normalized difference
vegetation index (NDVI), normalized difference built-up in-
dex (NDBI), green normalized difference vegetation index
(gNDVI), soil-adjusted vegetation index (SAVI), and nor-
malized difference moisture index (NDMI). Their sources
and spatial resolution are summarized in Table 1. The in-
version methods for these environmental variables were as
follows: based on Landsat 8 OLI satellite data, the LULC
in Nanjing was divided into four broad categories (built-up,
cropland, vegetation, and water body) by combining a sup-
port vector machine method and visual interpretation. The
remote sensing indices were calculated using corresponding
bands (Yang et al., 2012; Shi et al., 2015). The IS and surface
albedo data were extracted via multi-band information (Son
et al., 2017; Liang, 2001). Then, the geometric center of the
built-up area was calculated as the city center, and the dis-
tances between the meteorological stations and the city cen-
ter were calculated. Slope and aspect were calculated based
on the DEM data using ArcMap 10.2. The methods used for
extracting the IS data and calculating the remote sensing in-
dices and surface albedo are given in Sect. S1, together with
the accuracy of IS and albedo. All the above data (except
for DEM, aspect, and slope) were extracted for each of the
3 years corresponding to the three selected Landsat images.
Taking the data on 21 July 2017 as an example, Fig. 2 shows
the spatial distribution of some of the environmental param-
eters, i.e., IS, distance from city center, LULC, and NDVI,
where high spatial consistency between these parameters and
the urban structure can be seen. For example, high-density
built-up areas correspond closely to high AHF and low veg-
etation cover.

Due to advection and turbulent transport, neighborhood
surroundings can affect the local temperature (Yang et al.,
2012; Shi et al., 2015). Therefore, a fixed buffer zone was
built surrounding the meteorological stations. Within the
buffer zone of each station the proportion of IS area and that
of each LULC type, and the average values of surface albedo,
AHF, NDVI, NDBI, SAVI, gNDVI, and NDMI were calcu-
lated. Together with longitude, latitude, altitude, and distance
to the city center, these parameters were fed into the RF
model as independent variables, with AT as the target vari-
able. In addition, to find out the optimal size of the buffer
zones for the model, we compared the model performances
for different buffer zone sizes, i.e., buffer zones with a ra-
dius of 500, 1000, 2000, and 5000 m, respectively. Figure 3
summarizes the research framework of this paper.

3.1.2 The 5-fold cross validation

This paper uses the coefficient of determination (R2) and
root-mean-square error (RMSE) as verification indicators.

Figure 2. Spatial distribution of typical environmental variables on
21 July 2017 in Nanjing: (a) impervious surface; (b) distance from
city center; (c) LULC; (d) NDVI.

Figure 3. Flowchart for constructing the RF model and evaluating
the CUHII (canopy layer urban heat island).
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Table 1. Independent variables with their sources and spatial resolution.

Parameters Source Spatial
resolution (m)

Geometric parameters Proportion of LULC area Landsat 8 data 30
Latitude and longitude
Distance from the city center LULC data
Altitude, slope, and aspect DEM data

Physical parameters Proportion of IS area Landsat 8 data 30
Albedo
NDVI, NDBI, gNDVI, SAVI, and NDMI

Anthropogenic parameters AHF data NOAA nighttime lighting data 1000

Notes: DEM, digital elevation model; IS, impervious surface; NDVI, normalized difference vegetation index; NDBI, normalized difference built-up index;
gNDVI, green normalized difference vegetation index; SAVI, soil-adjusted vegetation index; NDMI, normalized difference moisture index; AHF, anthropogenic
heat flux.

R2 indicates the degree of fit between the predicted AT and
the observed AT, and the RMSE can reflect the credibility of
the prediction result.

The cross validation (CV) method can be used to evaluate
the performance of the RF model (Zheng et al., 2020). In this
paper, we employ the 5-fold CV method, in which the en-
tire dataset is randomly divided into five subsets – each time
four subsets are used to train the RF model, and the remain-
ing one is used for validating. After constructing the model,
the validation data are used to calculate the current R2 and
RMSE, and the process is repeated until each of the 5 folds
has been used as validation data. The randomness in the pro-
cess of selecting samples for modeling gives the model the
advantage of being robust and highly accurate. With enough
decision trees, it can ensure that each sample is used as a
training sample and a test sample, effectively avoiding over-
fitting.

3.1.3 Variable selection and model parameter setting

Since not every variable in the model makes a prominent con-
tribution to the performance, deleting those variables that can
reduce the prediction accuracy can improve the performance
and simplify the model. Therefore, the number of variables
should be minimized on the premise of improving or not af-
fecting the performance of the model. The contribution of
each variable is judged by two indicators: the percentage
increase in mean-square error (%IncMSE) and the percent-
age increase in node purity (IncNodePurity). Using the back-
ward selection method, the variable with the smallest con-
tribution is identified and removed, and the model is re-run.
These steps are then repeated until only one variable remains.
The R2 and RMSE under different combinations of variables
were evaluated (Fig. S1).

To build an RF model, two important parameters need to
be set: the number of decision trees (Ntree) and the number
of variables sampled at each node (Mtry). The RF models
were established with Ntree from 50 to 1200, with 50 as the

step length, and Mtry from 1 to 16 respectively, with 1 as the
step length to traverse all the parameters. Figure 4 presents
the R2 and RMSE values in each 5-fold CV test.

The principle of parameter selection is to choose a simpler
model (smaller Ntree and Mtry) under the premise of good
performance. In the end, the optimal Mtry and Ntree based
on the datasets on 11 August 2013, 2 September 2015, and
21 July 2017 were 7 and 200, 10 and 150, and 7 and 50,
respectively.

3.2 Model testing

Table 2 compares the performance of the RF model with dif-
ferent buffer sizes (500, 1000, 2000, and 5000 m) in the 5-
fold CV. The RF model based on the dataset on 11 August
2013 and 2 September 2015 within 1 km buffer zones per-
formed best, with an R2 and RMSE of 0.57 and 0.65 ◦C, and
0.59 and 0.69 ◦C, respectively. On 21 July 2017, the R2 and
RMSE with a 2 km buffer zone were 0.47 and 0.80 ◦C, re-
spectively, outperforming other buffer sizes. As can be seen
from Table 2, on 11 August 2013 and 2 September 2015, the
R2 and RMSE with the 1 km buffer zone were very close to
those from the optimal buffer size, i.e., the 2 km buffer zone,
whereas on 21 July 2017, the R2 and RMSE with the 1 km
buffer zone deteriorated considerably compared to those with
the 2 km buffer zone. In addition, according to recent stud-
ies, the effective range that can influence local temperature
is within 2 km (Ren and Ren, 2011; Yang et al., 2012; Shi et
al., 2015). Therefore, a 2000 m buffer was finally chosen in
this study.

In addition, three methods of AT modeling were also com-
pared – two linear regressions – stepwise linear regression
(Alonso and Renard, 2019; Mira et al., 2017) and geograph-
ically weighted regression (GWR) (L. Wang et al., 2020; Li
et al., 2021) – and one nonlinear regression (the RF model;
Alonso and Renard, 2020). A detailed description of the lin-
ear regression methods is provided in Sect. S2. For each
model, the combination of variables with the largest R2 and
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Figure 4. The (a–c) R2 (coefficient of determination) and (d–f) RMSE (root-mean-square error) changes with the parameters Ntree and Mtry
of the model using the dataset on (a, d) 11 August 2013, (b, e) 2 September 2015, and (c, f) 21 July 2017.

Table 2. R2 and RMSE of the RF model with different buffer radii (500, 1000, 2000, 5000 m). Date format: dd/mm/yyyy.

500 m 1000 m 2000 m 5000 m

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
(◦C) (◦C) (◦C) (◦C)

11/08/2013 0.33 0.75 0.57 0.65 0.56 0.65 0.36 0.74
02/09/2015 0.58 0.70 0.59 0.69 0.57 0.70 0.49 0.76
21/07/2017 0.19 0.92 0.17 0.91 0.47 0.80 0.16 0.93

smallest RMSE was selected. Using this approach, eight,
seven, and six variables were selected for the models on
11 August 2013, 2 September 2015, and 21 July 2017, re-
spectively (Table 3). Table 3 also shows the performance of
each model based on the dataset within a 2000 m buffer zone.
Compared to the other methods, the RF model achieves bet-
ter R2 and RMSE, indicating its higher capability in fitting

nonlinear and complex data and suitability for predicting AT
(Zhu et al., 2019; Yoo et al., 2018).

3.3 Prediction accuracy of RF models

Figure 5 compares the measured AT of the high-density au-
tomatic stations in the training set or testing set and the pre-

https://doi.org/10.5194/amt-15-735-2022 Atmos. Meas. Tech., 15, 735–756, 2022



742 S. Chen et al.: A monitoring approach of canopy urban heat island

Table 3. R2 and RMSE of stepwise regression, GWR (geographi-
cally weighted regression), and the RF model within a 2 km buffer
zone. Date format: dd/mm/yyyy.

Stepwise regression GWR RF model

R2 RMSE ) R2 RMSE R2 RMSE
(◦C) (◦C) (◦C)

11/08/2013 0.30 0.69 0.33 0.77 0.56 0.65
02/09/2015 0.47 0.74 0.44 0.82 0.57 0.70
21/07/2017 0.27 0.90 0.12 0.93 0.47 0.80

dicted AT of the RF model in the 5-fold CV. In general, a
large number of scattered points of predicted and observed
AT are clustered around the 1 : 1 line, indicating good per-
formance of the model. In the training set, the average R2

and RMSE of the three models are 0.955 and 0.325 ◦C, re-
spectively. The R2 and RMSE using data on 11 August
2013, 2 September 2015, and 21 July 2017 are 0.948 and
0.295 ◦C, 0.954 and 0.310 ◦C, and 0.963 and 0.369 ◦C, re-
spectively, indicating high model accuracy. The result of the
testing set shows that the average R2 and RMSE are 0.535
and 0.719 ◦C, respectively. Among them, the prediction re-
sults achieved on 21 July 2017 are slightly less accurate
than those obtained on the other two days. A smaller R2

and larger RMSE were observed on 21 July 2017 (0.468,
0.802 ◦C) compared to 11 August 2013 (0.563, 0.655 ◦C) and
2 September 2015 (0.574, 0.700 ◦C). Based on existing re-
search (Oh et al., 2020; Venter et al., 2020) and follow-up
discussion (Sect. 4.2.1), it can be concluded that the model
performs best outside of the summer months, when the spa-
tial variation in AT is low and wind velocities are high, cor-
responding to the model from 2 September 2015. In con-
trast, during the summer months, the performance of the
model constructed with a high spatial variation of AT or low
wind speed conditions decreases slightly, corresponding to
the datasets on 21 July 2017 and 11 August 2013.

Furthermore, we used %IncMSE and IncNodePurity to de-
termine the contribution of each variable (Table 4) and to
compare their importance. The NDVI, and the proportion of
IS, vegetation, and water body area all appeared in the three
models, indicating that vegetation, water bodies, and human
activities have important and universal impacts on the AT
distribution. The distance to the city center appeared in the
model based on the data on 2 September 2015 and 21 July
2017, and ranked high, implying the impact of urbanization
on the heat island.

The absolute error for RF prediction is defined as dif-
ference in predicted AT and observed AT at each weather
station(See Fig. S2). The relative error is defined as that
absolute error divided by observed AT, which is shown in
Fig. 6. In general, the mean relative (absolute) errors by
all stations are 0.07 % (0.014 ◦C), 0.04 % (−0.025 ◦C), and
0.05 % (0.003 ◦C) on 11 August 2013, 2 September 2015,

Table 4. Importance of input variables for the RF model of AT esti-
mation on the three different days. Date format: dd/mm/yyyy.

11/08/2013 %IncMSE IncNodePurity

Water body 9.23 4.71
NDVI 8.38 4.22
NDBI 7.15 7.13
IS 6.93 6.46
Built-up 4.19 2.05
Vegetation 2.35 1.38
AHF 0.89 2.91
Cropland 0.27 1.70

02/09/2015 %IncMSE IncNodePurity

Cropland 5.10 9.45
Distance to city center 4.57 8.59
Water body 4.00 11.05
NDVI 3.18 5.34
NDBI 2.44 4.05
Built-up 2.41 2.78
SAVI 1.49 2.67
Vegetation 1.44 2.24
IS 0.40 2.59

21/07/2017 %IncMSE IncNodePurity

Distance to city center 20.01 16.22
IS 18.36 15.75
Vegetation 11.52 8.08
NDVI 9.89 3.85
gNDVI 7.86 3.28
SAVI 6.78 2.38
Water body 6.45 6.24

Notes: NDVI, normalized difference vegetation index; IS, impervious
surface; AHF, anthropogenic heat flux; DEM, digital elevation model;
NDBI, normalized difference built-up index; gNDVI, green normalized
difference vegetation index; SAVI, soil-adjusted vegetation index.

and 21 July 2017, respectively. In detail, most of errors are
concentrated between −0.49 and 0.5 ◦C over more than half
of all stations for these three days (Fig. S2), and more than
39.1 %/71.7 %/86.3 % of the total stations exhibit predictions
with relative errors < 1 %/2 %/3 % (Fig. 6), indicating good
performance of RF models for most areas.

3.4 Model robustness

To validate robustness of this RF framework and its practical-
ity at a long period, hourly meteorological AT observations
during August 2013, September 2015, and July 2017, and
corresponding environment variables were chosen to estab-
lish the RF model. The temperature differences in a month
are larger, showing more complicated situations. For 5-fold
CV, a scatterplot of predicted and observed air temperature
is given in Fig. 7, showing that the mean RMSEs are 0.75,
0.52, and 0.59 ◦C, and R2 values are 0.98, 0.99, and 0.99, re-
spectively, in August 2013, September 2015, and July 2017.
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Figure 5. Scatterplot of predicted and observed air temperature: 5-fold cross validation (CV) for the training set on (a) 11 August 2013,
(b) 2 September 2015, and (c) 21 July 2017; 5-fold CV for the testing set on (d) 11 August 2013, (e) 2 September 2015, and (f) 21 July 2017.

Figure 6. The predicted relative error of the air temperature by random forest: (a) 11 August 2013; (b) 2 September 2015; (c) 21 July 2017.

In general, for 1-month samples, the mean R2 reached 0.986
and RMSE was 0.620 ◦C. Note that most of the points are
clustered around the 1 : 1 line and the performance is better
than the model using 1 d samples. The accuracy in August
2013 is the lowest because that resolution of observed AT is
0.5 ◦C in this month, while it is 0.1 ◦C in other two months,
so the performance is the worst among three months.

4 Refined CUHII assessment in Nanjing

4.1 Refined AT and CUHII and comparison with LST
distribution

After establishing the model, a 2 km buffer area was created
for each 30 m resolution pixel and the same 18 independent
variables were calculated. The constructed RF model took
these pixel-wise variables as input and output AT for each
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Figure 7. Scatterplot of predicted and observed air temperature using data in a 1-month 5-fold CV for the testing set on (a) August 2013,
(b) September 2015, and (c) July 2017.

pixel, and hence we obtained the RF model–predicted AT
map at 30 m resolution (Fig. 8). LST is also a physical mani-
festation of surface energy and moisture flux exchange be-
tween the atmosphere and the biosphere. Previous studies
point out that there is a relationship between LST and AT
(Mutiibwa et al., 2015; Benali et al., 2012); therefore, Fig. 9
shows the LSTs of Nanjing on these days, which were re-
trieved by using Google Earth Engine. CUHII is an impor-
tant indicator to quantify the UHI effect, which is usually
defined as the difference in AT at the same level between ur-
ban and rural areas (Y. Yang et al., 2020b; Nganyiyimana et
al., 2020), as follows:

CUHII= T − Trural, (1)

where T is the predicted AT in each pixel and Trural is the
average AT in the reference rural area. A square area of size
10 km× 10 km was selected as the reference rural area in the
northern part of Nanjing (Valmassoi and Keller, 2021). It was
far from the city center and barely impacted by the UHI ef-
fect (Fig. 8). The average AT in each reference rural area
was 36.0, 27.8, and 34.7 ◦C on these three days, respectively.
Then, the CUHII distribution in Nanjing was calculated ac-
cording to Eq. (1) (Fig. 10).

Figure 8 shows that the AT on 11 August 2013 and 21 July
2017 was higher and that the AT ranges were 35.4–37.8
and 33.6–36.4 ◦C, respectively. The corresponding CUHII
was strong, with more than 1.5 ◦C in the downtown area
(Fig. 10). On 2 September 2015, the AT range was 26.8–
29.1 ◦C (Fig. 8) and the CUHI was slightly weaker, with
the maximum value at only 1.3 ◦C (Fig. 10). In contrast, the
LSTs are higher, ranging from 26.2–44.1, 21.3–44.1, and
23.9–42.1 ◦C on 11 August 2013, 2 September 2015, and
21 July 2017, respectively (Fig. 9). The three images from
different seasons and different weather backgrounds led to
significant differences in CUHII, while LST differences are
marginal. On 2 September 2015, the overall CUHI was the
weakest among the three days. Consistent with a previous
study (R. Wang et al., 2020), the summer CUHI in Nanjing

was found to be generally stronger than that in autumn and
winter. The difference between the maximal heat island and
cold island intensity on 21 July 2017 was 2.8 ◦C, the largest
among the three cases. Generally, the densely populated cen-
tral city area has a large proportion of IS area, large anthro-
pogenic heat emissions, and higher AT and LST, showing
an obvious UHI phenomenon (Figs. 8, 9, and 10). However,
in urban areas with high vegetation coverage or large water
bodies, the AT and LST decrease with weakened CUHII. The
AT and LST gradually decrease from the city center to the
suburbs. Suburban areas, which are covered by more vegeta-
tion and water bodies, have significantly lower AT and LST
than central urban areas. At the boundary of the central city,
high-AT areas and heat islands extend outward along built-up
areas and roads (Figs. 8, 9, and 10).

Against different weather backgrounds, the spatial distri-
butions of AT and CUHII exhibit heterogeneity in urban Nan-
jing on different days. The high-AT area on 11 August 2013
extended from the city center to a wide range, and the ex-
treme value of AT was the highest (Fig. 8a), corresponding to
the strongest CUHI (Fig. 10a). Combined with Fig. 2, we can
see only a small range of vegetation coverage and water bod-
ies in the central urban area, so the CUHII decreased slightly.
Only in the suburban water body and farmland areas were
there large cold island areas, and only on this day, the dis-
tribution of LST corresponds to that of AT. On 2 September
2015, the high-AT area was relatively small to the north of the
Yangtze River. The AT on the Yangtze River was the lowest
(Fig. 8b), with the strongest cold island here (Fig. 10b). The
high-AT area extended from the central city to the south, and
the cold islands in the southern water body and vegetation-
covered areas were not significant. On 21 July 2017, the dis-
tribution of the heat island was the opposite. There was a
large area of high AT to the north of the Yangtze River, and
the cooling effect of the Yangtze River was weak (Fig. 8c).
Meanwhile, the AT in the southern suburbs dropped signif-
icantly, and cold islands widely spread in water body and
cropland areas (Fig. 10c). Compared with the distribution of
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Figure 8. Spatial distribution of AT in Nanjing and the reference rural area: (a) 11 August 2013; (b) 2 September 2015; (c) 21 July 2017.

Figure 9. Spatial distribution of the LST in Nanjing: (a) 11 August 2013; (b) 2 September 2015; (c) 21 July 2017.

CUHII on 11 August 2013, the AT over the water bodies and
hills in the northeast of the central city was lower, forming a
large and strong cold island area.

However, note that the distributions of LST at these three
times are similar, and they are all strongly related to urban
form and LULC (Li et al., 2021). This is because different
factors caused different spatial distribution between LST and
AT. Ground transfers heat to the air through radiation, con-
duction, and convection after absorbing solar energy, which
is the main source of heat in the air (Hong et al., 2018; Khan
et al., 2020). While LST is directly heated by solar energy,
which is more sensitive to emissivity, surface material and
humidity, which are related to LULC, tend to have greater
temperature differences for different LULC types (Janatian

et al., 2016; Long et al., 2020). The LULC types in these
periods are similar, so the LST differences are marginal.

To further explore the intensity and coverage of the CUHI
on different days, the area (km2) occupied by different lev-
els of CUHII on the three different days was calculated (Ta-
ble 5). The CUHI area on 11 August 2013 accounted for
84.1 % and the area of the CUHII in the range of 1–1.5
and 1.5–2 ◦C was 1486.89 and 82.96 km2, respectively. On
2 September 2015, the CUHI area accounted for 80.2 % and
the CUHII area at 0–0.5 ◦C accounted for 57.0 %, concentrat-
ing in this range, while that at 1–1.5 ◦C was only 56.97 km2.
The strongest cold island was lower than −1 ◦C, and the
overall CUHI effect was relatively weak. On 21 July 2017,
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Figure 10. Spatial distribution of the CUHII in Nanjing: (a) 11 August 2013; (b) 2 September 2015; (c) 21 July 2017.

Table 5. Area occupied by different levels of urban heat island intensity on different days (km2). Date format: dd/mm/yyyy.

CUHII level (◦C) −1.5 to −1 −1 to −0.5 −0.5 to 0 0 to 0.5 0.5 to 1 1 to 1.5 1.5 to 2

11/08/2013 0.00 0.15 1047.43 1517.19 2446.03 1486.89 82.96
02/09/2015 0.02 192.13 1109.89 3751.88 1472.26 56.97 0.00
21/07/2017 0.23 232.52 1005.04 2670.11 2040.98 634.13 0.14

the CUHI area accounted for 81.2 %, and the area where the
CUHII was greater than 1.5 ◦C was only 0.14 km2.

4.2 Potential drivers of CUHII

According to previous studies, three factors – the wind vector
field (He, 2018), LULC (Cao et al., 2018; R. Wang et al.,
2020) and the urban structure (Shahmohamadi et al., 2011;
Li et al., 2020) – are the most important influencing factors
of CUHIs. In this section, we explore these three drivers of
CUHI in Nanjing.

4.2.1 Relationship between CUHII and the wind vector
field

The horizontal air flow has a significant impact on the in-
tensity and shape of the CUHI (He et al., 2021). Figure 11
shows the wind vector field observed by weather stations on
the three days analyzed in our study.

On 11 August 2013, the average wind speed at the sta-
tions was 0.70 m s−1, most of which recorded calm wind
(0–0.2 m s−1) or soft wind (0.3–1.5 m s−1) (Fig. 11a). The
main reason for this was that Nanjing was continuously con-
trolled by the western Pacific subtropical high at this time and
was therefore experiencing a continuous heatwave – condi-
tions that are usually associated with low wind speeds, de-

scending motion, and stable weather, leading to increased
CUHI strength (Fig. 10a) (Wang et al., 2021). On 2 Septem-
ber 2015, the average wind speed was 1.53 m s−1, which
was a significant increase (Fig. 11b). The overall northwest-
erly wind direction led to the CUHII being lower than that
on 11 August 2013. Indeed, it has been noted in previous
work that the wind direction will significantly affect the
position and shape of a heat island (Bassett et al., 2016),
and in the present study the northwesterly winds resulted in
the CUHI extending from the built-up area to the southeast
(Fig. 10b) whilst weakening significantly in the northwest.
On 21 July 2017, the average wind speed reached 3.07 m s−1,
with a southwesterly wind direction (Fig. 11c). The CUHI ef-
fect weakened accordingly, extending to the northeast in the
downward wind, and the CUHI was significantly weakened
in the southwest (Fig. 10c).

On all three days, the wind speed in the suburban areas
was higher than that in the central city, and this is because
there is no shelter provided by tall and dense buildings in
the suburban areas, which is conducive to cooling from air
convection and therefore a weakening of the CUHII (P. Yang
et al., 2020). That said, records show that, surprisingly, the
boundary-layer mean wind speed in a city can be higher than
its rural counterpart. On the one hand, Nanjing is traversed
by the Yangtze River, and the central city surrounds a large
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Figure 11. Wind vector field in Nanjing on (a) 11 August 2013, (b) 2 September 2015, and (c) 21 July 2017.

area of water, wherein the low surface roughness of the water
is conducive to air convection. On the other hand, channel-
ing/the Venturi effect might be an important factor. When
the prevailing wind is parallel to the axis between build-
ings, it will be forced to enter between the buildings, result-
ing in higher wind pressure, which increases the wind speed
(Droste et al., 2018).

In order to quantify the relationship, the average CUHII
and standard deviation under different wind speeds at various
meteorological stations were calculated (Fig. 12). On 11 Au-
gust 2013, the maximum wind speed was 2 m s−1, which
bore no significant relationship with the CUHII (Fig. 12a).
On 2 September 2015 and 21 July 2017, the maximum wind
speed reached 5 and 6 m s−1, respectively, which showed a
significant negative correlation with the CUHI (Fig. 12b and
c). The greater the wind speed, the more significant the neg-
ative correlation.

There are two aspects concerning the influence of air con-
vection on CUHIs. On the one hand, air convection will fa-
cilitate horizontal advection cooling between urban and rural
areas, thereby weakening the CUHI (Brandsma et al., 2003).
The greater the wind speed, the more significant the cool-
ing effect (Fig. 12). On the other hand, horizontal convection
transfers heat from the upwind to the downwind area, weak-
ening the upwind CUHII and strengthening the downwind
CUHII (Bassett et al., 2016) (Figs. 10 and 11). Under dif-
ferent wind speeds, the synergy of these two aspects differs
significantly. On 11 August 2013, the average wind speed
was the smallest among the three days at only 0.7 m s−1, and
there was no uniform wind direction, corresponding to the
strongest CUHI. The distribution of the CUHI was highly
correlated with that of built-up areas (Figs. 10a and 11a). On

2 September 2015, the average wind speed was 1.53 m s−1.
Due to the combined effect of horizontal advection cooling
and heat transfer, an upwind cold island appeared and, mean-
while, the downwind area received heat from the upwind area
and the CUHII increased significantly (Figs. 10b and 11b).
On 21 July 2017, the average wind speed was 3.07 m s−1,
and the upwind CUHII also weakened (Figs. 10c and 11c).
Downwind, however, the urban heat convection was the dom-
inant factor, which reduced the CUHII in some areas.

In contrast, CUHII distribution is in good agreement with
LST distribution on 11 August 2013, while the large pattern
difference during the other two days (Figs. 9 and 11). This
is because calm wind on 11 August 2013 cannot induce hor-
izontal advection of urban heat; therefore, spatial distribu-
tions of LST and AT are well matched in this day. However,
under large wind conditions (e.g., larger wind speeds on both
2 September 2015 and 21 July 2017), there is obvious urban
heat island advection (Bassett, et al., 2016), resulting in dif-
ferent patterns between CUHII and SUHI during these two
days (Figs. 9 and 11).

4.2.2 Relationship between CUHII and LULC

LULC also has a significant impact on CUHII (Li et al.,
2020; Zong et al., 2021) and LST (Yang et al., 2018; Li
et al., 2021). The average values and standard deviation of
CUHII were calculated for each LULC type on the three days
(Fig. 13). On 11 August 2013, the CUHII in the built-up area
was the strongest, exceeding 1.1 ◦C, and in the water body ar-
eas it was the weakest at only 0.22 ◦C (Fig. 13a). On 21 July
2017, the CUHII in the built-up area was the strongest at
0.62 ◦C, and in the vegetation areas it was the weakest at
0.24 ◦C (Fig. 13b). The CUHII on these two days was high-
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Figure 12. Relationship between CUHII and wind speed around all meteorological stations on (a) 11 August 2013, (b) 2 September 2015,
and (c) 21 July 2017. The black dots represent the mean canopy UHII; error bars indicate the uncertainties of 1 standard deviation from the
mean.

est in the built-up area, followed by cropland, and then water
bodies and vegetation. On 2 September 2015, the CUHII in
the built-up area was the strongest at 0.32 ◦C, while it was
the weakest at −0.06 ◦C in the water body areas (Fig. 13c).

Different LULC types have different effects on AT due to
their own intrinsic physical properties, mainly reflected in
three aspects:

1. Due to the good thermal conductivity and small specific
heat capacity of the surface material in the built-up area,
the ability to absorb shortwave radiation during the day
is stronger than that of other land uses. The LST is sig-
nificantly higher than that of the suburbs, and therefore
the atmosphere is easily heated (Hong et al., 2018).

2. Due to sufficient water availability in cropland and
vegetation-covered areas, evaporation will increase the
latent heat flux and cooling effect (Zhao et al., 2020;
Zheng et al., 2018). In contrast, the surface humidity of
the built-up area is low, with low corresponding latent
heat flux. The difference in latent heat flux will increase
the difference in LST and AT between urban and ru-
ral areas. The latent heat flux of the water bodies is the
largest, and the cooling effect is the most obvious.

3. There is a significant correlation between LULC and
wind speed (Chen et al., 2020). Areas with tall build-
ings in built-up areas have high surface roughness and
low wind speed, whereas water bodies have low surface
roughness and high wind speed. The surface roughness
of vegetation-covered areas and cropland is somewhere
between. The air convection will increase the sensi-

ble heat flux and reduce the AT (Sect. 4.2.1). There-
fore, LULC and air convection will jointly enhance or
weaken the CUHII.

On 11 August 2013, the average wind speed and the differ-
ence in wind speed between different LULC types were small
and so was the difference in sensible heat flux. The differ-
ence in radiation and sensible heat flux was the main factor.
On 21 July 2017, the average wind speed was the highest,
and the synergy in the three aspects led to the CUHII over
different LULC types being highest in the built-up area, fol-
lowed by cropland, vegetation, and then water bodies. On
2 September 2015, the CUHII was highest in the built-up
areas, followed by vegetation, cropland, and then water bod-
ies. This was due to the influence of low wind speeds, which
would have produced heat transfer and made the CUHII shift
from the built-up area to other LULC types (Sect. 4.2.1).

4.2.3 Relationship between CUHI and urban structure

Human activities and urbanization have a significant impact
on the spatial distribution of UHI (Shahmohamadi et al.,
2011; Li et al., 2020). To explore this influence, concentric
rings with various radii (5, 10, 15, 40 km) were created sur-
rounding the city center. Within each ring, the average values
and error ranges of AHF and CUHII, along with the average
proportion of built-up area, were calculated. Figure 14 shows
that the CUHII, AHF, and proportion of built-up area all sig-
nificantly decrease with increasing distance to the city center.

From a longitudinal perspective, the AHF and the propor-
tion of built-up areas both increased year by year. The built-
up areas of Nanjing on the three days were 982.78, 1076.19,
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Figure 13. Mean CUHII and standard deviations over different LULC on (a) 11 August 2013, (b) 2 September 2015, and (c) 21 July 2017.

Figure 14. Changes in air temperature, AHF, and the proportion of built-up areas with distance from the city center on (a) 11 August 2013,
(b) 2 September 2015, and (c) 21 July 2017. Thick lines represent mean values, while shaded regions are the uncertainties of 1 standard
deviation from the mean.
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and 1220.36 km2, respectively. The proportion of built-up
areas beyond 20 km to the city center increased, especially
within the range of 20–25 km. The AHF also showed the
same trend, which within the range of 20–25 km even ex-
ceeded that in the range of 15–20 km on 2 September 2015
and 21 July 2017. This shows that built-up areas and hu-
man influence were spreading from the city center to the sur-
rounding areas during this period. However, the intensity and
range of the CUHI did not increase with this trend, because
the wind field and weather background have a stronger influ-
ence on CUHI than urbanization (Hong et al., 2018; Zong et
al., 2021).

5 Discussion

Based on the RF model and combined with local environ-
ment and background weather data, the pattern and causes of
CUHIs can be analyzed in detail. On 11 August 2013, Nan-
jing experienced a heatwave, with almost no horizontal con-
vection of air (Fig. 11a). In dry areas, such as built-up areas,
the latent heat flux remained unchanged, but the high reflec-
tivity of the surface raised the AT. In the heatwave period, the
higher AT increased the latent heat flux in rural areas (Khan
et al., 2020). For example, vegetation and water bodies alle-
viated the increase in AT in rural areas. This combined effect
exacerbated the difference in AT between the urban and rural
areas, making the overall CUHI the strongest (Nganyiyimana
et al., 2020; Meili et al., 2021). In Fig. 10a, it can be seen that
the cooling efficiency of vegetation in the urban area was not
high and the coverage of the cooling area was small. This is
because the stomata of leaves would have been closed under
high AT and dry weather, resulting in reduced evapotranspi-
ration and increased AT (Manoli et al., 2019). On 2 Septem-
ber 2015, northwesterly winds prevailed (Fig. 11b), and there
was abundant water vapor over the hills of northeast Nan-
jing and over the Yangtze River. The increase in latent heat
flux and horizontal convection cooling lowered the CUHII.
Cold islands even appeared to the north of the Yangtze River.
The CUHII in the southeast direction was strong (Fig. 10b),
which was mainly affected by the heat transport of the pre-
vailing winds (Chuanyan et al., 2005), causing the CUHI to
shift toward the downwind area. On 21 July 2017, south-
westerly winds prevailed in Nanjing, with high wind speed,
decreasing the CUHII in the upwind region (Figs. 10c and
11c). However, there were large areas of vegetation coverage
in the range of 10–20 km in the downwind region, where was
affected by the combined effects of land use and horizontal
advection cooling, leading to lower CUHII there than that of
20–30 km. This also confirms the conclusion (Bassett et al.,
2016) that the upwind horizontal advection cooling has the
strongest correlation with the weakening of the CUHI effect,
and that the downwind region is affected by the wind speed.

There are four main methods for retrieving AT for CUHII
assessment:

1. Statistical methods (Prihodko and Goward, 1997;
Alonso and Renard, 2020; Li et al., 2021): statistical
models of environmental factors and temperature are
established to evaluate the AT, such as multiple linear
regression models, partial least-squares regression, and
GWR. In previous study (Alonso and Renard, 2020),
two methods of AT prediction (namely, stepwise lin-
ear regression and GWR) were compared with the RF
model. The RF model has the highest accuracy and ef-
fectively avoids the problem of autocorrelation by fil-
tering variables, which is consistent with previous work
(Yoo et al., 2018; Zhu et al., 2019) and our present
work, while conventional statistical methods, in addi-
tion, cannot effectively solve nonlinear problems (Oh et
al., 2020).

2. Temperature–vegetation index method (VTX) (Stisen et
al., 2007; Vancutsem et al., 2010): this refers to inver-
sion using the relationship between AT, LST, and veg-
etation index under the premise that the temperature of
a dense vegetation canopy is similar to the AT. While
VTX only indicates the relationships between underly-
ing surface, LST, and AT. In fact, there are many factors
that can affect AT, e.g., anthropogenic heat, altitude, and
distance to city. Ignoring these factors, the accuracy of
VTX method was low (Stisen et al., 2007). In contrast,
our RF model input multiple variables, including more
affecting AT factors.

3. Physical model methods: this category mainly consti-
tutes the energy balance method (Yang et al., 2018),
which refers to the study of AT inversion using the prin-
ciple of energy balance. The physical model approach
is relatively complex, and the performance is highly
dependent on the understanding of the mechanism af-
fecting AT, which can only address specific problems,
while the RF framework in this paper is relatively sim-
ple, comprehensive, and suitable for different weather
backgrounds.

4. Machine learning methods (Venter et al., 2020): predic-
tions are made by establishing models of various vari-
ables and AT, such as RF models or neural networks.
Compared with other machine learning methods such as
neural networks (Astsatryan et al., 2021), the RF model
has better noise immunity and is suitable for small sam-
ple sizes in this study. Other machine learning meth-
ods usually require a lot of data with little noise, so
the data cleaning before modeling will take more time.
In future, we would like to compare different machine
learning methods to come up with a consistently well-
performing model, e.g., SVM and ANN. We will also
use stacking ensemble strategy to combine the advan-
tages of different models and get the best prediction re-
sults.
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Figure 15. Spatial distribution of canopy urban heat island intensity (CUHII) in Nanjing during a heatwave period: (a) 12 August 2013;
(b) 13 August 2013; (c) 14 August 2013.

The RF prediction framework proposed in this work not
only can dynamically predict CUHII in detail and high fre-
quency within highly heterogeneous cities but can also be
built against different weather backgrounds, mainly because
the environmental parameters entered into the model are rel-
atively stable within a certain period (such as the same month
or season). As long as the environmental parameters are ac-
quired once, they can be combined with the AT data in real
time to establish the RF model, and the spatial distribution
characteristics of CUHII with high temporal and spatial res-
olution can be obtained. For instance, we randomly predicted
the 30 m resolution AT and spatial distribution of CUHII
(Fig. 15) with the wind vector field (Fig. S3) during the heat-
wave period of 12–14 August 2012, thereby supporting those
involved in making decisions with respect to urban climate,
urban planning, and urban energy consumption. Particularly,
the potential that our proposed model can be used cross a
short period as most of the environmental parameters fed to
the model probably can remain stable for some time, e.g.,
1 month or even longer.

Due to changes in local weather conditions (e.g., pre-
cipitation and cloud cover), however, there are various
satellite-based LST samples and LST is usually dynamical in
1 month, leading to uncertainties in predicting AT; therefore,
LST is not suitable to be an input variable for our present
model of CUHII. Except for human activities and LULC, the
background weather conditions (such as heatwaves, air pol-
lution, atmospheric circulation, and cloud cover) are also ex-
tremely important (Bassett et al., 2016; P. Yang et al., 2020;
Khan et al., 2020), which should be introduced to improve
the RF model of CUHII.

6 Conclusions

Taking Nanjing as an example and using remote sensing data
with data from local weather stations, parameters to charac-
terize the urban environment were constructed, e.g., anthro-
pogenic parameters (i.e., AHF), geometric parameters (dis-
tance from city center, proportions of LULC types by area,
altitude, and latitude and longitude, slope, and aspect), and
physical parameters (proportion of IS, surface albedo, NDVI,
NDBI, SAVI, gNDVI, and NDMI). A 2 km buffer zone was
created around the meteorological stations, and the observed
environmental parameters were extracted. A refined assess-
ment framework of CUHII was then established by using
random forest model with observed AT and environmental
variables.

Results showed that the correlation coefficient between
the predicted and observed AT was 0.731, and the average
RMSE was 0.719 ◦C, indicating the high accuracy of the RF
model. Based on 1-month samples, the R2 reached 0.986
and RMSE was 0.620 ◦C. Finally, the high-spatial-resolution
(30 m) CUHII distribution was analyzed. It was found that
the shape of the CUHII was highly correlated with the spa-
tial distribution of AHF and built-up area under calm wind
conditions. Under the prevailing wind conditions, the CUHII
should be discussed separately in upwind and downwind ar-
eas divided by the central city. In the upwind area, there was
a significant negative correlation between the wind speed and
CUHII. The higher the wind speed, the more obvious the
negative correlation. In the downwind area, horizontal con-
vection cooling was found to be the leading factor under high
wind speed weather, and heat transfer was the leading fac-
tor under low wind speed weather. The combined effects of
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built-up areas, heatwaves, and human factors can strengthen
the CUHII, while the vegetation canopy and water bodies
will weaken it. Vegetation and water bodies in the central ur-
ban area were found to have a significant cooling effect, pro-
viding a reference for urban development. With increasing
distance from the city center, the CUHII decreased sharply.

In general, overlapping the refined CUHII with local en-
vironmental variables and weather conditions helps to ex-
plore the causes of CUHIs in more detail, instead of being
limited to the location of meteorological sites and frequent
changes in various types of weather. The new 30 m resolu-
tion CUHII evaluation framework developed in this study has
strong portability and important practical value. Our findings
are helpful for improving our understanding of the relation-
ship between human activities and regional climate change,
which can provide important guidance for urban develop-
ment planning and allocation of public resources in the con-
text of global warming and rapid urbanization.
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